4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
33 #include <trace/events/block.h>
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
41 static mempool_t *bio_split_pool __read_mostly;
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
62 * Our slab pool management
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
82 mutex_lock(&bio_slab_lock);
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
88 if (!bslab->slab && entry == -1)
90 else if (bslab->slab_size == sz) {
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
112 entry = bio_slab_nr++;
114 bslab = &bio_slabs[entry];
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
124 bslab->slab_size = sz;
126 mutex_unlock(&bio_slab_lock);
130 static void bio_put_slab(struct bio_set *bs)
132 struct bio_slab *bslab = NULL;
135 mutex_lock(&bio_slab_lock);
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
147 WARN_ON(!bslab->slab_ref);
149 if (--bslab->slab_ref)
152 kmem_cache_destroy(bslab->slab);
156 mutex_unlock(&bio_slab_lock);
159 unsigned int bvec_nr_vecs(unsigned short idx)
161 return bvec_slabs[idx].nr_vecs;
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, pool);
171 struct biovec_slab *bvs = bvec_slabs + idx;
173 kmem_cache_free(bvs->slab, bv);
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
183 * see comment near bvec_array define!
201 case 129 ... BIO_MAX_PAGES:
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
212 if (*idx == BIOVEC_MAX_IDX) {
214 bvl = mempool_alloc(pool, gfp_mask);
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
240 static void __bio_free(struct bio *bio)
242 bio_disassociate_task(bio);
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
248 static void bio_free(struct bio *bio)
250 struct bio_set *bs = bio->bi_pool;
256 if (bio_flagged(bio, BIO_OWNS_VEC))
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
260 * If we have front padding, adjust the bio pointer before freeing
265 mempool_free(p, bs->bio_pool);
267 /* Bio was allocated by bio_kmalloc() */
272 void bio_init(struct bio *bio)
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_remaining, 1);
277 atomic_set(&bio->bi_cnt, 1);
279 EXPORT_SYMBOL(bio_init);
282 * bio_reset - reinitialize a bio
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
291 void bio_reset(struct bio *bio)
293 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
297 memset(bio, 0, BIO_RESET_BYTES);
298 bio->bi_flags = flags|(1 << BIO_UPTODATE);
299 atomic_set(&bio->bi_remaining, 1);
301 EXPORT_SYMBOL(bio_reset);
303 static void bio_chain_endio(struct bio *bio, int error)
305 bio_endio(bio->bi_private, error);
310 * bio_chain - chain bio completions
312 * The caller won't have a bi_end_io called when @bio completes - instead,
313 * @parent's bi_end_io won't be called until both @parent and @bio have
314 * completed; the chained bio will also be freed when it completes.
316 * The caller must not set bi_private or bi_end_io in @bio.
318 void bio_chain(struct bio *bio, struct bio *parent)
320 BUG_ON(bio->bi_private || bio->bi_end_io);
322 bio->bi_private = parent;
323 bio->bi_end_io = bio_chain_endio;
324 atomic_inc(&parent->bi_remaining);
326 EXPORT_SYMBOL(bio_chain);
328 static void bio_alloc_rescue(struct work_struct *work)
330 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
334 spin_lock(&bs->rescue_lock);
335 bio = bio_list_pop(&bs->rescue_list);
336 spin_unlock(&bs->rescue_lock);
341 generic_make_request(bio);
345 static void punt_bios_to_rescuer(struct bio_set *bs)
347 struct bio_list punt, nopunt;
351 * In order to guarantee forward progress we must punt only bios that
352 * were allocated from this bio_set; otherwise, if there was a bio on
353 * there for a stacking driver higher up in the stack, processing it
354 * could require allocating bios from this bio_set, and doing that from
355 * our own rescuer would be bad.
357 * Since bio lists are singly linked, pop them all instead of trying to
358 * remove from the middle of the list:
361 bio_list_init(&punt);
362 bio_list_init(&nopunt);
364 while ((bio = bio_list_pop(current->bio_list)))
365 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
367 *current->bio_list = nopunt;
369 spin_lock(&bs->rescue_lock);
370 bio_list_merge(&bs->rescue_list, &punt);
371 spin_unlock(&bs->rescue_lock);
373 queue_work(bs->rescue_workqueue, &bs->rescue_work);
377 * bio_alloc_bioset - allocate a bio for I/O
378 * @gfp_mask: the GFP_ mask given to the slab allocator
379 * @nr_iovecs: number of iovecs to pre-allocate
380 * @bs: the bio_set to allocate from.
383 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
384 * backed by the @bs's mempool.
386 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
387 * able to allocate a bio. This is due to the mempool guarantees. To make this
388 * work, callers must never allocate more than 1 bio at a time from this pool.
389 * Callers that need to allocate more than 1 bio must always submit the
390 * previously allocated bio for IO before attempting to allocate a new one.
391 * Failure to do so can cause deadlocks under memory pressure.
393 * Note that when running under generic_make_request() (i.e. any block
394 * driver), bios are not submitted until after you return - see the code in
395 * generic_make_request() that converts recursion into iteration, to prevent
398 * This would normally mean allocating multiple bios under
399 * generic_make_request() would be susceptible to deadlocks, but we have
400 * deadlock avoidance code that resubmits any blocked bios from a rescuer
403 * However, we do not guarantee forward progress for allocations from other
404 * mempools. Doing multiple allocations from the same mempool under
405 * generic_make_request() should be avoided - instead, use bio_set's front_pad
406 * for per bio allocations.
