1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
37 struct anon_vma_chain;
42 extern int sysctl_page_lock_unfairness;
44 void mm_core_init(void);
45 void init_mm_internals(void);
47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
50 static inline void set_max_mapnr(unsigned long limit)
55 static inline void set_max_mapnr(unsigned long limit) { }
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
61 return (unsigned long)atomic_long_read(&_totalram_pages);
64 static inline void totalram_pages_inc(void)
66 atomic_long_inc(&_totalram_pages);
69 static inline void totalram_pages_dec(void)
71 atomic_long_dec(&_totalram_pages);
74 static inline void totalram_pages_add(long count)
76 atomic_long_add(count, &_totalram_pages);
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
101 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
104 #include <asm/page.h>
105 #include <asm/processor.h>
108 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116 #define lm_alias(x) __va(__pa_symbol(x))
120 * To prevent common memory management code establishing
121 * a zero page mapping on a read fault.
122 * This macro should be defined within <asm/pgtable.h>.
123 * s390 does this to prevent multiplexing of hardware bits
124 * related to the physical page in case of virtualization.
126 #ifndef mm_forbids_zeropage
127 #define mm_forbids_zeropage(X) (0)
131 * On some architectures it is expensive to call memset() for small sizes.
132 * If an architecture decides to implement their own version of
133 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
134 * define their own version of this macro in <asm/pgtable.h>
136 #if BITS_PER_LONG == 64
137 /* This function must be updated when the size of struct page grows above 96
138 * or reduces below 56. The idea that compiler optimizes out switch()
139 * statement, and only leaves move/store instructions. Also the compiler can
140 * combine write statements if they are both assignments and can be reordered,
141 * this can result in several of the writes here being dropped.
143 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
144 static inline void __mm_zero_struct_page(struct page *page)
146 unsigned long *_pp = (void *)page;
148 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
149 BUILD_BUG_ON(sizeof(struct page) & 7);
150 BUILD_BUG_ON(sizeof(struct page) < 56);
151 BUILD_BUG_ON(sizeof(struct page) > 96);
153 switch (sizeof(struct page)) {
180 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
184 * Default maximum number of active map areas, this limits the number of vmas
185 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * When a program's coredump is generated as ELF format, a section is created
189 * per a vma. In ELF, the number of sections is represented in unsigned short.
190 * This means the number of sections should be smaller than 65535 at coredump.
191 * Because the kernel adds some informative sections to a image of program at
192 * generating coredump, we need some margin. The number of extra sections is
193 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
196 * not a hard limit any more. Although some userspace tools can be surprised by
199 #define MAPCOUNT_ELF_CORE_MARGIN (5)
200 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202 extern int sysctl_max_map_count;
204 extern unsigned long sysctl_user_reserve_kbytes;
205 extern unsigned long sysctl_admin_reserve_kbytes;
207 extern int sysctl_overcommit_memory;
208 extern int sysctl_overcommit_ratio;
209 extern unsigned long sysctl_overcommit_kbytes;
211 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
213 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
215 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
218 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
222 #define nth_page(page,n) ((page) + (n))
223 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
226 /* to align the pointer to the (next) page boundary */
227 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
229 /* to align the pointer to the (prev) page boundary */
230 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
235 static inline struct folio *lru_to_folio(struct list_head *head)
237 return list_entry((head)->prev, struct folio, lru);
240 void setup_initial_init_mm(void *start_code, void *end_code,
241 void *end_data, void *brk);
244 * Linux kernel virtual memory manager primitives.
245 * The idea being to have a "virtual" mm in the same way
246 * we have a virtual fs - giving a cleaner interface to the
247 * mm details, and allowing different kinds of memory mappings
248 * (from shared memory to executable loading to arbitrary
252 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
253 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
254 void vm_area_free(struct vm_area_struct *);
255 /* Use only if VMA has no other users */
256 void __vm_area_free(struct vm_area_struct *vma);
259 extern struct rb_root nommu_region_tree;
260 extern struct rw_semaphore nommu_region_sem;
262 extern unsigned int kobjsize(const void *objp);
266 * vm_flags in vm_area_struct, see mm_types.h.
267 * When changing, update also include/trace/events/mmflags.h
269 #define VM_NONE 0x00000000
271 #define VM_READ 0x00000001 /* currently active flags */
272 #define VM_WRITE 0x00000002
273 #define VM_EXEC 0x00000004
274 #define VM_SHARED 0x00000008
276 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
277 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
278 #define VM_MAYWRITE 0x00000020
279 #define VM_MAYEXEC 0x00000040
280 #define VM_MAYSHARE 0x00000080
282 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
284 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
285 #else /* CONFIG_MMU */
286 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
287 #define VM_UFFD_MISSING 0
288 #endif /* CONFIG_MMU */
289 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
290 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
292 #define VM_LOCKED 0x00002000
293 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
295 /* Used by sys_madvise() */
296 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
297 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
299 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
300 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
301 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
302 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
303 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
304 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
305 #define VM_SYNC 0x00800000 /* Synchronous page faults */
306 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
307 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
308 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
310 #ifdef CONFIG_MEM_SOFT_DIRTY
311 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
313 # define VM_SOFTDIRTY 0
316 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
317 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
318 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
319 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
321 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
322 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
329 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
330 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
331 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
332 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
333 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
334 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
336 #ifdef CONFIG_ARCH_HAS_PKEYS
337 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
338 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
339 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
340 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
341 #if CONFIG_ARCH_PKEY_BITS > 3
342 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
344 # define VM_PKEY_BIT3 0
346 #if CONFIG_ARCH_PKEY_BITS > 4
347 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
349 # define VM_PKEY_BIT4 0
351 #endif /* CONFIG_ARCH_HAS_PKEYS */
353 #ifdef CONFIG_X86_USER_SHADOW_STACK
355 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
358 * These VMAs will get a single end guard page. This helps userspace protect
359 * itself from attacks. A single page is enough for current shadow stack archs
360 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
361 * for more details on the guard size.
363 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
365 # define VM_SHADOW_STACK VM_NONE
368 #if defined(CONFIG_X86)
369 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
370 #elif defined(CONFIG_PPC64)
371 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
372 #elif defined(CONFIG_PARISC)
373 # define VM_GROWSUP VM_ARCH_1
374 #elif defined(CONFIG_SPARC64)
375 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
376 # define VM_ARCH_CLEAR VM_SPARC_ADI
377 #elif defined(CONFIG_ARM64)
378 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
379 # define VM_ARCH_CLEAR VM_ARM64_BTI
380 #elif !defined(CONFIG_MMU)
381 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
384 #if defined(CONFIG_ARM64_MTE)
385 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
386 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
388 # define VM_MTE VM_NONE
389 # define VM_MTE_ALLOWED VM_NONE
393 # define VM_GROWSUP VM_NONE
396 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
397 # define VM_UFFD_MINOR_BIT 38
398 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
399 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
400 # define VM_UFFD_MINOR VM_NONE
401 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
404 * This flag is used to connect VFIO to arch specific KVM code. It
405 * indicates that the memory under this VMA is safe for use with any
406 * non-cachable memory type inside KVM. Some VFIO devices, on some
407 * platforms, are thought to be unsafe and can cause machine crashes
408 * if KVM does not lock down the memory type.
411 #define VM_ALLOW_ANY_UNCACHED_BIT 39
412 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
414 #define VM_ALLOW_ANY_UNCACHED VM_NONE
418 #define VM_DROPPABLE_BIT 40
419 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
420 #elif defined(CONFIG_PPC32)
421 #define VM_DROPPABLE VM_ARCH_1
423 #define VM_DROPPABLE VM_NONE
427 /* VM is sealed, in vm_flags */
428 #define VM_SEALED _BITUL(63)
431 /* Bits set in the VMA until the stack is in its final location */
432 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
434 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
436 /* Common data flag combinations */
437 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
438 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
439 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
440 VM_MAYWRITE | VM_MAYEXEC)
441 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
442 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
444 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
445 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
448 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
449 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
452 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
454 #ifdef CONFIG_STACK_GROWSUP
455 #define VM_STACK VM_GROWSUP
456 #define VM_STACK_EARLY VM_GROWSDOWN
458 #define VM_STACK VM_GROWSDOWN
459 #define VM_STACK_EARLY 0
462 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
464 /* VMA basic access permission flags */
465 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
469 * Special vmas that are non-mergable, non-mlock()able.
471 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
473 /* This mask prevents VMA from being scanned with khugepaged */
474 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
476 /* This mask defines which mm->def_flags a process can inherit its parent */
477 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
479 /* This mask represents all the VMA flag bits used by mlock */
480 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
482 /* Arch-specific flags to clear when updating VM flags on protection change */
483 #ifndef VM_ARCH_CLEAR
484 # define VM_ARCH_CLEAR VM_NONE
486 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
489 * mapping from the currently active vm_flags protection bits (the
490 * low four bits) to a page protection mask..
494 * The default fault flags that should be used by most of the
495 * arch-specific page fault handlers.
497 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
498 FAULT_FLAG_KILLABLE | \
499 FAULT_FLAG_INTERRUPTIBLE)
502 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
503 * @flags: Fault flags.
505 * This is mostly used for places where we want to try to avoid taking
506 * the mmap_lock for too long a time when waiting for another condition
507 * to change, in which case we can try to be polite to release the
508 * mmap_lock in the first round to avoid potential starvation of other
509 * processes that would also want the mmap_lock.
511 * Return: true if the page fault allows retry and this is the first
512 * attempt of the fault handling; false otherwise.
514 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
516 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
517 (!(flags & FAULT_FLAG_TRIED));
520 #define FAULT_FLAG_TRACE \
521 { FAULT_FLAG_WRITE, "WRITE" }, \
522 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
523 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
524 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
525 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
526 { FAULT_FLAG_TRIED, "TRIED" }, \
527 { FAULT_FLAG_USER, "USER" }, \
528 { FAULT_FLAG_REMOTE, "REMOTE" }, \
529 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
530 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
531 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
534 * vm_fault is filled by the pagefault handler and passed to the vma's
535 * ->fault function. The vma's ->fault is responsible for returning a bitmask
536 * of VM_FAULT_xxx flags that give details about how the fault was handled.
538 * MM layer fills up gfp_mask for page allocations but fault handler might
539 * alter it if its implementation requires a different allocation context.
541 * pgoff should be used in favour of virtual_address, if possible.
545 struct vm_area_struct *vma; /* Target VMA */
546 gfp_t gfp_mask; /* gfp mask to be used for allocations */
547 pgoff_t pgoff; /* Logical page offset based on vma */
548 unsigned long address; /* Faulting virtual address - masked */
549 unsigned long real_address; /* Faulting virtual address - unmasked */
551 enum fault_flag flags; /* FAULT_FLAG_xxx flags
552 * XXX: should really be 'const' */
553 pmd_t *pmd; /* Pointer to pmd entry matching
555 pud_t *pud; /* Pointer to pud entry matching
559 pte_t orig_pte; /* Value of PTE at the time of fault */
560 pmd_t orig_pmd; /* Value of PMD at the time of fault,
561 * used by PMD fault only.
565 struct page *cow_page; /* Page handler may use for COW fault */
566 struct page *page; /* ->fault handlers should return a
567 * page here, unless VM_FAULT_NOPAGE
568 * is set (which is also implied by
571 /* These three entries are valid only while holding ptl lock */
572 pte_t *pte; /* Pointer to pte entry matching
573 * the 'address'. NULL if the page
574 * table hasn't been allocated.
576 spinlock_t *ptl; /* Page table lock.
577 * Protects pte page table if 'pte'
578 * is not NULL, otherwise pmd.
