1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
6 #include <asm/pgtable.h>
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
50 #define pmd_pgtable(pmd) pmd_page(pmd)
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
67 static inline unsigned long pte_index(unsigned long address)
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
73 static inline unsigned long pmd_index(unsigned long address)
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
77 #define pmd_index pmd_index
81 static inline unsigned long pud_index(unsigned long address)
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
85 #define pud_index pud_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
93 #ifndef pte_offset_kernel
94 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
96 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
98 #define pte_offset_kernel pte_offset_kernel
101 #ifdef CONFIG_HIGHPTE
102 #define __pte_map(pmd, address) \
103 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
104 #define pte_unmap(pte) do { \
105 kunmap_local((pte)); \
109 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
111 return pte_offset_kernel(pmd, address);
113 static inline void pte_unmap(pte_t *pte)
119 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
121 /* Find an entry in the second-level page table.. */
123 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
125 return pud_pgtable(*pud) + pmd_index(address);
127 #define pmd_offset pmd_offset
131 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
133 return p4d_pgtable(*p4d) + pud_index(address);
135 #define pud_offset pud_offset
138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
140 return (pgd + pgd_index(address));
144 * a shortcut to get a pgd_t in a given mm
147 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
151 * a shortcut which implies the use of the kernel's pgd, instead
154 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
157 * In many cases it is known that a virtual address is mapped at PMD or PTE
158 * level, so instead of traversing all the page table levels, we can get a
159 * pointer to the PMD entry in user or kernel page table or translate a virtual
160 * address to the pointer in the PTE in the kernel page tables with simple
163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
168 static inline pmd_t *pmd_off_k(unsigned long va)
170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
175 pmd_t *pmd = pmd_off_k(vaddr);
177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
181 static inline int pmd_young(pmd_t pmd)
188 static inline int pmd_dirty(pmd_t pmd)
195 * A facility to provide lazy MMU batching. This allows PTE updates and
196 * page invalidations to be delayed until a call to leave lazy MMU mode
197 * is issued. Some architectures may benefit from doing this, and it is
198 * beneficial for both shadow and direct mode hypervisors, which may batch
199 * the PTE updates which happen during this window. Note that using this
200 * interface requires that read hazards be removed from the code. A read
201 * hazard could result in the direct mode hypervisor case, since the actual
202 * write to the page tables may not yet have taken place, so reads though
203 * a raw PTE pointer after it has been modified are not guaranteed to be
204 * up to date. This mode can only be entered and left under the protection of
205 * the page table locks for all page tables which may be modified. In the UP
206 * case, this is required so that preemption is disabled, and in the SMP case,
207 * it must synchronize the delayed page table writes properly on other CPUs.
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode() do {} while (0)
211 #define arch_leave_lazy_mmu_mode() do {} while (0)
212 #define arch_flush_lazy_mmu_mode() do {} while (0)
215 #ifndef pte_batch_hint
217 * pte_batch_hint - Number of pages that can be added to batch without scanning.
218 * @ptep: Page table pointer for the entry.
219 * @pte: Page table entry.
221 * Some architectures know that a set of contiguous ptes all map the same
222 * contiguous memory with the same permissions. In this case, it can provide a
223 * hint to aid pte batching without the core code needing to scan every pte.
225 * An architecture implementation may ignore the PTE accessed state. Further,
226 * the dirty state must apply atomically to all the PTEs described by the hint.
228 * May be overridden by the architecture, else pte_batch_hint is always 1.
230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
236 #ifndef pte_advance_pfn
237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
247 * set_ptes - Map consecutive pages to a contiguous range of addresses.
248 * @mm: Address space to map the pages into.
249 * @addr: Address to map the first page at.
250 * @ptep: Page table pointer for the first entry.
251 * @pte: Page table entry for the first page.
252 * @nr: Number of pages to map.
254 * When nr==1, initial state of pte may be present or not present, and new state
255 * may be present or not present. When nr>1, initial state of all ptes must be
256 * not present, and new state must be present.
258 * May be overridden by the architecture, or the architecture can define
259 * set_pte() and PFN_PTE_SHIFT.
261 * Context: The caller holds the page table lock. The pages all belong
262 * to the same folio. The PTEs are all in the same PMD.