409 * Pointer to new bio on success, NULL on failure.
411 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
413 gfp_t saved_gfp = gfp_mask;
415 unsigned inline_vecs;
416 unsigned long idx = BIO_POOL_NONE;
417 struct bio_vec *bvl = NULL;
422 if (nr_iovecs > UIO_MAXIOV)
425 p = kmalloc(sizeof(struct bio) +
426 nr_iovecs * sizeof(struct bio_vec),
429 inline_vecs = nr_iovecs;
432 * generic_make_request() converts recursion to iteration; this
433 * means if we're running beneath it, any bios we allocate and
434 * submit will not be submitted (and thus freed) until after we
437 * This exposes us to a potential deadlock if we allocate
438 * multiple bios from the same bio_set() while running
439 * underneath generic_make_request(). If we were to allocate
440 * multiple bios (say a stacking block driver that was splitting
441 * bios), we would deadlock if we exhausted the mempool's
444 * We solve this, and guarantee forward progress, with a rescuer
445 * workqueue per bio_set. If we go to allocate and there are
446 * bios on current->bio_list, we first try the allocation
447 * without __GFP_WAIT; if that fails, we punt those bios we
448 * would be blocking to the rescuer workqueue before we retry
449 * with the original gfp_flags.
452 if (current->bio_list && !bio_list_empty(current->bio_list))
453 gfp_mask &= ~__GFP_WAIT;
455 p = mempool_alloc(bs->bio_pool, gfp_mask);
456 if (!p && gfp_mask != saved_gfp) {
457 punt_bios_to_rescuer(bs);
458 gfp_mask = saved_gfp;
459 p = mempool_alloc(bs->bio_pool, gfp_mask);
462 front_pad = bs->front_pad;
463 inline_vecs = BIO_INLINE_VECS;
472 if (nr_iovecs > inline_vecs) {
473 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
474 if (!bvl && gfp_mask != saved_gfp) {
475 punt_bios_to_rescuer(bs);
476 gfp_mask = saved_gfp;
477 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
483 bio->bi_flags |= 1 << BIO_OWNS_VEC;
484 } else if (nr_iovecs) {
485 bvl = bio->bi_inline_vecs;
489 bio->bi_flags |= idx << BIO_POOL_OFFSET;
490 bio->bi_max_vecs = nr_iovecs;
491 bio->bi_io_vec = bvl;
495 mempool_free(p, bs->bio_pool);
498 EXPORT_SYMBOL(bio_alloc_bioset);
500 void zero_fill_bio(struct bio *bio)
504 struct bvec_iter iter;
506 bio_for_each_segment(bv, bio, iter) {
507 char *data = bvec_kmap_irq(&bv, &flags);
508 memset(data, 0, bv.bv_len);
509 flush_dcache_page(bv.bv_page);
510 bvec_kunmap_irq(data, &flags);
513 EXPORT_SYMBOL(zero_fill_bio);
516 * bio_put - release a reference to a bio
517 * @bio: bio to release reference to
520 * Put a reference to a &struct bio, either one you have gotten with
521 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
523 void bio_put(struct bio *bio)
525 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
530 if (atomic_dec_and_test(&bio->bi_cnt))
533 EXPORT_SYMBOL(bio_put);
535 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
537 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
538 blk_recount_segments(q, bio);
540 return bio->bi_phys_segments;
542 EXPORT_SYMBOL(bio_phys_segments);
545 * __bio_clone_fast - clone a bio that shares the original bio's biovec
546 * @bio: destination bio
547 * @bio_src: bio to clone
549 * Clone a &bio. Caller will own the returned bio, but not
550 * the actual data it points to. Reference count of returned
553 * Caller must ensure that @bio_src is not freed before @bio.
555 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
557 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
560 * most users will be overriding ->bi_bdev with a new target,
561 * so we don't set nor calculate new physical/hw segment counts here
563 bio->bi_bdev = bio_src->bi_bdev;
564 bio->bi_flags |= 1 << BIO_CLONED;
565 bio->bi_rw = bio_src->bi_rw;
566 bio->bi_iter = bio_src->bi_iter;
567 bio->bi_io_vec = bio_src->bi_io_vec;
569 EXPORT_SYMBOL(__bio_clone_fast);
572 * bio_clone_fast - clone a bio that shares the original bio's biovec
574 * @gfp_mask: allocation priority
575 * @bs: bio_set to allocate from
577 * Like __bio_clone_fast, only also allocates the returned bio
579 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
583 b = bio_alloc_bioset(gfp_mask, 0, bs);
587 __bio_clone_fast(b, bio);
589 if (bio_integrity(bio)) {
592 ret = bio_integrity_clone(b, bio, gfp_mask);
602 EXPORT_SYMBOL(bio_clone_fast);
605 * bio_clone_bioset - clone a bio
606 * @bio_src: bio to clone
607 * @gfp_mask: allocation priority
608 * @bs: bio_set to allocate from
610 * Clone bio. Caller will own the returned bio, but not the actual data it
611 * points to. Reference count of returned bio will be one.
613 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
616 unsigned nr_iovecs = 0;
617 struct bvec_iter iter;
622 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
623 * bio_src->bi_io_vec to bio->bi_io_vec.