580 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
581 * vm_ops->map_pages() sets up a page
582 * table from atomic context.
583 * do_fault_around() pre-allocates
584 * page table to avoid allocation from
590 * These are the virtual MM functions - opening of an area, closing and
591 * unmapping it (needed to keep files on disk up-to-date etc), pointer
592 * to the functions called when a no-page or a wp-page exception occurs.
594 struct vm_operations_struct {
595 void (*open)(struct vm_area_struct * area);
597 * @close: Called when the VMA is being removed from the MM.
598 * Context: User context. May sleep. Caller holds mmap_lock.
600 void (*close)(struct vm_area_struct * area);
601 /* Called any time before splitting to check if it's allowed */
602 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
603 int (*mremap)(struct vm_area_struct *area);
605 * Called by mprotect() to make driver-specific permission
606 * checks before mprotect() is finalised. The VMA must not
607 * be modified. Returns 0 if mprotect() can proceed.
609 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
610 unsigned long end, unsigned long newflags);
611 vm_fault_t (*fault)(struct vm_fault *vmf);
612 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
613 vm_fault_t (*map_pages)(struct vm_fault *vmf,
614 pgoff_t start_pgoff, pgoff_t end_pgoff);
615 unsigned long (*pagesize)(struct vm_area_struct * area);
617 /* notification that a previously read-only page is about to become
618 * writable, if an error is returned it will cause a SIGBUS */
619 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
621 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
622 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
624 /* called by access_process_vm when get_user_pages() fails, typically
625 * for use by special VMAs. See also generic_access_phys() for a generic
626 * implementation useful for any iomem mapping.
628 int (*access)(struct vm_area_struct *vma, unsigned long addr,
629 void *buf, int len, int write);
631 /* Called by the /proc/PID/maps code to ask the vma whether it
632 * has a special name. Returning non-NULL will also cause this
633 * vma to be dumped unconditionally. */
634 const char *(*name)(struct vm_area_struct *vma);
638 * set_policy() op must add a reference to any non-NULL @new mempolicy
639 * to hold the policy upon return. Caller should pass NULL @new to
640 * remove a policy and fall back to surrounding context--i.e. do not
641 * install a MPOL_DEFAULT policy, nor the task or system default
644 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
647 * get_policy() op must add reference [mpol_get()] to any policy at
648 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
649 * in mm/mempolicy.c will do this automatically.
650 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
651 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
652 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
653 * must return NULL--i.e., do not "fallback" to task or system default
656 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
657 unsigned long addr, pgoff_t *ilx);
660 * Called by vm_normal_page() for special PTEs to find the
661 * page for @addr. This is useful if the default behavior
662 * (using pte_page()) would not find the correct page.
664 struct page *(*find_special_page)(struct vm_area_struct *vma,
668 #ifdef CONFIG_NUMA_BALANCING
669 static inline void vma_numab_state_init(struct vm_area_struct *vma)
671 vma->numab_state = NULL;
673 static inline void vma_numab_state_free(struct vm_area_struct *vma)
675 kfree(vma->numab_state);
678 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
679 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
680 #endif /* CONFIG_NUMA_BALANCING */
682 #ifdef CONFIG_PER_VMA_LOCK
684 * Try to read-lock a vma. The function is allowed to occasionally yield false
685 * locked result to avoid performance overhead, in which case we fall back to
686 * using mmap_lock. The function should never yield false unlocked result.
688 static inline bool vma_start_read(struct vm_area_struct *vma)
691 * Check before locking. A race might cause false locked result.
692 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
693 * ACQUIRE semantics, because this is just a lockless check whose result
694 * we don't rely on for anything - the mm_lock_seq read against which we
695 * need ordering is below.
697 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
700 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
704 * Overflow might produce false locked result.
705 * False unlocked result is impossible because we modify and check
706 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
707 * modification invalidates all existing locks.
709 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
710 * racing with vma_end_write_all(), we only start reading from the VMA
711 * after it has been unlocked.
712 * This pairs with RELEASE semantics in vma_end_write_all().
714 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
715 up_read(&vma->vm_lock->lock);
721 static inline void vma_end_read(struct vm_area_struct *vma)
723 rcu_read_lock(); /* keeps vma alive till the end of up_read */
724 up_read(&vma->vm_lock->lock);
728 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
729 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
731 mmap_assert_write_locked(vma->vm_mm);
734 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
735 * mm->mm_lock_seq can't be concurrently modified.
737 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
738 return (vma->vm_lock_seq == *mm_lock_seq);
742 * Begin writing to a VMA.
743 * Exclude concurrent readers under the per-VMA lock until the currently
744 * write-locked mmap_lock is dropped or downgraded.
746 static inline void vma_start_write(struct vm_area_struct *vma)
750 if (__is_vma_write_locked(vma, &mm_lock_seq))
753 down_write(&vma->vm_lock->lock);
755 * We should use WRITE_ONCE() here because we can have concurrent reads
756 * from the early lockless pessimistic check in vma_start_read().
757 * We don't really care about the correctness of that early check, but
758 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
760 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
761 up_write(&vma->vm_lock->lock);
764 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
768 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
771 static inline void vma_assert_locked(struct vm_area_struct *vma)
773 if (!rwsem_is_locked(&vma->vm_lock->lock))
774 vma_assert_write_locked(vma);
777 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
779 /* When detaching vma should be write-locked */
781 vma_assert_write_locked(vma);
782 vma->detached = detached;
785 static inline void release_fault_lock(struct vm_fault *vmf)
787 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
788 vma_end_read(vmf->vma);
790 mmap_read_unlock(vmf->vma->vm_mm);
793 static inline void assert_fault_locked(struct vm_fault *vmf)
795 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
796 vma_assert_locked(vmf->vma);
798 mmap_assert_locked(vmf->vma->vm_mm);
801 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
802 unsigned long address);
804 #else /* CONFIG_PER_VMA_LOCK */
806 static inline bool vma_start_read(struct vm_area_struct *vma)
808 static inline void vma_end_read(struct vm_area_struct *vma) {}
809 static inline void vma_start_write(struct vm_area_struct *vma) {}
810 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
811 { mmap_assert_write_locked(vma->vm_mm); }
812 static inline void vma_mark_detached(struct vm_area_struct *vma,
815 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
816 unsigned long address)
821 static inline void vma_assert_locked(struct vm_area_struct *vma)
823 mmap_assert_locked(vma->vm_mm);
826 static inline void release_fault_lock(struct vm_fault *vmf)
828 mmap_read_unlock(vmf->vma->vm_mm);
831 static inline void assert_fault_locked(struct vm_fault *vmf)
833 mmap_assert_locked(vmf->vma->vm_mm);
836 #endif /* CONFIG_PER_VMA_LOCK */
838 extern const struct vm_operations_struct vma_dummy_vm_ops;
841 * WARNING: vma_init does not initialize vma->vm_lock.
842 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
844 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
846 memset(vma, 0, sizeof(*vma));
848 vma->vm_ops = &vma_dummy_vm_ops;
849 INIT_LIST_HEAD(&vma->anon_vma_chain);
850 vma_mark_detached(vma, false);
851 vma_numab_state_init(vma);
854 /* Use when VMA is not part of the VMA tree and needs no locking */
855 static inline void vm_flags_init(struct vm_area_struct *vma,
858 ACCESS_PRIVATE(vma, __vm_flags) = flags;
862 * Use when VMA is part of the VMA tree and modifications need coordination
863 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
864 * it should be locked explicitly beforehand.
866 static inline void vm_flags_reset(struct vm_area_struct *vma,
869 vma_assert_write_locked(vma);
870 vm_flags_init(vma, flags);
873 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
876 vma_assert_write_locked(vma);
877 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
880 static inline void vm_flags_set(struct vm_area_struct *vma,
883 vma_start_write(vma);
884 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
887 static inline void vm_flags_clear(struct vm_area_struct *vma,
890 vma_start_write(vma);
891 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
895 * Use only if VMA is not part of the VMA tree or has no other users and
896 * therefore needs no locking.
898 static inline void __vm_flags_mod(struct vm_area_struct *vma,
899 vm_flags_t set, vm_flags_t clear)
901 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
905 * Use only when the order of set/clear operations is unimportant, otherwise
906 * use vm_flags_{set|clear} explicitly.
908 static inline void vm_flags_mod(struct vm_area_struct *vma,
909 vm_flags_t set, vm_flags_t clear)
911 vma_start_write(vma);
912 __vm_flags_mod(vma, set, clear);
915 static inline void vma_set_anonymous(struct vm_area_struct *vma)
920 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
926 * Indicate if the VMA is a heap for the given task; for
927 * /proc/PID/maps that is the heap of the main task.
929 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
931 return vma->vm_start < vma->vm_mm->brk &&
932 vma->vm_end > vma->vm_mm->start_brk;
936 * Indicate if the VMA is a stack for the given task; for
937 * /proc/PID/maps that is the stack of the main task.
939 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
942 * We make no effort to guess what a given thread considers to be
943 * its "stack". It's not even well-defined for programs written
946 return vma->vm_start <= vma->vm_mm->start_stack &&
947 vma->vm_end >= vma->vm_mm->start_stack;
950 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
952 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
957 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
958 VM_STACK_INCOMPLETE_SETUP)
964 static inline bool vma_is_foreign(struct vm_area_struct *vma)
969 if (current->mm != vma->vm_mm)
975 static inline bool vma_is_accessible(struct vm_area_struct *vma)
977 return vma->vm_flags & VM_ACCESS_FLAGS;
980 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
982 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
983 (VM_SHARED | VM_MAYWRITE);
986 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
988 return is_shared_maywrite(vma->vm_flags);
992 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
994 return mas_find(&vmi->mas, max - 1);
997 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1000 * Uses mas_find() to get the first VMA when the iterator starts.
1001 * Calling mas_next() could skip the first entry.
1003 return mas_find(&vmi->mas, ULONG_MAX);
1007 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1009 return mas_next_range(&vmi->mas, ULONG_MAX);
1013 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1015 return mas_prev(&vmi->mas, 0);
1019 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1021 return mas_prev_range(&vmi->mas, 0);
1024 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1026 return vmi->mas.index;
1029 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1031 return vmi->mas.last + 1;
1033 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1034 unsigned long count)
1036 return mas_expected_entries(&vmi->mas, count);
1039 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1040 unsigned long start, unsigned long end, gfp_t gfp)
1042 __mas_set_range(&vmi->mas, start, end - 1);
1043 mas_store_gfp(&vmi->mas, NULL, gfp);
1044 if (unlikely(mas_is_err(&vmi->mas)))
1050 /* Free any unused preallocations */
1051 static inline void vma_iter_free(struct vma_iterator *vmi)
1053 mas_destroy(&vmi->mas);
1056 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1057 struct vm_area_struct *vma)
1059 vmi->mas.index = vma->vm_start;
1060 vmi->mas.last = vma->vm_end - 1;
1061 mas_store(&vmi->mas, vma);
1062 if (unlikely(mas_is_err(&vmi->mas)))
1068 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1070 mas_pause(&vmi->mas);
1073 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1075 mas_set(&vmi->mas, addr);
1078 #define for_each_vma(__vmi, __vma) \
1079 while (((__vma) = vma_next(&(__vmi))) != NULL)
1081 /* The MM code likes to work with exclusive end addresses */
1082 #define for_each_vma_range(__vmi, __vma, __end) \
1083 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1087 * The vma_is_shmem is not inline because it is used only by slow
1088 * paths in userfault.
