]> Git Repo - linux.git/blob - drivers/acpi/osl.c
Merge tag 'hardening-v6.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <[email protected]>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <[email protected]>
10  */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "internal.h"
40
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT              ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44
45 struct acpi_os_dpc {
46         acpi_osd_exec_callback function;
47         void *context;
48         struct work_struct work;
49 };
50
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif                          /*ENABLE_DEBUGGER */
58
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60                                       u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62                                       u32 val_b);
63
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72
73 /*
74  * This list of permanent mappings is for memory that may be accessed from
75  * interrupt context, where we can't do the ioremap().
76  */
77 struct acpi_ioremap {
78         struct list_head list;
79         void __iomem *virt;
80         acpi_physical_address phys;
81         acpi_size size;
82         union {
83                 unsigned long refcount;
84                 struct rcu_work rwork;
85         } track;
86 };
87
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93         unsigned int length, char *desc)
94 {
95         u64 addr;
96
97         /* Handle possible alignment issues */
98         memcpy(&addr, &gas->address, sizeof(addr));
99         if (!addr || !length)
100                 return;
101
102         /* Resources are never freed */
103         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104                 request_region(addr, length, desc);
105         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106                 request_mem_region(addr, length, desc);
107 }
108
109 static int __init acpi_reserve_resources(void)
110 {
111         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112                 "ACPI PM1a_EVT_BLK");
113
114         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115                 "ACPI PM1b_EVT_BLK");
116
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118                 "ACPI PM1a_CNT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121                 "ACPI PM1b_CNT_BLK");
122
123         if (acpi_gbl_FADT.pm_timer_length == 4)
124                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127                 "ACPI PM2_CNT_BLK");
128
129         /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139         return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142
143 void acpi_os_printf(const char *fmt, ...)
144 {
145         va_list args;
146         va_start(args, fmt);
147         acpi_os_vprintf(fmt, args);
148         va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151
152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154         static char buffer[512];
155
156         vsprintf(buffer, fmt, args);
157
158 #ifdef ENABLE_DEBUGGER
159         if (acpi_in_debugger) {
160                 kdb_printf("%s", buffer);
161         } else {
162                 if (printk_get_level(buffer))
163                         printk("%s", buffer);
164                 else
165                         printk(KERN_CONT "%s", buffer);
166         }
167 #else
168         if (acpi_debugger_write_log(buffer) < 0) {
169                 if (printk_get_level(buffer))
170                         printk("%s", buffer);
171                 else
172                         printk(KERN_CONT "%s", buffer);
173         }
174 #endif
175 }
176
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
179 static int __init setup_acpi_rsdp(char *arg)
180 {
181         return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185
186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188         acpi_physical_address pa;
189
190 #ifdef CONFIG_KEXEC
191         /*
192          * We may have been provided with an RSDP on the command line,
193          * but if a malicious user has done so they may be pointing us
194          * at modified ACPI tables that could alter kernel behaviour -
195          * so, we check the lockdown status before making use of
196          * it. If we trust it then also stash it in an architecture
197          * specific location (if appropriate) so it can be carried
198          * over further kexec()s.
199          */
200         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201                 acpi_arch_set_root_pointer(acpi_rsdp);
202                 return acpi_rsdp;
203         }
204 #endif
205         pa = acpi_arch_get_root_pointer();
206         if (pa)
207                 return pa;
208
209         if (efi_enabled(EFI_CONFIG_TABLES)) {
210                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211                         return efi.acpi20;
212                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213                         return efi.acpi;
214                 pr_err("System description tables not found\n");
215         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216                 acpi_find_root_pointer(&pa);
217         }
218
219         return pa;
220 }
221
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226         struct acpi_ioremap *map;
227
228         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229                 if (map->phys <= phys &&
230                     phys + size <= map->phys + map->size)
231                         return map;
232
233         return NULL;
234 }
235
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240         struct acpi_ioremap *map;
241
242         map = acpi_map_lookup(phys, size);
243         if (map)
244                 return map->virt + (phys - map->phys);
245
246         return NULL;
247 }
248
249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251         struct acpi_ioremap *map;
252         void __iomem *virt = NULL;
253
254         mutex_lock(&acpi_ioremap_lock);
255         map = acpi_map_lookup(phys, size);
256         if (map) {
257                 virt = map->virt + (phys - map->phys);
258                 map->track.refcount++;
259         }
260         mutex_unlock(&acpi_ioremap_lock);
261         return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269         struct acpi_ioremap *map;
270
271         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272                 if (map->virt <= virt &&
273                     virt + size <= map->virt + map->size)
274                         return map;
275
276         return NULL;
277 }
278
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn)   0
282 #else
283 #define should_use_kmap(pfn)   page_is_ram(pfn)
284 #endif
285
286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288         unsigned long pfn;
289
290         pfn = pg_off >> PAGE_SHIFT;
291         if (should_use_kmap(pfn)) {
292                 if (pg_sz > PAGE_SIZE)
293                         return NULL;
294                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295         } else
296                 return acpi_os_ioremap(pg_off, pg_sz);
297 }
298
299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301         unsigned long pfn;
302
303         pfn = pg_off >> PAGE_SHIFT;
304         if (should_use_kmap(pfn))
305                 kunmap(pfn_to_page(pfn));
306         else
307                 iounmap(vaddr);
308 }
309
310 /**
311  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312  * @phys: Start of the physical address range to map.