625 * We can't do that anymore, because:
627 * - The point of cloning the biovec is to produce a bio with a biovec
628 * the caller can modify: bi_idx and bi_bvec_done should be 0.
630 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
631 * we tried to clone the whole thing bio_alloc_bioset() would fail.
632 * But the clone should succeed as long as the number of biovecs we
633 * actually need to allocate is fewer than BIO_MAX_PAGES.
635 * - Lastly, bi_vcnt should not be looked at or relied upon by code
636 * that does not own the bio - reason being drivers don't use it for
637 * iterating over the biovec anymore, so expecting it to be kept up
638 * to date (i.e. for clones that share the parent biovec) is just
639 * asking for trouble and would force extra work on
640 * __bio_clone_fast() anyways.
643 bio_for_each_segment(bv, bio_src, iter)
646 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
650 bio->bi_bdev = bio_src->bi_bdev;
651 bio->bi_rw = bio_src->bi_rw;
652 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
653 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
655 bio_for_each_segment(bv, bio_src, iter)
656 bio->bi_io_vec[bio->bi_vcnt++] = bv;
658 if (bio_integrity(bio_src)) {
661 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
670 EXPORT_SYMBOL(bio_clone_bioset);
673 * bio_get_nr_vecs - return approx number of vecs
676 * Return the approximate number of pages we can send to this target.
677 * There's no guarantee that you will be able to fit this number of pages
678 * into a bio, it does not account for dynamic restrictions that vary
681 int bio_get_nr_vecs(struct block_device *bdev)
683 struct request_queue *q = bdev_get_queue(bdev);
686 nr_pages = min_t(unsigned,
687 queue_max_segments(q),
688 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
690 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
693 EXPORT_SYMBOL(bio_get_nr_vecs);
695 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
696 *page, unsigned int len, unsigned int offset,
697 unsigned int max_sectors)
699 int retried_segments = 0;
700 struct bio_vec *bvec;
703 * cloned bio must not modify vec list
705 if (unlikely(bio_flagged(bio, BIO_CLONED)))
708 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
712 * For filesystems with a blocksize smaller than the pagesize
713 * we will often be called with the same page as last time and
714 * a consecutive offset. Optimize this special case.
716 if (bio->bi_vcnt > 0) {
717 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
719 if (page == prev->bv_page &&
720 offset == prev->bv_offset + prev->bv_len) {
721 unsigned int prev_bv_len = prev->bv_len;
724 if (q->merge_bvec_fn) {
725 struct bvec_merge_data bvm = {
726 /* prev_bvec is already charged in
727 bi_size, discharge it in order to
728 simulate merging updated prev_bvec
730 .bi_bdev = bio->bi_bdev,
731 .bi_sector = bio->bi_iter.bi_sector,
732 .bi_size = bio->bi_iter.bi_size -
737 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
747 if (bio->bi_vcnt >= bio->bi_max_vecs)
751 * we might lose a segment or two here, but rather that than
752 * make this too complex.
755 while (bio->bi_phys_segments >= queue_max_segments(q)) {
757 if (retried_segments)
760 retried_segments = 1;
761 blk_recount_segments(q, bio);
765 * setup the new entry, we might clear it again later if we
766 * cannot add the page
768 bvec = &bio->bi_io_vec[bio->bi_vcnt];
769 bvec->bv_page = page;
771 bvec->bv_offset = offset;
774 * if queue has other restrictions (eg varying max sector size
775 * depending on offset), it can specify a merge_bvec_fn in the
776 * queue to get further control
778 if (q->merge_bvec_fn) {
779 struct bvec_merge_data bvm = {
780 .bi_bdev = bio->bi_bdev,
781 .bi_sector = bio->bi_iter.bi_sector,
782 .bi_size = bio->bi_iter.bi_size,
787 * merge_bvec_fn() returns number of bytes it can accept
790 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
791 bvec->bv_page = NULL;
798 /* If we may be able to merge these biovecs, force a recount */
799 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
800 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
803 bio->bi_phys_segments++;
805 bio->bi_iter.bi_size += len;
810 * bio_add_pc_page - attempt to add page to bio
811 * @q: the target queue
812 * @bio: destination bio
814 * @len: vec entry length
815 * @offset: vec entry offset
817 * Attempt to add a page to the bio_vec maplist. This can fail for a
818 * number of reasons, such as the bio being full or target block device
819 * limitations. The target block device must allow bio's up to PAGE_SIZE,
820 * so it is always possible to add a single page to an empty bio.
822 * This should only be used by REQ_PC bios.
824 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
825 unsigned int len, unsigned int offset)
827 return __bio_add_page(q, bio, page, len, offset,
828 queue_max_hw_sectors(q));
830 EXPORT_SYMBOL(bio_add_pc_page);
833 * bio_add_page - attempt to add page to bio
834 * @bio: destination bio
836 * @len: vec entry length
837 * @offset: vec entry offset
839 * Attempt to add a page to the bio_vec maplist. This can fail for a
840 * number of reasons, such as the bio being full or target block device
841 * limitations. The target block device must allow bio's up to PAGE_SIZE,
842 * so it is always possible to add a single page to an empty bio.
