1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
25 #include "tick-internal.h"
26 #include "ntp_internal.h"
27 #include "timekeeping_internal.h"
29 #define TK_CLEAR_NTP (1 << 0)
30 #define TK_MIRROR (1 << 1)
31 #define TK_CLOCK_WAS_SET (1 << 2)
33 enum timekeeping_adv_mode {
34 /* Update timekeeper when a tick has passed */
37 /* Update timekeeper on a direct frequency change */
42 * The most important data for readout fits into a single 64 byte
47 struct timekeeper timekeeper;
48 } tk_core ____cacheline_aligned = {
49 .seq = SEQCNT_ZERO(tk_core.seq),
52 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
53 static struct timekeeper shadow_timekeeper;
56 * struct tk_fast - NMI safe timekeeper
57 * @seq: Sequence counter for protecting updates. The lowest bit
58 * is the index for the tk_read_base array
59 * @base: tk_read_base array. Access is indexed by the lowest bit of
62 * See @update_fast_timekeeper() below.
66 struct tk_read_base base[2];
69 /* Suspend-time cycles value for halted fast timekeeper. */
70 static u64 cycles_at_suspend;
72 static u64 dummy_clock_read(struct clocksource *cs)
74 return cycles_at_suspend;
77 static struct clocksource dummy_clock = {
78 .read = dummy_clock_read,
81 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
82 .base[0] = { .clock = &dummy_clock, },
83 .base[1] = { .clock = &dummy_clock, },
86 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
87 .base[0] = { .clock = &dummy_clock, },
88 .base[1] = { .clock = &dummy_clock, },
91 /* flag for if timekeeping is suspended */
92 int __read_mostly timekeeping_suspended;
94 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
97 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
100 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
101 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
106 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 struct timespec64 ts;
110 ts.tv_sec = tk->xtime_sec;
111 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
115 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 tk->xtime_sec = ts->tv_sec;
118 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
121 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 tk->xtime_sec += ts->tv_sec;
124 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
125 tk_normalize_xtime(tk);
128 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 struct timespec64 tmp;
133 * Verify consistency of: offset_real = -wall_to_monotonic
134 * before modifying anything
136 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
137 -tk->wall_to_monotonic.tv_nsec);
138 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
139 tk->wall_to_monotonic = wtm;
140 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
141 tk->offs_real = timespec64_to_ktime(tmp);
142 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
145 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 * tk_clock_read - atomic clocksource read() helper
153 * This helper is necessary to use in the read paths because, while the
154 * seqlock ensures we don't return a bad value while structures are updated,
155 * it doesn't protect from potential crashes. There is the possibility that
156 * the tkr's clocksource may change between the read reference, and the
157 * clock reference passed to the read function. This can cause crashes if
158 * the wrong clocksource is passed to the wrong read function.
159 * This isn't necessary to use when holding the timekeeper_lock or doing
160 * a read of the fast-timekeeper tkrs (which is protected by its own locking
163 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
165 struct clocksource *clock = READ_ONCE(tkr->clock);
167 return clock->read(clock);
170 #ifdef CONFIG_DEBUG_TIMEKEEPING
171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
176 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
177 const char *name = tk->tkr_mono.clock->name;
179 if (offset > max_cycles) {
180 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
181 offset, name, max_cycles);
182 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
184 if (offset > (max_cycles >> 1)) {
185 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
186 offset, name, max_cycles >> 1);
187 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191 if (tk->underflow_seen) {
192 if (jiffies - tk->last_warning > WARNING_FREQ) {
193 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
194 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
195 printk_deferred(" Your kernel is probably still fine.\n");
196 tk->last_warning = jiffies;
198 tk->underflow_seen = 0;
201 if (tk->overflow_seen) {
202 if (jiffies - tk->last_warning > WARNING_FREQ) {
203 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
204 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
205 printk_deferred(" Your kernel is probably still fine.\n");
206 tk->last_warning = jiffies;
208 tk->overflow_seen = 0;
212 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
214 struct timekeeper *tk = &tk_core.timekeeper;
215 u64 now, last, mask, max, delta;
219 * Since we're called holding a seqlock, the data may shift
220 * under us while we're doing the calculation. This can cause
221 * false positives, since we'd note a problem but throw the
222 * results away. So nest another seqlock here to atomically
223 * grab the points we are checking with.
226 seq = read_seqcount_begin(&tk_core.seq);
227 now = tk_clock_read(tkr);
228 last = tkr->cycle_last;
230 max = tkr->clock->max_cycles;
231 } while (read_seqcount_retry(&tk_core.seq, seq));
233 delta = clocksource_delta(now, last, mask);
236 * Try to catch underflows by checking if we are seeing small
237 * mask-relative negative values.
239 if (unlikely((~delta & mask) < (mask >> 3))) {
240 tk->underflow_seen = 1;
244 /* Cap delta value to the max_cycles values to avoid mult overflows */
245 if (unlikely(delta > max)) {
246 tk->overflow_seen = 1;
247 delta = tkr->clock->max_cycles;
253 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
256 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
258 u64 cycle_now, delta;
260 /* read clocksource */
261 cycle_now = tk_clock_read(tkr);
263 /* calculate the delta since the last update_wall_time */
264 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
271 * tk_setup_internals - Set up internals to use clocksource clock.
273 * @tk: The target timekeeper to setup.
274 * @clock: Pointer to clocksource.
276 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
277 * pair and interval request.
279 * Unless you're the timekeeping code, you should not be using this!