313  * @size: Size of the physical address range to map.
314  *
315  * Look up the given physical address range in the list of existing ACPI memory
316  * mappings.  If found, get a reference to it and return a pointer to it (its
317  * virtual address).  If not found, map it, add it to that list and return a
318  * pointer to it.
319  *
320  * During early init (when acpi_permanent_mmap has not been set yet) this
321  * routine simply calls __acpi_map_table() to get the job done.
322  */
323 void __iomem __ref
324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326         struct acpi_ioremap *map;
327         void __iomem *virt;
328         acpi_physical_address pg_off;
329         acpi_size pg_sz;
330
331         if (phys > ULONG_MAX) {
332                 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333                 return NULL;
334         }
335
336         if (!acpi_permanent_mmap)
337                 return __acpi_map_table((unsigned long)phys, size);
338
339         mutex_lock(&acpi_ioremap_lock);
340         /* Check if there's a suitable mapping already. */
341         map = acpi_map_lookup(phys, size);
342         if (map) {
343                 map->track.refcount++;
344                 goto out;
345         }
346
347         map = kzalloc(sizeof(*map), GFP_KERNEL);
348         if (!map) {
349                 mutex_unlock(&acpi_ioremap_lock);
350                 return NULL;
351         }
352
353         pg_off = round_down(phys, PAGE_SIZE);
354         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355         virt = acpi_map(phys, size);
356         if (!virt) {
357                 mutex_unlock(&acpi_ioremap_lock);
358                 kfree(map);
359                 return NULL;
360         }
361
362         INIT_LIST_HEAD(&map->list);
363         map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364         map->phys = pg_off;
365         map->size = pg_sz;
366         map->track.refcount = 1;
367
368         list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370 out:
371         mutex_unlock(&acpi_ioremap_lock);
372         return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378         return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384         struct acpi_ioremap *map = container_of(to_rcu_work(work),
385                                                 struct acpi_ioremap,
386                                                 track.rwork);
387
388         acpi_unmap(map->phys, map->virt);
389         kfree(map);
390 }
391
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395         if (--map->track.refcount)
396                 return;
397
398         list_del_rcu(&map->list);
399
400         INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401         queue_rcu_work(system_wq, &map->track.rwork);
402 }
403
404 /**
405  * acpi_os_unmap_iomem - Drop a memory mapping reference.
406  * @virt: Start of the address range to drop a reference to.
407  * @size: Size of the address range to drop a reference to.
408  *
409  * Look up the given virtual address range in the list of existing ACPI memory
410  * mappings, drop a reference to it and if there are no more active references
411  * to it, queue it up for later removal.
412  *
413  * During early init (when acpi_permanent_mmap has not been set yet) this
414  * routine simply calls __acpi_unmap_table() to get the job done.  Since
415  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416  * here.
417  */
418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420         struct acpi_ioremap *map;
421
422         if (!acpi_permanent_mmap) {
423                 __acpi_unmap_table(virt, size);
424                 return;
425         }
426
427         mutex_lock(&acpi_ioremap_lock);
428
429         map = acpi_map_lookup_virt(virt, size);
430         if (!map) {
431                 mutex_unlock(&acpi_ioremap_lock);
432                 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433                 return;
434         }
435         acpi_os_drop_map_ref(map);
436
437         mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441 /**
442  * acpi_os_unmap_memory - Drop a memory mapping reference.
443  * @virt: Start of the address range to drop a reference to.
444  * @size: Size of the address range to drop a reference to.
445  */
446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448         acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454         u64 addr;
455
456         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457                 return NULL;
458
459         /* Handle possible alignment issues */
460         memcpy(&addr, &gas->address, sizeof(addr));
461         if (!addr || !gas->bit_width)
462                 return NULL;
463
464         return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470         u64 addr;
471         struct acpi_ioremap *map;
472
473         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474                 return;
475
476         /* Handle possible alignment issues */
477         memcpy(&addr, &gas->address, sizeof(addr));
478         if (!addr || !gas->bit_width)
479                 return;
480
481         mutex_lock(&acpi_ioremap_lock);
482
483         map = acpi_map_lookup(addr, gas->bit_width / 8);
484         if (!map) {
485                 mutex_unlock(&acpi_ioremap_lock);
486                 return;
487         }
488         acpi_os_drop_map_ref(map);
489
490         mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498         if (!phys || !virt)
499                 return AE_BAD_PARAMETER;
500
501         *phys = virt_to_phys(virt);
502
503         return AE_OK;
504 }
505 #endif
506
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509
510 int __init acpi_rev_override_setup(char *str)
511 {
512         acpi_rev_override = true;
513         return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override       false
518 #endif
519
520 #define ACPI_MAX_OVERRIDE_LEN 100
521
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524 acpi_status
525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526                             acpi_string *new_val)
527 {
528         if (!init_val || !new_val)
529                 return AE_BAD_PARAMETER;
530
531         *new_val = NULL;
532         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533                 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534                 *new_val = acpi_os_name;
535         }
536
537         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538                 pr_info("Overriding _REV return value to 5\n");
539                 *new_val = (char *)5;
540         }
541
542         return AE_OK;
543 }
544
545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547         if ((*acpi_irq_handler)(acpi_irq_context)) {
548                 acpi_irq_handled++;
549                 return IRQ_HANDLED;
550         } else {
551                 acpi_irq_not_handled++;
552                 return IRQ_NONE;
553         }
554 }
555
556 acpi_status
557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558                                   void *context)
559 {
560         unsigned int irq;
561
562         acpi_irq_stats_init();
563
564         /*
565          * ACPI interrupts different from the SCI in our copy of the FADT are
566          * not supported.