844 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
847 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
848 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
850 EXPORT_SYMBOL(bio_add_page);
852 struct submit_bio_ret {
853 struct completion event;
857 static void submit_bio_wait_endio(struct bio *bio, int error)
859 struct submit_bio_ret *ret = bio->bi_private;
862 complete(&ret->event);
866 * submit_bio_wait - submit a bio, and wait until it completes
867 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
868 * @bio: The &struct bio which describes the I/O
870 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
871 * bio_endio() on failure.
873 int submit_bio_wait(int rw, struct bio *bio)
875 struct submit_bio_ret ret;
878 init_completion(&ret.event);
879 bio->bi_private = &ret;
880 bio->bi_end_io = submit_bio_wait_endio;
882 wait_for_completion(&ret.event);
886 EXPORT_SYMBOL(submit_bio_wait);
889 * bio_advance - increment/complete a bio by some number of bytes
890 * @bio: bio to advance
891 * @bytes: number of bytes to complete
893 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
894 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
895 * be updated on the last bvec as well.
897 * @bio will then represent the remaining, uncompleted portion of the io.
899 void bio_advance(struct bio *bio, unsigned bytes)
901 if (bio_integrity(bio))
902 bio_integrity_advance(bio, bytes);
904 bio_advance_iter(bio, &bio->bi_iter, bytes);
906 EXPORT_SYMBOL(bio_advance);
909 * bio_alloc_pages - allocates a single page for each bvec in a bio
910 * @bio: bio to allocate pages for
911 * @gfp_mask: flags for allocation
913 * Allocates pages up to @bio->bi_vcnt.
915 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
918 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
923 bio_for_each_segment_all(bv, bio, i) {
924 bv->bv_page = alloc_page(gfp_mask);
926 while (--bv >= bio->bi_io_vec)
927 __free_page(bv->bv_page);
934 EXPORT_SYMBOL(bio_alloc_pages);
937 * bio_copy_data - copy contents of data buffers from one chain of bios to
939 * @src: source bio list
940 * @dst: destination bio list
942 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
943 * @src and @dst as linked lists of bios.
945 * Stops when it reaches the end of either @src or @dst - that is, copies
946 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948 void bio_copy_data(struct bio *dst, struct bio *src)
950 struct bvec_iter src_iter, dst_iter;
951 struct bio_vec src_bv, dst_bv;
955 src_iter = src->bi_iter;
956 dst_iter = dst->bi_iter;
959 if (!src_iter.bi_size) {
964 src_iter = src->bi_iter;
967 if (!dst_iter.bi_size) {
972 dst_iter = dst->bi_iter;
975 src_bv = bio_iter_iovec(src, src_iter);
976 dst_bv = bio_iter_iovec(dst, dst_iter);
978 bytes = min(src_bv.bv_len, dst_bv.bv_len);
980 src_p = kmap_atomic(src_bv.bv_page);
981 dst_p = kmap_atomic(dst_bv.bv_page);
983 memcpy(dst_p + dst_bv.bv_offset,
984 src_p + src_bv.bv_offset,
987 kunmap_atomic(dst_p);
988 kunmap_atomic(src_p);
990 bio_advance_iter(src, &src_iter, bytes);
991 bio_advance_iter(dst, &dst_iter, bytes);
994 EXPORT_SYMBOL(bio_copy_data);
996 struct bio_map_data {
999 struct sg_iovec sgvecs[];
1002 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1003 struct sg_iovec *iov, int iov_count,
1006 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1007 bmd->nr_sgvecs = iov_count;
1008 bmd->is_our_pages = is_our_pages;
1009 bio->bi_private = bmd;
1012 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
1013 unsigned int iov_count,
1016 if (iov_count > UIO_MAXIOV)
1019 return kmalloc(sizeof(struct bio_map_data) +
1020 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1023 static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
1024 int to_user, int from_user, int do_free_page)
1027 struct bio_vec *bvec;
1029 unsigned int iov_off = 0;
1031 bio_for_each_segment_all(bvec, bio, i) {
1032 char *bv_addr = page_address(bvec->bv_page);
1033 unsigned int bv_len = bvec->bv_len;
1035 while (bv_len && iov_idx < iov_count) {
1037 char __user *iov_addr;
1039 bytes = min_t(unsigned int,
1040 iov[iov_idx].iov_len - iov_off, bv_len);
1041 iov_addr = iov[iov_idx].iov_base + iov_off;
1045 ret = copy_to_user(iov_addr, bv_addr,
1049 ret = copy_from_user(bv_addr, iov_addr,
1061 if (iov[iov_idx].iov_len == iov_off) {
1068 __free_page(bvec->bv_page);
1075 * bio_uncopy_user - finish previously mapped bio
1076 * @bio: bio being terminated
1078 * Free pages allocated from bio_copy_user() and write back data
1079 * to user space in case of a read.
1081 int bio_uncopy_user(struct bio *bio)
1083 struct bio_map_data *bmd = bio->bi_private;
1084 struct bio_vec *bvec;
1087 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1089 * if we're in a workqueue, the request is orphaned, so
1090 * don't copy into a random user address space, just free.
1093 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1094 bio_data_dir(bio) == READ,
1095 0, bmd->is_our_pages);
1096 else if (bmd->is_our_pages)
1097 bio_for_each_segment_all(bvec, bio, i)
1098 __free_page(bvec->bv_page);
1104 EXPORT_SYMBOL(bio_uncopy_user);
1107 * bio_copy_user_iov - copy user data to bio
1108 * @q: destination block queue
1109 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1111 * @iov_count: number of elements in the iovec
1112 * @write_to_vm: bool indicating writing to pages or not
1113 * @gfp_mask: memory allocation flags
1115 * Prepares and returns a bio for indirect user io, bouncing data
1116 * to/from kernel pages as necessary. Must be paired with
1117 * call bio_uncopy_user() on io completion.