264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
265 pte_t *ptep, pte_t pte, unsigned int nr)
267 page_table_check_ptes_set(mm, ptep, pte, nr);
269 arch_enter_lazy_mmu_mode();
275 pte = pte_next_pfn(pte);
277 arch_leave_lazy_mmu_mode();
280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
283 extern int ptep_set_access_flags(struct vm_area_struct *vma,
284 unsigned long address, pte_t *ptep,
285 pte_t entry, int dirty);
288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
290 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
291 unsigned long address, pmd_t *pmdp,
292 pmd_t entry, int dirty);
293 extern int pudp_set_access_flags(struct vm_area_struct *vma,
294 unsigned long address, pud_t *pudp,
295 pud_t entry, int dirty);
297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
298 unsigned long address, pmd_t *pmdp,
299 pmd_t entry, int dirty)
304 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pud_t *pudp,
306 pud_t entry, int dirty)
311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
315 static inline pte_t ptep_get(pte_t *ptep)
317 return READ_ONCE(*ptep);
322 static inline pmd_t pmdp_get(pmd_t *pmdp)
324 return READ_ONCE(*pmdp);
329 static inline pud_t pudp_get(pud_t *pudp)
331 return READ_ONCE(*pudp);
336 static inline p4d_t p4dp_get(p4d_t *p4dp)
338 return READ_ONCE(*p4dp);
343 static inline pgd_t pgdp_get(pgd_t *pgdp)
345 return READ_ONCE(*pgdp);
349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
351 unsigned long address,
354 pte_t pte = ptep_get(ptep);
359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
367 unsigned long address,
375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
380 unsigned long address,
386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
390 int ptep_clear_flush_young(struct vm_area_struct *vma,
391 unsigned long address, pte_t *ptep);
394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
397 unsigned long address, pmd_t *pmdp);
400 * Despite relevant to THP only, this API is called from generic rmap code
401 * under PageTransHuge(), hence needs a dummy implementation for !THP
403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmdp)
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
412 #ifndef arch_has_hw_nonleaf_pmd_young
414 * Return whether the accessed bit in non-leaf PMD entries is supported on the
417 static inline bool arch_has_hw_nonleaf_pmd_young(void)
419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
423 #ifndef arch_has_hw_pte_young
425 * Return whether the accessed bit is supported on the local CPU.
427 * This stub assumes accessing through an old PTE triggers a page fault.
428 * Architectures that automatically set the access bit should overwrite it.
430 static inline bool arch_has_hw_pte_young(void)
432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
436 #ifndef arch_check_zapped_pte
437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
443 #ifndef arch_check_zapped_pmd
444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
450 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 unsigned long address,
455 pte_t pte = ptep_get(ptep);
456 pte_clear(mm, address, ptep);
457 page_table_check_pte_clear(mm, pte);
462 #ifndef clear_young_dirty_ptes
464 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
465 * same folio as old/clean.
466 * @mm: Address space the pages are mapped into.
467 * @addr: Address the first page is mapped at.
468 * @ptep: Page table pointer for the first entry.
469 * @nr: Number of entries to mark old/clean.
470 * @flags: Flags to modify the PTE batch semantics.
472 * May be overridden by the architecture; otherwise, implemented by
473 * get_and_clear/modify/set for each pte in the range.
475 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
476 * some PTEs might be write-protected.
478 * Context: The caller holds the page table lock. The PTEs map consecutive
479 * pages that belong to the same folio. The PTEs are all in the same PMD.
481 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
482 unsigned long addr, pte_t *ptep,
483 unsigned int nr, cydp_t flags)
488 if (flags == CYDP_CLEAR_YOUNG)
489 ptep_test_and_clear_young(vma, addr, ptep);
491 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
492 if (flags & CYDP_CLEAR_YOUNG)
493 pte = pte_mkold(pte);
494 if (flags & CYDP_CLEAR_DIRTY)
495 pte = pte_mkclean(pte);
496 set_pte_at(vma->vm_mm, addr, ptep, pte);
506 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
509 ptep_get_and_clear(mm, addr, ptep);
512 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
514 * For walking the pagetables without holding any locks. Some architectures
515 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
516 * instructions. We are guaranteed that a PTE will only either go from not
517 * present to present, or present to not present -- it will not switch to a
518 * completely different present page without a TLB flush inbetween; which we
519 * are blocking by holding interrupts off.
521 * Setting ptes from not present to present goes:
523 * ptep->pte_high = h;
527 * And present to not present goes:
531 * ptep->pte_high = 0;
533 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
534 * We load pte_high *after* loading pte_low, which ensures we don't see an older
535 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
536 * picked up a changed pte high. We might have gotten rubbish values from
537 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
538 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
539 * operates on present ptes we're safe.