281 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
284 u64 tmp, ntpinterval;
285 struct clocksource *old_clock;
287 ++tk->cs_was_changed_seq;
288 old_clock = tk->tkr_mono.clock;
289 tk->tkr_mono.clock = clock;
290 tk->tkr_mono.mask = clock->mask;
291 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
293 tk->tkr_raw.clock = clock;
294 tk->tkr_raw.mask = clock->mask;
295 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
297 /* Do the ns -> cycle conversion first, using original mult */
298 tmp = NTP_INTERVAL_LENGTH;
299 tmp <<= clock->shift;
301 tmp += clock->mult/2;
302 do_div(tmp, clock->mult);
306 interval = (u64) tmp;
307 tk->cycle_interval = interval;
309 /* Go back from cycles -> shifted ns */
310 tk->xtime_interval = interval * clock->mult;
311 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
312 tk->raw_interval = interval * clock->mult;
314 /* if changing clocks, convert xtime_nsec shift units */
316 int shift_change = clock->shift - old_clock->shift;
317 if (shift_change < 0) {
318 tk->tkr_mono.xtime_nsec >>= -shift_change;
319 tk->tkr_raw.xtime_nsec >>= -shift_change;
321 tk->tkr_mono.xtime_nsec <<= shift_change;
322 tk->tkr_raw.xtime_nsec <<= shift_change;
326 tk->tkr_mono.shift = clock->shift;
327 tk->tkr_raw.shift = clock->shift;
330 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
331 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
334 * The timekeeper keeps its own mult values for the currently
335 * active clocksource. These value will be adjusted via NTP
336 * to counteract clock drifting.
338 tk->tkr_mono.mult = clock->mult;
339 tk->tkr_raw.mult = clock->mult;
340 tk->ntp_err_mult = 0;
341 tk->skip_second_overflow = 0;
344 /* Timekeeper helper functions. */
346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
347 static u32 default_arch_gettimeoffset(void) { return 0; }
348 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
350 static inline u32 arch_gettimeoffset(void) { return 0; }
353 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
357 nsec = delta * tkr->mult + tkr->xtime_nsec;
360 /* If arch requires, add in get_arch_timeoffset() */
361 return nsec + arch_gettimeoffset();
364 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
368 delta = timekeeping_get_delta(tkr);
369 return timekeeping_delta_to_ns(tkr, delta);
372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
376 /* calculate the delta since the last update_wall_time */
377 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
378 return timekeeping_delta_to_ns(tkr, delta);
382 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
383 * @tkr: Timekeeping readout base from which we take the update
385 * We want to use this from any context including NMI and tracing /
386 * instrumenting the timekeeping code itself.
388 * Employ the latch technique; see @raw_write_seqcount_latch.
390 * So if a NMI hits the update of base[0] then it will use base[1]
391 * which is still consistent. In the worst case this can result is a
392 * slightly wrong timestamp (a few nanoseconds). See
393 * @ktime_get_mono_fast_ns.
395 static void update_fast_timekeeper(const struct tk_read_base *tkr,
398 struct tk_read_base *base = tkf->base;
400 /* Force readers off to base[1] */
401 raw_write_seqcount_latch(&tkf->seq);
404 memcpy(base, tkr, sizeof(*base));
406 /* Force readers back to base[0] */
407 raw_write_seqcount_latch(&tkf->seq);
410 memcpy(base + 1, base, sizeof(*base));
414 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416 * This timestamp is not guaranteed to be monotonic across an update.
417 * The timestamp is calculated by:
419 * now = base_mono + clock_delta * slope
421 * So if the update lowers the slope, readers who are forced to the
422 * not yet updated second array are still using the old steeper slope.
431 * |12345678---> reader order
437 * So reader 6 will observe time going backwards versus reader 5.
439 * While other CPUs are likely to be able observe that, the only way
440 * for a CPU local observation is when an NMI hits in the middle of
441 * the update. Timestamps taken from that NMI context might be ahead
442 * of the following timestamps. Callers need to be aware of that and
445 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 struct tk_read_base *tkr;
452 seq = raw_read_seqcount_latch(&tkf->seq);
453 tkr = tkf->base + (seq & 0x01);
454 now = ktime_to_ns(tkr->base);
456 now += timekeeping_delta_to_ns(tkr,
461 } while (read_seqcount_retry(&tkf->seq, seq));
466 u64 ktime_get_mono_fast_ns(void)
468 return __ktime_get_fast_ns(&tk_fast_mono);
470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
472 u64 ktime_get_raw_fast_ns(void)
474 return __ktime_get_fast_ns(&tk_fast_raw);
476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
479 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481 * To keep it NMI safe since we're accessing from tracing, we're not using a
482 * separate timekeeper with updates to monotonic clock and boot offset
483 * protected with seqlocks. This has the following minor side effects:
485 * (1) Its possible that a timestamp be taken after the boot offset is updated
486 * but before the timekeeper is updated. If this happens, the new boot offset
487 * is added to the old timekeeping making the clock appear to update slightly
490 * timekeeping_inject_sleeptime64()
491 * __timekeeping_inject_sleeptime(tk, delta);
493 * timekeeping_update(tk, TK_CLEAR_NTP...);
495 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
496 * partially updated. Since the tk->offs_boot update is a rare event, this
497 * should be a rare occurrence which postprocessing should be able to handle.
499 u64 notrace ktime_get_boot_fast_ns(void)
501 struct timekeeper *tk = &tk_core.timekeeper;
503 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
513 struct tk_read_base *tkr;
518 seq = raw_read_seqcount_latch(&tkf->seq);
519 tkr = tkf->base + (seq & 0x01);
520 now = ktime_to_ns(tkr->base_real);
522 now += timekeeping_delta_to_ns(tkr,
527 } while (read_seqcount_retry(&tkf->seq, seq));
533 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535 u64 ktime_get_real_fast_ns(void)
537 return __ktime_get_real_fast_ns(&tk_fast_mono);
539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
542 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
543 * @tk: Timekeeper to snapshot.
545 * It generally is unsafe to access the clocksource after timekeeping has been
546 * suspended, so take a snapshot of the readout base of @tk and use it as the
547 * fast timekeeper's readout base while suspended. It will return the same
548 * number of cycles every time until timekeeping is resumed at which time the
549 * proper readout base for the fast timekeeper will be restored automatically.