567          */
568         if (gsi != acpi_gbl_FADT.sci_interrupt)
569                 return AE_BAD_PARAMETER;
570
571         if (acpi_irq_handler)
572                 return AE_ALREADY_ACQUIRED;
573
574         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575                 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576                 return AE_OK;
577         }
578
579         acpi_irq_handler = handler;
580         acpi_irq_context = context;
581         if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582                                  "acpi", acpi_irq)) {
583                 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584                 acpi_irq_handler = NULL;
585                 return AE_NOT_ACQUIRED;
586         }
587         acpi_sci_irq = irq;
588
589         return AE_OK;
590 }
591
592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595                 return AE_BAD_PARAMETER;
596
597         free_irq(acpi_sci_irq, acpi_irq);
598         acpi_irq_handler = NULL;
599         acpi_sci_irq = INVALID_ACPI_IRQ;
600
601         return AE_OK;
602 }
603
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607
608 void acpi_os_sleep(u64 ms)
609 {
610         msleep(ms);
611 }
612
613 void acpi_os_stall(u32 us)
614 {
615         while (us) {
616                 u32 delay = 1000;
617
618                 if (delay > us)
619                         delay = us;
620                 udelay(delay);
621                 touch_nmi_watchdog();
622                 us -= delay;
623         }
624 }
625
626 /*
627  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628  * monotonically increasing timer with 100ns granularity. Do not use
629  * ktime_get() to implement this function because this function may get
630  * called after timekeeping has been suspended. Note: calling this function
631  * after timekeeping has been suspended may lead to unexpected results
632  * because when timekeeping is suspended the jiffies counter is not
633  * incremented. See also timekeeping_suspend().
634  */
635 u64 acpi_os_get_timer(void)
636 {
637         return (get_jiffies_64() - INITIAL_JIFFIES) *
638                 (ACPI_100NSEC_PER_SEC / HZ);
639 }
640
641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642 {
643         u32 dummy;
644
645         if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646                 /*
647                  * set all-1 result as if reading from non-existing
648                  * I/O port
649                  */
650                 *value = GENMASK(width, 0);
651                 return AE_NOT_IMPLEMENTED;
652         }
653
654         if (value)
655                 *value = 0;
656         else
657                 value = &dummy;
658
659         if (width <= 8) {
660                 *value = inb(port);
661         } else if (width <= 16) {
662                 *value = inw(port);
663         } else if (width <= 32) {
664                 *value = inl(port);
665         } else {
666                 pr_debug("%s: Access width %d not supported\n", __func__, width);
667                 return AE_BAD_PARAMETER;
668         }
669
670         return AE_OK;
671 }
672
673 EXPORT_SYMBOL(acpi_os_read_port);
674
675 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676 {
677         if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678                 return AE_NOT_IMPLEMENTED;
679
680         if (width <= 8) {
681                 outb(value, port);
682         } else if (width <= 16) {
683                 outw(value, port);
684         } else if (width <= 32) {
685                 outl(value, port);
686         } else {
687                 pr_debug("%s: Access width %d not supported\n", __func__, width);
688                 return AE_BAD_PARAMETER;
689         }
690
691         return AE_OK;
692 }
693
694 EXPORT_SYMBOL(acpi_os_write_port);
695
696 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697 {
698
699         switch (width) {
700         case 8:
701                 *(u8 *) value = readb(virt_addr);
702                 break;
703         case 16:
704                 *(u16 *) value = readw(virt_addr);
705                 break;
706         case 32:
707                 *(u32 *) value = readl(virt_addr);
708                 break;
709         case 64:
710                 *(u64 *) value = readq(virt_addr);
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         return 0;
717 }
718
719 acpi_status
720 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721 {
722         void __iomem *virt_addr;
723         unsigned int size = width / 8;
724         bool unmap = false;
725         u64 dummy;
726         int error;
727
728         rcu_read_lock();
729         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730         if (!virt_addr) {
731                 rcu_read_unlock();
732                 virt_addr = acpi_os_ioremap(phys_addr, size);
733                 if (!virt_addr)
734                         return AE_BAD_ADDRESS;
735                 unmap = true;
736         }
737
738         if (!value)
739                 value = &dummy;
740
741         error = acpi_os_read_iomem(virt_addr, value, width);
742         BUG_ON(error);
743
744         if (unmap)
745                 iounmap(virt_addr);
746         else
747                 rcu_read_unlock();
748
749         return AE_OK;
750 }
751
752 acpi_status
753 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754 {
755         void __iomem *virt_addr;
756         unsigned int size = width / 8;
757         bool unmap = false;
758
759         rcu_read_lock();
760         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761         if (!virt_addr) {
762                 rcu_read_unlock();
763                 virt_addr = acpi_os_ioremap(phys_addr, size);
764                 if (!virt_addr)
765                         return AE_BAD_ADDRESS;
766                 unmap = true;
767         }
768
769         switch (width) {
770         case 8:
771                 writeb(value, virt_addr);
772                 break;