541 static inline pte_t ptep_get_lockless(pte_t *ptep)
546 pte.pte_low = ptep->pte_low;
548 pte.pte_high = ptep->pte_high;
550 } while (unlikely(pte.pte_low != ptep->pte_low));
554 #define ptep_get_lockless ptep_get_lockless
556 #if CONFIG_PGTABLE_LEVELS > 2
557 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
562 pmd.pmd_low = pmdp->pmd_low;
564 pmd.pmd_high = pmdp->pmd_high;
566 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
570 #define pmdp_get_lockless pmdp_get_lockless
571 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
572 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
573 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
576 * We require that the PTE can be read atomically.
578 #ifndef ptep_get_lockless
579 static inline pte_t ptep_get_lockless(pte_t *ptep)
581 return ptep_get(ptep);
585 #ifndef pmdp_get_lockless
586 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
588 return pmdp_get(pmdp);
590 static inline void pmdp_get_lockless_sync(void)
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
597 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
598 unsigned long address,
604 page_table_check_pmd_clear(mm, pmd);
608 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
609 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
610 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
611 unsigned long address,
617 page_table_check_pud_clear(mm, pud);
621 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
625 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
626 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
627 unsigned long address, pmd_t *pmdp,
630 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
634 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
635 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
636 unsigned long address, pud_t *pudp,
639 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
644 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
645 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
646 unsigned long address, pte_t *ptep,
649 return ptep_get_and_clear(mm, address, ptep);
653 #ifndef get_and_clear_full_ptes
655 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
656 * the same folio, collecting dirty/accessed bits.
657 * @mm: Address space the pages are mapped into.
658 * @addr: Address the first page is mapped at.
659 * @ptep: Page table pointer for the first entry.
660 * @nr: Number of entries to clear.
661 * @full: Whether we are clearing a full mm.
663 * May be overridden by the architecture; otherwise, implemented as a simple
664 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
667 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
668 * some PTEs might be write-protected.
670 * Context: The caller holds the page table lock. The PTEs map consecutive
671 * pages that belong to the same folio. The PTEs are all in the same PMD.
673 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
674 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
678 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
682 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
683 if (pte_dirty(tmp_pte))
684 pte = pte_mkdirty(pte);
685 if (pte_young(tmp_pte))
686 pte = pte_mkyoung(pte);
692 #ifndef clear_full_ptes
694 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
696 * @mm: Address space the pages are mapped into.
697 * @addr: Address the first page is mapped at.
698 * @ptep: Page table pointer for the first entry.
699 * @nr: Number of entries to clear.
700 * @full: Whether we are clearing a full mm.
702 * May be overridden by the architecture; otherwise, implemented as a simple
703 * loop over ptep_get_and_clear_full().
705 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
706 * some PTEs might be write-protected.
708 * Context: The caller holds the page table lock. The PTEs map consecutive
709 * pages that belong to the same folio. The PTEs are all in the same PMD.
711 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
712 pte_t *ptep, unsigned int nr, int full)
715 ptep_get_and_clear_full(mm, addr, ptep, full);
725 * If two threads concurrently fault at the same page, the thread that
726 * won the race updates the PTE and its local TLB/Cache. The other thread
727 * gives up, simply does nothing, and continues; on architectures where
728 * software can update TLB, local TLB can be updated here to avoid next page
729 * fault. This function updates TLB only, do nothing with cache or others.
730 * It is the difference with function update_mmu_cache.
732 #ifndef update_mmu_tlb_range
733 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
734 unsigned long address, pte_t *ptep, unsigned int nr)
739 static inline void update_mmu_tlb(struct vm_area_struct *vma,
740 unsigned long address, pte_t *ptep)
742 update_mmu_tlb_range(vma, address, ptep, 1);
746 * Some architectures may be able to avoid expensive synchronization
747 * primitives when modifications are made to PTE's which are already
748 * not present, or in the process of an address space destruction.
750 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
751 static inline void pte_clear_not_present_full(struct mm_struct *mm,
752 unsigned long address,
756 pte_clear(mm, address, ptep);
760 #ifndef clear_not_present_full_ptes
762 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
763 * consecutive in the pgtable.
764 * @mm: Address space the ptes represent.
765 * @addr: Address of the first pte.
766 * @ptep: Page table pointer for the first entry.
767 * @nr: Number of entries to clear.
768 * @full: Whether we are clearing a full mm.
770 * May be overridden by the architecture; otherwise, implemented as a simple
771 * loop over pte_clear_not_present_full().
773 * Context: The caller holds the page table lock. The PTEs are all not present.
774 * The PTEs are all in the same PMD.
