2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
46 static kmem_zone_t *xfs_buf_zone;
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
67 * Return true if the buffer is vmapped.
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
73 return bp->b_addr && bp->b_page_count > 1;
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
100 if (bp->b_flags & XBF_NO_IOACCT)
103 ASSERT(bp->b_flags & XBF_ASYNC);
104 spin_lock(&bp->b_lock);
105 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
106 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
107 percpu_counter_inc(&bp->b_target->bt_io_count);
109 spin_unlock(&bp->b_lock);
113 * Clear the in-flight state on a buffer about to be released to the LRU or
114 * freed and unaccount from the buftarg.
117 __xfs_buf_ioacct_dec(
120 lockdep_assert_held(&bp->b_lock);
122 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
123 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
124 percpu_counter_dec(&bp->b_target->bt_io_count);
132 spin_lock(&bp->b_lock);
133 __xfs_buf_ioacct_dec(bp);
134 spin_unlock(&bp->b_lock);
138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139 * b_lru_ref count so that the buffer is freed immediately when the buffer
140 * reference count falls to zero. If the buffer is already on the LRU, we need
141 * to remove the reference that LRU holds on the buffer.
143 * This prevents build-up of stale buffers on the LRU.
149 ASSERT(xfs_buf_islocked(bp));
151 bp->b_flags |= XBF_STALE;
154 * Clear the delwri status so that a delwri queue walker will not
155 * flush this buffer to disk now that it is stale. The delwri queue has
156 * a reference to the buffer, so this is safe to do.
158 bp->b_flags &= ~_XBF_DELWRI_Q;
161 * Once the buffer is marked stale and unlocked, a subsequent lookup
162 * could reset b_flags. There is no guarantee that the buffer is
163 * unaccounted (released to LRU) before that occurs. Drop in-flight
164 * status now to preserve accounting consistency.
166 spin_lock(&bp->b_lock);
167 __xfs_buf_ioacct_dec(bp);
169 atomic_set(&bp->b_lru_ref, 0);
170 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
171 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
172 atomic_dec(&bp->b_hold);
174 ASSERT(atomic_read(&bp->b_hold) >= 1);
175 spin_unlock(&bp->b_lock);
183 ASSERT(bp->b_maps == NULL);
184 bp->b_map_count = map_count;
186 if (map_count == 1) {
187 bp->b_maps = &bp->__b_map;
191 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
199 * Frees b_pages if it was allocated.
205 if (bp->b_maps != &bp->__b_map) {
206 kmem_free(bp->b_maps);
213 struct xfs_buftarg *target,
214 struct xfs_buf_map *map,
216 xfs_buf_flags_t flags)
222 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
227 * We don't want certain flags to appear in b_flags unless they are
228 * specifically set by later operations on the buffer.
230 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232 atomic_set(&bp->b_hold, 1);
233 atomic_set(&bp->b_lru_ref, 1);
234 init_completion(&bp->b_iowait);
235 INIT_LIST_HEAD(&bp->b_lru);
236 INIT_LIST_HEAD(&bp->b_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
240 bp->b_target = target;
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 error = xfs_buf_get_maps(bp, nmaps);
250 kmem_zone_free(xfs_buf_zone, bp);
254 bp->b_bn = map[0].bm_bn;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
261 bp->b_io_length = bp->b_length;
263 atomic_set(&bp->b_pin_count, 0);
264 init_waitqueue_head(&bp->b_waiters);
266 XFS_STATS_INC(target->bt_mount, xb_create);
267 trace_xfs_buf_init(bp, _RET_IP_);
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
281 /* Make sure that we have a page list */
282 if (bp->b_pages == NULL) {
283 bp->b_page_count = page_count;
284 if (page_count <= XB_PAGES) {
285 bp->b_pages = bp->b_page_array;
287 bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 page_count, KM_NOFS);
289 if (bp->b_pages == NULL)
292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 * Frees b_pages if it was allocated.
304 if (bp->b_pages != bp->b_page_array) {
305 kmem_free(bp->b_pages);
311 * Releases the specified buffer.
313 * The modification state of any associated pages is left unchanged.
314 * The buffer must not be on any hash - use xfs_buf_rele instead for
315 * hashed and refcounted buffers
321 trace_xfs_buf_free(bp, _RET_IP_);
323 ASSERT(list_empty(&bp->b_lru));
325 if (bp->b_flags & _XBF_PAGES) {
328 if (xfs_buf_is_vmapped(bp))
329 vm_unmap_ram(bp->b_addr - bp->b_offset,
332 for (i = 0; i < bp->b_page_count; i++) {
333 struct page *page = bp->b_pages[i];
337 } else if (bp->b_flags & _XBF_KMEM)
338 kmem_free(bp->b_addr);
339 _xfs_buf_free_pages(bp);
340 xfs_buf_free_maps(bp);
341 kmem_zone_free(xfs_buf_zone, bp);
345 * Allocates all the pages for buffer in question and builds it's page list.