551 static void halt_fast_timekeeper(const struct timekeeper *tk)
553 static struct tk_read_base tkr_dummy;
554 const struct tk_read_base *tkr = &tk->tkr_mono;
556 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557 cycles_at_suspend = tk_clock_read(tkr);
558 tkr_dummy.clock = &dummy_clock;
559 tkr_dummy.base_real = tkr->base + tk->offs_real;
560 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
563 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
564 tkr_dummy.clock = &dummy_clock;
565 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
570 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578 int pvclock_gtod_register_notifier(struct notifier_block *nb)
580 struct timekeeper *tk = &tk_core.timekeeper;
584 raw_spin_lock_irqsave(&timekeeper_lock, flags);
585 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
586 update_pvclock_gtod(tk, true);
587 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
594 * pvclock_gtod_unregister_notifier - unregister a pvclock
595 * timedata update listener
597 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
602 raw_spin_lock_irqsave(&timekeeper_lock, flags);
603 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
604 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
611 * tk_update_leap_state - helper to update the next_leap_ktime
613 static inline void tk_update_leap_state(struct timekeeper *tk)
615 tk->next_leap_ktime = ntp_get_next_leap();
616 if (tk->next_leap_ktime != KTIME_MAX)
617 /* Convert to monotonic time */
618 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622 * Update the ktime_t based scalar nsec members of the timekeeper
624 static inline void tk_update_ktime_data(struct timekeeper *tk)
630 * The xtime based monotonic readout is:
631 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
632 * The ktime based monotonic readout is:
633 * nsec = base_mono + now();
634 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
637 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
638 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
641 * The sum of the nanoseconds portions of xtime and
642 * wall_to_monotonic can be greater/equal one second. Take
643 * this into account before updating tk->ktime_sec.
645 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
646 if (nsec >= NSEC_PER_SEC)
648 tk->ktime_sec = seconds;
650 /* Update the monotonic raw base */
651 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
654 /* must hold timekeeper_lock */
655 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657 if (action & TK_CLEAR_NTP) {
662 tk_update_leap_state(tk);
663 tk_update_ktime_data(tk);
666 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
668 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
669 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
670 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
672 if (action & TK_CLOCK_WAS_SET)
673 tk->clock_was_set_seq++;
675 * The mirroring of the data to the shadow-timekeeper needs
676 * to happen last here to ensure we don't over-write the
677 * timekeeper structure on the next update with stale data
679 if (action & TK_MIRROR)
680 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
681 sizeof(tk_core.timekeeper));
685 * timekeeping_forward_now - update clock to the current time
687 * Forward the current clock to update its state since the last call to
688 * update_wall_time(). This is useful before significant clock changes,
689 * as it avoids having to deal with this time offset explicitly.
691 static void timekeeping_forward_now(struct timekeeper *tk)
693 u64 cycle_now, delta;
695 cycle_now = tk_clock_read(&tk->tkr_mono);
696 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
697 tk->tkr_mono.cycle_last = cycle_now;
698 tk->tkr_raw.cycle_last = cycle_now;
700 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702 /* If arch requires, add in get_arch_timeoffset() */
703 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
706 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
711 tk_normalize_xtime(tk);
715 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
716 * @ts: pointer to the timespec to be set
718 * Returns the time of day in a timespec64 (WARN if suspended).
720 void ktime_get_real_ts64(struct timespec64 *ts)
722 struct timekeeper *tk = &tk_core.timekeeper;
726 WARN_ON(timekeeping_suspended);
729 seq = read_seqcount_begin(&tk_core.seq);
731 ts->tv_sec = tk->xtime_sec;
732 nsecs = timekeeping_get_ns(&tk->tkr_mono);
734 } while (read_seqcount_retry(&tk_core.seq, seq));
737 timespec64_add_ns(ts, nsecs);
739 EXPORT_SYMBOL(ktime_get_real_ts64);
741 ktime_t ktime_get(void)
743 struct timekeeper *tk = &tk_core.timekeeper;
748 WARN_ON(timekeeping_suspended);
751 seq = read_seqcount_begin(&tk_core.seq);
752 base = tk->tkr_mono.base;
753 nsecs = timekeeping_get_ns(&tk->tkr_mono);
755 } while (read_seqcount_retry(&tk_core.seq, seq));
757 return ktime_add_ns(base, nsecs);
759 EXPORT_SYMBOL_GPL(ktime_get);
761 u32 ktime_get_resolution_ns(void)
763 struct timekeeper *tk = &tk_core.timekeeper;
767 WARN_ON(timekeeping_suspended);
770 seq = read_seqcount_begin(&tk_core.seq);
771 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
772 } while (read_seqcount_retry(&tk_core.seq, seq));
776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
778 static ktime_t *offsets[TK_OFFS_MAX] = {
779 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
780 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
781 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
784 ktime_t ktime_get_with_offset(enum tk_offsets offs)
786 struct timekeeper *tk = &tk_core.timekeeper;
788 ktime_t base, *offset = offsets[offs];
791 WARN_ON(timekeeping_suspended);
794 seq = read_seqcount_begin(&tk_core.seq);
795 base = ktime_add(tk->tkr_mono.base, *offset);
796 nsecs = timekeeping_get_ns(&tk->tkr_mono);
798 } while (read_seqcount_retry(&tk_core.seq, seq));
800 return ktime_add_ns(base, nsecs);
803 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
805 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
807 struct timekeeper *tk = &tk_core.timekeeper;
809 ktime_t base, *offset = offsets[offs];
811 WARN_ON(timekeeping_suspended);
814 seq = read_seqcount_begin(&tk_core.seq);
815 base = ktime_add(tk->tkr_mono.base, *offset);
817 } while (read_seqcount_retry(&tk_core.seq, seq));
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
825 * ktime_mono_to_any() - convert mononotic time to any other time
826 * @tmono: time to convert.