776 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
777 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
780 pte_clear_not_present_full(mm, addr, ptep, full);
789 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
790 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
791 unsigned long address,
795 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
796 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
797 unsigned long address,
799 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
800 unsigned long address,
805 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
807 return pte_mkwrite_novma(pte);
811 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
812 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
814 return pmd_mkwrite_novma(pmd);
818 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
820 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
822 pte_t old_pte = ptep_get(ptep);
823 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
827 #ifndef wrprotect_ptes
829 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
831 * @mm: Address space the pages are mapped into.
832 * @addr: Address the first page is mapped at.
833 * @ptep: Page table pointer for the first entry.
834 * @nr: Number of entries to write-protect.
836 * May be overridden by the architecture; otherwise, implemented as a simple
837 * loop over ptep_set_wrprotect().
839 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
840 * some PTEs might be write-protected.
842 * Context: The caller holds the page table lock. The PTEs map consecutive
843 * pages that belong to the same folio. The PTEs are all in the same PMD.
845 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
846 pte_t *ptep, unsigned int nr)
849 ptep_set_wrprotect(mm, addr, ptep);
859 * On some architectures hardware does not set page access bit when accessing
860 * memory page, it is responsibility of software setting this bit. It brings
861 * out extra page fault penalty to track page access bit. For optimization page
862 * access bit can be set during all page fault flow on these arches.
863 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
864 * where software maintains page access bit.
866 #ifndef pte_sw_mkyoung
867 static inline pte_t pte_sw_mkyoung(pte_t pte)
871 #define pte_sw_mkyoung pte_sw_mkyoung
874 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
877 unsigned long address, pmd_t *pmdp)
879 pmd_t old_pmd = *pmdp;
880 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
883 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
884 unsigned long address, pmd_t *pmdp)
888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
890 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
891 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 static inline void pudp_set_wrprotect(struct mm_struct *mm,
894 unsigned long address, pud_t *pudp)
896 pud_t old_pud = *pudp;
898 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
901 static inline void pudp_set_wrprotect(struct mm_struct *mm,
902 unsigned long address, pud_t *pudp)
906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
907 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
910 #ifndef pmdp_collapse_flush
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
913 unsigned long address, pmd_t *pmdp);
915 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
916 unsigned long address,
922 #define pmdp_collapse_flush pmdp_collapse_flush
923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
926 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
927 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
931 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
932 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
935 #ifndef arch_needs_pgtable_deposit
936 #define arch_needs_pgtable_deposit() (false)
939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
941 * This is an implementation of pmdp_establish() that is only suitable for an
942 * architecture that doesn't have hardware dirty/accessed bits. In this case we
943 * can't race with CPU which sets these bits and non-atomic approach is fine.
945 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
946 unsigned long address, pmd_t *pmdp, pmd_t pmd)
948 pmd_t old_pmd = *pmdp;
949 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
954 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
955 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
959 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
962 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
963 * hugepage mapping in the page tables. This function is similar to
964 * pmdp_invalidate(), but should only be used if the access and dirty bits would
965 * not be cleared by the software in the new PMD value. The function ensures
966 * that hardware changes of the access and dirty bits updates would not be lost.
968 * Doing so can allow in certain architectures to avoid a TLB flush in most
969 * cases. Yet, another TLB flush might be necessary later if the PMD update
970 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
971 * even when a TLB flush is needed because of the update, the caller may be able
972 * to batch these TLB flushing operations, so fewer TLB flush operations are
975 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
976 unsigned long address, pmd_t *pmdp);
979 #ifndef __HAVE_ARCH_PTE_SAME
980 static inline int pte_same(pte_t pte_a, pte_t pte_b)
982 return pte_val(pte_a) == pte_val(pte_b);
986 #ifndef __HAVE_ARCH_PTE_UNUSED
988 * Some architectures provide facilities to virtualization guests
989 * so that they can flag allocated pages as unused. This allows the
990 * host to transparently reclaim unused pages. This function returns
991 * whether the pte's page is unused.