348 xfs_buf_allocate_memory(
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 xfs_off_t start, end;
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
364 size = BBTOB(bp->b_length);
365 if (size < PAGE_SIZE) {
366 bp->b_addr = kmem_alloc(size, KM_NOFS);
368 /* low memory - use alloc_page loop instead */
372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp->b_addr);
379 bp->b_offset = offset_in_page(bp->b_addr);
380 bp->b_pages = bp->b_page_array;
381 bp->b_pages[0] = virt_to_page(bp->b_addr);
382 bp->b_page_count = 1;
383 bp->b_flags |= _XBF_KMEM;
388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 page_count = end - start;
392 error = _xfs_buf_get_pages(bp, page_count);
396 offset = bp->b_offset;
397 bp->b_flags |= _XBF_PAGES;
399 for (i = 0; i < bp->b_page_count; i++) {
403 page = alloc_page(gfp_mask);
404 if (unlikely(page == NULL)) {
405 if (flags & XBF_READ_AHEAD) {
406 bp->b_page_count = i;
412 * This could deadlock.
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
417 if (!(++retries % 100))
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current->comm, current->pid,
423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
430 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 bp->b_pages[i] = page;
438 for (i = 0; i < bp->b_page_count; i++)
439 __free_page(bp->b_pages[i]);
440 bp->b_flags &= ~_XBF_PAGES;
445 * Map buffer into kernel address-space if necessary.
452 ASSERT(bp->b_flags & _XBF_PAGES);
453 if (bp->b_page_count == 1) {
454 /* A single page buffer is always mappable */
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 } else if (flags & XBF_UNMAPPED) {
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
470 nofs_flag = memalloc_nofs_save();
472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
477 } while (retried++ <= 1);
478 memalloc_nofs_restore(nofs_flag);
482 bp->b_addr += bp->b_offset;
489 * Finding and Reading Buffers
493 struct rhashtable_compare_arg *arg,
496 const struct xfs_buf_map *map = arg->key;
497 const struct xfs_buf *bp = obj;
500 * The key hashing in the lookup path depends on the key being the
501 * first element of the compare_arg, make sure to assert this.
503 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505 if (bp->b_bn != map->bm_bn)
508 if (unlikely(bp->b_length != map->bm_len)) {
510 * found a block number match. If the range doesn't
511 * match, the only way this is allowed is if the buffer
512 * in the cache is stale and the transaction that made
513 * it stale has not yet committed. i.e. we are
514 * reallocating a busy extent. Skip this buffer and
515 * continue searching for an exact match.
517 ASSERT(bp->b_flags & XBF_STALE);
523 static const struct rhashtable_params xfs_buf_hash_params = {
524 .min_size = 32, /* empty AGs have minimal footprint */
526 .key_len = sizeof(xfs_daddr_t),
527 .key_offset = offsetof(struct xfs_buf, b_bn),
528 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
529 .automatic_shrinking = true,
530 .obj_cmpfn = _xfs_buf_obj_cmp,
535 struct xfs_perag *pag)
537 spin_lock_init(&pag->pag_buf_lock);
538 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542 xfs_buf_hash_destroy(
543 struct xfs_perag *pag)
545 rhashtable_destroy(&pag->pag_buf_hash);
549 * Look up, and creates if absent, a lockable buffer for
550 * a given range of an inode. The buffer is returned
551 * locked. No I/O is implied by this call.
555 struct xfs_buftarg *btp,
556 struct xfs_buf_map *map,
558 xfs_buf_flags_t flags,
561 struct xfs_perag *pag;
563 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 for (i = 0; i < nmaps; i++)
568 cmap.bm_len += map[i].bm_len;
570 /* Check for IOs smaller than the sector size / not sector aligned */
571 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
572 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
575 * Corrupted block numbers can get through to here, unfortunately, so we
576 * have to check that the buffer falls within the filesystem bounds.
578 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
579 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
581 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
582 * but none of the higher level infrastructure supports
583 * returning a specific error on buffer lookup failures.
585 xfs_alert(btp->bt_mount,
586 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
587 __func__, cmap.bm_bn, eofs);
592 pag = xfs_perag_get(btp->bt_mount,
593 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
595 spin_lock(&pag->pag_buf_lock);
596 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
597 xfs_buf_hash_params);
599 atomic_inc(&bp->b_hold);
605 /* the buffer keeps the perag reference until it is freed */
607 rhashtable_insert_fast(&pag->pag_buf_hash,
608 &new_bp->b_rhash_head,
609 xfs_buf_hash_params);
610 spin_unlock(&pag->pag_buf_lock);
612 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
613 spin_unlock(&pag->pag_buf_lock);
619 spin_unlock(&pag->pag_buf_lock);
622 if (!xfs_buf_trylock(bp)) {
623 if (flags & XBF_TRYLOCK) {
625 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 * if the buffer is stale, clear all the external state associated with
634 * it. We need to keep flags such as how we allocated the buffer memory
637 if (bp->b_flags & XBF_STALE) {
638 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
639 ASSERT(bp->b_iodone == NULL);
640 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 trace_xfs_buf_find(bp, flags, _RET_IP_);
645 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
650 * Assembles a buffer covering the specified range. The code is optimised for
651 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
652 * more hits than misses.