1119 struct bio *bio_copy_user_iov(struct request_queue *q,
1120 struct rq_map_data *map_data,
1121 struct sg_iovec *iov, int iov_count,
1122 int write_to_vm, gfp_t gfp_mask)
1124 struct bio_map_data *bmd;
1125 struct bio_vec *bvec;
1130 unsigned int len = 0;
1131 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1133 for (i = 0; i < iov_count; i++) {
1134 unsigned long uaddr;
1136 unsigned long start;
1138 uaddr = (unsigned long)iov[i].iov_base;
1139 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1140 start = uaddr >> PAGE_SHIFT;
1146 return ERR_PTR(-EINVAL);
1148 nr_pages += end - start;
1149 len += iov[i].iov_len;
1155 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1157 return ERR_PTR(-ENOMEM);
1160 bio = bio_kmalloc(gfp_mask, nr_pages);
1165 bio->bi_rw |= REQ_WRITE;
1170 nr_pages = 1 << map_data->page_order;
1171 i = map_data->offset / PAGE_SIZE;
1174 unsigned int bytes = PAGE_SIZE;
1182 if (i == map_data->nr_entries * nr_pages) {
1187 page = map_data->pages[i / nr_pages];
1188 page += (i % nr_pages);
1192 page = alloc_page(q->bounce_gfp | gfp_mask);
1199 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1212 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1213 (map_data && map_data->from_user)) {
1214 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1219 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1223 bio_for_each_segment_all(bvec, bio, i)
1224 __free_page(bvec->bv_page);
1229 return ERR_PTR(ret);
1233 * bio_copy_user - copy user data to bio
1234 * @q: destination block queue
1235 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1236 * @uaddr: start of user address
1237 * @len: length in bytes
1238 * @write_to_vm: bool indicating writing to pages or not
1239 * @gfp_mask: memory allocation flags
1241 * Prepares and returns a bio for indirect user io, bouncing data
1242 * to/from kernel pages as necessary. Must be paired with
1243 * call bio_uncopy_user() on io completion.
1245 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1246 unsigned long uaddr, unsigned int len,
1247 int write_to_vm, gfp_t gfp_mask)
1249 struct sg_iovec iov;
1251 iov.iov_base = (void __user *)uaddr;
1254 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1256 EXPORT_SYMBOL(bio_copy_user);
1258 static struct bio *__bio_map_user_iov(struct request_queue *q,
1259 struct block_device *bdev,
1260 struct sg_iovec *iov, int iov_count,
1261 int write_to_vm, gfp_t gfp_mask)
1265 struct page **pages;
1270 for (i = 0; i < iov_count; i++) {
1271 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1272 unsigned long len = iov[i].iov_len;
1273 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1274 unsigned long start = uaddr >> PAGE_SHIFT;
1280 return ERR_PTR(-EINVAL);
1282 nr_pages += end - start;
1284 * buffer must be aligned to at least hardsector size for now
1286 if (uaddr & queue_dma_alignment(q))
1287 return ERR_PTR(-EINVAL);
1291 return ERR_PTR(-EINVAL);
1293 bio = bio_kmalloc(gfp_mask, nr_pages);
1295 return ERR_PTR(-ENOMEM);
1298 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1302 for (i = 0; i < iov_count; i++) {
1303 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1304 unsigned long len = iov[i].iov_len;
1305 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1306 unsigned long start = uaddr >> PAGE_SHIFT;
1307 const int local_nr_pages = end - start;
1308 const int page_limit = cur_page + local_nr_pages;
1310 ret = get_user_pages_fast(uaddr, local_nr_pages,
1311 write_to_vm, &pages[cur_page]);
1312 if (ret < local_nr_pages) {
1317 offset = uaddr & ~PAGE_MASK;
1318 for (j = cur_page; j < page_limit; j++) {
1319 unsigned int bytes = PAGE_SIZE - offset;
1330 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1340 * release the pages we didn't map into the bio, if any
1342 while (j < page_limit)
1343 page_cache_release(pages[j++]);
1349 * set data direction, and check if mapped pages need bouncing
1352 bio->bi_rw |= REQ_WRITE;
1354 bio->bi_bdev = bdev;
1355 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1359 for (i = 0; i < nr_pages; i++) {
1362 page_cache_release(pages[i]);
1367 return ERR_PTR(ret);
1371 * bio_map_user - map user address into bio
1372 * @q: the struct request_queue for the bio
1373 * @bdev: destination block device
1374 * @uaddr: start of user address
1375 * @len: length in bytes
1376 * @write_to_vm: bool indicating writing to pages or not
1377 * @gfp_mask: memory allocation flags
1379 * Map the user space address into a bio suitable for io to a block
1380 * device. Returns an error pointer in case of error.