993 static inline int pte_unused(pte_t pte)
999 #ifndef pte_access_permitted
1000 #define pte_access_permitted(pte, write) \
1001 (pte_present(pte) && (!(write) || pte_write(pte)))
1004 #ifndef pmd_access_permitted
1005 #define pmd_access_permitted(pmd, write) \
1006 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1009 #ifndef pud_access_permitted
1010 #define pud_access_permitted(pud, write) \
1011 (pud_present(pud) && (!(write) || pud_write(pud)))
1014 #ifndef p4d_access_permitted
1015 #define p4d_access_permitted(p4d, write) \
1016 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1019 #ifndef pgd_access_permitted
1020 #define pgd_access_permitted(pgd, write) \
1021 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1024 #ifndef __HAVE_ARCH_PMD_SAME
1025 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1027 return pmd_val(pmd_a) == pmd_val(pmd_b);
1032 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1034 return pud_val(pud_a) == pud_val(pud_b);
1036 #define pud_same pud_same
1039 #ifndef __HAVE_ARCH_P4D_SAME
1040 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1042 return p4d_val(p4d_a) == p4d_val(p4d_b);
1046 #ifndef __HAVE_ARCH_PGD_SAME
1047 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1049 return pgd_val(pgd_a) == pgd_val(pgd_b);
1054 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1055 * TLB flush will be required as a result of the "set". For example, use
1056 * in scenarios where it is known ahead of time that the routine is
1057 * setting non-present entries, or re-setting an existing entry to the
1058 * same value. Otherwise, use the typical "set" helpers and flush the
1061 #define set_pte_safe(ptep, pte) \
1063 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1064 set_pte(ptep, pte); \
1067 #define set_pmd_safe(pmdp, pmd) \
1069 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1070 set_pmd(pmdp, pmd); \
1073 #define set_pud_safe(pudp, pud) \
1075 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1076 set_pud(pudp, pud); \
1079 #define set_p4d_safe(p4dp, p4d) \
1081 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1082 set_p4d(p4dp, p4d); \
1085 #define set_pgd_safe(pgdp, pgd) \
1087 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1088 set_pgd(pgdp, pgd); \
1091 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1092 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1093 struct vm_area_struct *vma,
1095 pte_t pte, pte_t oldpte,
1102 * Some architectures support metadata associated with a page. When a
1103 * page is being swapped out, this metadata must be saved so it can be
1104 * restored when the page is swapped back in. SPARC M7 and newer
1105 * processors support an ADI (Application Data Integrity) tag for the
1106 * page as metadata for the page. arch_do_swap_page() can restore this
1107 * metadata when a page is swapped back in.
1109 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1110 struct vm_area_struct *vma,
1112 pte_t pte, pte_t oldpte,
1115 for (int i = 0; i < nr; i++) {
1116 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1117 pte_advance_pfn(pte, i),
1118 pte_advance_pfn(oldpte, i));
1123 #ifndef __HAVE_ARCH_UNMAP_ONE
1125 * Some architectures support metadata associated with a page. When a
1126 * page is being swapped out, this metadata must be saved so it can be
1127 * restored when the page is swapped back in. SPARC M7 and newer
1128 * processors support an ADI (Application Data Integrity) tag for the
1129 * page as metadata for the page. arch_unmap_one() can save this
1130 * metadata on a swap-out of a page.
1132 static inline int arch_unmap_one(struct mm_struct *mm,
1133 struct vm_area_struct *vma,
1142 * Allow architectures to preserve additional metadata associated with
1143 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1144 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1146 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1147 static inline int arch_prepare_to_swap(struct folio *folio)
1153 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1154 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1158 static inline void arch_swap_invalidate_area(int type)
1163 #ifndef __HAVE_ARCH_SWAP_RESTORE
1164 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1169 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1170 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1173 #ifndef __HAVE_ARCH_MOVE_PTE
1174 #define move_pte(pte, old_addr, new_addr) (pte)
1177 #ifndef pte_accessible
1178 # define pte_accessible(mm, pte) ((void)(pte), 1)
1181 #ifndef flush_tlb_fix_spurious_fault
1182 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1186 * When walking page tables, get the address of the next boundary,
1187 * or the end address of the range if that comes earlier. Although no
1188 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1191 #define pgd_addr_end(addr, end) \
1192 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1193 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1196 #ifndef p4d_addr_end
1197 #define p4d_addr_end(addr, end) \
1198 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1199 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1203 #ifndef pud_addr_end
1204 #define pud_addr_end(addr, end) \
1205 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1206 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1210 #ifndef pmd_addr_end
1211 #define pmd_addr_end(addr, end) \
1212 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1213 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1218 * When walking page tables, we usually want to skip any p?d_none entries;
1219 * and any p?d_bad entries - reporting the error before resetting to none.