827 * @offs: which offset to use
829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
831 ktime_t *offset = offsets[offs];
836 seq = read_seqcount_begin(&tk_core.seq);
837 tconv = ktime_add(tmono, *offset);
838 } while (read_seqcount_retry(&tk_core.seq, seq));
842 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
845 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
847 ktime_t ktime_get_raw(void)
849 struct timekeeper *tk = &tk_core.timekeeper;
855 seq = read_seqcount_begin(&tk_core.seq);
856 base = tk->tkr_raw.base;
857 nsecs = timekeeping_get_ns(&tk->tkr_raw);
859 } while (read_seqcount_retry(&tk_core.seq, seq));
861 return ktime_add_ns(base, nsecs);
863 EXPORT_SYMBOL_GPL(ktime_get_raw);
866 * ktime_get_ts64 - get the monotonic clock in timespec64 format
867 * @ts: pointer to timespec variable
869 * The function calculates the monotonic clock from the realtime
870 * clock and the wall_to_monotonic offset and stores the result
871 * in normalized timespec64 format in the variable pointed to by @ts.
873 void ktime_get_ts64(struct timespec64 *ts)
875 struct timekeeper *tk = &tk_core.timekeeper;
876 struct timespec64 tomono;
880 WARN_ON(timekeeping_suspended);
883 seq = read_seqcount_begin(&tk_core.seq);
884 ts->tv_sec = tk->xtime_sec;
885 nsec = timekeeping_get_ns(&tk->tkr_mono);
886 tomono = tk->wall_to_monotonic;
888 } while (read_seqcount_retry(&tk_core.seq, seq));
890 ts->tv_sec += tomono.tv_sec;
892 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
894 EXPORT_SYMBOL_GPL(ktime_get_ts64);
897 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
899 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901 * works on both 32 and 64 bit systems. On 32 bit systems the readout
902 * covers ~136 years of uptime which should be enough to prevent
903 * premature wrap arounds.
905 time64_t ktime_get_seconds(void)
907 struct timekeeper *tk = &tk_core.timekeeper;
909 WARN_ON(timekeeping_suspended);
910 return tk->ktime_sec;
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
915 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
917 * Returns the wall clock seconds since 1970. This replaces the
918 * get_seconds() interface which is not y2038 safe on 32bit systems.
920 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921 * 32bit systems the access must be protected with the sequence
922 * counter to provide "atomic" access to the 64bit tk->xtime_sec
925 time64_t ktime_get_real_seconds(void)
927 struct timekeeper *tk = &tk_core.timekeeper;
931 if (IS_ENABLED(CONFIG_64BIT))
932 return tk->xtime_sec;
935 seq = read_seqcount_begin(&tk_core.seq);
936 seconds = tk->xtime_sec;
938 } while (read_seqcount_retry(&tk_core.seq, seq));
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
945 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946 * but without the sequence counter protect. This internal function
947 * is called just when timekeeping lock is already held.
949 time64_t __ktime_get_real_seconds(void)
951 struct timekeeper *tk = &tk_core.timekeeper;
953 return tk->xtime_sec;
957 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958 * @systime_snapshot: pointer to struct receiving the system time snapshot
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
962 struct timekeeper *tk = &tk_core.timekeeper;
970 WARN_ON_ONCE(timekeeping_suspended);
973 seq = read_seqcount_begin(&tk_core.seq);
974 now = tk_clock_read(&tk->tkr_mono);
975 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977 base_real = ktime_add(tk->tkr_mono.base,
978 tk_core.timekeeper.offs_real);
979 base_raw = tk->tkr_raw.base;
980 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982 } while (read_seqcount_retry(&tk_core.seq, seq));
984 systime_snapshot->cycles = now;
985 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
995 tmp = div64_u64_rem(*base, div, &rem);
997 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1009 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010 * @history: Snapshot representing start of history
1011 * @partial_history_cycles: Cycle offset into history (fractional part)
1012 * @total_history_cycles: Total history length in cycles
1013 * @discontinuity: True indicates clock was set on history period
1014 * @ts: Cross timestamp that should be adjusted using
1015 * partial/total ratio
1017 * Helper function used by get_device_system_crosststamp() to correct the
1018 * crosstimestamp corresponding to the start of the current interval to the
1019 * system counter value (timestamp point) provided by the driver. The
1020 * total_history_* quantities are the total history starting at the provided
1021 * reference point and ending at the start of the current interval. The cycle
1022 * count between the driver timestamp point and the start of the current
1023 * interval is partial_history_cycles.
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026 u64 partial_history_cycles,
1027 u64 total_history_cycles,
1029 struct system_device_crosststamp *ts)
1031 struct timekeeper *tk = &tk_core.timekeeper;
1032 u64 corr_raw, corr_real;
1033 bool interp_forward;
1036 if (total_history_cycles == 0 || partial_history_cycles == 0)
1039 /* Interpolate shortest distance from beginning or end of history */
1040 interp_forward = partial_history_cycles > total_history_cycles / 2;
1041 partial_history_cycles = interp_forward ?