773         case 16:
774                 writew(value, virt_addr);
775                 break;
776         case 32:
777                 writel(value, virt_addr);
778                 break;
779         case 64:
780                 writeq(value, virt_addr);
781                 break;
782         default:
783                 BUG();
784         }
785
786         if (unmap)
787                 iounmap(virt_addr);
788         else
789                 rcu_read_unlock();
790
791         return AE_OK;
792 }
793
794 #ifdef CONFIG_PCI
795 acpi_status
796 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797                                u64 *value, u32 width)
798 {
799         int result, size;
800         u32 value32;
801
802         if (!value)
803                 return AE_BAD_PARAMETER;
804
805         switch (width) {
806         case 8:
807                 size = 1;
808                 break;
809         case 16:
810                 size = 2;
811                 break;
812         case 32:
813                 size = 4;
814                 break;
815         default:
816                 return AE_ERROR;
817         }
818
819         result = raw_pci_read(pci_id->segment, pci_id->bus,
820                                 PCI_DEVFN(pci_id->device, pci_id->function),
821                                 reg, size, &value32);
822         *value = value32;
823
824         return (result ? AE_ERROR : AE_OK);
825 }
826
827 acpi_status
828 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829                                 u64 value, u32 width)
830 {
831         int result, size;
832
833         switch (width) {
834         case 8:
835                 size = 1;
836                 break;
837         case 16:
838                 size = 2;
839                 break;
840         case 32:
841                 size = 4;
842                 break;
843         default:
844                 return AE_ERROR;
845         }
846
847         result = raw_pci_write(pci_id->segment, pci_id->bus,
848                                 PCI_DEVFN(pci_id->device, pci_id->function),
849                                 reg, size, value);
850
851         return (result ? AE_ERROR : AE_OK);
852 }
853 #endif
854
855 static void acpi_os_execute_deferred(struct work_struct *work)
856 {
857         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858
859         dpc->function(dpc->context);
860         kfree(dpc);
861 }
862
863 #ifdef CONFIG_ACPI_DEBUGGER
864 static struct acpi_debugger acpi_debugger;
865 static bool acpi_debugger_initialized;
866
867 int acpi_register_debugger(struct module *owner,
868                            const struct acpi_debugger_ops *ops)
869 {
870         int ret = 0;
871
872         mutex_lock(&acpi_debugger.lock);
873         if (acpi_debugger.ops) {
874                 ret = -EBUSY;
875                 goto err_lock;
876         }
877
878         acpi_debugger.owner = owner;
879         acpi_debugger.ops = ops;
880
881 err_lock:
882         mutex_unlock(&acpi_debugger.lock);
883         return ret;
884 }
885 EXPORT_SYMBOL(acpi_register_debugger);
886
887 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888 {
889         mutex_lock(&acpi_debugger.lock);
890         if (ops == acpi_debugger.ops) {
891                 acpi_debugger.ops = NULL;
892                 acpi_debugger.owner = NULL;
893         }
894         mutex_unlock(&acpi_debugger.lock);
895 }
896 EXPORT_SYMBOL(acpi_unregister_debugger);
897
898 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899 {
900         int ret;
901         int (*func)(acpi_osd_exec_callback, void *);
902         struct module *owner;
903
904         if (!acpi_debugger_initialized)
905                 return -ENODEV;
906         mutex_lock(&acpi_debugger.lock);
907         if (!acpi_debugger.ops) {
908                 ret = -ENODEV;
909                 goto err_lock;
910         }
911         if (!try_module_get(acpi_debugger.owner)) {
912                 ret = -ENODEV;
913                 goto err_lock;
914         }
915         func = acpi_debugger.ops->create_thread;
916         owner = acpi_debugger.owner;
917         mutex_unlock(&acpi_debugger.lock);
918
919         ret = func(function, context);
920
921         mutex_lock(&acpi_debugger.lock);
922         module_put(owner);
923 err_lock:
924         mutex_unlock(&acpi_debugger.lock);
925         return ret;
926 }
927
928 ssize_t acpi_debugger_write_log(const char *msg)
929 {
930         ssize_t ret;
931         ssize_t (*func)(const char *);
932         struct module *owner;
933
934         if (!acpi_debugger_initialized)
935                 return -ENODEV;
936         mutex_lock(&acpi_debugger.lock);
937         if (!acpi_debugger.ops) {
938                 ret = -ENODEV;
939                 goto err_lock;
940         }
941         if (!try_module_get(acpi_debugger.owner)) {
942                 ret = -ENODEV;
943                 goto err_lock;
944         }
945         func = acpi_debugger.ops->write_log;
946         owner = acpi_debugger.owner;
947         mutex_unlock(&acpi_debugger.lock);
948
949         ret = func(msg);
950
951         mutex_lock(&acpi_debugger.lock);
952         module_put(owner);
953 err_lock:
954         mutex_unlock(&acpi_debugger.lock);
955         return ret;
956 }
957
958 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959 {
960         ssize_t ret;
961         ssize_t (*func)(char *, size_t);
962         struct module *owner;
963
964         if (!acpi_debugger_initialized)
965                 return -ENODEV;
966         mutex_lock(&acpi_debugger.lock);
967         if (!acpi_debugger.ops) {
968                 ret = -ENODEV;
969                 goto err_lock;
970         }
971         if (!try_module_get(acpi_debugger.owner)) {
972                 ret = -ENODEV;
973                 goto err_lock;
974         }
975         func = acpi_debugger.ops->read_cmd;
976         owner = acpi_debugger.owner;
977         mutex_unlock(&acpi_debugger.lock);
978
979         ret = func(buffer, buffer_length);
980