1220 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1222 void pgd_clear_bad(pgd_t *);
1224 #ifndef __PAGETABLE_P4D_FOLDED
1225 void p4d_clear_bad(p4d_t *);
1227 #define p4d_clear_bad(p4d) do { } while (0)
1230 #ifndef __PAGETABLE_PUD_FOLDED
1231 void pud_clear_bad(pud_t *);
1233 #define pud_clear_bad(p4d) do { } while (0)
1236 void pmd_clear_bad(pmd_t *);
1238 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1242 if (unlikely(pgd_bad(*pgd))) {
1249 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1253 if (unlikely(p4d_bad(*p4d))) {
1260 static inline int pud_none_or_clear_bad(pud_t *pud)
1264 if (unlikely(pud_bad(*pud))) {
1271 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1275 if (unlikely(pmd_bad(*pmd))) {
1282 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1287 * Get the current pte state, but zero it out to make it
1288 * non-present, preventing the hardware from asynchronously
1291 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1294 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1296 pte_t *ptep, pte_t pte)
1299 * The pte is non-present, so there's no hardware state to
1302 set_pte_at(vma->vm_mm, addr, ptep, pte);
1305 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1307 * Start a pte protection read-modify-write transaction, which
1308 * protects against asynchronous hardware modifications to the pte.
1309 * The intention is not to prevent the hardware from making pte
1310 * updates, but to prevent any updates it may make from being lost.
1312 * This does not protect against other software modifications of the
1313 * pte; the appropriate pte lock must be held over the transaction.
1315 * Note that this interface is intended to be batchable, meaning that
1316 * ptep_modify_prot_commit may not actually update the pte, but merely
1317 * queue the update to be done at some later time. The update must be
1318 * actually committed before the pte lock is released, however.
1320 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1324 return __ptep_modify_prot_start(vma, addr, ptep);
1328 * Commit an update to a pte, leaving any hardware-controlled bits in
1329 * the PTE unmodified.
1331 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1333 pte_t *ptep, pte_t old_pte, pte_t pte)
1335 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1337 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1338 #endif /* CONFIG_MMU */
1341 * No-op macros that just return the current protection value. Defined here
1342 * because these macros can be used even if CONFIG_MMU is not defined.
1346 #define pgprot_nx(prot) (prot)
1349 #ifndef pgprot_noncached
1350 #define pgprot_noncached(prot) (prot)
1353 #ifndef pgprot_writecombine
1354 #define pgprot_writecombine pgprot_noncached
1357 #ifndef pgprot_writethrough
1358 #define pgprot_writethrough pgprot_noncached
1361 #ifndef pgprot_device
1362 #define pgprot_device pgprot_noncached
1366 #define pgprot_mhp(prot) (prot)
1370 #ifndef pgprot_modify
1371 #define pgprot_modify pgprot_modify
1372 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1375 newprot = pgprot_noncached(newprot);
1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1377 newprot = pgprot_writecombine(newprot);
1378 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1379 newprot = pgprot_device(newprot);
1383 #endif /* CONFIG_MMU */
1385 #ifndef pgprot_encrypted
1386 #define pgprot_encrypted(prot) (prot)
1389 #ifndef pgprot_decrypted
1390 #define pgprot_decrypted(prot) (prot)
1394 * A facility to provide batching of the reload of page tables and
1395 * other process state with the actual context switch code for
1396 * paravirtualized guests. By convention, only one of the batched
1397 * update (lazy) modes (CPU, MMU) should be active at any given time,
1398 * entry should never be nested, and entry and exits should always be
1399 * paired. This is for sanity of maintaining and reasoning about the
1400 * kernel code. In this case, the exit (end of the context switch) is
1401 * in architecture-specific code, and so doesn't need a generic
1404 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1405 #define arch_start_context_switch(prev) do {} while (0)
1408 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1409 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1410 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1415 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1420 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1425 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1426 static inline int pte_soft_dirty(pte_t pte)
1431 static inline int pmd_soft_dirty(pmd_t pmd)
1436 static inline pte_t pte_mksoft_dirty(pte_t pte)
1441 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1446 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1451 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1456 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1461 static inline int pte_swp_soft_dirty(pte_t pte)
1466 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1471 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1476 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1481 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1487 #ifndef __HAVE_PFNMAP_TRACKING
1489 * Interfaces that can be used by architecture code to keep track of
1490 * memory type of pfn mappings specified by the remap_pfn_range,
1495 * track_pfn_remap is called when a _new_ pfn mapping is being established
1496 * by remap_pfn_range() for physical range indicated by pfn and size.
1498 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1499 unsigned long pfn, unsigned long addr,
1506 * track_pfn_insert is called when a _new_ single pfn is established
1507 * by vmf_insert_pfn().
1509 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1515 * track_pfn_copy is called when vma that is covering the pfnmap gets
1516 * copied through copy_page_range().
1518 static inline int track_pfn_copy(struct vm_area_struct *vma)
1524 * untrack_pfn is called while unmapping a pfnmap for a region.