1042 total_history_cycles - partial_history_cycles :
1043 partial_history_cycles;
1046 * Scale the monotonic raw time delta by:
1047 * partial_history_cycles / total_history_cycles
1049 corr_raw = (u64)ktime_to_ns(
1050 ktime_sub(ts->sys_monoraw, history->raw));
1051 ret = scale64_check_overflow(partial_history_cycles,
1052 total_history_cycles, &corr_raw);
1057 * If there is a discontinuity in the history, scale monotonic raw
1059 * mult(real)/mult(raw) yielding the realtime correction
1060 * Otherwise, calculate the realtime correction similar to monotonic
1063 if (discontinuity) {
1064 corr_real = mul_u64_u32_div
1065 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1067 corr_real = (u64)ktime_to_ns(
1068 ktime_sub(ts->sys_realtime, history->real));
1069 ret = scale64_check_overflow(partial_history_cycles,
1070 total_history_cycles, &corr_real);
1075 /* Fixup monotonic raw and real time time values */
1076 if (interp_forward) {
1077 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1080 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1088 * cycle_between - true if test occurs chronologically between before and after
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1092 if (test > before && test < after)
1094 if (test < before && before > after)
1100 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101 * @get_time_fn: Callback to get simultaneous device time and
1102 * system counter from the device driver
1103 * @ctx: Context passed to get_time_fn()
1104 * @history_begin: Historical reference point used to interpolate system
1105 * time when counter provided by the driver is before the current interval
1106 * @xtstamp: Receives simultaneously captured system and device time
1108 * Reads a timestamp from a device and correlates it to system time
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111 (ktime_t *device_time,
1112 struct system_counterval_t *sys_counterval,
1115 struct system_time_snapshot *history_begin,
1116 struct system_device_crosststamp *xtstamp)
1118 struct system_counterval_t system_counterval;
1119 struct timekeeper *tk = &tk_core.timekeeper;
1120 u64 cycles, now, interval_start;
1121 unsigned int clock_was_set_seq = 0;
1122 ktime_t base_real, base_raw;
1123 u64 nsec_real, nsec_raw;
1124 u8 cs_was_changed_seq;
1130 seq = read_seqcount_begin(&tk_core.seq);
1132 * Try to synchronously capture device time and a system
1133 * counter value calling back into the device driver
1135 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1140 * Verify that the clocksource associated with the captured
1141 * system counter value is the same as the currently installed
1142 * timekeeper clocksource
1144 if (tk->tkr_mono.clock != system_counterval.cs)
1146 cycles = system_counterval.cycles;
1149 * Check whether the system counter value provided by the
1150 * device driver is on the current timekeeping interval.
1152 now = tk_clock_read(&tk->tkr_mono);
1153 interval_start = tk->tkr_mono.cycle_last;
1154 if (!cycle_between(interval_start, cycles, now)) {
1155 clock_was_set_seq = tk->clock_was_set_seq;
1156 cs_was_changed_seq = tk->cs_was_changed_seq;
1157 cycles = interval_start;
1163 base_real = ktime_add(tk->tkr_mono.base,
1164 tk_core.timekeeper.offs_real);
1165 base_raw = tk->tkr_raw.base;
1167 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168 system_counterval.cycles);
1169 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170 system_counterval.cycles);
1171 } while (read_seqcount_retry(&tk_core.seq, seq));
1173 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1177 * Interpolate if necessary, adjusting back from the start of the
1181 u64 partial_history_cycles, total_history_cycles;
1185 * Check that the counter value occurs after the provided
1186 * history reference and that the history doesn't cross a
1187 * clocksource change
1189 if (!history_begin ||
1190 !cycle_between(history_begin->cycles,
1191 system_counterval.cycles, cycles) ||
1192 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1194 partial_history_cycles = cycles - system_counterval.cycles;
1195 total_history_cycles = cycles - history_begin->cycles;
1197 history_begin->clock_was_set_seq != clock_was_set_seq;
1199 ret = adjust_historical_crosststamp(history_begin,
1200 partial_history_cycles,
1201 total_history_cycles,
1202 discontinuity, xtstamp);
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1212 * do_settimeofday64 - Sets the time of day.
1213 * @ts: pointer to the timespec64 variable containing the new time
1215 * Sets the time of day to the new time and update NTP and notify hrtimers
1217 int do_settimeofday64(const struct timespec64 *ts)
1219 struct timekeeper *tk = &tk_core.timekeeper;
1220 struct timespec64 ts_delta, xt;
1221 unsigned long flags;
1224 if (!timespec64_valid_strict(ts))
1227 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1228 write_seqcount_begin(&tk_core.seq);
1230 timekeeping_forward_now(tk);
1233 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1234 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1236 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1241 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1243 tk_set_xtime(tk, ts);
1245 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1247 write_seqcount_end(&tk_core.seq);
1248 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1250 /* signal hrtimers about time change */
1255 EXPORT_SYMBOL(do_settimeofday64);
1258 * timekeeping_inject_offset - Adds or subtracts from the current time.
1259 * @tv: pointer to the timespec variable containing the offset
1261 * Adds or subtracts an offset value from the current time.
1263 static int timekeeping_inject_offset(const struct timespec64 *ts)
1265 struct timekeeper *tk = &tk_core.timekeeper;
1266 unsigned long flags;
1267 struct timespec64 tmp;
1270 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1273 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274 write_seqcount_begin(&tk_core.seq);
1276 timekeeping_forward_now(tk);
1278 /* Make sure the proposed value is valid */
1279 tmp = timespec64_add(tk_xtime(tk), *ts);
1280 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1281 !timespec64_valid_strict(&tmp)) {
1286 tk_xtime_add(tk, ts);
1287 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1289 error: /* even if we error out, we forwarded the time, so call update */
1290 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1292 write_seqcount_end(&tk_core.seq);
1293 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1295 /* signal hrtimers about time change */
1302 * Indicates if there is an offset between the system clock and the hardware
1303 * clock/persistent clock/rtc.
1305 int persistent_clock_is_local;
1308 * Adjust the time obtained from the CMOS to be UTC time instead of
1311 * This is ugly, but preferable to the alternatives. Otherwise we
1312 * would either need to write a program to do it in /etc/rc (and risk
1313 * confusion if the program gets run more than once; it would also be
1314 * hard to make the program warp the clock precisely n hours) or
1315 * compile in the timezone information into the kernel. Bad, bad....
1319 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1320 * as real UNIX machines always do it. This avoids all headaches about
1321 * daylight saving times and warping kernel clocks.
1323 void timekeeping_warp_clock(void)
1325 if (sys_tz.tz_minuteswest != 0) {
1326 struct timespec64 adjust;
1328 persistent_clock_is_local = 1;
1329 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1331 timekeeping_inject_offset(&adjust);
1336 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1339 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1341 tk->tai_offset = tai_offset;
1342 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1346 * change_clocksource - Swaps clocksources if a new one is available
1348 * Accumulates current time interval and initializes new clocksource
1350 static int change_clocksource(void *data)
1352 struct timekeeper *tk = &tk_core.timekeeper;
1353 struct clocksource *new, *old;
1354 unsigned long flags;
1356 new = (struct clocksource *) data;
1358 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359 write_seqcount_begin(&tk_core.seq);
1361 timekeeping_forward_now(tk);
1363 * If the cs is in module, get a module reference. Succeeds
1364 * for built-in code (owner == NULL) as well.