981         mutex_lock(&acpi_debugger.lock);
982         module_put(owner);
983 err_lock:
984         mutex_unlock(&acpi_debugger.lock);
985         return ret;
986 }
987
988 int acpi_debugger_wait_command_ready(void)
989 {
990         int ret;
991         int (*func)(bool, char *, size_t);
992         struct module *owner;
993
994         if (!acpi_debugger_initialized)
995                 return -ENODEV;
996         mutex_lock(&acpi_debugger.lock);
997         if (!acpi_debugger.ops) {
998                 ret = -ENODEV;
999                 goto err_lock;
1000         }
1001         if (!try_module_get(acpi_debugger.owner)) {
1002                 ret = -ENODEV;
1003                 goto err_lock;
1004         }
1005         func = acpi_debugger.ops->wait_command_ready;
1006         owner = acpi_debugger.owner;
1007         mutex_unlock(&acpi_debugger.lock);
1008
1009         ret = func(acpi_gbl_method_executing,
1010                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012         mutex_lock(&acpi_debugger.lock);
1013         module_put(owner);
1014 err_lock:
1015         mutex_unlock(&acpi_debugger.lock);
1016         return ret;
1017 }
1018
1019 int acpi_debugger_notify_command_complete(void)
1020 {
1021         int ret;
1022         int (*func)(void);
1023         struct module *owner;
1024
1025         if (!acpi_debugger_initialized)
1026                 return -ENODEV;
1027         mutex_lock(&acpi_debugger.lock);
1028         if (!acpi_debugger.ops) {
1029                 ret = -ENODEV;
1030                 goto err_lock;
1031         }
1032         if (!try_module_get(acpi_debugger.owner)) {
1033                 ret = -ENODEV;
1034                 goto err_lock;
1035         }
1036         func = acpi_debugger.ops->notify_command_complete;
1037         owner = acpi_debugger.owner;
1038         mutex_unlock(&acpi_debugger.lock);
1039
1040         ret = func();
1041
1042         mutex_lock(&acpi_debugger.lock);
1043         module_put(owner);
1044 err_lock:
1045         mutex_unlock(&acpi_debugger.lock);
1046         return ret;
1047 }
1048
1049 int __init acpi_debugger_init(void)
1050 {
1051         mutex_init(&acpi_debugger.lock);
1052         acpi_debugger_initialized = true;
1053         return 0;
1054 }
1055 #endif
1056
1057 /*******************************************************************************
1058  *
1059  * FUNCTION:    acpi_os_execute
1060  *
1061  * PARAMETERS:  Type               - Type of the callback
1062  *              Function           - Function to be executed
1063  *              Context            - Function parameters
1064  *
1065  * RETURN:      Status
1066  *
1067  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068  *              immediately executes function on a separate thread.
1069  *
1070  ******************************************************************************/
1071
1072 acpi_status acpi_os_execute(acpi_execute_type type,
1073                             acpi_osd_exec_callback function, void *context)
1074 {
1075         struct acpi_os_dpc *dpc;
1076         int ret;
1077
1078         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079                           "Scheduling function [%p(%p)] for deferred execution.\n",
1080                           function, context));
1081
1082         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083                 ret = acpi_debugger_create_thread(function, context);
1084                 if (ret) {
1085                         pr_err("Kernel thread creation failed\n");
1086                         return AE_ERROR;
1087                 }
1088                 return AE_OK;
1089         }
1090
1091         /*
1092          * Allocate/initialize DPC structure.  Note that this memory will be
1093          * freed by the callee.  The kernel handles the work_struct list  in a
1094          * way that allows us to also free its memory inside the callee.
1095          * Because we may want to schedule several tasks with different
1096          * parameters we can't use the approach some kernel code uses of
1097          * having a static work_struct.
1098          */
1099
1100         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101         if (!dpc)
1102                 return AE_NO_MEMORY;
1103
1104         dpc->function = function;
1105         dpc->context = context;
1106         INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108         /*
1109          * To prevent lockdep from complaining unnecessarily, make sure that
1110          * there is a different static lockdep key for each workqueue by using
1111          * INIT_WORK() for each of them separately.
1112          */
1113         switch (type) {
1114         case OSL_NOTIFY_HANDLER:
1115                 ret = queue_work(kacpi_notify_wq, &dpc->work);
1116                 break;
1117         case OSL_GPE_HANDLER:
1118                 /*
1119                  * On some machines, a software-initiated SMI causes corruption
1120                  * unless the SMI runs on CPU 0.  An SMI can be initiated by
1121                  * any AML, but typically it's done in GPE-related methods that
1122                  * are run via workqueues, so we can avoid the known corruption
1123                  * cases by always queueing on CPU 0.
1124                  */
1125                 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126                 break;
1127         default:
1128                 pr_err("Unsupported os_execute type %d.\n", type);
1129                 goto err;
1130         }
1131         if (!ret) {
1132                 pr_err("Unable to queue work\n");
1133                 goto err;
1134         }
1135
1136         return AE_OK;
1137
1138 err:
1139         kfree(dpc);
1140         return AE_ERROR;
1141 }
1142 EXPORT_SYMBOL(acpi_os_execute);
1143
1144 void acpi_os_wait_events_complete(void)
1145 {
1146         /*
1147          * Make sure the GPE handler or the fixed event handler is not used
1148          * on another CPU after removal.