1090 bool vma_is_shmem(struct vm_area_struct *vma);
1091 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1093 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1094 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1097 int vma_is_stack_for_current(struct vm_area_struct *vma);
1099 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1100 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1106 * compound_order() can be called without holding a reference, which means
1107 * that niceties like page_folio() don't work. These callers should be
1108 * prepared to handle wild return values. For example, PG_head may be
1109 * set before the order is initialised, or this may be a tail page.
1110 * See compaction.c for some good examples.
1112 static inline unsigned int compound_order(struct page *page)
1114 struct folio *folio = (struct folio *)page;
1116 if (!test_bit(PG_head, &folio->flags))
1118 return folio->_flags_1 & 0xff;
1122 * folio_order - The allocation order of a folio.
1123 * @folio: The folio.
1125 * A folio is composed of 2^order pages. See get_order() for the definition
1128 * Return: The order of the folio.
1130 static inline unsigned int folio_order(const struct folio *folio)
1132 if (!folio_test_large(folio))
1134 return folio->_flags_1 & 0xff;
1137 #include <linux/huge_mm.h>
1140 * Methods to modify the page usage count.
1142 * What counts for a page usage:
1143 * - cache mapping (page->mapping)
1144 * - private data (page->private)
1145 * - page mapped in a task's page tables, each mapping
1146 * is counted separately
1148 * Also, many kernel routines increase the page count before a critical
1149 * routine so they can be sure the page doesn't go away from under them.
1153 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1155 static inline int put_page_testzero(struct page *page)
1157 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1158 return page_ref_dec_and_test(page);
1161 static inline int folio_put_testzero(struct folio *folio)
1163 return put_page_testzero(&folio->page);
1167 * Try to grab a ref unless the page has a refcount of zero, return false if
1169 * This can be called when MMU is off so it must not access
1170 * any of the virtual mappings.
1172 static inline bool get_page_unless_zero(struct page *page)
1174 return page_ref_add_unless(page, 1, 0);
1177 static inline struct folio *folio_get_nontail_page(struct page *page)
1179 if (unlikely(!get_page_unless_zero(page)))
1181 return (struct folio *)page;
1184 extern int page_is_ram(unsigned long pfn);
1192 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1193 unsigned long desc);
1195 /* Support for virtually mapped pages */
1196 struct page *vmalloc_to_page(const void *addr);
1197 unsigned long vmalloc_to_pfn(const void *addr);
1200 * Determine if an address is within the vmalloc range
1202 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1203 * is no special casing required.
1206 extern bool is_vmalloc_addr(const void *x);
1207 extern int is_vmalloc_or_module_addr(const void *x);
1209 static inline bool is_vmalloc_addr(const void *x)
1213 static inline int is_vmalloc_or_module_addr(const void *x)
1220 * How many times the entire folio is mapped as a single unit (eg by a
1221 * PMD or PUD entry). This is probably not what you want, except for
1222 * debugging purposes or implementation of other core folio_*() primitives.
1224 static inline int folio_entire_mapcount(const struct folio *folio)
1226 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1227 return atomic_read(&folio->_entire_mapcount) + 1;
1230 static inline int folio_large_mapcount(const struct folio *folio)
1232 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1233 return atomic_read(&folio->_large_mapcount) + 1;
1237 * folio_mapcount() - Number of mappings of this folio.
1238 * @folio: The folio.
1240 * The folio mapcount corresponds to the number of present user page table
1241 * entries that reference any part of a folio. Each such present user page
1242 * table entry must be paired with exactly on folio reference.
1244 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1247 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1248 * references the entire folio counts exactly once, even when such special
1249 * page table entries are comprised of multiple ordinary page table entries.
1251 * Will report 0 for pages which cannot be mapped into userspace, such as
1252 * slab, page tables and similar.
1254 * Return: The number of times this folio is mapped.
1256 static inline int folio_mapcount(const struct folio *folio)
1260 if (likely(!folio_test_large(folio))) {
1261 mapcount = atomic_read(&folio->_mapcount) + 1;
1262 /* Handle page_has_type() pages */
1263 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1267 return folio_large_mapcount(folio);
1271 * folio_mapped - Is this folio mapped into userspace?
1272 * @folio: The folio.
1274 * Return: True if any page in this folio is referenced by user page tables.
1276 static inline bool folio_mapped(const struct folio *folio)
1278 return folio_mapcount(folio) >= 1;
1282 * Return true if this page is mapped into pagetables.
1283 * For compound page it returns true if any sub-page of compound page is mapped,
1284 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1286 static inline bool page_mapped(const struct page *page)
1288 return folio_mapped(page_folio(page));
1291 static inline struct page *virt_to_head_page(const void *x)
1293 struct page *page = virt_to_page(x);
1295 return compound_head(page);
1298 static inline struct folio *virt_to_folio(const void *x)
1300 struct page *page = virt_to_page(x);
1302 return page_folio(page);
1305 void __folio_put(struct folio *folio);
1307 void put_pages_list(struct list_head *pages);
1309 void split_page(struct page *page, unsigned int order);
1310 void folio_copy(struct folio *dst, struct folio *src);
1311 int folio_mc_copy(struct folio *dst, struct folio *src);
1313 unsigned long nr_free_buffer_pages(void);
1315 /* Returns the number of bytes in this potentially compound page. */
1316 static inline unsigned long page_size(struct page *page)
1318 return PAGE_SIZE << compound_order(page);
1321 /* Returns the number of bits needed for the number of bytes in a page */
1322 static inline unsigned int page_shift(struct page *page)
1324 return PAGE_SHIFT + compound_order(page);
1328 * thp_order - Order of a transparent huge page.
1329 * @page: Head page of a transparent huge page.
1331 static inline unsigned int thp_order(struct page *page)
1333 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1334 return compound_order(page);
1338 * thp_size - Size of a transparent huge page.
1339 * @page: Head page of a transparent huge page.
1341 * Return: Number of bytes in this page.
1343 static inline unsigned long thp_size(struct page *page)
1345 return PAGE_SIZE << thp_order(page);
1350 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1351 * servicing faults for write access. In the normal case, do always want
1352 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1353 * that do not have writing enabled, when used by access_process_vm.
1355 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1357 if (likely(vma->vm_flags & VM_WRITE))
1358 pte = pte_mkwrite(pte, vma);
1362 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1363 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1364 struct page *page, unsigned int nr, unsigned long addr);
1366 vm_fault_t finish_fault(struct vm_fault *vmf);
1370 * Multiple processes may "see" the same page. E.g. for untouched
1371 * mappings of /dev/null, all processes see the same page full of
1372 * zeroes, and text pages of executables and shared libraries have
1373 * only one copy in memory, at most, normally.
1375 * For the non-reserved pages, page_count(page) denotes a reference count.
1376 * page_count() == 0 means the page is free. page->lru is then used for
1377 * freelist management in the buddy allocator.
1378 * page_count() > 0 means the page has been allocated.
1380 * Pages are allocated by the slab allocator in order to provide memory
1381 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1382 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1383 * unless a particular usage is carefully commented. (the responsibility of
1384 * freeing the kmalloc memory is the caller's, of course).
1386 * A page may be used by anyone else who does a __get_free_page().
1387 * In this case, page_count still tracks the references, and should only
1388 * be used through the normal accessor functions. The top bits of page->flags
1389 * and page->virtual store page management information, but all other fields
1390 * are unused and could be used privately, carefully. The management of this
1391 * page is the responsibility of the one who allocated it, and those who have
1392 * subsequently been given references to it.
1394 * The other pages (we may call them "pagecache pages") are completely
1395 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1396 * The following discussion applies only to them.
1398 * A pagecache page contains an opaque `private' member, which belongs to the
1399 * page's address_space. Usually, this is the address of a circular list of
1400 * the page's disk buffers. PG_private must be set to tell the VM to call
1401 * into the filesystem to release these pages.
1403 * A page may belong to an inode's memory mapping. In this case, page->mapping
1404 * is the pointer to the inode, and page->index is the file offset of the page,
1405 * in units of PAGE_SIZE.
1407 * If pagecache pages are not associated with an inode, they are said to be
1408 * anonymous pages. These may become associated with the swapcache, and in that
1409 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1411 * In either case (swapcache or inode backed), the pagecache itself holds one
1412 * reference to the page. Setting PG_private should also increment the
1413 * refcount. The each user mapping also has a reference to the page.
1415 * The pagecache pages are stored in a per-mapping radix tree, which is
1416 * rooted at mapping->i_pages, and indexed by offset.
1417 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1418 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1420 * All pagecache pages may be subject to I/O:
1421 * - inode pages may need to be read from disk,
1422 * - inode pages which have been modified and are MAP_SHARED may need
1423 * to be written back to the inode on disk,
1424 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1425 * modified may need to be swapped out to swap space and (later) to be read
1429 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1430 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1432 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1433 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1435 if (!static_branch_unlikely(&devmap_managed_key))
1437 if (!folio_is_zone_device(folio))
1439 return __put_devmap_managed_folio_refs(folio, refs);
1441 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1442 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1446 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1448 /* 127: arbitrary random number, small enough to assemble well */
1449 #define folio_ref_zero_or_close_to_overflow(folio) \
1450 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1453 * folio_get - Increment the reference count on a folio.
1454 * @folio: The folio.
1456 * Context: May be called in any context, as long as you know that
1457 * you have a refcount on the folio. If you do not already have one,
1458 * folio_try_get() may be the right interface for you to use.
1460 static inline void folio_get(struct folio *folio)
1462 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1463 folio_ref_inc(folio);
1466 static inline void get_page(struct page *page)
1468 folio_get(page_folio(page));
1471 static inline __must_check bool try_get_page(struct page *page)
1473 page = compound_head(page);
1474 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1481 * folio_put - Decrement the reference count on a folio.
1482 * @folio: The folio.
1484 * If the folio's reference count reaches zero, the memory will be
1485 * released back to the page allocator and may be used by another
1486 * allocation immediately. Do not access the memory or the struct folio
1487 * after calling folio_put() unless you can be sure that it wasn't the
1490 * Context: May be called in process or interrupt context, but not in NMI
1491 * context. May be called while holding a spinlock.
1493 static inline void folio_put(struct folio *folio)
1495 if (folio_put_testzero(folio))
1500 * folio_put_refs - Reduce the reference count on a folio.
1501 * @folio: The folio.
1502 * @refs: The amount to subtract from the folio's reference count.
1504 * If the folio's reference count reaches zero, the memory will be
1505 * released back to the page allocator and may be used by another
1506 * allocation immediately. Do not access the memory or the struct folio
1507 * after calling folio_put_refs() unless you can be sure that these weren't
1508 * the last references.
1510 * Context: May be called in process or interrupt context, but not in NMI
1511 * context. May be called while holding a spinlock.
1513 static inline void folio_put_refs(struct folio *folio, int refs)
1515 if (folio_ref_sub_and_test(folio, refs))
1519 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1522 * union release_pages_arg - an array of pages or folios
1524 * release_pages() releases a simple array of multiple pages, and
1525 * accepts various different forms of said page array: either
1526 * a regular old boring array of pages, an array of folios, or
1527 * an array of encoded page pointers.
1529 * The transparent union syntax for this kind of "any of these
1530 * argument types" is all kinds of ugly, so look away.
1533 struct page **pages;
1534 struct folio **folios;
1535 struct encoded_page **encoded_pages;
1536 } release_pages_arg __attribute__ ((__transparent_union__));
1538 void release_pages(release_pages_arg, int nr);
1541 * folios_put - Decrement the reference count on an array of folios.
1542 * @folios: The folios.
1544 * Like folio_put(), but for a batch of folios. This is more efficient
1545 * than writing the loop yourself as it will optimise the locks which need
1546 * to be taken if the folios are freed. The folios batch is returned
1547 * empty and ready to be reused for another batch; there is no need to
1550 * Context: May be called in process or interrupt context, but not in NMI
1551 * context. May be called while holding a spinlock.