1366 if (try_module_get(new->owner)) {
1367 if (!new->enable || new->enable(new) == 0) {
1368 old = tk->tkr_mono.clock;
1369 tk_setup_internals(tk, new);
1372 module_put(old->owner);
1374 module_put(new->owner);
1377 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1379 write_seqcount_end(&tk_core.seq);
1380 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1386 * timekeeping_notify - Install a new clock source
1387 * @clock: pointer to the clock source
1389 * This function is called from clocksource.c after a new, better clock
1390 * source has been registered. The caller holds the clocksource_mutex.
1392 int timekeeping_notify(struct clocksource *clock)
1394 struct timekeeper *tk = &tk_core.timekeeper;
1396 if (tk->tkr_mono.clock == clock)
1398 stop_machine(change_clocksource, clock, NULL);
1399 tick_clock_notify();
1400 return tk->tkr_mono.clock == clock ? 0 : -1;
1404 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1405 * @ts: pointer to the timespec64 to be set
1407 * Returns the raw monotonic time (completely un-modified by ntp)
1409 void ktime_get_raw_ts64(struct timespec64 *ts)
1411 struct timekeeper *tk = &tk_core.timekeeper;
1416 seq = read_seqcount_begin(&tk_core.seq);
1417 ts->tv_sec = tk->raw_sec;
1418 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1420 } while (read_seqcount_retry(&tk_core.seq, seq));
1423 timespec64_add_ns(ts, nsecs);
1425 EXPORT_SYMBOL(ktime_get_raw_ts64);
1429 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1431 int timekeeping_valid_for_hres(void)
1433 struct timekeeper *tk = &tk_core.timekeeper;
1438 seq = read_seqcount_begin(&tk_core.seq);
1440 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1442 } while (read_seqcount_retry(&tk_core.seq, seq));
1448 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1450 u64 timekeeping_max_deferment(void)
1452 struct timekeeper *tk = &tk_core.timekeeper;
1457 seq = read_seqcount_begin(&tk_core.seq);
1459 ret = tk->tkr_mono.clock->max_idle_ns;
1461 } while (read_seqcount_retry(&tk_core.seq, seq));
1467 * read_persistent_clock - Return time from the persistent clock.
1469 * Weak dummy function for arches that do not yet support it.
1470 * Reads the time from the battery backed persistent clock.
1471 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1473 * XXX - Do be sure to remove it once all arches implement it.
1475 void __weak read_persistent_clock(struct timespec *ts)
1481 void __weak read_persistent_clock64(struct timespec64 *ts64)
1485 read_persistent_clock(&ts);
1486 *ts64 = timespec_to_timespec64(ts);
1490 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1493 * Weak dummy function for arches that do not yet support it.
1494 * wall_time - current time as returned by persistent clock
1495 * boot_offset - offset that is defined as wall_time - boot_time
1496 * The default function calculates offset based on the current value of
1497 * local_clock(). This way architectures that support sched_clock() but don't
1498 * support dedicated boot time clock will provide the best estimate of the
1502 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1503 struct timespec64 *boot_offset)
1505 read_persistent_clock64(wall_time);
1506 *boot_offset = ns_to_timespec64(local_clock());
1510 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1512 * The flag starts of false and is only set when a suspend reaches
1513 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1514 * timekeeper clocksource is not stopping across suspend and has been
1515 * used to update sleep time. If the timekeeper clocksource has stopped
1516 * then the flag stays true and is used by the RTC resume code to decide
1517 * whether sleeptime must be injected and if so the flag gets false then.
1519 * If a suspend fails before reaching timekeeping_resume() then the flag
1520 * stays false and prevents erroneous sleeptime injection.
1522 static bool suspend_timing_needed;
1524 /* Flag for if there is a persistent clock on this platform */
1525 static bool persistent_clock_exists;
1528 * timekeeping_init - Initializes the clocksource and common timekeeping values
1530 void __init timekeeping_init(void)
1532 struct timespec64 wall_time, boot_offset, wall_to_mono;
1533 struct timekeeper *tk = &tk_core.timekeeper;
1534 struct clocksource *clock;
1535 unsigned long flags;
1537 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1538 if (timespec64_valid_strict(&wall_time) &&
1539 timespec64_to_ns(&wall_time) > 0) {
1540 persistent_clock_exists = true;
1541 } else if (timespec64_to_ns(&wall_time) != 0) {
1542 pr_warn("Persistent clock returned invalid value");
1543 wall_time = (struct timespec64){0};
1546 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1547 boot_offset = (struct timespec64){0};
1550 * We want set wall_to_mono, so the following is true:
1551 * wall time + wall_to_mono = boot time
1553 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1555 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1556 write_seqcount_begin(&tk_core.seq);
1559 clock = clocksource_default_clock();
1561 clock->enable(clock);
1562 tk_setup_internals(tk, clock);
1564 tk_set_xtime(tk, &wall_time);
1567 tk_set_wall_to_mono(tk, wall_to_mono);
1569 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1571 write_seqcount_end(&tk_core.seq);
1572 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1575 /* time in seconds when suspend began for persistent clock */
1576 static struct timespec64 timekeeping_suspend_time;
1579 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1580 * @delta: pointer to a timespec delta value
1582 * Takes a timespec offset measuring a suspend interval and properly
1583 * adds the sleep offset to the timekeeping variables.
1585 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1586 const struct timespec64 *delta)
1588 if (!timespec64_valid_strict(delta)) {
1589 printk_deferred(KERN_WARNING
1590 "__timekeeping_inject_sleeptime: Invalid "
1591 "sleep delta value!\n");
1594 tk_xtime_add(tk, delta);
1595 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1596 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1597 tk_debug_account_sleep_time(delta);
1600 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1602 * We have three kinds of time sources to use for sleep time
1603 * injection, the preference order is:
1604 * 1) non-stop clocksource
1605 * 2) persistent clock (ie: RTC accessible when irqs are off)
1608 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1609 * If system has neither 1) nor 2), 3) will be used finally.