1149          */
1150         if (acpi_sci_irq_valid())
1151                 synchronize_hardirq(acpi_sci_irq);
1152         flush_workqueue(kacpid_wq);
1153         flush_workqueue(kacpi_notify_wq);
1154 }
1155 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157 struct acpi_hp_work {
1158         struct work_struct work;
1159         struct acpi_device *adev;
1160         u32 src;
1161 };
1162
1163 static void acpi_hotplug_work_fn(struct work_struct *work)
1164 {
1165         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167         acpi_os_wait_events_complete();
1168         acpi_device_hotplug(hpw->adev, hpw->src);
1169         kfree(hpw);
1170 }
1171
1172 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173 {
1174         struct acpi_hp_work *hpw;
1175
1176         acpi_handle_debug(adev->handle,
1177                           "Scheduling hotplug event %u for deferred handling\n",
1178                            src);
1179
1180         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181         if (!hpw)
1182                 return AE_NO_MEMORY;
1183
1184         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185         hpw->adev = adev;
1186         hpw->src = src;
1187         /*
1188          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189          * the hotplug code may call driver .remove() functions, which may
1190          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191          * these workqueues.
1192          */
1193         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194                 kfree(hpw);
1195                 return AE_ERROR;
1196         }
1197         return AE_OK;
1198 }
1199
1200 bool acpi_queue_hotplug_work(struct work_struct *work)
1201 {
1202         return queue_work(kacpi_hotplug_wq, work);
1203 }
1204
1205 acpi_status
1206 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207 {
1208         struct semaphore *sem = NULL;
1209
1210         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211         if (!sem)
1212                 return AE_NO_MEMORY;
1213
1214         sema_init(sem, initial_units);
1215
1216         *handle = (acpi_handle *) sem;
1217
1218         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219                           *handle, initial_units));
1220
1221         return AE_OK;
1222 }
1223
1224 /*
1225  * TODO: A better way to delete semaphores?  Linux doesn't have a
1226  * 'delete_semaphore()' function -- may result in an invalid
1227  * pointer dereference for non-synchronized consumers.  Should
1228  * we at least check for blocked threads and signal/cancel them?
1229  */
1230
1231 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232 {
1233         struct semaphore *sem = (struct semaphore *)handle;
1234
1235         if (!sem)
1236                 return AE_BAD_PARAMETER;
1237
1238         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240         BUG_ON(!list_empty(&sem->wait_list));
1241         kfree(sem);
1242         sem = NULL;
1243
1244         return AE_OK;
1245 }
1246
1247 /*
1248  * TODO: Support for units > 1?
1249  */
1250 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251 {
1252         acpi_status status = AE_OK;
1253         struct semaphore *sem = (struct semaphore *)handle;
1254         long jiffies;
1255         int ret = 0;
1256
1257         if (!acpi_os_initialized)
1258                 return AE_OK;
1259
1260         if (!sem || (units < 1))
1261                 return AE_BAD_PARAMETER;
1262
1263         if (units > 1)
1264                 return AE_SUPPORT;
1265
1266         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267                           handle, units, timeout));
1268
1269         if (timeout == ACPI_WAIT_FOREVER)
1270                 jiffies = MAX_SCHEDULE_TIMEOUT;
1271         else
1272                 jiffies = msecs_to_jiffies(timeout);
1273
1274         ret = down_timeout(sem, jiffies);
1275         if (ret)
1276                 status = AE_TIME;
1277
1278         if (ACPI_FAILURE(status)) {
1279                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1281                                   handle, units, timeout,
1282                                   acpi_format_exception(status)));
1283         } else {
1284                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285                                   "Acquired semaphore[%p|%d|%d]", handle,
1286                                   units, timeout));
1287         }
1288
1289         return status;
1290 }
1291
1292 /*
1293  * TODO: Support for units > 1?
1294  */
1295 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296 {
1297         struct semaphore *sem = (struct semaphore *)handle;
1298
1299         if (!acpi_os_initialized)
1300                 return AE_OK;
1301
1302         if (!sem || (units < 1))
1303                 return AE_BAD_PARAMETER;
1304
1305         if (units > 1)
1306                 return AE_SUPPORT;
1307
1308         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309                           units));
1310
1311         up(sem);
1312
1313         return AE_OK;
1314 }
1315
1316 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317 {
1318 #ifdef ENABLE_DEBUGGER
1319         if (acpi_in_debugger) {
1320                 u32 chars;
1321
1322                 kdb_read(buffer, buffer_length);
1323
1324                 /* remove the CR kdb includes */
1325                 chars = strlen(buffer) - 1;
1326                 buffer[chars] = '\0';
1327         }
1328 #else
1329         int ret;
1330
1331         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332         if (ret < 0)
1333                 return AE_ERROR;
1334         if (bytes_read)
1335                 *bytes_read = ret;
1336 #endif
1337
1338         return AE_OK;
1339 }
1340 EXPORT_SYMBOL(acpi_os_get_line);
1341
1342 acpi_status acpi_os_wait_command_ready(void)
1343 {
1344         int ret;
1345
1346         ret = acpi_debugger_wait_command_ready();
1347         if (ret < 0)
1348                 return AE_ERROR;
1349         return AE_OK;
1350 }
1351
1352 acpi_status acpi_os_notify_command_complete(void)
1353 {
1354         int ret;
1355
1356         ret = acpi_debugger_notify_command_complete();
1357         if (ret < 0)
1358                 return AE_ERROR;
1359         return AE_OK;
1360 }
1361
1362 acpi_status acpi_os_signal(u32 function, void *info)
1363 {
1364         switch (function) {
1365         case ACPI_SIGNAL_FATAL:
1366                 pr_err("Fatal opcode executed\n");
1367                 break;
1368         case ACPI_SIGNAL_BREAKPOINT:
1369                 /*
1370                  * AML Breakpoint
1371                  * ACPI spec. says to treat it as a NOP unless
1372                  * you are debugging.  So if/when we integrate
1373                  * AML debugger into the kernel debugger its
1374                  * hook will go here.  But until then it is
1375                  * not useful to print anything on breakpoints.