1382 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1383 unsigned long uaddr, unsigned int len, int write_to_vm,
1386 struct sg_iovec iov;
1388 iov.iov_base = (void __user *)uaddr;
1391 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1393 EXPORT_SYMBOL(bio_map_user);
1396 * bio_map_user_iov - map user sg_iovec table into bio
1397 * @q: the struct request_queue for the bio
1398 * @bdev: destination block device
1400 * @iov_count: number of elements in the iovec
1401 * @write_to_vm: bool indicating writing to pages or not
1402 * @gfp_mask: memory allocation flags
1404 * Map the user space address into a bio suitable for io to a block
1405 * device. Returns an error pointer in case of error.
1407 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1408 struct sg_iovec *iov, int iov_count,
1409 int write_to_vm, gfp_t gfp_mask)
1413 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1419 * subtle -- if __bio_map_user() ended up bouncing a bio,
1420 * it would normally disappear when its bi_end_io is run.
1421 * however, we need it for the unmap, so grab an extra
1429 static void __bio_unmap_user(struct bio *bio)
1431 struct bio_vec *bvec;
1435 * make sure we dirty pages we wrote to
1437 bio_for_each_segment_all(bvec, bio, i) {
1438 if (bio_data_dir(bio) == READ)
1439 set_page_dirty_lock(bvec->bv_page);
1441 page_cache_release(bvec->bv_page);
1448 * bio_unmap_user - unmap a bio
1449 * @bio: the bio being unmapped
1451 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1452 * a process context.
1454 * bio_unmap_user() may sleep.
1456 void bio_unmap_user(struct bio *bio)
1458 __bio_unmap_user(bio);
1461 EXPORT_SYMBOL(bio_unmap_user);
1463 static void bio_map_kern_endio(struct bio *bio, int err)
1468 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1469 unsigned int len, gfp_t gfp_mask)
1471 unsigned long kaddr = (unsigned long)data;
1472 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1473 unsigned long start = kaddr >> PAGE_SHIFT;
1474 const int nr_pages = end - start;
1478 bio = bio_kmalloc(gfp_mask, nr_pages);
1480 return ERR_PTR(-ENOMEM);
1482 offset = offset_in_page(kaddr);
1483 for (i = 0; i < nr_pages; i++) {
1484 unsigned int bytes = PAGE_SIZE - offset;
1492 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1501 bio->bi_end_io = bio_map_kern_endio;
1506 * bio_map_kern - map kernel address into bio
1507 * @q: the struct request_queue for the bio
1508 * @data: pointer to buffer to map
1509 * @len: length in bytes
1510 * @gfp_mask: allocation flags for bio allocation
1512 * Map the kernel address into a bio suitable for io to a block
1513 * device. Returns an error pointer in case of error.
1515 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1520 bio = __bio_map_kern(q, data, len, gfp_mask);
1524 if (bio->bi_iter.bi_size == len)
1528 * Don't support partial mappings.
1531 return ERR_PTR(-EINVAL);
1533 EXPORT_SYMBOL(bio_map_kern);
1535 static void bio_copy_kern_endio(struct bio *bio, int err)
1537 struct bio_vec *bvec;
1538 const int read = bio_data_dir(bio) == READ;
1539 struct bio_map_data *bmd = bio->bi_private;
1541 char *p = bmd->sgvecs[0].iov_base;
1543 bio_for_each_segment_all(bvec, bio, i) {
1544 char *addr = page_address(bvec->bv_page);
1547 memcpy(p, addr, bvec->bv_len);
1549 __free_page(bvec->bv_page);
1558 * bio_copy_kern - copy kernel address into bio
1559 * @q: the struct request_queue for the bio
1560 * @data: pointer to buffer to copy
1561 * @len: length in bytes
1562 * @gfp_mask: allocation flags for bio and page allocation
1563 * @reading: data direction is READ
1565 * copy the kernel address into a bio suitable for io to a block
1566 * device. Returns an error pointer in case of error.
1568 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1569 gfp_t gfp_mask, int reading)
1572 struct bio_vec *bvec;
1575 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1582 bio_for_each_segment_all(bvec, bio, i) {
1583 char *addr = page_address(bvec->bv_page);
1585 memcpy(addr, p, bvec->bv_len);
1590 bio->bi_end_io = bio_copy_kern_endio;
1594 EXPORT_SYMBOL(bio_copy_kern);
1597 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1598 * for performing direct-IO in BIOs.
1600 * The problem is that we cannot run set_page_dirty() from interrupt context
1601 * because the required locks are not interrupt-safe. So what we can do is to
1602 * mark the pages dirty _before_ performing IO. And in interrupt context,
1603 * check that the pages are still dirty. If so, fine. If not, redirty them
1604 * in process context.
1606 * We special-case compound pages here: normally this means reads into hugetlb
1607 * pages. The logic in here doesn't really work right for compound pages
1608 * because the VM does not uniformly chase down the head page in all cases.
1609 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1610 * handle them at all. So we skip compound pages here at an early stage.
1612 * Note that this code is very hard to test under normal circumstances because
1613 * direct-io pins the pages with get_user_pages(). This makes
1614 * is_page_cache_freeable return false, and the VM will not clean the pages.
1615 * But other code (eg, flusher threads) could clean the pages if they are mapped
1618 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1619 * deferred bio dirtying paths.