656 struct xfs_buftarg *target,
657 struct xfs_buf_map *map,
659 xfs_buf_flags_t flags)
662 struct xfs_buf *new_bp;
665 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
670 if (unlikely(!new_bp))
673 error = xfs_buf_allocate_memory(new_bp, flags);
675 xfs_buf_free(new_bp);
679 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
681 xfs_buf_free(new_bp);
686 xfs_buf_free(new_bp);
690 error = _xfs_buf_map_pages(bp, flags);
691 if (unlikely(error)) {
692 xfs_warn(target->bt_mount,
693 "%s: failed to map pagesn", __func__);
700 * Clear b_error if this is a lookup from a caller that doesn't expect
701 * valid data to be found in the buffer.
703 if (!(flags & XBF_READ))
704 xfs_buf_ioerror(bp, 0);
706 XFS_STATS_INC(target->bt_mount, xb_get);
707 trace_xfs_buf_get(bp, flags, _RET_IP_);
714 xfs_buf_flags_t flags)
716 ASSERT(!(flags & XBF_WRITE));
717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
722 if (flags & XBF_ASYNC) {
726 return xfs_buf_submit_wait(bp);
731 struct xfs_buftarg *target,
732 struct xfs_buf_map *map,
734 xfs_buf_flags_t flags,
735 const struct xfs_buf_ops *ops)
741 bp = xfs_buf_get_map(target, map, nmaps, flags);
743 trace_xfs_buf_read(bp, flags, _RET_IP_);
745 if (!(bp->b_flags & XBF_DONE)) {
746 XFS_STATS_INC(target->bt_mount, xb_get_read);
748 _xfs_buf_read(bp, flags);
749 } else if (flags & XBF_ASYNC) {
751 * Read ahead call which is already satisfied,
757 /* We do not want read in the flags */
758 bp->b_flags &= ~XBF_READ;
766 * If we are not low on memory then do the readahead in a deadlock
770 xfs_buf_readahead_map(
771 struct xfs_buftarg *target,
772 struct xfs_buf_map *map,
774 const struct xfs_buf_ops *ops)
776 if (bdi_read_congested(target->bt_bdev->bd_bdi))
779 xfs_buf_read_map(target, map, nmaps,
780 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784 * Read an uncached buffer from disk. Allocates and returns a locked
785 * buffer containing the disk contents or nothing.
788 xfs_buf_read_uncached(
789 struct xfs_buftarg *target,
793 struct xfs_buf **bpp,
794 const struct xfs_buf_ops *ops)
800 bp = xfs_buf_get_uncached(target, numblks, flags);
804 /* set up the buffer for a read IO */
805 ASSERT(bp->b_map_count == 1);
806 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
807 bp->b_maps[0].bm_bn = daddr;
808 bp->b_flags |= XBF_READ;
811 xfs_buf_submit_wait(bp);
813 int error = bp->b_error;
823 * Return a buffer allocated as an empty buffer and associated to external
824 * memory via xfs_buf_associate_memory() back to it's empty state.
832 _xfs_buf_free_pages(bp);
835 bp->b_page_count = 0;
837 bp->b_length = numblks;
838 bp->b_io_length = numblks;
840 ASSERT(bp->b_map_count == 1);
841 bp->b_bn = XFS_BUF_DADDR_NULL;
842 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
843 bp->b_maps[0].bm_len = bp->b_length;
846 static inline struct page *
850 if ((!is_vmalloc_addr(addr))) {
851 return virt_to_page(addr);
853 return vmalloc_to_page(addr);
858 xfs_buf_associate_memory(
865 unsigned long pageaddr;
866 unsigned long offset;
870 pageaddr = (unsigned long)mem & PAGE_MASK;
871 offset = (unsigned long)mem - pageaddr;
872 buflen = PAGE_ALIGN(len + offset);
873 page_count = buflen >> PAGE_SHIFT;
875 /* Free any previous set of page pointers */
877 _xfs_buf_free_pages(bp);
882 rval = _xfs_buf_get_pages(bp, page_count);
886 bp->b_offset = offset;
888 for (i = 0; i < bp->b_page_count; i++) {
889 bp->b_pages[i] = mem_to_page((void *)pageaddr);
890 pageaddr += PAGE_SIZE;
893 bp->b_io_length = BTOBB(len);
894 bp->b_length = BTOBB(buflen);
900 xfs_buf_get_uncached(
901 struct xfs_buftarg *target,
905 unsigned long page_count;
908 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
910 /* flags might contain irrelevant bits, pass only what we care about */
911 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
912 if (unlikely(bp == NULL))
915 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
916 error = _xfs_buf_get_pages(bp, page_count);
920 for (i = 0; i < page_count; i++) {
921 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 bp->b_flags |= _XBF_PAGES;
927 error = _xfs_buf_map_pages(bp, 0);
928 if (unlikely(error)) {
929 xfs_warn(target->bt_mount,
930 "%s: failed to map pages", __func__);
934 trace_xfs_buf_get_uncached(bp, _RET_IP_);
939 __free_page(bp->b_pages[i]);
940 _xfs_buf_free_pages(bp);
942 xfs_buf_free_maps(bp);
943 kmem_zone_free(xfs_buf_zone, bp);
949 * Increment reference count on buffer, to hold the buffer concurrently
950 * with another thread which may release (free) the buffer asynchronously.