1553 static inline void folios_put(struct folio_batch *folios)
1555 folios_put_refs(folios, NULL);
1558 static inline void put_page(struct page *page)
1560 struct folio *folio = page_folio(page);
1563 * For some devmap managed pages we need to catch refcount transition
1566 if (put_devmap_managed_folio_refs(folio, 1))
1572 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1573 * the page's refcount so that two separate items are tracked: the original page
1574 * reference count, and also a new count of how many pin_user_pages() calls were
1575 * made against the page. ("gup-pinned" is another term for the latter).
1577 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1578 * distinct from normal pages. As such, the unpin_user_page() call (and its
1579 * variants) must be used in order to release gup-pinned pages.
1583 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1584 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1585 * simpler, due to the fact that adding an even power of two to the page
1586 * refcount has the effect of using only the upper N bits, for the code that
1587 * counts up using the bias value. This means that the lower bits are left for
1588 * the exclusive use of the original code that increments and decrements by one
1589 * (or at least, by much smaller values than the bias value).
1591 * Of course, once the lower bits overflow into the upper bits (and this is
1592 * OK, because subtraction recovers the original values), then visual inspection
1593 * no longer suffices to directly view the separate counts. However, for normal
1594 * applications that don't have huge page reference counts, this won't be an
1597 * Locking: the lockless algorithm described in folio_try_get_rcu()
1598 * provides safe operation for get_user_pages(), folio_mkclean() and
1599 * other calls that race to set up page table entries.
1601 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1603 void unpin_user_page(struct page *page);
1604 void unpin_folio(struct folio *folio);
1605 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1607 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1609 void unpin_user_pages(struct page **pages, unsigned long npages);
1610 void unpin_user_folio(struct folio *folio, unsigned long npages);
1611 void unpin_folios(struct folio **folios, unsigned long nfolios);
1613 static inline bool is_cow_mapping(vm_flags_t flags)
1615 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1619 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1622 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1623 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1624 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1625 * underlying memory if ptrace is active, so this is only possible if
1626 * ptrace does not apply. Note that there is no mprotect() to upgrade
1627 * write permissions later.
1629 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1633 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1634 #define SECTION_IN_PAGE_FLAGS
1638 * The identification function is mainly used by the buddy allocator for
1639 * determining if two pages could be buddies. We are not really identifying
1640 * the zone since we could be using the section number id if we do not have
1641 * node id available in page flags.
1642 * We only guarantee that it will return the same value for two combinable
1645 static inline int page_zone_id(struct page *page)
1647 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1650 #ifdef NODE_NOT_IN_PAGE_FLAGS
1651 int page_to_nid(const struct page *page);
1653 static inline int page_to_nid(const struct page *page)
1655 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1659 static inline int folio_nid(const struct folio *folio)
1661 return page_to_nid(&folio->page);
1664 #ifdef CONFIG_NUMA_BALANCING
1665 /* page access time bits needs to hold at least 4 seconds */
1666 #define PAGE_ACCESS_TIME_MIN_BITS 12
1667 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1668 #define PAGE_ACCESS_TIME_BUCKETS \
1669 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1671 #define PAGE_ACCESS_TIME_BUCKETS 0
1674 #define PAGE_ACCESS_TIME_MASK \
1675 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1677 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1679 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1682 static inline int cpupid_to_pid(int cpupid)
1684 return cpupid & LAST__PID_MASK;
1687 static inline int cpupid_to_cpu(int cpupid)
1689 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1692 static inline int cpupid_to_nid(int cpupid)
1694 return cpu_to_node(cpupid_to_cpu(cpupid));
1697 static inline bool cpupid_pid_unset(int cpupid)
1699 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1702 static inline bool cpupid_cpu_unset(int cpupid)
1704 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1707 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1709 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1712 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1713 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1714 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1716 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1719 static inline int folio_last_cpupid(struct folio *folio)
1721 return folio->_last_cpupid;
1723 static inline void page_cpupid_reset_last(struct page *page)
1725 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1728 static inline int folio_last_cpupid(struct folio *folio)
1730 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1733 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1735 static inline void page_cpupid_reset_last(struct page *page)
1737 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1739 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1741 static inline int folio_xchg_access_time(struct folio *folio, int time)
1745 last_time = folio_xchg_last_cpupid(folio,
1746 time >> PAGE_ACCESS_TIME_BUCKETS);
1747 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1750 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1752 unsigned int pid_bit;
1754 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1755 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1756 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1759 #else /* !CONFIG_NUMA_BALANCING */
1760 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1762 return folio_nid(folio); /* XXX */
1765 static inline int folio_xchg_access_time(struct folio *folio, int time)
1770 static inline int folio_last_cpupid(struct folio *folio)
1772 return folio_nid(folio); /* XXX */
1775 static inline int cpupid_to_nid(int cpupid)
1780 static inline int cpupid_to_pid(int cpupid)
1785 static inline int cpupid_to_cpu(int cpupid)
1790 static inline int cpu_pid_to_cpupid(int nid, int pid)
1795 static inline bool cpupid_pid_unset(int cpupid)
1800 static inline void page_cpupid_reset_last(struct page *page)
1804 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1809 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1812 #endif /* CONFIG_NUMA_BALANCING */
1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1817 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1818 * setting tags for all pages to native kernel tag value 0xff, as the default
1819 * value 0x00 maps to 0xff.
1822 static inline u8 page_kasan_tag(const struct page *page)
1824 u8 tag = KASAN_TAG_KERNEL;
1826 if (kasan_enabled()) {
1827 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1834 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1836 unsigned long old_flags, flags;
1838 if (!kasan_enabled())
1842 old_flags = READ_ONCE(page->flags);
1845 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1846 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1847 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1850 static inline void page_kasan_tag_reset(struct page *page)
1852 if (kasan_enabled())
1853 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1858 static inline u8 page_kasan_tag(const struct page *page)
1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1864 static inline void page_kasan_tag_reset(struct page *page) { }
1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1868 static inline struct zone *page_zone(const struct page *page)
1870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1873 static inline pg_data_t *page_pgdat(const struct page *page)
1875 return NODE_DATA(page_to_nid(page));
1878 static inline struct zone *folio_zone(const struct folio *folio)
1880 return page_zone(&folio->page);
1883 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1885 return page_pgdat(&folio->page);
1888 #ifdef SECTION_IN_PAGE_FLAGS
1889 static inline void set_page_section(struct page *page, unsigned long section)
1891 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1892 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1895 static inline unsigned long page_to_section(const struct page *page)
1897 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1902 * folio_pfn - Return the Page Frame Number of a folio.
1903 * @folio: The folio.
1905 * A folio may contain multiple pages. The pages have consecutive
1906 * Page Frame Numbers.
1908 * Return: The Page Frame Number of the first page in the folio.
1910 static inline unsigned long folio_pfn(struct folio *folio)
1912 return page_to_pfn(&folio->page);
1915 static inline struct folio *pfn_folio(unsigned long pfn)
1917 return page_folio(pfn_to_page(pfn));
1921 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1922 * @folio: The folio.
1924 * This function checks if a folio has been pinned via a call to
1925 * a function in the pin_user_pages() family.
1927 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1928 * because it means "definitely not pinned for DMA", but true means "probably
1929 * pinned for DMA, but possibly a false positive due to having at least
1930 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1932 * False positives are OK, because: a) it's unlikely for a folio to
1933 * get that many refcounts, and b) all the callers of this routine are
1934 * expected to be able to deal gracefully with a false positive.
1936 * For large folios, the result will be exactly correct. That's because
1937 * we have more tracking data available: the _pincount field is used
1938 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1940 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1942 * Return: True, if it is likely that the folio has been "dma-pinned".
1943 * False, if the folio is definitely not dma-pinned.
1945 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1947 if (folio_test_large(folio))
1948 return atomic_read(&folio->_pincount) > 0;
1951 * folio_ref_count() is signed. If that refcount overflows, then
1952 * folio_ref_count() returns a negative value, and callers will avoid
1953 * further incrementing the refcount.
1955 * Here, for that overflow case, use the sign bit to count a little
1956 * bit higher via unsigned math, and thus still get an accurate result.
1958 return ((unsigned int)folio_ref_count(folio)) >=
1959 GUP_PIN_COUNTING_BIAS;
1963 * This should most likely only be called during fork() to see whether we
1964 * should break the cow immediately for an anon page on the src mm.
1966 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1969 struct folio *folio)
1971 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1973 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1976 return folio_maybe_dma_pinned(folio);
1980 * is_zero_page - Query if a page is a zero page
1981 * @page: The page to query
1983 * This returns true if @page is one of the permanent zero pages.
1985 static inline bool is_zero_page(const struct page *page)
1987 return is_zero_pfn(page_to_pfn(page));
1991 * is_zero_folio - Query if a folio is a zero page
1992 * @folio: The folio to query
1994 * This returns true if @folio is one of the permanent zero pages.
1996 static inline bool is_zero_folio(const struct folio *folio)
1998 return is_zero_page(&folio->page);
2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2002 #ifdef CONFIG_MIGRATION
2003 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2006 int mt = folio_migratetype(folio);
2008 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2011 /* The zero page can be "pinned" but gets special handling. */
2012 if (is_zero_folio(folio))
2015 /* Coherent device memory must always allow eviction. */
2016 if (folio_is_device_coherent(folio))
2019 /* Otherwise, non-movable zone folios can be pinned. */
2020 return !folio_is_zone_movable(folio);
2024 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2030 static inline void set_page_zone(struct page *page, enum zone_type zone)
2032 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2033 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2036 static inline void set_page_node(struct page *page, unsigned long node)
2038 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2039 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2042 static inline void set_page_links(struct page *page, enum zone_type zone,
2043 unsigned long node, unsigned long pfn)
2045 set_page_zone(page, zone);
2046 set_page_node(page, node);
2047 #ifdef SECTION_IN_PAGE_FLAGS
2048 set_page_section(page, pfn_to_section_nr(pfn));
2053 * folio_nr_pages - The number of pages in the folio.
2054 * @folio: The folio.
2056 * Return: A positive power of two.
2058 static inline long folio_nr_pages(const struct folio *folio)
2060 if (!folio_test_large(folio))
2063 return folio->_folio_nr_pages;
2065 return 1L << (folio->_flags_1 & 0xff);
2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2071 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2073 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2077 * compound_nr() returns the number of pages in this potentially compound
2078 * page. compound_nr() can be called on a tail page, and is defined to
2079 * return 1 in that case.
2081 static inline unsigned long compound_nr(struct page *page)
2083 struct folio *folio = (struct folio *)page;
2085 if (!test_bit(PG_head, &folio->flags))
2088 return folio->_folio_nr_pages;
2090 return 1L << (folio->_flags_1 & 0xff);
2095 * thp_nr_pages - The number of regular pages in this huge page.
2096 * @page: The head page of a huge page.
2098 static inline int thp_nr_pages(struct page *page)
2100 return folio_nr_pages((struct folio *)page);
2104 * folio_next - Move to the next physical folio.
2105 * @folio: The folio we're currently operating on.
2107 * If you have physically contiguous memory which may span more than
2108 * one folio (eg a &struct bio_vec), use this function to move from one
2109 * folio to the next. Do not use it if the memory is only virtually
2110 * contiguous as the folios are almost certainly not adjacent to each
2111 * other. This is the folio equivalent to writing ``page++``.
2113 * Context: We assume that the folios are refcounted and/or locked at a
2114 * higher level and do not adjust the reference counts.