1623 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1625 void bio_set_pages_dirty(struct bio *bio)
1627 struct bio_vec *bvec;
1630 bio_for_each_segment_all(bvec, bio, i) {
1631 struct page *page = bvec->bv_page;
1633 if (page && !PageCompound(page))
1634 set_page_dirty_lock(page);
1638 static void bio_release_pages(struct bio *bio)
1640 struct bio_vec *bvec;
1643 bio_for_each_segment_all(bvec, bio, i) {
1644 struct page *page = bvec->bv_page;
1652 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1653 * If they are, then fine. If, however, some pages are clean then they must
1654 * have been written out during the direct-IO read. So we take another ref on
1655 * the BIO and the offending pages and re-dirty the pages in process context.
1657 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1658 * here on. It will run one page_cache_release() against each page and will
1659 * run one bio_put() against the BIO.
1662 static void bio_dirty_fn(struct work_struct *work);
1664 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1665 static DEFINE_SPINLOCK(bio_dirty_lock);
1666 static struct bio *bio_dirty_list;
1669 * This runs in process context
1671 static void bio_dirty_fn(struct work_struct *work)
1673 unsigned long flags;
1676 spin_lock_irqsave(&bio_dirty_lock, flags);
1677 bio = bio_dirty_list;
1678 bio_dirty_list = NULL;
1679 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1682 struct bio *next = bio->bi_private;
1684 bio_set_pages_dirty(bio);
1685 bio_release_pages(bio);
1691 void bio_check_pages_dirty(struct bio *bio)
1693 struct bio_vec *bvec;
1694 int nr_clean_pages = 0;
1697 bio_for_each_segment_all(bvec, bio, i) {
1698 struct page *page = bvec->bv_page;
1700 if (PageDirty(page) || PageCompound(page)) {
1701 page_cache_release(page);
1702 bvec->bv_page = NULL;
1708 if (nr_clean_pages) {
1709 unsigned long flags;
1711 spin_lock_irqsave(&bio_dirty_lock, flags);
1712 bio->bi_private = bio_dirty_list;
1713 bio_dirty_list = bio;
1714 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1715 schedule_work(&bio_dirty_work);
1721 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1722 void bio_flush_dcache_pages(struct bio *bi)
1724 struct bio_vec bvec;
1725 struct bvec_iter iter;
1727 bio_for_each_segment(bvec, bi, iter)
1728 flush_dcache_page(bvec.bv_page);
1730 EXPORT_SYMBOL(bio_flush_dcache_pages);
1734 * bio_endio - end I/O on a bio
1736 * @error: error, if any
1739 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1740 * preferred way to end I/O on a bio, it takes care of clearing
1741 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1742 * established -Exxxx (-EIO, for instance) error values in case
1743 * something went wrong. No one should call bi_end_io() directly on a
1744 * bio unless they own it and thus know that it has an end_io
1747 void bio_endio(struct bio *bio, int error)
1750 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1753 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1754 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1757 if (!atomic_dec_and_test(&bio->bi_remaining))
1761 * Need to have a real endio function for chained bios,
1762 * otherwise various corner cases will break (like stacking
1763 * block devices that save/restore bi_end_io) - however, we want
1764 * to avoid unbounded recursion and blowing the stack. Tail call
1765 * optimization would handle this, but compiling with frame
1766 * pointers also disables gcc's sibling call optimization.
1768 if (bio->bi_end_io == bio_chain_endio) {
1769 struct bio *parent = bio->bi_private;
1774 bio->bi_end_io(bio, error);
1779 EXPORT_SYMBOL(bio_endio);
1782 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1784 * @error: error, if any
1786 * For code that has saved and restored bi_end_io; thing hard before using this
1787 * function, probably you should've cloned the entire bio.
1789 void bio_endio_nodec(struct bio *bio, int error)
1791 atomic_inc(&bio->bi_remaining);
1792 bio_endio(bio, error);
1794 EXPORT_SYMBOL(bio_endio_nodec);
1797 * bio_split - split a bio
1798 * @bio: bio to split
1799 * @sectors: number of sectors to split from the front of @bio
1801 * @bs: bio set to allocate from
1803 * Allocates and returns a new bio which represents @sectors from the start of
1804 * @bio, and updates @bio to represent the remaining sectors.
1806 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1807 * responsibility to ensure that @bio is not freed before the split.