951 * Must hold the buffer already to call this function.
957 trace_xfs_buf_hold(bp, _RET_IP_);
958 atomic_inc(&bp->b_hold);
962 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
963 * placed on LRU or freed (depending on b_lru_ref).
969 struct xfs_perag *pag = bp->b_pag;
971 bool freebuf = false;
973 trace_xfs_buf_rele(bp, _RET_IP_);
976 ASSERT(list_empty(&bp->b_lru));
977 if (atomic_dec_and_test(&bp->b_hold)) {
978 xfs_buf_ioacct_dec(bp);
984 ASSERT(atomic_read(&bp->b_hold) > 0);
986 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
987 spin_lock(&bp->b_lock);
990 * Drop the in-flight state if the buffer is already on the LRU
991 * and it holds the only reference. This is racy because we
992 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
993 * ensures the decrement occurs only once per-buf.
995 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
996 __xfs_buf_ioacct_dec(bp);
1000 /* the last reference has been dropped ... */
1001 __xfs_buf_ioacct_dec(bp);
1002 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1004 * If the buffer is added to the LRU take a new reference to the
1005 * buffer for the LRU and clear the (now stale) dispose list
1008 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1009 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1010 atomic_inc(&bp->b_hold);
1012 spin_unlock(&pag->pag_buf_lock);
1015 * most of the time buffers will already be removed from the
1016 * LRU, so optimise that case by checking for the
1017 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1018 * was on was the disposal list
1020 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1021 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1023 ASSERT(list_empty(&bp->b_lru));
1026 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1027 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1028 xfs_buf_hash_params);
1029 spin_unlock(&pag->pag_buf_lock);
1035 spin_unlock(&bp->b_lock);
1043 * Lock a buffer object, if it is not already locked.
1045 * If we come across a stale, pinned, locked buffer, we know that we are
1046 * being asked to lock a buffer that has been reallocated. Because it is
1047 * pinned, we know that the log has not been pushed to disk and hence it
1048 * will still be locked. Rather than continuing to have trylock attempts
1049 * fail until someone else pushes the log, push it ourselves before
1050 * returning. This means that the xfsaild will not get stuck trying
1051 * to push on stale inode buffers.
1059 locked = down_trylock(&bp->b_sema) == 0;
1062 trace_xfs_buf_trylock(bp, _RET_IP_);
1064 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1070 * Lock a buffer object.
1072 * If we come across a stale, pinned, locked buffer, we know that we
1073 * are being asked to lock a buffer that has been reallocated. Because
1074 * it is pinned, we know that the log has not been pushed to disk and
1075 * hence it will still be locked. Rather than sleeping until someone
1076 * else pushes the log, push it ourselves before trying to get the lock.
1082 trace_xfs_buf_lock(bp, _RET_IP_);
1084 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1085 xfs_log_force(bp->b_target->bt_mount, 0);
1089 trace_xfs_buf_lock_done(bp, _RET_IP_);
1096 ASSERT(xfs_buf_islocked(bp));
1101 trace_xfs_buf_unlock(bp, _RET_IP_);
1108 DECLARE_WAITQUEUE (wait, current);
1110 if (atomic_read(&bp->b_pin_count) == 0)
1113 add_wait_queue(&bp->b_waiters, &wait);
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 if (atomic_read(&bp->b_pin_count) == 0)
1120 remove_wait_queue(&bp->b_waiters, &wait);
1121 set_current_state(TASK_RUNNING);
1125 * Buffer Utility Routines
1132 bool read = bp->b_flags & XBF_READ;
1134 trace_xfs_buf_iodone(bp, _RET_IP_);
1136 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1139 * Pull in IO completion errors now. We are guaranteed to be running
1140 * single threaded, so we don't need the lock to read b_io_error.