2115 * Return: The next struct folio.
2117 static inline struct folio *folio_next(struct folio *folio)
2119 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2123 * folio_shift - The size of the memory described by this folio.
2124 * @folio: The folio.
2126 * A folio represents a number of bytes which is a power-of-two in size.
2127 * This function tells you which power-of-two the folio is. See also
2128 * folio_size() and folio_order().
2130 * Context: The caller should have a reference on the folio to prevent
2131 * it from being split. It is not necessary for the folio to be locked.
2132 * Return: The base-2 logarithm of the size of this folio.
2134 static inline unsigned int folio_shift(const struct folio *folio)
2136 return PAGE_SHIFT + folio_order(folio);
2140 * folio_size - The number of bytes in a folio.
2141 * @folio: The folio.
2143 * Context: The caller should have a reference on the folio to prevent
2144 * it from being split. It is not necessary for the folio to be locked.
2145 * Return: The number of bytes in this folio.
2147 static inline size_t folio_size(const struct folio *folio)
2149 return PAGE_SIZE << folio_order(folio);
2153 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2154 * tables of more than one MM
2155 * @folio: The folio.
2157 * This function checks if the folio is currently mapped into more than one
2158 * MM ("mapped shared"), or if the folio is only mapped into a single MM
2159 * ("mapped exclusively").
2161 * As precise information is not easily available for all folios, this function
2162 * estimates the number of MMs ("sharers") that are currently mapping a folio
2163 * using the number of times the first page of the folio is currently mapped
2166 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2167 * the return value will be exactly correct, because they can only be mapped
2168 * at most once into an MM, and they cannot be partially mapped.
2170 * For other folios, the result can be fuzzy:
2171 * #. For partially-mappable large folios (THP), the return value can wrongly
2172 * indicate "mapped exclusively" (false negative) when the folio is
2173 * only partially mapped into at least one MM.
2174 * #. For pagecache folios (including hugetlb), the return value can wrongly
2175 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2176 * cover the same file range.
2177 * #. For (small) KSM folios, the return value can wrongly indicate "mapped
2178 * shared" (false positive), when the folio is mapped multiple times into
2181 * Further, this function only considers current page table mappings that
2182 * are tracked using the folio mapcount(s).
2184 * This function does not consider:
2185 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2186 * pagecache, temporary unmapping for migration).
2187 * #. If the folio is mapped differently (VM_PFNMAP).
2188 * #. If hugetlb page table sharing applies. Callers might want to check
2189 * hugetlb_pmd_shared().
2191 * Return: Whether the folio is estimated to be mapped into more than one MM.
2193 static inline bool folio_likely_mapped_shared(struct folio *folio)
2195 int mapcount = folio_mapcount(folio);
2197 /* Only partially-mappable folios require more care. */
2198 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2199 return mapcount > 1;
2201 /* A single mapping implies "mapped exclusively". */
2205 /* If any page is mapped more than once we treat it "mapped shared". */
2206 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2209 /* Let's guess based on the first subpage. */
2210 return atomic_read(&folio->_mapcount) > 0;
2213 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2214 static inline int arch_make_page_accessible(struct page *page)
2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2221 static inline int arch_make_folio_accessible(struct folio *folio)
2224 long i, nr = folio_nr_pages(folio);
2226 for (i = 0; i < nr; i++) {
2227 ret = arch_make_page_accessible(folio_page(folio, i));
2237 * Some inline functions in vmstat.h depend on page_zone()
2239 #include <linux/vmstat.h>
2241 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2242 #define HASHED_PAGE_VIRTUAL
2245 #if defined(WANT_PAGE_VIRTUAL)
2246 static inline void *page_address(const struct page *page)
2248 return page->virtual;
2250 static inline void set_page_address(struct page *page, void *address)
2252 page->virtual = address;
2254 #define page_address_init() do { } while(0)
2257 #if defined(HASHED_PAGE_VIRTUAL)
2258 void *page_address(const struct page *page);
2259 void set_page_address(struct page *page, void *virtual);
2260 void page_address_init(void);
2263 static __always_inline void *lowmem_page_address(const struct page *page)
2265 return page_to_virt(page);
2268 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2269 #define page_address(page) lowmem_page_address(page)
2270 #define set_page_address(page, address) do { } while(0)
2271 #define page_address_init() do { } while(0)
2274 static inline void *folio_address(const struct folio *folio)
2276 return page_address(&folio->page);
2280 * Return true only if the page has been allocated with
2281 * ALLOC_NO_WATERMARKS and the low watermark was not
2282 * met implying that the system is under some pressure.
2284 static inline bool page_is_pfmemalloc(const struct page *page)
2287 * lru.next has bit 1 set if the page is allocated from the
2288 * pfmemalloc reserves. Callers may simply overwrite it if
2289 * they do not need to preserve that information.
2291 return (uintptr_t)page->lru.next & BIT(1);
2295 * Return true only if the folio has been allocated with
2296 * ALLOC_NO_WATERMARKS and the low watermark was not
2297 * met implying that the system is under some pressure.
2299 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2302 * lru.next has bit 1 set if the page is allocated from the
2303 * pfmemalloc reserves. Callers may simply overwrite it if
2304 * they do not need to preserve that information.
2306 return (uintptr_t)folio->lru.next & BIT(1);
2310 * Only to be called by the page allocator on a freshly allocated
2313 static inline void set_page_pfmemalloc(struct page *page)
2315 page->lru.next = (void *)BIT(1);
2318 static inline void clear_page_pfmemalloc(struct page *page)
2320 page->lru.next = NULL;
2324 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2326 extern void pagefault_out_of_memory(void);
2328 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2329 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2330 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2333 * Parameter block passed down to zap_pte_range in exceptional cases.
2335 struct zap_details {
2336 struct folio *single_folio; /* Locked folio to be unmapped */
2337 bool even_cows; /* Zap COWed private pages too? */
2338 zap_flags_t zap_flags; /* Extra flags for zapping */
2342 * Whether to drop the pte markers, for example, the uffd-wp information for
2343 * file-backed memory. This should only be specified when we will completely
2344 * drop the page in the mm, either by truncation or unmapping of the vma. By
2345 * default, the flag is not set.
2347 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2348 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2349 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2351 #ifdef CONFIG_SCHED_MM_CID
2352 void sched_mm_cid_before_execve(struct task_struct *t);
2353 void sched_mm_cid_after_execve(struct task_struct *t);
2354 void sched_mm_cid_fork(struct task_struct *t);
2355 void sched_mm_cid_exit_signals(struct task_struct *t);
2356 static inline int task_mm_cid(struct task_struct *t)
2361 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2362 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2363 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2364 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2365 static inline int task_mm_cid(struct task_struct *t)
2368 * Use the processor id as a fall-back when the mm cid feature is
2369 * disabled. This provides functional per-cpu data structure accesses
2370 * in user-space, althrough it won't provide the memory usage benefits.
2372 return raw_smp_processor_id();
2377 extern bool can_do_mlock(void);
2379 static inline bool can_do_mlock(void) { return false; }
2381 extern int user_shm_lock(size_t, struct ucounts *);
2382 extern void user_shm_unlock(size_t, struct ucounts *);
2384 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2388 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2389 unsigned long addr, pmd_t pmd);
2390 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2394 unsigned long size);
2395 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2396 unsigned long size, struct zap_details *details);
2397 static inline void zap_vma_pages(struct vm_area_struct *vma)
2399 zap_page_range_single(vma, vma->vm_start,
2400 vma->vm_end - vma->vm_start, NULL);
2402 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2403 struct vm_area_struct *start_vma, unsigned long start,
2404 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2406 struct mmu_notifier_range;
2408 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2409 unsigned long end, unsigned long floor, unsigned long ceiling);
2411 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2412 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2413 pte_t **ptepp, spinlock_t **ptlp);
2414 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2415 void *buf, int len, int write);
2417 extern void truncate_pagecache(struct inode *inode, loff_t new);
2418 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2419 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2420 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2421 int generic_error_remove_folio(struct address_space *mapping,
2422 struct folio *folio);
2424 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2425 unsigned long address, struct pt_regs *regs);
2428 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2429 unsigned long address, unsigned int flags,
2430 struct pt_regs *regs);
2431 extern int fixup_user_fault(struct mm_struct *mm,
2432 unsigned long address, unsigned int fault_flags,
2434 void unmap_mapping_pages(struct address_space *mapping,
2435 pgoff_t start, pgoff_t nr, bool even_cows);
2436 void unmap_mapping_range(struct address_space *mapping,
2437 loff_t const holebegin, loff_t const holelen, int even_cows);
2439 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2440 unsigned long address, unsigned int flags,
2441 struct pt_regs *regs)
2443 /* should never happen if there's no MMU */
2445 return VM_FAULT_SIGBUS;
2447 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2448 unsigned int fault_flags, bool *unlocked)
2450 /* should never happen if there's no MMU */
2454 static inline void unmap_mapping_pages(struct address_space *mapping,
2455 pgoff_t start, pgoff_t nr, bool even_cows) { }
2456 static inline void unmap_mapping_range(struct address_space *mapping,
2457 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2460 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2461 loff_t const holebegin, loff_t const holelen)
2463 unmap_mapping_range(mapping, holebegin, holelen, 0);
2466 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2467 unsigned long addr);
2469 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2470 void *buf, int len, unsigned int gup_flags);
2471 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2472 void *buf, int len, unsigned int gup_flags);
2474 long get_user_pages_remote(struct mm_struct *mm,
2475 unsigned long start, unsigned long nr_pages,
2476 unsigned int gup_flags, struct page **pages,
2478 long pin_user_pages_remote(struct mm_struct *mm,
2479 unsigned long start, unsigned long nr_pages,
2480 unsigned int gup_flags, struct page **pages,
2484 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2486 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2489 struct vm_area_struct **vmap)
2492 struct vm_area_struct *vma;
2495 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2496 return ERR_PTR(-EINVAL);
2498 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2501 return ERR_PTR(got);
2503 vma = vma_lookup(mm, addr);
2504 if (WARN_ON_ONCE(!vma)) {
2506 return ERR_PTR(-EINVAL);
2513 long get_user_pages(unsigned long start, unsigned long nr_pages,
2514 unsigned int gup_flags, struct page **pages);
2515 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2516 unsigned int gup_flags, struct page **pages);
2517 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 struct page **pages, unsigned int gup_flags);
2519 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2520 struct page **pages, unsigned int gup_flags);
2521 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2522 struct folio **folios, unsigned int max_folios,
2525 int get_user_pages_fast(unsigned long start, int nr_pages,
2526 unsigned int gup_flags, struct page **pages);
2527 int pin_user_pages_fast(unsigned long start, int nr_pages,
2528 unsigned int gup_flags, struct page **pages);
2529 void folio_add_pin(struct folio *folio);
2531 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2532 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2533 struct task_struct *task, bool bypass_rlim);
2536 struct page *get_dump_page(unsigned long addr);
2538 bool folio_mark_dirty(struct folio *folio);
2539 bool set_page_dirty(struct page *page);
2540 int set_page_dirty_lock(struct page *page);
2542 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2544 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2545 unsigned long old_addr, struct vm_area_struct *new_vma,
2546 unsigned long new_addr, unsigned long len,
2547 bool need_rmap_locks, bool for_stack);
2550 * Flags used by change_protection(). For now we make it a bitmap so
2551 * that we can pass in multiple flags just like parameters. However
2552 * for now all the callers are only use one of the flags at the same
2556 * Whether we should manually check if we can map individual PTEs writable,
2557 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2558 * PTEs automatically in a writable mapping.