1809 struct bio *bio_split(struct bio *bio, int sectors,
1810 gfp_t gfp, struct bio_set *bs)
1812 struct bio *split = NULL;
1814 BUG_ON(sectors <= 0);
1815 BUG_ON(sectors >= bio_sectors(bio));
1817 split = bio_clone_fast(bio, gfp, bs);
1821 split->bi_iter.bi_size = sectors << 9;
1823 if (bio_integrity(split))
1824 bio_integrity_trim(split, 0, sectors);
1826 bio_advance(bio, split->bi_iter.bi_size);
1830 EXPORT_SYMBOL(bio_split);
1832 void bio_pair_release(struct bio_pair *bp)
1834 if (atomic_dec_and_test(&bp->cnt)) {
1835 struct bio *master = bp->bio1.bi_private;
1837 bio_endio(master, bp->error);
1838 mempool_free(bp, bp->bio2.bi_private);
1841 EXPORT_SYMBOL(bio_pair_release);
1843 static void bio_pair_end_1(struct bio *bi, int err)
1845 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1850 bio_pair_release(bp);
1853 static void bio_pair_end_2(struct bio *bi, int err)
1855 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1860 bio_pair_release(bp);
1864 * split a bio - only worry about a bio with a single page in its iovec
1866 struct bio_pair *bio_pair_split(struct bio *bi, int first_sectors)
1868 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1873 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1874 bi->bi_iter.bi_sector + first_sectors);
1876 BUG_ON(bio_multiple_segments(bi));
1877 atomic_set(&bp->cnt, 3);
1881 bp->bio2.bi_iter.bi_sector += first_sectors;
1882 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1883 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1885 if (bi->bi_vcnt != 0) {
1886 bp->bv1 = bio_iovec(bi);
1887 bp->bv2 = bio_iovec(bi);
1889 if (bio_is_rw(bi)) {
1890 bp->bv2.bv_offset += first_sectors << 9;
1891 bp->bv2.bv_len -= first_sectors << 9;
1892 bp->bv1.bv_len = first_sectors << 9;
1895 bp->bio1.bi_io_vec = &bp->bv1;
1896 bp->bio2.bi_io_vec = &bp->bv2;
1898 bp->bio1.bi_max_vecs = 1;
1899 bp->bio2.bi_max_vecs = 1;
1902 bp->bio1.bi_end_io = bio_pair_end_1;
1903 bp->bio2.bi_end_io = bio_pair_end_2;
1905 bp->bio1.bi_private = bi;
1906 bp->bio2.bi_private = bio_split_pool;
1908 if (bio_integrity(bi))
1909 bio_integrity_split(bi, bp, first_sectors);
1913 EXPORT_SYMBOL(bio_pair_split);
1916 * bio_trim - trim a bio
1918 * @offset: number of sectors to trim from the front of @bio
1919 * @size: size we want to trim @bio to, in sectors
1921 void bio_trim(struct bio *bio, int offset, int size)
1923 /* 'bio' is a cloned bio which we need to trim to match
1924 * the given offset and size.
1928 if (offset == 0 && size == bio->bi_iter.bi_size)
1931 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1933 bio_advance(bio, offset << 9);
1935 bio->bi_iter.bi_size = size;
1937 EXPORT_SYMBOL_GPL(bio_trim);
1940 * create memory pools for biovec's in a bio_set.
1941 * use the global biovec slabs created for general use.
1943 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1945 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1947 return mempool_create_slab_pool(pool_entries, bp->slab);
1950 void bioset_free(struct bio_set *bs)
1952 if (bs->rescue_workqueue)
1953 destroy_workqueue(bs->rescue_workqueue);
1956 mempool_destroy(bs->bio_pool);
1959 mempool_destroy(bs->bvec_pool);
1961 bioset_integrity_free(bs);
1966 EXPORT_SYMBOL(bioset_free);
1969 * bioset_create - Create a bio_set
1970 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1971 * @front_pad: Number of bytes to allocate in front of the returned bio
1974 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1975 * to ask for a number of bytes to be allocated in front of the bio.
1976 * Front pad allocation is useful for embedding the bio inside
1977 * another structure, to avoid allocating extra data to go with the bio.
1978 * Note that the bio must be embedded at the END of that structure always,
1979 * or things will break badly.
1981 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1983 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1986 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1990 bs->front_pad = front_pad;
1992 spin_lock_init(&bs->rescue_lock);
1993 bio_list_init(&bs->rescue_list);
1994 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1996 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1997 if (!bs->bio_slab) {
2002 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
2006 bs->bvec_pool = biovec_create_pool(bs, pool_size);
2010 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2011 if (!bs->rescue_workqueue)
2019 EXPORT_SYMBOL(bioset_create);
2021 #ifdef CONFIG_BLK_CGROUP
2023 * bio_associate_current - associate a bio with %current
2026 * Associate @bio with %current if it hasn't been associated yet. Block
2027 * layer will treat @bio as if it were issued by %current no matter which
2028 * task actually issues it.
2030 * This function takes an extra reference of @task's io_context and blkcg
2031 * which will be put when @bio is released. The caller must own @bio,
2032 * ensure %current->io_context exists, and is responsible for synchronizing
2033 * calls to this function.
2035 int bio_associate_current(struct bio *bio)
2037 struct io_context *ioc;
2038 struct cgroup_subsys_state *css;
2043 ioc = current->io_context;
2047 /* acquire active ref on @ioc and associate */
2048 get_io_context_active(ioc);
2051 /* associate blkcg if exists */
2053 css = task_css(current, blkio_subsys_id);
2054 if (css && css_tryget(css))
2062 * bio_disassociate_task - undo bio_associate_current()
2065 void bio_disassociate_task(struct bio *bio)
2068 put_io_context(bio->bi_ioc);
2072 css_put(bio->bi_css);
2077 #endif /* CONFIG_BLK_CGROUP */
2079 static void __init biovec_init_slabs(void)
2083 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2085 struct biovec_slab *bvs = bvec_slabs + i;
2087 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2092 size = bvs->nr_vecs * sizeof(struct bio_vec);
2093 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2094 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2098 static int __init init_bio(void)
2102 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2104 panic("bio: can't allocate bios\n");
2106 bio_integrity_init();
2107 biovec_init_slabs();
2109 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2111 panic("bio: can't allocate bios\n");
2113 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2114 panic("bio: can't create integrity pool\n");
2116 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2117 sizeof(struct bio_pair));
2118 if (!bio_split_pool)
2119 panic("bio: can't create split pool\n");
2123 subsys_initcall(init_bio);