1142 if (!bp->b_error && bp->b_io_error)
1143 xfs_buf_ioerror(bp, bp->b_io_error);
1145 /* Only validate buffers that were read without errors */
1146 if (read && !bp->b_error && bp->b_ops) {
1147 ASSERT(!bp->b_iodone);
1148 bp->b_ops->verify_read(bp);
1152 bp->b_flags |= XBF_DONE;
1155 (*(bp->b_iodone))(bp);
1156 else if (bp->b_flags & XBF_ASYNC)
1159 complete(&bp->b_iowait);
1164 struct work_struct *work)
1166 struct xfs_buf *bp =
1167 container_of(work, xfs_buf_t, b_ioend_work);
1173 xfs_buf_ioend_async(
1176 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1177 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1185 ASSERT(error <= 0 && error >= -1000);
1186 bp->b_error = error;
1187 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1191 xfs_buf_ioerror_alert(
1195 xfs_alert(bp->b_target->bt_mount,
1196 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1197 (uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1206 ASSERT(xfs_buf_islocked(bp));
1208 bp->b_flags |= XBF_WRITE;
1209 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1210 XBF_WRITE_FAIL | XBF_DONE);
1212 error = xfs_buf_submit_wait(bp);
1214 xfs_force_shutdown(bp->b_target->bt_mount,
1215 SHUTDOWN_META_IO_ERROR);
1224 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1227 * don't overwrite existing errors - otherwise we can lose errors on
1228 * buffers that require multiple bios to complete.
1230 if (bio->bi_status) {
1231 int error = blk_status_to_errno(bio->bi_status);
1233 cmpxchg(&bp->b_io_error, 0, error);
1236 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1237 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1239 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1240 xfs_buf_ioend_async(bp);
1245 xfs_buf_ioapply_map(
1254 int total_nr_pages = bp->b_page_count;
1257 sector_t sector = bp->b_maps[map].bm_bn;
1261 total_nr_pages = bp->b_page_count;
1263 /* skip the pages in the buffer before the start offset */
1265 offset = *buf_offset;
1266 while (offset >= PAGE_SIZE) {
1268 offset -= PAGE_SIZE;
1272 * Limit the IO size to the length of the current vector, and update the
1273 * remaining IO count for the next time around.
1275 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 *buf_offset += size;
1280 atomic_inc(&bp->b_io_remaining);
1281 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1283 bio = bio_alloc(GFP_NOIO, nr_pages);
1284 bio_set_dev(bio, bp->b_target->bt_bdev);
1285 bio->bi_iter.bi_sector = sector;
1286 bio->bi_end_io = xfs_buf_bio_end_io;
1287 bio->bi_private = bp;
1288 bio_set_op_attrs(bio, op, op_flags);
1290 for (; size && nr_pages; nr_pages--, page_index++) {
1291 int rbytes, nbytes = PAGE_SIZE - offset;
1296 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1298 if (rbytes < nbytes)
1302 sector += BTOBB(nbytes);
1307 if (likely(bio->bi_iter.bi_size)) {
1308 if (xfs_buf_is_vmapped(bp)) {
1309 flush_kernel_vmap_range(bp->b_addr,
1310 xfs_buf_vmap_len(bp));
1317 * This is guaranteed not to be the last io reference count
1318 * because the caller (xfs_buf_submit) holds a count itself.
1320 atomic_dec(&bp->b_io_remaining);
1321 xfs_buf_ioerror(bp, -EIO);
1331 struct blk_plug plug;
1339 * Make sure we capture only current IO errors rather than stale errors
1340 * left over from previous use of the buffer (e.g. failed readahead).
1345 * Initialize the I/O completion workqueue if we haven't yet or the
1346 * submitter has not opted to specify a custom one.
1348 if (!bp->b_ioend_wq)
1349 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1351 if (bp->b_flags & XBF_WRITE) {
1353 if (bp->b_flags & XBF_SYNCIO)
1354 op_flags = REQ_SYNC;
1355 if (bp->b_flags & XBF_FUA)
1356 op_flags |= REQ_FUA;
1357 if (bp->b_flags & XBF_FLUSH)
1358 op_flags |= REQ_PREFLUSH;
1361 * Run the write verifier callback function if it exists. If
1362 * this function fails it will mark the buffer with an error and
1363 * the IO should not be dispatched.
1366 bp->b_ops->verify_write(bp);
1368 xfs_force_shutdown(bp->b_target->bt_mount,
1369 SHUTDOWN_CORRUPT_INCORE);
1372 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1373 struct xfs_mount *mp = bp->b_target->bt_mount;
1376 * non-crc filesystems don't attach verifiers during
1377 * log recovery, so don't warn for such filesystems.
1379 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1381 "%s: no ops on block 0x%llx/0x%x",
1382 __func__, bp->b_bn, bp->b_length);
1383 xfs_hex_dump(bp->b_addr, 64);
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1389 op_flags = REQ_RAHEAD;
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_io_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1411 break; /* all done */
1413 blk_finish_plug(&plug);
1417 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1418 * the current reference to the IO. It is not safe to reference the buffer after
1419 * a call to this function unless the caller holds an additional reference
1426 trace_xfs_buf_submit(bp, _RET_IP_);
1428 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429 ASSERT(bp->b_flags & XBF_ASYNC);
1431 /* on shutdown we stale and complete the buffer immediately */
1432 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1433 xfs_buf_ioerror(bp, -EIO);
1434 bp->b_flags &= ~XBF_DONE;
1440 if (bp->b_flags & XBF_WRITE)
1441 xfs_buf_wait_unpin(bp);
1443 /* clear the internal error state to avoid spurious errors */
1447 * The caller's reference is released during I/O completion.