2560 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2561 /* Whether this protection change is for NUMA hints */
2562 #define MM_CP_PROT_NUMA (1UL << 1)
2563 /* Whether this change is for write protecting */
2564 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2565 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2566 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2567 MM_CP_UFFD_WP_RESOLVE)
2569 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2570 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2571 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2574 * We want to check manually if we can change individual PTEs writable
2575 * if we can't do that automatically for all PTEs in a mapping. For
2576 * private mappings, that's always the case when we have write
2577 * permissions as we properly have to handle COW.
2579 if (vma->vm_flags & VM_SHARED)
2580 return vma_wants_writenotify(vma, vma->vm_page_prot);
2581 return !!(vma->vm_flags & VM_WRITE);
2584 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2586 extern long change_protection(struct mmu_gather *tlb,
2587 struct vm_area_struct *vma, unsigned long start,
2588 unsigned long end, unsigned long cp_flags);
2589 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2590 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2591 unsigned long start, unsigned long end, unsigned long newflags);
2594 * doesn't attempt to fault and will return short.
2596 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2597 unsigned int gup_flags, struct page **pages);
2599 static inline bool get_user_page_fast_only(unsigned long addr,
2600 unsigned int gup_flags, struct page **pagep)
2602 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2605 * per-process(per-mm_struct) statistics.
2607 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2609 return percpu_counter_read_positive(&mm->rss_stat[member]);
2612 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2614 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2616 percpu_counter_add(&mm->rss_stat[member], value);
2618 mm_trace_rss_stat(mm, member);
2621 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2623 percpu_counter_inc(&mm->rss_stat[member]);
2625 mm_trace_rss_stat(mm, member);
2628 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2630 percpu_counter_dec(&mm->rss_stat[member]);
2632 mm_trace_rss_stat(mm, member);
2635 /* Optimized variant when folio is already known not to be anon */
2636 static inline int mm_counter_file(struct folio *folio)
2638 if (folio_test_swapbacked(folio))
2639 return MM_SHMEMPAGES;
2640 return MM_FILEPAGES;
2643 static inline int mm_counter(struct folio *folio)
2645 if (folio_test_anon(folio))
2646 return MM_ANONPAGES;
2647 return mm_counter_file(folio);
2650 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2652 return get_mm_counter(mm, MM_FILEPAGES) +
2653 get_mm_counter(mm, MM_ANONPAGES) +
2654 get_mm_counter(mm, MM_SHMEMPAGES);
2657 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2659 return max(mm->hiwater_rss, get_mm_rss(mm));
2662 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2664 return max(mm->hiwater_vm, mm->total_vm);
2667 static inline void update_hiwater_rss(struct mm_struct *mm)
2669 unsigned long _rss = get_mm_rss(mm);
2671 if ((mm)->hiwater_rss < _rss)
2672 (mm)->hiwater_rss = _rss;
2675 static inline void update_hiwater_vm(struct mm_struct *mm)
2677 if (mm->hiwater_vm < mm->total_vm)
2678 mm->hiwater_vm = mm->total_vm;
2681 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2683 mm->hiwater_rss = get_mm_rss(mm);
2686 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2687 struct mm_struct *mm)
2689 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2691 if (*maxrss < hiwater_rss)
2692 *maxrss = hiwater_rss;
2695 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2696 static inline int pte_special(pte_t pte)
2701 static inline pte_t pte_mkspecial(pte_t pte)
2707 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2708 static inline int pte_devmap(pte_t pte)
2714 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2716 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2720 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2724 #ifdef __PAGETABLE_P4D_FOLDED
2725 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2726 unsigned long address)
2731 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2734 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2735 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2736 unsigned long address)
2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2741 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2744 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2746 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2748 if (mm_pud_folded(mm))
2750 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2753 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2755 if (mm_pud_folded(mm))
2757 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2761 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2762 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2763 unsigned long address)
2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2772 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2774 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2776 if (mm_pmd_folded(mm))
2778 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2781 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2783 if (mm_pmd_folded(mm))
2785 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2790 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2792 atomic_long_set(&mm->pgtables_bytes, 0);
2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2797 return atomic_long_read(&mm->pgtables_bytes);
2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2802 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2805 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2807 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2811 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2818 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2821 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2822 int __pte_alloc_kernel(pmd_t *pmd);
2824 #if defined(CONFIG_MMU)
2826 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2827 unsigned long address)
2829 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2830 NULL : p4d_offset(pgd, address);
2833 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2834 unsigned long address)
2836 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2837 NULL : pud_offset(p4d, address);
2840 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2842 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2843 NULL: pmd_offset(pud, address);
2845 #endif /* CONFIG_MMU */
2847 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2849 return page_ptdesc(virt_to_page(x));
2852 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2854 return page_to_virt(ptdesc_page(pt));
2857 static inline void *ptdesc_address(const struct ptdesc *pt)
2859 return folio_address(ptdesc_folio(pt));
2862 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2864 return folio_test_reserved(ptdesc_folio(pt));
2868 * pagetable_alloc - Allocate pagetables
2870 * @order: desired pagetable order
2872 * pagetable_alloc allocates memory for page tables as well as a page table
2873 * descriptor to describe that memory.
2875 * Return: The ptdesc describing the allocated page tables.
2877 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2879 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2881 return page_ptdesc(page);
2883 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2886 * pagetable_free - Free pagetables
2887 * @pt: The page table descriptor
2889 * pagetable_free frees the memory of all page tables described by a page
2890 * table descriptor and the memory for the descriptor itself.
2892 static inline void pagetable_free(struct ptdesc *pt)
2894 struct page *page = ptdesc_page(pt);
2896 __free_pages(page, compound_order(page));
2899 #if USE_SPLIT_PTE_PTLOCKS
2900 #if ALLOC_SPLIT_PTLOCKS
2901 void __init ptlock_cache_init(void);
2902 bool ptlock_alloc(struct ptdesc *ptdesc);
2903 void ptlock_free(struct ptdesc *ptdesc);
2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2909 #else /* ALLOC_SPLIT_PTLOCKS */
2910 static inline void ptlock_cache_init(void)
2914 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2919 static inline void ptlock_free(struct ptdesc *ptdesc)
2923 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2925 return &ptdesc->ptl;
2927 #endif /* ALLOC_SPLIT_PTLOCKS */
2929 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2931 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2934 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2936 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2937 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2938 return ptlock_ptr(virt_to_ptdesc(pte));
2941 static inline bool ptlock_init(struct ptdesc *ptdesc)
2944 * prep_new_page() initialize page->private (and therefore page->ptl)
2945 * with 0. Make sure nobody took it in use in between.
2947 * It can happen if arch try to use slab for page table allocation:
2948 * slab code uses page->slab_cache, which share storage with page->ptl.
2950 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2951 if (!ptlock_alloc(ptdesc))
2953 spin_lock_init(ptlock_ptr(ptdesc));
2957 #else /* !USE_SPLIT_PTE_PTLOCKS */
2959 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2961 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2963 return &mm->page_table_lock;
2965 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2967 return &mm->page_table_lock;
2969 static inline void ptlock_cache_init(void) {}
2970 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2971 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2972 #endif /* USE_SPLIT_PTE_PTLOCKS */
2974 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2976 struct folio *folio = ptdesc_folio(ptdesc);
2978 if (!ptlock_init(ptdesc))
2980 __folio_set_pgtable(folio);
2981 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2985 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2987 struct folio *folio = ptdesc_folio(ptdesc);
2989 ptlock_free(ptdesc);
2990 __folio_clear_pgtable(folio);
2991 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2994 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2995 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2997 return __pte_offset_map(pmd, addr, NULL);
3000 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3001 unsigned long addr, spinlock_t **ptlp);
3002 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3003 unsigned long addr, spinlock_t **ptlp)
3007 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3011 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3012 unsigned long addr, spinlock_t **ptlp);
3014 #define pte_unmap_unlock(pte, ptl) do { \
3019 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3021 #define pte_alloc_map(mm, pmd, address) \
3022 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3024 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3025 (pte_alloc(mm, pmd) ? \
3026 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3028 #define pte_alloc_kernel(pmd, address) \
3029 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3030 NULL: pte_offset_kernel(pmd, address))
3032 #if USE_SPLIT_PMD_PTLOCKS
3034 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3036 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3037 return virt_to_page((void *)((unsigned long) pmd & mask));
3040 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3042 return page_ptdesc(pmd_pgtable_page(pmd));
3045 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3047 return ptlock_ptr(pmd_ptdesc(pmd));
3050 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3053 ptdesc->pmd_huge_pte = NULL;
3055 return ptlock_init(ptdesc);
3058 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3060 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3061 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3063 ptlock_free(ptdesc);
3066 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3070 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3072 return &mm->page_table_lock;
3075 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3076 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3078 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3082 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3084 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3089 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3091 struct folio *folio = ptdesc_folio(ptdesc);
3093 if (!pmd_ptlock_init(ptdesc))
3095 __folio_set_pgtable(folio);
3096 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3100 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3102 struct folio *folio = ptdesc_folio(ptdesc);
3104 pmd_ptlock_free(ptdesc);
3105 __folio_clear_pgtable(folio);
3106 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3110 * No scalability reason to split PUD locks yet, but follow the same pattern
3111 * as the PMD locks to make it easier if we decide to. The VM should not be
3112 * considered ready to switch to split PUD locks yet; there may be places
3113 * which need to be converted from page_table_lock.
3115 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3117 return &mm->page_table_lock;
3120 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3122 spinlock_t *ptl = pud_lockptr(mm, pud);
3128 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3130 struct folio *folio = ptdesc_folio(ptdesc);
3132 __folio_set_pgtable(folio);
3133 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3136 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3138 struct folio *folio = ptdesc_folio(ptdesc);
3140 __folio_clear_pgtable(folio);
3141 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3144 extern void __init pagecache_init(void);
3145 extern void free_initmem(void);
3148 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3149 * into the buddy system. The freed pages will be poisoned with pattern
3150 * "poison" if it's within range [0, UCHAR_MAX].
3151 * Return pages freed into the buddy system.
3153 extern unsigned long free_reserved_area(void *start, void *end,
3154 int poison, const char *s);
3156 extern void adjust_managed_page_count(struct page *page, long count);
3158 extern void reserve_bootmem_region(phys_addr_t start,
3159 phys_addr_t end, int nid);
3161 /* Free the reserved page into the buddy system, so it gets managed. */
3162 void free_reserved_page(struct page *page);
3163 #define free_highmem_page(page) free_reserved_page(page)
3165 static inline void mark_page_reserved(struct page *page)
3167 SetPageReserved(page);
3168 adjust_managed_page_count(page, -1);
3171 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3173 free_reserved_page(ptdesc_page(pt));
3177 * Default method to free all the __init memory into the buddy system.
3178 * The freed pages will be poisoned with pattern "poison" if it's within
3179 * range [0, UCHAR_MAX].
3180 * Return pages freed into the buddy system.
3182 static inline unsigned long free_initmem_default(int poison)
3184 extern char __init_begin[], __init_end[];
3186 return free_reserved_area(&__init_begin, &__init_end,
3187 poison, "unused kernel image (initmem)");
3190 static inline unsigned long get_num_physpages(void)
3193 unsigned long phys_pages = 0;
3195 for_each_online_node(nid)
3196 phys_pages += node_present_pages(nid);
3202 * Using memblock node mappings, an architecture may initialise its
3203 * zones, allocate the backing mem_map and account for memory holes in an
3204 * architecture independent manner.