1612 * If timekeeping has injected sleeptime via either 1) or 2),
1613 * 3) becomes needless, so in this case we don't need to call
1614 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1617 bool timekeeping_rtc_skipresume(void)
1619 return !suspend_timing_needed;
1623 * 1) can be determined whether to use or not only when doing
1624 * timekeeping_resume() which is invoked after rtc_suspend(),
1625 * so we can't skip rtc_suspend() surely if system has 1).
1627 * But if system has 2), 2) will definitely be used, so in this
1628 * case we don't need to call rtc_suspend(), and this is what
1629 * timekeeping_rtc_skipsuspend() means.
1631 bool timekeeping_rtc_skipsuspend(void)
1633 return persistent_clock_exists;
1637 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1638 * @delta: pointer to a timespec64 delta value
1640 * This hook is for architectures that cannot support read_persistent_clock64
1641 * because their RTC/persistent clock is only accessible when irqs are enabled.
1642 * and also don't have an effective nonstop clocksource.
1644 * This function should only be called by rtc_resume(), and allows
1645 * a suspend offset to be injected into the timekeeping values.
1647 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1649 struct timekeeper *tk = &tk_core.timekeeper;
1650 unsigned long flags;
1652 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653 write_seqcount_begin(&tk_core.seq);
1655 suspend_timing_needed = false;
1657 timekeeping_forward_now(tk);
1659 __timekeeping_inject_sleeptime(tk, delta);
1661 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1663 write_seqcount_end(&tk_core.seq);
1664 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1666 /* signal hrtimers about time change */
1672 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1674 void timekeeping_resume(void)
1676 struct timekeeper *tk = &tk_core.timekeeper;
1677 struct clocksource *clock = tk->tkr_mono.clock;
1678 unsigned long flags;
1679 struct timespec64 ts_new, ts_delta;
1680 u64 cycle_now, nsec;
1681 bool inject_sleeptime = false;
1683 read_persistent_clock64(&ts_new);
1685 clockevents_resume();
1686 clocksource_resume();
1688 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1689 write_seqcount_begin(&tk_core.seq);
1692 * After system resumes, we need to calculate the suspended time and
1693 * compensate it for the OS time. There are 3 sources that could be
1694 * used: Nonstop clocksource during suspend, persistent clock and rtc
1697 * One specific platform may have 1 or 2 or all of them, and the
1698 * preference will be:
1699 * suspend-nonstop clocksource -> persistent clock -> rtc
1700 * The less preferred source will only be tried if there is no better
1701 * usable source. The rtc part is handled separately in rtc core code.
1703 cycle_now = tk_clock_read(&tk->tkr_mono);
1704 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1706 ts_delta = ns_to_timespec64(nsec);
1707 inject_sleeptime = true;
1708 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1709 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1710 inject_sleeptime = true;
1713 if (inject_sleeptime) {
1714 suspend_timing_needed = false;
1715 __timekeeping_inject_sleeptime(tk, &ts_delta);
1718 /* Re-base the last cycle value */
1719 tk->tkr_mono.cycle_last = cycle_now;
1720 tk->tkr_raw.cycle_last = cycle_now;
1723 timekeeping_suspended = 0;
1724 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1725 write_seqcount_end(&tk_core.seq);
1726 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 touch_softlockup_watchdog();
1734 int timekeeping_suspend(void)
1736 struct timekeeper *tk = &tk_core.timekeeper;
1737 unsigned long flags;
1738 struct timespec64 delta, delta_delta;
1739 static struct timespec64 old_delta;
1740 struct clocksource *curr_clock;
1743 read_persistent_clock64(&timekeeping_suspend_time);
1746 * On some systems the persistent_clock can not be detected at
1747 * timekeeping_init by its return value, so if we see a valid
1748 * value returned, update the persistent_clock_exists flag.
1750 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1751 persistent_clock_exists = true;
1753 suspend_timing_needed = true;
1755 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1756 write_seqcount_begin(&tk_core.seq);
1757 timekeeping_forward_now(tk);
1758 timekeeping_suspended = 1;
1761 * Since we've called forward_now, cycle_last stores the value
1762 * just read from the current clocksource. Save this to potentially
1763 * use in suspend timing.
1765 curr_clock = tk->tkr_mono.clock;
1766 cycle_now = tk->tkr_mono.cycle_last;
1767 clocksource_start_suspend_timing(curr_clock, cycle_now);
1769 if (persistent_clock_exists) {
1771 * To avoid drift caused by repeated suspend/resumes,
1772 * which each can add ~1 second drift error,
1773 * try to compensate so the difference in system time
1774 * and persistent_clock time stays close to constant.
1776 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1777 delta_delta = timespec64_sub(delta, old_delta);
1778 if (abs(delta_delta.tv_sec) >= 2) {
1780 * if delta_delta is too large, assume time correction
1781 * has occurred and set old_delta to the current delta.
1785 /* Otherwise try to adjust old_system to compensate */
1786 timekeeping_suspend_time =
1787 timespec64_add(timekeeping_suspend_time, delta_delta);
1791 timekeeping_update(tk, TK_MIRROR);
1792 halt_fast_timekeeper(tk);
1793 write_seqcount_end(&tk_core.seq);
1794 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1797 clocksource_suspend();
1798 clockevents_suspend();
1803 /* sysfs resume/suspend bits for timekeeping */
1804 static struct syscore_ops timekeeping_syscore_ops = {
1805 .resume = timekeeping_resume,
1806 .suspend = timekeeping_suspend,
1809 static int __init timekeeping_init_ops(void)
1811 register_syscore_ops(&timekeeping_syscore_ops);
1814 device_initcall(timekeeping_init_ops);
1817 * Apply a multiplier adjustment to the timekeeper
1819 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1823 s64 interval = tk->cycle_interval;
1825 if (mult_adj == 0) {
1827 } else if (mult_adj == -1) {
1828 interval = -interval;
1830 } else if (mult_adj != 1) {
1831 interval *= mult_adj;
1836 * So the following can be confusing.