1376                  */
1377                 break;
1378         default:
1379                 break;
1380         }
1381
1382         return AE_OK;
1383 }
1384
1385 static int __init acpi_os_name_setup(char *str)
1386 {
1387         char *p = acpi_os_name;
1388         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390         if (!str || !*str)
1391                 return 0;
1392
1393         for (; count-- && *str; str++) {
1394                 if (isalnum(*str) || *str == ' ' || *str == ':')
1395                         *p++ = *str;
1396                 else if (*str == '\'' || *str == '"')
1397                         continue;
1398                 else
1399                         break;
1400         }
1401         *p = 0;
1402
1403         return 1;
1404
1405 }
1406
1407 __setup("acpi_os_name=", acpi_os_name_setup);
1408
1409 /*
1410  * Disable the auto-serialization of named objects creation methods.
1411  *
1412  * This feature is enabled by default.  It marks the AML control methods
1413  * that contain the opcodes to create named objects as "Serialized".
1414  */
1415 static int __init acpi_no_auto_serialize_setup(char *str)
1416 {
1417         acpi_gbl_auto_serialize_methods = FALSE;
1418         pr_info("Auto-serialization disabled\n");
1419
1420         return 1;
1421 }
1422
1423 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425 /* Check of resource interference between native drivers and ACPI
1426  * OperationRegions (SystemIO and System Memory only).
1427  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428  * in arbitrary AML code and can interfere with legacy drivers.
1429  * acpi_enforce_resources= can be set to:
1430  *
1431  *   - strict (default) (2)
1432  *     -> further driver trying to access the resources will not load
1433  *   - lax              (1)
1434  *     -> further driver trying to access the resources will load, but you
1435  *     get a system message that something might go wrong...
1436  *
1437  *   - no               (0)
1438  *     -> ACPI Operation Region resources will not be registered
1439  *
1440  */
1441 #define ENFORCE_RESOURCES_STRICT 2
1442 #define ENFORCE_RESOURCES_LAX    1
1443 #define ENFORCE_RESOURCES_NO     0
1444
1445 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447 static int __init acpi_enforce_resources_setup(char *str)
1448 {
1449         if (str == NULL || *str == '\0')
1450                 return 0;
1451
1452         if (!strcmp("strict", str))
1453                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454         else if (!strcmp("lax", str))
1455                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456         else if (!strcmp("no", str))
1457                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459         return 1;
1460 }
1461
1462 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464 /* Check for resource conflicts between ACPI OperationRegions and native
1465  * drivers */
1466 int acpi_check_resource_conflict(const struct resource *res)
1467 {
1468         acpi_adr_space_type space_id;
1469
1470         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471                 return 0;
1472
1473         if (res->flags & IORESOURCE_IO)
1474                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475         else if (res->flags & IORESOURCE_MEM)
1476                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477         else
1478                 return 0;
1479
1480         if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481                 return 0;
1482
1483         pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485         if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486                 return -EBUSY;
1487
1488         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489                 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
1491         return 0;
1492 }
1493 EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495 int acpi_check_region(resource_size_t start, resource_size_t n,
1496                       const char *name)
1497 {
1498         struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499
1500         return acpi_check_resource_conflict(&res);
1501 }
1502 EXPORT_SYMBOL(acpi_check_region);
1503
1504 /*
1505  * Let drivers know whether the resource checks are effective
1506  */
1507 int acpi_resources_are_enforced(void)
1508 {
1509         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510 }
1511 EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513 /*
1514  * Deallocate the memory for a spinlock.
1515  */
1516 void acpi_os_delete_lock(acpi_spinlock handle)
1517 {
1518         ACPI_FREE(handle);
1519 }
1520
1521 /*
1522  * Acquire a spinlock.
1523  *
1524  * handle is a pointer to the spinlock_t.
1525  */
1526
1527 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528         __acquires(lockp)
1529 {
1530         spin_lock(lockp);
1531         return 0;
1532 }
1533
1534 /*
1535  * Release a spinlock. See above.
1536  */
1537
1538 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539         __releases(lockp)
1540 {
1541         spin_unlock(lockp);
1542 }
1543
1544 #ifndef ACPI_USE_LOCAL_CACHE
1545
1546 /*******************************************************************************
1547  *
1548  * FUNCTION:    acpi_os_create_cache
1549  *
1550  * PARAMETERS:  name      - Ascii name for the cache
1551  *              size      - Size of each cached object
1552  *              depth     - Maximum depth of the cache (in objects) <ignored>
1553  *              cache     - Where the new cache object is returned
1554  *
1555  * RETURN:      status
1556  *
1557  * DESCRIPTION: Create a cache object
1558  *
1559  ******************************************************************************/
1560
1561 acpi_status
1562 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563 {
1564         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1565         if (*cache == NULL)
1566                 return AE_ERROR;
1567         else
1568                 return AE_OK;
1569 }
1570
1571 /*******************************************************************************
1572  *
1573  * FUNCTION:    acpi_os_purge_cache
1574  *
1575  * PARAMETERS:  Cache           - Handle to cache object
1576  *
1577  * RETURN:      Status
1578  *
1579  * DESCRIPTION: Free all objects within the requested cache.