3206 * An architecture is expected to register range of page frames backed by
3207 * physical memory with memblock_add[_node]() before calling
3208 * free_area_init() passing in the PFN each zone ends at. At a basic
3209 * usage, an architecture is expected to do something like
3211 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3213 * for_each_valid_physical_page_range()
3214 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3215 * free_area_init(max_zone_pfns);
3217 void free_area_init(unsigned long *max_zone_pfn);
3218 unsigned long node_map_pfn_alignment(void);
3219 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3220 unsigned long end_pfn);
3221 extern void get_pfn_range_for_nid(unsigned int nid,
3222 unsigned long *start_pfn, unsigned long *end_pfn);
3225 static inline int early_pfn_to_nid(unsigned long pfn)
3230 /* please see mm/page_alloc.c */
3231 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3234 extern void mem_init(void);
3235 extern void __init mmap_init(void);
3237 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3238 static inline void show_mem(void)
3240 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3242 extern long si_mem_available(void);
3243 extern void si_meminfo(struct sysinfo * val);
3244 extern void si_meminfo_node(struct sysinfo *val, int nid);
3246 extern __printf(3, 4)
3247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3249 extern void setup_per_cpu_pageset(void);
3252 extern atomic_long_t mmap_pages_allocated;
3253 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3255 /* interval_tree.c */
3256 void vma_interval_tree_insert(struct vm_area_struct *node,
3257 struct rb_root_cached *root);
3258 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3259 struct vm_area_struct *prev,
3260 struct rb_root_cached *root);
3261 void vma_interval_tree_remove(struct vm_area_struct *node,
3262 struct rb_root_cached *root);
3263 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3264 unsigned long start, unsigned long last);
3265 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3266 unsigned long start, unsigned long last);
3268 #define vma_interval_tree_foreach(vma, root, start, last) \
3269 for (vma = vma_interval_tree_iter_first(root, start, last); \
3270 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3272 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3273 struct rb_root_cached *root);
3274 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3275 struct rb_root_cached *root);
3276 struct anon_vma_chain *
3277 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3278 unsigned long start, unsigned long last);
3279 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3280 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3281 #ifdef CONFIG_DEBUG_VM_RB
3282 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3285 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3286 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3287 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3290 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3291 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3292 unsigned long start, unsigned long end, pgoff_t pgoff,
3293 struct vm_area_struct *next);
3294 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3295 unsigned long start, unsigned long end, pgoff_t pgoff);
3296 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3297 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3298 extern void unlink_file_vma(struct vm_area_struct *);
3299 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3300 unsigned long addr, unsigned long len, pgoff_t pgoff,
3301 bool *need_rmap_locks);
3302 extern void exit_mmap(struct mm_struct *);
3303 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3304 struct vm_area_struct *prev,
3305 struct vm_area_struct *vma,
3306 unsigned long start, unsigned long end,
3307 unsigned long vm_flags,
3308 struct mempolicy *policy,
3309 struct vm_userfaultfd_ctx uffd_ctx,
3310 struct anon_vma_name *anon_name);
3312 /* We are about to modify the VMA's flags. */
3313 static inline struct vm_area_struct
3314 *vma_modify_flags(struct vma_iterator *vmi,
3315 struct vm_area_struct *prev,
3316 struct vm_area_struct *vma,
3317 unsigned long start, unsigned long end,
3318 unsigned long new_flags)
3320 return vma_modify(vmi, prev, vma, start, end, new_flags,
3321 vma_policy(vma), vma->vm_userfaultfd_ctx,
3322 anon_vma_name(vma));
3325 /* We are about to modify the VMA's flags and/or anon_name. */
3326 static inline struct vm_area_struct
3327 *vma_modify_flags_name(struct vma_iterator *vmi,
3328 struct vm_area_struct *prev,
3329 struct vm_area_struct *vma,
3330 unsigned long start,
3332 unsigned long new_flags,
3333 struct anon_vma_name *new_name)
3335 return vma_modify(vmi, prev, vma, start, end, new_flags,
3336 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3339 /* We are about to modify the VMA's memory policy. */
3340 static inline struct vm_area_struct
3341 *vma_modify_policy(struct vma_iterator *vmi,
3342 struct vm_area_struct *prev,
3343 struct vm_area_struct *vma,
3344 unsigned long start, unsigned long end,
3345 struct mempolicy *new_pol)
3347 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3348 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3351 /* We are about to modify the VMA's flags and/or uffd context. */
3352 static inline struct vm_area_struct
3353 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3354 struct vm_area_struct *prev,
3355 struct vm_area_struct *vma,
3356 unsigned long start, unsigned long end,
3357 unsigned long new_flags,
3358 struct vm_userfaultfd_ctx new_ctx)
3360 return vma_modify(vmi, prev, vma, start, end, new_flags,
3361 vma_policy(vma), new_ctx, anon_vma_name(vma));
3364 static inline int check_data_rlimit(unsigned long rlim,
3366 unsigned long start,
3367 unsigned long end_data,
3368 unsigned long start_data)
3370 if (rlim < RLIM_INFINITY) {
3371 if (((new - start) + (end_data - start_data)) > rlim)
3378 extern int mm_take_all_locks(struct mm_struct *mm);
3379 extern void mm_drop_all_locks(struct mm_struct *mm);
3381 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3382 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3383 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3384 extern struct file *get_task_exe_file(struct task_struct *task);
3386 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3387 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3389 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3390 const struct vm_special_mapping *sm);
3391 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3392 unsigned long addr, unsigned long len,
3393 unsigned long flags,
3394 const struct vm_special_mapping *spec);
3395 /* This is an obsolete alternative to _install_special_mapping. */
3396 extern int install_special_mapping(struct mm_struct *mm,
3397 unsigned long addr, unsigned long len,
3398 unsigned long flags, struct page **pages);
3400 unsigned long randomize_stack_top(unsigned long stack_top);
3401 unsigned long randomize_page(unsigned long start, unsigned long range);
3404 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3405 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3407 static inline unsigned long
3408 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3409 unsigned long pgoff, unsigned long flags)
3411 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3414 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3415 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3416 struct list_head *uf);
3417 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3418 unsigned long len, unsigned long prot, unsigned long flags,
3419 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3420 struct list_head *uf);
3421 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3422 unsigned long start, size_t len, struct list_head *uf,
3424 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3425 struct list_head *uf);
3426 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3429 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3430 unsigned long start, unsigned long end,
3431 struct list_head *uf, bool unlock);
3432 extern int __mm_populate(unsigned long addr, unsigned long len,
3434 static inline void mm_populate(unsigned long addr, unsigned long len)
3437 (void) __mm_populate(addr, len, 1);
3440 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3443 /* This takes the mm semaphore itself */
3444 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3445 extern int vm_munmap(unsigned long, size_t);
3446 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3447 unsigned long, unsigned long,
3448 unsigned long, unsigned long);
3450 struct vm_unmapped_area_info {
3451 #define VM_UNMAPPED_AREA_TOPDOWN 1
3452 unsigned long flags;
3453 unsigned long length;
3454 unsigned long low_limit;
3455 unsigned long high_limit;
3456 unsigned long align_mask;
3457 unsigned long align_offset;
3458 unsigned long start_gap;
3461 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3464 extern void truncate_inode_pages(struct address_space *, loff_t);
3465 extern void truncate_inode_pages_range(struct address_space *,
3466 loff_t lstart, loff_t lend);
3467 extern void truncate_inode_pages_final(struct address_space *);
3469 /* generic vm_area_ops exported for stackable file systems */
3470 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3471 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3472 pgoff_t start_pgoff, pgoff_t end_pgoff);
3473 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3475 extern unsigned long stack_guard_gap;
3476 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3477 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3478 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3480 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3481 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3483 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3484 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3485 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3486 struct vm_area_struct **pprev);
3489 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3490 * NULL if none. Assume start_addr < end_addr.
3492 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3493 unsigned long start_addr, unsigned long end_addr);
3496 * vma_lookup() - Find a VMA at a specific address
3497 * @mm: The process address space.
3498 * @addr: The user address.
3500 * Return: The vm_area_struct at the given address, %NULL otherwise.
3503 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3505 return mtree_load(&mm->mm_mt, addr);
3508 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3510 if (vma->vm_flags & VM_GROWSDOWN)
3511 return stack_guard_gap;
3513 /* See reasoning around the VM_SHADOW_STACK definition */
3514 if (vma->vm_flags & VM_SHADOW_STACK)
3520 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3522 unsigned long gap = stack_guard_start_gap(vma);
3523 unsigned long vm_start = vma->vm_start;
3526 if (vm_start > vma->vm_start)
3531 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3533 unsigned long vm_end = vma->vm_end;
3535 if (vma->vm_flags & VM_GROWSUP) {
3536 vm_end += stack_guard_gap;
3537 if (vm_end < vma->vm_end)
3538 vm_end = -PAGE_SIZE;
3543 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3545 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3548 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3549 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3550 unsigned long vm_start, unsigned long vm_end)
3552 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3554 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3560 static inline bool range_in_vma(struct vm_area_struct *vma,
3561 unsigned long start, unsigned long end)
3563 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3567 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3568 void vma_set_page_prot(struct vm_area_struct *vma);
3570 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3574 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3576 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3580 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3582 #ifdef CONFIG_NUMA_BALANCING
3583 unsigned long change_prot_numa(struct vm_area_struct *vma,
3584 unsigned long start, unsigned long end);
3587 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3588 unsigned long addr);
3589 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3590 unsigned long pfn, unsigned long size, pgprot_t);
3591 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3592 unsigned long pfn, unsigned long size, pgprot_t prot);
3593 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3594 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3595 struct page **pages, unsigned long *num);
3596 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3598 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3600 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3602 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3603 unsigned long pfn, pgprot_t pgprot);
3604 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3606 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3607 unsigned long addr, pfn_t pfn);
3608 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3610 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3611 unsigned long addr, struct page *page)
3613 int err = vm_insert_page(vma, addr, page);
3616 return VM_FAULT_OOM;
3617 if (err < 0 && err != -EBUSY)
3618 return VM_FAULT_SIGBUS;
3620 return VM_FAULT_NOPAGE;
3623 #ifndef io_remap_pfn_range
3624 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3625 unsigned long addr, unsigned long pfn,
3626 unsigned long size, pgprot_t prot)
3628 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3632 static inline vm_fault_t vmf_error(int err)
3635 return VM_FAULT_OOM;
3636 else if (err == -EHWPOISON)
3637 return VM_FAULT_HWPOISON;
3638 return VM_FAULT_SIGBUS;
3642 * Convert errno to return value for ->page_mkwrite() calls.
3644 * This should eventually be merged with vmf_error() above, but will need a
3645 * careful audit of all vmf_error() callers.
3647 static inline vm_fault_t vmf_fs_error(int err)
3650 return VM_FAULT_LOCKED;
3651 if (err == -EFAULT || err == -EAGAIN)
3652 return VM_FAULT_NOPAGE;
3654 return VM_FAULT_OOM;
3655 /* -ENOSPC, -EDQUOT, -EIO ... */
3656 return VM_FAULT_SIGBUS;
3659 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3660 unsigned int foll_flags);
3662 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3664 if (vm_fault & VM_FAULT_OOM)
3666 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3667 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3668 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3674 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3675 * a (NUMA hinting) fault is required.
3677 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3681 * If callers don't want to honor NUMA hinting faults, no need to
3682 * determine if we would actually have to trigger a NUMA hinting fault.
3684 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3688 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3690 * Requiring a fault here even for inaccessible VMAs would mean that
3691 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3692 * refuses to process NUMA hinting faults in inaccessible VMAs.