1525 * untrack can be called for a specific region indicated by pfn and size or
1526 * can be for the entire vma (in which case pfn, size are zero).
1528 static inline void untrack_pfn(struct vm_area_struct *vma,
1529 unsigned long pfn, unsigned long size,
1535 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1536 * or fails to copy pgtable during duplicate vm area.
1538 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1542 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1543 unsigned long pfn, unsigned long addr,
1544 unsigned long size);
1545 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1547 extern int track_pfn_copy(struct vm_area_struct *vma);
1548 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1549 unsigned long size, bool mm_wr_locked);
1550 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1554 #ifdef __HAVE_COLOR_ZERO_PAGE
1555 static inline int is_zero_pfn(unsigned long pfn)
1557 extern unsigned long zero_pfn;
1558 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1559 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1562 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1565 static inline int is_zero_pfn(unsigned long pfn)
1567 extern unsigned long zero_pfn;
1568 return pfn == zero_pfn;
1571 static inline unsigned long my_zero_pfn(unsigned long addr)
1573 extern unsigned long zero_pfn;
1578 static inline int is_zero_pfn(unsigned long pfn)
1583 static inline unsigned long my_zero_pfn(unsigned long addr)
1587 #endif /* CONFIG_MMU */
1591 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1592 static inline int pmd_trans_huge(pmd_t pmd)
1597 static inline int pmd_write(pmd_t pmd)
1602 #endif /* pmd_write */
1603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1606 static inline int pud_write(pud_t pud)
1611 #endif /* pud_write */
1613 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1614 static inline int pmd_devmap(pmd_t pmd)
1618 static inline int pud_devmap(pud_t pud)
1622 static inline int pgd_devmap(pgd_t pgd)
1628 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1629 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1630 static inline int pud_trans_huge(pud_t pud)
1636 static inline int pud_trans_unstable(pud_t *pud)
1638 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1639 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1640 pud_t pudval = READ_ONCE(*pud);
1642 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1644 if (unlikely(pud_bad(pudval))) {
1652 #ifndef CONFIG_NUMA_BALANCING
1654 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1655 * perfectly valid to indicate "no" in that case, which is why our default
1656 * implementation defaults to "always no".
1658 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1659 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1662 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1663 * looking at the VMA accessibility is sufficient.
1665 static inline int pte_protnone(pte_t pte)
1670 static inline int pmd_protnone(pmd_t pmd)
1674 #endif /* CONFIG_NUMA_BALANCING */
1676 #endif /* CONFIG_MMU */
1678 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1680 #ifndef __PAGETABLE_P4D_FOLDED
1681 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1682 void p4d_clear_huge(p4d_t *p4d);
1684 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1688 static inline void p4d_clear_huge(p4d_t *p4d) { }
1689 #endif /* !__PAGETABLE_P4D_FOLDED */
1691 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1692 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1693 int pud_clear_huge(pud_t *pud);
1694 int pmd_clear_huge(pmd_t *pmd);
1695 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1696 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1697 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1698 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1699 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1703 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1707 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1711 static inline void p4d_clear_huge(p4d_t *p4d) { }
1712 static inline int pud_clear_huge(pud_t *pud)
1716 static inline int pmd_clear_huge(pmd_t *pmd)
1720 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1724 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1728 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1732 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1734 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1737 * ARCHes with special requirements for evicting THP backing TLB entries can
1738 * implement this. Otherwise also, it can help optimize normal TLB flush in
1739 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1740 * entire TLB if flush span is greater than a threshold, which will
1741 * likely be true for a single huge page. Thus a single THP flush will
1742 * invalidate the entire TLB which is not desirable.
1743 * e.g. see arch/arc: flush_pmd_tlb_range
1745 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1746 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1748 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1749 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1754 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1755 unsigned long size, pgprot_t *vma_prot);
1757 #ifndef CONFIG_X86_ESPFIX64
1758 static inline void init_espfix_bsp(void) { }
1761 extern void __init pgtable_cache_init(void);
1763 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1764 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1769 static inline bool arch_has_pfn_modify_check(void)
1773 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1776 * Architecture PAGE_KERNEL_* fallbacks
1778 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1779 * because they really don't support them, or the port needs to be updated to
1780 * reflect the required functionality. Below are a set of relatively safe
1781 * fallbacks, as best effort, which we can count on in lieu of the architectures
1782 * not defining them on their own yet.
1785 #ifndef PAGE_KERNEL_RO
1786 # define PAGE_KERNEL_RO PAGE_KERNEL
1789 #ifndef PAGE_KERNEL_EXEC
1790 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1794 * Page Table Modification bits for pgtbl_mod_mask.