1448 * This occurs some time after the last b_io_remaining reference is
1449 * released, so after we drop our Io reference we have to have some
1450 * other reference to ensure the buffer doesn't go away from underneath
1451 * us. Take a direct reference to ensure we have safe access to the
1452 * buffer until we are finished with it.
1457 * Set the count to 1 initially, this will stop an I/O completion
1458 * callout which happens before we have started all the I/O from calling
1459 * xfs_buf_ioend too early.
1461 atomic_set(&bp->b_io_remaining, 1);
1462 xfs_buf_ioacct_inc(bp);
1463 _xfs_buf_ioapply(bp);
1466 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1467 * reference we took above. If we drop it to zero, run completion so
1468 * that we don't return to the caller with completion still pending.
1470 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1474 xfs_buf_ioend_async(bp);
1478 /* Note: it is not safe to reference bp now we've dropped our ref */
1482 * Synchronous buffer IO submission path, read or write.
1485 xfs_buf_submit_wait(
1490 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1492 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1494 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1495 xfs_buf_ioerror(bp, -EIO);
1497 bp->b_flags &= ~XBF_DONE;
1501 if (bp->b_flags & XBF_WRITE)
1502 xfs_buf_wait_unpin(bp);
1504 /* clear the internal error state to avoid spurious errors */
1508 * For synchronous IO, the IO does not inherit the submitters reference
1509 * count, nor the buffer lock. Hence we cannot release the reference we
1510 * are about to take until we've waited for all IO completion to occur,
1511 * including any xfs_buf_ioend_async() work that may be pending.
1516 * Set the count to 1 initially, this will stop an I/O completion
1517 * callout which happens before we have started all the I/O from calling
1518 * xfs_buf_ioend too early.
1520 atomic_set(&bp->b_io_remaining, 1);
1521 _xfs_buf_ioapply(bp);
1524 * make sure we run completion synchronously if it raced with us and is
1527 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1530 /* wait for completion before gathering the error from the buffer */
1531 trace_xfs_buf_iowait(bp, _RET_IP_);
1532 wait_for_completion(&bp->b_iowait);
1533 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 error = bp->b_error;
1537 * all done now, we can release the hold that keeps the buffer
1538 * referenced for the entire IO.
1552 return bp->b_addr + offset;
1554 offset += bp->b_offset;
1555 page = bp->b_pages[offset >> PAGE_SHIFT];
1556 return page_address(page) + (offset & (PAGE_SIZE-1));
1560 * Move data into or out of a buffer.
1564 xfs_buf_t *bp, /* buffer to process */
1565 size_t boff, /* starting buffer offset */
1566 size_t bsize, /* length to copy */
1567 void *data, /* data address */
1568 xfs_buf_rw_t mode) /* read/write/zero flag */
1572 bend = boff + bsize;
1573 while (boff < bend) {
1575 int page_index, page_offset, csize;
1577 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1578 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1579 page = bp->b_pages[page_index];
1580 csize = min_t(size_t, PAGE_SIZE - page_offset,
1581 BBTOB(bp->b_io_length) - boff);
1583 ASSERT((csize + page_offset) <= PAGE_SIZE);
1587 memset(page_address(page) + page_offset, 0, csize);
1590 memcpy(data, page_address(page) + page_offset, csize);
1593 memcpy(page_address(page) + page_offset, data, csize);
1602 * Handling of buffer targets (buftargs).
1606 * Wait for any bufs with callbacks that have been submitted but have not yet
1607 * returned. These buffers will have an elevated hold count, so wait on those
1608 * while freeing all the buffers only held by the LRU.
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 struct list_head *item,
1613 struct list_lru_one *lru,
1614 spinlock_t *lru_lock,
1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1619 struct list_head *dispose = arg;
1621 if (atomic_read(&bp->b_hold) > 1) {
1622 /* need to wait, so skip it this pass */
1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1626 if (!spin_trylock(&bp->b_lock))
1630 * clear the LRU reference count so the buffer doesn't get
1631 * ignored in xfs_buf_rele().
1633 atomic_set(&bp->b_lru_ref, 0);
1634 bp->b_state |= XFS_BSTATE_DISPOSE;
1635 list_lru_isolate_move(lru, item, dispose);
1636 spin_unlock(&bp->b_lock);
1642 struct xfs_buftarg *btp)
1648 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 * released. This is critical as new buffers do not make the LRU until
1650 * they are released.