3694 return !vma_is_accessible(vma);
3697 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3698 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3699 unsigned long size, pte_fn_t fn, void *data);
3700 extern int apply_to_existing_page_range(struct mm_struct *mm,
3701 unsigned long address, unsigned long size,
3702 pte_fn_t fn, void *data);
3704 #ifdef CONFIG_PAGE_POISONING
3705 extern void __kernel_poison_pages(struct page *page, int numpages);
3706 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3707 extern bool _page_poisoning_enabled_early;
3708 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3709 static inline bool page_poisoning_enabled(void)
3711 return _page_poisoning_enabled_early;
3714 * For use in fast paths after init_mem_debugging() has run, or when a
3715 * false negative result is not harmful when called too early.
3717 static inline bool page_poisoning_enabled_static(void)
3719 return static_branch_unlikely(&_page_poisoning_enabled);
3721 static inline void kernel_poison_pages(struct page *page, int numpages)
3723 if (page_poisoning_enabled_static())
3724 __kernel_poison_pages(page, numpages);
3726 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3728 if (page_poisoning_enabled_static())
3729 __kernel_unpoison_pages(page, numpages);
3732 static inline bool page_poisoning_enabled(void) { return false; }
3733 static inline bool page_poisoning_enabled_static(void) { return false; }
3734 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3735 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3736 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3739 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3740 static inline bool want_init_on_alloc(gfp_t flags)
3742 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3745 return flags & __GFP_ZERO;
3748 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3749 static inline bool want_init_on_free(void)
3751 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3755 extern bool _debug_pagealloc_enabled_early;
3756 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3758 static inline bool debug_pagealloc_enabled(void)
3760 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3761 _debug_pagealloc_enabled_early;
3765 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3766 * or when a false negative result is not harmful when called too early.
3768 static inline bool debug_pagealloc_enabled_static(void)
3770 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3773 return static_branch_unlikely(&_debug_pagealloc_enabled);
3777 * To support DEBUG_PAGEALLOC architecture must ensure that
3778 * __kernel_map_pages() never fails
3780 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3781 #ifdef CONFIG_DEBUG_PAGEALLOC
3782 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3784 if (debug_pagealloc_enabled_static())
3785 __kernel_map_pages(page, numpages, 1);
3788 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3790 if (debug_pagealloc_enabled_static())
3791 __kernel_map_pages(page, numpages, 0);
3794 extern unsigned int _debug_guardpage_minorder;
3795 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3797 static inline unsigned int debug_guardpage_minorder(void)
3799 return _debug_guardpage_minorder;
3802 static inline bool debug_guardpage_enabled(void)
3804 return static_branch_unlikely(&_debug_guardpage_enabled);
3807 static inline bool page_is_guard(struct page *page)
3809 if (!debug_guardpage_enabled())
3812 return PageGuard(page);
3815 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3816 static inline bool set_page_guard(struct zone *zone, struct page *page,
3819 if (!debug_guardpage_enabled())
3821 return __set_page_guard(zone, page, order);
3824 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3825 static inline void clear_page_guard(struct zone *zone, struct page *page,
3828 if (!debug_guardpage_enabled())
3830 __clear_page_guard(zone, page, order);
3833 #else /* CONFIG_DEBUG_PAGEALLOC */
3834 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3835 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3836 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3837 static inline bool debug_guardpage_enabled(void) { return false; }
3838 static inline bool page_is_guard(struct page *page) { return false; }
3839 static inline bool set_page_guard(struct zone *zone, struct page *page,
3840 unsigned int order) { return false; }
3841 static inline void clear_page_guard(struct zone *zone, struct page *page,
3842 unsigned int order) {}
3843 #endif /* CONFIG_DEBUG_PAGEALLOC */
3845 #ifdef __HAVE_ARCH_GATE_AREA
3846 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3847 extern int in_gate_area_no_mm(unsigned long addr);
3848 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3850 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3854 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3855 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3859 #endif /* __HAVE_ARCH_GATE_AREA */
3861 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3863 #ifdef CONFIG_SYSCTL
3864 extern int sysctl_drop_caches;
3865 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3869 void drop_slab(void);
3872 #define randomize_va_space 0
3874 extern int randomize_va_space;
3877 const char * arch_vma_name(struct vm_area_struct *vma);
3879 void print_vma_addr(char *prefix, unsigned long rip);
3881 static inline void print_vma_addr(char *prefix, unsigned long rip)
3886 void *sparse_buffer_alloc(unsigned long size);
3887 struct page * __populate_section_memmap(unsigned long pfn,
3888 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3889 struct dev_pagemap *pgmap);
3890 void pmd_init(void *addr);
3891 void pud_init(void *addr);
3892 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3893 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3894 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3895 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3896 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3897 struct vmem_altmap *altmap, struct page *reuse);
3898 void *vmemmap_alloc_block(unsigned long size, int node);
3900 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3901 struct vmem_altmap *altmap);
3902 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3903 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3904 unsigned long addr, unsigned long next);
3905 int vmemmap_check_pmd(pmd_t *pmd, int node,
3906 unsigned long addr, unsigned long next);
3907 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3908 int node, struct vmem_altmap *altmap);
3909 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3910 int node, struct vmem_altmap *altmap);
3911 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3912 struct vmem_altmap *altmap);
3913 void vmemmap_populate_print_last(void);
3914 #ifdef CONFIG_MEMORY_HOTPLUG
3915 void vmemmap_free(unsigned long start, unsigned long end,
3916 struct vmem_altmap *altmap);
3919 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3920 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3922 /* number of pfns from base where pfn_to_page() is valid */
3924 return altmap->reserve + altmap->free;
3928 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3929 unsigned long nr_pfns)
3931 altmap->alloc -= nr_pfns;
3934 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3939 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3940 unsigned long nr_pfns)
3945 #define VMEMMAP_RESERVE_NR 2
3946 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3947 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3948 struct dev_pagemap *pgmap)
3950 unsigned long nr_pages;
3951 unsigned long nr_vmemmap_pages;
3953 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3956 nr_pages = pgmap_vmemmap_nr(pgmap);
3957 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3959 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3960 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3962 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3965 * If we don't have an architecture override, use the generic rule
3967 #ifndef vmemmap_can_optimize
3968 #define vmemmap_can_optimize __vmemmap_can_optimize
3972 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3973 struct dev_pagemap *pgmap)
3979 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3980 unsigned long nr_pages);
3983 MF_COUNT_INCREASED = 1 << 0,
3984 MF_ACTION_REQUIRED = 1 << 1,
3985 MF_MUST_KILL = 1 << 2,
3986 MF_SOFT_OFFLINE = 1 << 3,
3987 MF_UNPOISON = 1 << 4,
3988 MF_SW_SIMULATED = 1 << 5,
3989 MF_NO_RETRY = 1 << 6,
3990 MF_MEM_PRE_REMOVE = 1 << 7,
3992 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3993 unsigned long count, int mf_flags);
3994 extern int memory_failure(unsigned long pfn, int flags);
3995 extern void memory_failure_queue_kick(int cpu);
3996 extern int unpoison_memory(unsigned long pfn);
3997 extern atomic_long_t num_poisoned_pages __read_mostly;
3998 extern int soft_offline_page(unsigned long pfn, int flags);
3999 #ifdef CONFIG_MEMORY_FAILURE
4001 * Sysfs entries for memory failure handling statistics.
4003 extern const struct attribute_group memory_failure_attr_group;
4004 extern void memory_failure_queue(unsigned long pfn, int flags);
4005 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4006 bool *migratable_cleared);
4007 void num_poisoned_pages_inc(unsigned long pfn);
4008 void num_poisoned_pages_sub(unsigned long pfn, long i);
4010 static inline void memory_failure_queue(unsigned long pfn, int flags)
4014 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4015 bool *migratable_cleared)
4020 static inline void num_poisoned_pages_inc(unsigned long pfn)
4024 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4029 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4030 extern void memblk_nr_poison_inc(unsigned long pfn);
4031 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4033 static inline void memblk_nr_poison_inc(unsigned long pfn)
4037 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4042 #ifndef arch_memory_failure
4043 static inline int arch_memory_failure(unsigned long pfn, int flags)
4049 #ifndef arch_is_platform_page
4050 static inline bool arch_is_platform_page(u64 paddr)
4057 * Error handlers for various types of pages.
4060 MF_IGNORED, /* Error: cannot be handled */
4061 MF_FAILED, /* Error: handling failed */
4062 MF_DELAYED, /* Will be handled later */
4063 MF_RECOVERED, /* Successfully recovered */
4066 enum mf_action_page_type {
4068 MF_MSG_KERNEL_HIGH_ORDER,
4069 MF_MSG_DIFFERENT_COMPOUND,
4072 MF_MSG_GET_HWPOISON,
4073 MF_MSG_UNMAP_FAILED,
4074 MF_MSG_DIRTY_SWAPCACHE,
4075 MF_MSG_CLEAN_SWAPCACHE,
4076 MF_MSG_DIRTY_MLOCKED_LRU,
4077 MF_MSG_CLEAN_MLOCKED_LRU,
4078 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4079 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4082 MF_MSG_TRUNCATED_LRU,
4086 MF_MSG_ALREADY_POISONED,
4090 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4091 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4092 int copy_user_large_folio(struct folio *dst, struct folio *src,
4093 unsigned long addr_hint,
4094 struct vm_area_struct *vma);
4095 long copy_folio_from_user(struct folio *dst_folio,
4096 const void __user *usr_src,
4097 bool allow_pagefault);
4100 * vma_is_special_huge - Are transhuge page-table entries considered special?
4101 * @vma: Pointer to the struct vm_area_struct to consider
4103 * Whether transhuge page-table entries are considered "special" following
4104 * the definition in vm_normal_page().
4106 * Return: true if transhuge page-table entries should be considered special,
4109 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4111 return vma_is_dax(vma) || (vma->vm_file &&
4112 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4117 #if MAX_NUMNODES > 1
4118 void __init setup_nr_node_ids(void);
4120 static inline void setup_nr_node_ids(void) {}
4123 extern int memcmp_pages(struct page *page1, struct page *page2);
4125 static inline int pages_identical(struct page *page1, struct page *page2)
4127 return !memcmp_pages(page1, page2);
4130 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4131 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4132 pgoff_t first_index, pgoff_t nr,
4133 pgoff_t bitmap_pgoff,
4134 unsigned long *bitmap,
4138 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4139 pgoff_t first_index, pgoff_t nr);
4142 extern int sysctl_nr_trim_pages;
4144 #ifdef CONFIG_PRINTK
4145 void mem_dump_obj(void *object);
4147 static inline void mem_dump_obj(void *object) {}
4151 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4153 * @seals: the seals to check
4154 * @vma: the vma to operate on
4156 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4157 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
4159 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4161 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4163 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4164 * write seals are active.
4166 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4170 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4171 * MAP_SHARED and read-only, take care to not allow mprotect to
4172 * revert protections on such mappings. Do this only for shared
4173 * mappings. For private mappings, don't need to mask
4174 * VM_MAYWRITE as we still want them to be COW-writable.
4176 if (vma->vm_flags & VM_SHARED)
4177 vm_flags_clear(vma, VM_MAYWRITE);
4183 #ifdef CONFIG_ANON_VMA_NAME
4184 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4185 unsigned long len_in,
4186 struct anon_vma_name *anon_name);
4189 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4190 unsigned long len_in, struct anon_vma_name *anon_name) {
4195 #ifdef CONFIG_UNACCEPTED_MEMORY
4197 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4198 void accept_memory(phys_addr_t start, phys_addr_t end);
4202 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4208 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4214 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4216 phys_addr_t paddr = pfn << PAGE_SHIFT;
4218 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4222 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4231 /* noop on 32 bit */
4236 #endif /* _LINUX_MM_H */