1580  *
1581  ******************************************************************************/
1582
1583 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584 {
1585         kmem_cache_shrink(cache);
1586         return AE_OK;
1587 }
1588
1589 /*******************************************************************************
1590  *
1591  * FUNCTION:    acpi_os_delete_cache
1592  *
1593  * PARAMETERS:  Cache           - Handle to cache object
1594  *
1595  * RETURN:      Status
1596  *
1597  * DESCRIPTION: Free all objects within the requested cache and delete the
1598  *              cache object.
1599  *
1600  ******************************************************************************/
1601
1602 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603 {
1604         kmem_cache_destroy(cache);
1605         return AE_OK;
1606 }
1607
1608 /*******************************************************************************
1609  *
1610  * FUNCTION:    acpi_os_release_object
1611  *
1612  * PARAMETERS:  Cache       - Handle to cache object
1613  *              Object      - The object to be released
1614  *
1615  * RETURN:      None
1616  *
1617  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1618  *              the object is deleted.
1619  *
1620  ******************************************************************************/
1621
1622 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623 {
1624         kmem_cache_free(cache, object);
1625         return AE_OK;
1626 }
1627 #endif
1628
1629 static int __init acpi_no_static_ssdt_setup(char *s)
1630 {
1631         acpi_gbl_disable_ssdt_table_install = TRUE;
1632         pr_info("Static SSDT installation disabled\n");
1633
1634         return 0;
1635 }
1636
1637 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639 static int __init acpi_disable_return_repair(char *s)
1640 {
1641         pr_notice("Predefined validation mechanism disabled\n");
1642         acpi_gbl_disable_auto_repair = TRUE;
1643
1644         return 1;
1645 }
1646
1647 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649 acpi_status __init acpi_os_initialize(void)
1650 {
1651         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654         acpi_gbl_xgpe0_block_logical_address =
1655                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656         acpi_gbl_xgpe1_block_logical_address =
1657                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660                 /*
1661                  * Use acpi_os_map_generic_address to pre-map the reset
1662                  * register if it's in system memory.
1663                  */
1664                 void *rv;
1665
1666                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667                 pr_debug("%s: Reset register mapping %s\n", __func__,
1668                          rv ? "successful" : "failed");
1669         }
1670         acpi_os_initialized = true;
1671
1672         return AE_OK;
1673 }
1674
1675 acpi_status __init acpi_os_initialize1(void)
1676 {
1677         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680         BUG_ON(!kacpid_wq);
1681         BUG_ON(!kacpi_notify_wq);
1682         BUG_ON(!kacpi_hotplug_wq);
1683         acpi_osi_init();
1684         return AE_OK;
1685 }
1686
1687 acpi_status acpi_os_terminate(void)
1688 {
1689         if (acpi_irq_handler) {
1690                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691                                                  acpi_irq_handler);
1692         }
1693
1694         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696         acpi_gbl_xgpe0_block_logical_address = 0UL;
1697         acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705         destroy_workqueue(kacpid_wq);
1706         destroy_workqueue(kacpi_notify_wq);
1707         destroy_workqueue(kacpi_hotplug_wq);
1708
1709         return AE_OK;
1710 }
1711
1712 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713                                   u32 pm1b_control)
1714 {
1715         int rc = 0;
1716
1717         if (__acpi_os_prepare_sleep)
1718                 rc = __acpi_os_prepare_sleep(sleep_state,
1719                                              pm1a_control, pm1b_control);
1720         if (rc < 0)
1721                 return AE_ERROR;
1722         else if (rc > 0)
1723                 return AE_CTRL_TERMINATE;
1724
1725         return AE_OK;
1726 }
1727
1728 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1730 {
1731         __acpi_os_prepare_sleep = func;
1732 }
1733
1734 #if (ACPI_REDUCED_HARDWARE)
1735 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736                                   u32 val_b)
1737 {
1738         int rc = 0;
1739
1740         if (__acpi_os_prepare_extended_sleep)
1741                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742                                              val_a, val_b);
1743         if (rc < 0)
1744                 return AE_ERROR;
1745         else if (rc > 0)
1746                 return AE_CTRL_TERMINATE;
1747
1748         return AE_OK;
1749 }
1750 #else
1751 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752                                   u32 val_b)
1753 {
1754         return AE_OK;
1755 }
1756 #endif
1757
1758 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759                                u32 val_a, u32 val_b))
1760 {
1761         __acpi_os_prepare_extended_sleep = func;
1762 }
1763
1764 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765                                 u32 reg_a_value, u32 reg_b_value)
1766 {
1767         acpi_status status;
1768
1769         if (acpi_gbl_reduced_hardware)
1770                 status = acpi_os_prepare_extended_sleep(sleep_state,
1771                                                         reg_a_value,
1772                                                         reg_b_value);
1773         else
1774                 status = acpi_os_prepare_sleep(sleep_state,
1775                                                reg_a_value, reg_b_value);
1776         return status;
1777 }
This page took 0.140965 seconds and 4 git commands to generate.