1652 * Next, flush the buffer workqueue to ensure all completion processing
1653 * has finished. Just waiting on buffer locks is not sufficient for
1654 * async IO as the reference count held over IO is not released until
1655 * after the buffer lock is dropped. Hence we need to ensure here that
1656 * all reference counts have been dropped before we start walking the
1659 while (percpu_counter_sum(&btp->bt_io_count))
1661 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1663 /* loop until there is nothing left on the lru list. */
1664 while (list_lru_count(&btp->bt_lru)) {
1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 &dispose, LONG_MAX);
1668 while (!list_empty(&dispose)) {
1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 list_del_init(&bp->b_lru);
1672 if (bp->b_flags & XBF_WRITE_FAIL) {
1673 xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1675 (long long)bp->b_bn);
1676 xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 struct list_head *item,
1689 struct list_lru_one *lru,
1690 spinlock_t *lru_lock,
1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1694 struct list_head *dispose = arg;
1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 * If we fail to get the lock, just skip it.
1700 if (!spin_trylock(&bp->b_lock))
1703 * Decrement the b_lru_ref count unless the value is already
1704 * zero. If the value is already zero, we need to reclaim the
1705 * buffer, otherwise it gets another trip through the LRU.
1707 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 spin_unlock(&bp->b_lock);
1712 bp->b_state |= XFS_BSTATE_DISPOSE;
1713 list_lru_isolate_move(lru, item, dispose);
1714 spin_unlock(&bp->b_lock);
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 struct shrinker *shrink,
1721 struct shrink_control *sc)
1723 struct xfs_buftarg *btp = container_of(shrink,
1724 struct xfs_buftarg, bt_shrinker);
1726 unsigned long freed;
1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 xfs_buftarg_isolate, &dispose);
1731 while (!list_empty(&dispose)) {
1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 list_del_init(&bp->b_lru);
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 struct shrinker *shrink,
1744 struct shrink_control *sc)
1746 struct xfs_buftarg *btp = container_of(shrink,
1747 struct xfs_buftarg, bt_shrinker);
1748 return list_lru_shrink_count(&btp->bt_lru, sc);
1753 struct xfs_mount *mp,
1754 struct xfs_buftarg *btp)
1756 unregister_shrinker(&btp->bt_shrinker);
1757 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1758 percpu_counter_destroy(&btp->bt_io_count);
1759 list_lru_destroy(&btp->bt_lru);
1761 xfs_blkdev_issue_flush(btp);
1767 xfs_setsize_buftarg(
1769 unsigned int sectorsize)
1771 /* Set up metadata sector size info */
1772 btp->bt_meta_sectorsize = sectorsize;
1773 btp->bt_meta_sectormask = sectorsize - 1;
1775 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1776 xfs_warn(btp->bt_mount,
1777 "Cannot set_blocksize to %u on device %pg",
1778 sectorsize, btp->bt_bdev);
1782 /* Set up device logical sector size mask */
1783 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1784 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1790 * When allocating the initial buffer target we have not yet
1791 * read in the superblock, so don't know what sized sectors
1792 * are being used at this early stage. Play safe.
1795 xfs_setsize_buftarg_early(
1797 struct block_device *bdev)
1799 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1804 struct xfs_mount *mp,
1805 struct block_device *bdev)
1809 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1812 btp->bt_dev = bdev->bd_dev;
1813 btp->bt_bdev = bdev;
1815 if (xfs_setsize_buftarg_early(btp, bdev))
1818 if (list_lru_init(&btp->bt_lru))
1821 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1824 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1825 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1826 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1827 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1828 register_shrinker(&btp->bt_shrinker);
1837 * Cancel a delayed write list.
1839 * Remove each buffer from the list, clear the delwri queue flag and drop the
1840 * associated buffer reference.
1843 xfs_buf_delwri_cancel(
1844 struct list_head *list)
1848 while (!list_empty(list)) {
1849 bp = list_first_entry(list, struct xfs_buf, b_list);
1852 bp->b_flags &= ~_XBF_DELWRI_Q;
1853 list_del_init(&bp->b_list);
1859 * Add a buffer to the delayed write list.
1861 * This queues a buffer for writeout if it hasn't already been. Note that
1862 * neither this routine nor the buffer list submission functions perform
1863 * any internal synchronization. It is expected that the lists are thread-local
1866 * Returns true if we queued up the buffer, or false if it already had
1867 * been on the buffer list.
1870 xfs_buf_delwri_queue(
1872 struct list_head *list)
1874 ASSERT(xfs_buf_islocked(bp));
1875 ASSERT(!(bp->b_flags & XBF_READ));
1878 * If the buffer is already marked delwri it already is queued up
1879 * by someone else for imediate writeout. Just ignore it in that
1882 if (bp->b_flags & _XBF_DELWRI_Q) {
1883 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1887 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1890 * If a buffer gets written out synchronously or marked stale while it
1891 * is on a delwri list we lazily remove it. To do this, the other party
1892 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1893 * It remains referenced and on the list. In a rare corner case it
1894 * might get readded to a delwri list after the synchronous writeout, in
1895 * which case we need just need to re-add the flag here.