1796 * These are used by the p?d_alloc_track*() set of functions an in the generic
1797 * vmalloc/ioremap code to track at which page-table levels entries have been
1798 * modified. Based on that the code can better decide when vmalloc and ioremap
1799 * mapping changes need to be synchronized to other page-tables in the system.
1801 #define __PGTBL_PGD_MODIFIED 0
1802 #define __PGTBL_P4D_MODIFIED 1
1803 #define __PGTBL_PUD_MODIFIED 2
1804 #define __PGTBL_PMD_MODIFIED 3
1805 #define __PGTBL_PTE_MODIFIED 4
1807 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1808 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1809 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1810 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1811 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1813 /* Page-Table Modification Mask */
1814 typedef unsigned int pgtbl_mod_mask;
1816 #endif /* !__ASSEMBLY__ */
1818 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1819 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1821 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1822 * with physical address space extension, but falls back to
1823 * BITS_PER_LONG otherwise.
1825 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1827 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1831 #ifndef has_transparent_hugepage
1832 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1835 #ifndef has_transparent_pud_hugepage
1836 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1839 * On some architectures it depends on the mm if the p4d/pud or pmd
1840 * layer of the page table hierarchy is folded or not.
1842 #ifndef mm_p4d_folded
1843 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1846 #ifndef mm_pud_folded
1847 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1850 #ifndef mm_pmd_folded
1851 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1854 #ifndef p4d_offset_lockless
1855 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1857 #ifndef pud_offset_lockless
1858 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1860 #ifndef pmd_offset_lockless
1861 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1865 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1866 * mapping. It should work globally across all archs, without any
1867 * dependency on CONFIG_* options. For architectures that do not support
1868 * huge mappings on specific levels, below fallbacks will be used.
1870 * A leaf pgtable entry should always imply the following:
1872 * - It is a "present" entry. IOW, before using this API, please check it
1873 * with pXd_present() first. NOTE: it may not always mean the "present
1874 * bit" is set. For example, PROT_NONE entries are always "present".
1876 * - It should _never_ be a swap entry of any type. Above "present" check
1877 * should have guarded this, but let's be crystal clear on this.
1879 * - It should contain a huge PFN, which points to a huge page larger than
1880 * PAGE_SIZE of the platform. The PFN format isn't important here.
1882 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1883 * pXd_devmap(), or hugetlb mappings).
1886 #define pgd_leaf(x) false
1889 #define p4d_leaf(x) false
1892 #define pud_leaf(x) false
1895 #define pmd_leaf(x) false
1898 #ifndef pgd_leaf_size
1899 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1901 #ifndef p4d_leaf_size
1902 #define p4d_leaf_size(x) P4D_SIZE
1904 #ifndef pud_leaf_size
1905 #define pud_leaf_size(x) PUD_SIZE
1907 #ifndef pmd_leaf_size
1908 #define pmd_leaf_size(x) PMD_SIZE
1910 #ifndef __pte_leaf_size
1911 #ifndef pte_leaf_size
1912 #define pte_leaf_size(x) PAGE_SIZE
1914 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1918 * We always define pmd_pfn for all archs as it's used in lots of generic
1919 * code. Now it happens too for pud_pfn (and can happen for larger
1920 * mappings too in the future; we're not there yet). Instead of defining
1921 * it for all archs (like pmd_pfn), provide a fallback.
1923 * Note that returning 0 here means any arch that didn't define this can
1924 * get severely wrong when it hits a real pud leaf. It's arch's
1925 * responsibility to properly define it when a huge pud is possible.
1928 #define pud_pfn(x) 0
1932 * Some architectures have MMUs that are configurable or selectable at boot
1933 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1934 * helps to have a static maximum value.
1937 #ifndef MAX_PTRS_PER_PTE
1938 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1941 #ifndef MAX_PTRS_PER_PMD
1942 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1945 #ifndef MAX_PTRS_PER_PUD
1946 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1949 #ifndef MAX_PTRS_PER_P4D
1950 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1953 /* description of effects of mapping type and prot in current implementation.
1954 * this is due to the limited x86 page protection hardware. The expected
1955 * behavior is in parens:
1958 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1959 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1960 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1961 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1963 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1964 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1965 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1967 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1968 * MAP_PRIVATE (with Enhanced PAN supported):
1973 #define DECLARE_VM_GET_PAGE_PROT \
1974 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1976 return protection_map[vm_flags & \
1977 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1979 EXPORT_SYMBOL(vm_get_page_prot);
1981 #endif /* _LINUX_PGTABLE_H */