1897 bp->b_flags |= _XBF_DELWRI_Q;
1898 if (list_empty(&bp->b_list)) {
1899 atomic_inc(&bp->b_hold);
1900 list_add_tail(&bp->b_list, list);
1907 * Compare function is more complex than it needs to be because
1908 * the return value is only 32 bits and we are doing comparisons
1914 struct list_head *a,
1915 struct list_head *b)
1917 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1918 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1921 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1930 * submit buffers for write.
1932 * When we have a large buffer list, we do not want to hold all the buffers
1933 * locked while we block on the request queue waiting for IO dispatch. To avoid
1934 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1935 * the lock hold times for lists which may contain thousands of objects.
1937 * To do this, we sort the buffer list before we walk the list to lock and
1938 * submit buffers, and we plug and unplug around each group of buffers we
1942 xfs_buf_delwri_submit_buffers(
1943 struct list_head *buffer_list,
1944 struct list_head *wait_list)
1946 struct xfs_buf *bp, *n;
1947 LIST_HEAD (submit_list);
1949 struct blk_plug plug;
1951 list_sort(NULL, buffer_list, xfs_buf_cmp);
1953 blk_start_plug(&plug);
1954 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1956 if (xfs_buf_ispinned(bp)) {
1960 if (!xfs_buf_trylock(bp))
1967 * Someone else might have written the buffer synchronously or
1968 * marked it stale in the meantime. In that case only the
1969 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1970 * reference and remove it from the list here.
1972 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1973 list_del_init(&bp->b_list);
1978 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1981 * We do all IO submission async. This means if we need
1982 * to wait for IO completion we need to take an extra
1983 * reference so the buffer is still valid on the other
1984 * side. We need to move the buffer onto the io_list
1985 * at this point so the caller can still access it.
1987 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1988 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1991 list_move_tail(&bp->b_list, wait_list);
1993 list_del_init(&bp->b_list);
1997 blk_finish_plug(&plug);
2003 * Write out a buffer list asynchronously.
2005 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2006 * out and not wait for I/O completion on any of the buffers. This interface
2007 * is only safely useable for callers that can track I/O completion by higher
2008 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2012 xfs_buf_delwri_submit_nowait(
2013 struct list_head *buffer_list)
2015 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2019 * Write out a buffer list synchronously.
2021 * This will take the @buffer_list, write all buffers out and wait for I/O
2022 * completion on all of the buffers. @buffer_list is consumed by the function,
2023 * so callers must have some other way of tracking buffers if they require such
2027 xfs_buf_delwri_submit(
2028 struct list_head *buffer_list)
2030 LIST_HEAD (wait_list);
2031 int error = 0, error2;
2034 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2036 /* Wait for IO to complete. */
2037 while (!list_empty(&wait_list)) {
2038 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2040 list_del_init(&bp->b_list);
2042 /* locking the buffer will wait for async IO completion. */
2044 error2 = bp->b_error;
2054 * Push a single buffer on a delwri queue.
2056 * The purpose of this function is to submit a single buffer of a delwri queue
2057 * and return with the buffer still on the original queue. The waiting delwri
2058 * buffer submission infrastructure guarantees transfer of the delwri queue
2059 * buffer reference to a temporary wait list. We reuse this infrastructure to
2060 * transfer the buffer back to the original queue.
2062 * Note the buffer transitions from the queued state, to the submitted and wait
2063 * listed state and back to the queued state during this call. The buffer
2064 * locking and queue management logic between _delwri_pushbuf() and
2065 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2069 xfs_buf_delwri_pushbuf(
2071 struct list_head *buffer_list)
2073 LIST_HEAD (submit_list);
2076 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2078 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2081 * Isolate the buffer to a new local list so we can submit it for I/O
2082 * independently from the rest of the original list.
2085 list_move(&bp->b_list, &submit_list);
2089 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2090 * the buffer on the wait list with an associated reference. Rather than
2091 * bounce the buffer from a local wait list back to the original list
2092 * after I/O completion, reuse the original list as the wait list.
2094 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2097 * The buffer is now under I/O and wait listed as during typical delwri
2098 * submission. Lock the buffer to wait for I/O completion. Rather than
2099 * remove the buffer from the wait list and release the reference, we
2100 * want to return with the buffer queued to the original list. The
2101 * buffer already sits on the original list with a wait list reference,
2102 * however. If we let the queue inherit that wait list reference, all we
2103 * need to do is reset the DELWRI_Q flag.
2106 error = bp->b_error;
2107 bp->b_flags |= _XBF_DELWRI_Q;
2116 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2117 KM_ZONE_HWALIGN, NULL);
2128 xfs_buf_terminate(void)
2130 kmem_zone_destroy(xfs_buf_zone);