1838 * To keep things simple, lets assume mult_adj == 1 for now.
1840 * When mult_adj != 1, remember that the interval and offset values
1841 * have been appropriately scaled so the math is the same.
1843 * The basic idea here is that we're increasing the multiplier
1844 * by one, this causes the xtime_interval to be incremented by
1845 * one cycle_interval. This is because:
1846 * xtime_interval = cycle_interval * mult
1847 * So if mult is being incremented by one:
1848 * xtime_interval = cycle_interval * (mult + 1)
1850 * xtime_interval = (cycle_interval * mult) + cycle_interval
1851 * Which can be shortened to:
1852 * xtime_interval += cycle_interval
1854 * So offset stores the non-accumulated cycles. Thus the current
1855 * time (in shifted nanoseconds) is:
1856 * now = (offset * adj) + xtime_nsec
1857 * Now, even though we're adjusting the clock frequency, we have
1858 * to keep time consistent. In other words, we can't jump back
1859 * in time, and we also want to avoid jumping forward in time.
1861 * So given the same offset value, we need the time to be the same
1862 * both before and after the freq adjustment.
1863 * now = (offset * adj_1) + xtime_nsec_1
1864 * now = (offset * adj_2) + xtime_nsec_2
1866 * (offset * adj_1) + xtime_nsec_1 =
1867 * (offset * adj_2) + xtime_nsec_2
1871 * (offset * adj_1) + xtime_nsec_1 =
1872 * (offset * (adj_1+1)) + xtime_nsec_2
1873 * (offset * adj_1) + xtime_nsec_1 =
1874 * (offset * adj_1) + offset + xtime_nsec_2
1875 * Canceling the sides:
1876 * xtime_nsec_1 = offset + xtime_nsec_2
1878 * xtime_nsec_2 = xtime_nsec_1 - offset
1879 * Which simplfies to:
1880 * xtime_nsec -= offset
1882 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1883 /* NTP adjustment caused clocksource mult overflow */
1888 tk->tkr_mono.mult += mult_adj;
1889 tk->xtime_interval += interval;
1890 tk->tkr_mono.xtime_nsec -= offset;
1894 * Adjust the timekeeper's multiplier to the correct frequency
1895 * and also to reduce the accumulated error value.
1897 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1902 * Determine the multiplier from the current NTP tick length.
1903 * Avoid expensive division when the tick length doesn't change.
1905 if (likely(tk->ntp_tick == ntp_tick_length())) {
1906 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1908 tk->ntp_tick = ntp_tick_length();
1909 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1910 tk->xtime_remainder, tk->cycle_interval);
1914 * If the clock is behind the NTP time, increase the multiplier by 1
1915 * to catch up with it. If it's ahead and there was a remainder in the
1916 * tick division, the clock will slow down. Otherwise it will stay
1917 * ahead until the tick length changes to a non-divisible value.
1919 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1920 mult += tk->ntp_err_mult;
1922 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1924 if (unlikely(tk->tkr_mono.clock->maxadj &&
1925 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1926 > tk->tkr_mono.clock->maxadj))) {
1927 printk_once(KERN_WARNING
1928 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1929 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1930 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1934 * It may be possible that when we entered this function, xtime_nsec
1935 * was very small. Further, if we're slightly speeding the clocksource
1936 * in the code above, its possible the required corrective factor to
1937 * xtime_nsec could cause it to underflow.
1939 * Now, since we have already accumulated the second and the NTP
1940 * subsystem has been notified via second_overflow(), we need to skip
1943 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1944 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1947 tk->skip_second_overflow = 1;
1952 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1954 * Helper function that accumulates the nsecs greater than a second
1955 * from the xtime_nsec field to the xtime_secs field.
1956 * It also calls into the NTP code to handle leapsecond processing.
1959 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1961 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1962 unsigned int clock_set = 0;
1964 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 tk->tkr_mono.xtime_nsec -= nsecps;
1971 * Skip NTP update if this second was accumulated before,
1972 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1974 if (unlikely(tk->skip_second_overflow)) {
1975 tk->skip_second_overflow = 0;
1979 /* Figure out if its a leap sec and apply if needed */
1980 leap = second_overflow(tk->xtime_sec);
1981 if (unlikely(leap)) {
1982 struct timespec64 ts;
1984 tk->xtime_sec += leap;
1988 tk_set_wall_to_mono(tk,
1989 timespec64_sub(tk->wall_to_monotonic, ts));
1991 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1993 clock_set = TK_CLOCK_WAS_SET;
2000 * logarithmic_accumulation - shifted accumulation of cycles
2002 * This functions accumulates a shifted interval of cycles into
2003 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2006 * Returns the unconsumed cycles.
2008 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2009 u32 shift, unsigned int *clock_set)
2011 u64 interval = tk->cycle_interval << shift;
2014 /* If the offset is smaller than a shifted interval, do nothing */
2015 if (offset < interval)
2018 /* Accumulate one shifted interval */
2020 tk->tkr_mono.cycle_last += interval;
2021 tk->tkr_raw.cycle_last += interval;
2023 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2024 *clock_set |= accumulate_nsecs_to_secs(tk);
2026 /* Accumulate raw time */
2027 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2028 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2029 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2030 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2034 /* Accumulate error between NTP and clock interval */
2035 tk->ntp_error += tk->ntp_tick << shift;
2036 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2037 (tk->ntp_error_shift + shift);
2043 * timekeeping_advance - Updates the timekeeper to the current time and
2044 * current NTP tick length
2046 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2048 struct timekeeper *real_tk = &tk_core.timekeeper;
2049 struct timekeeper *tk = &shadow_timekeeper;
2051 int shift = 0, maxshift;
2052 unsigned int clock_set = 0;
2053 unsigned long flags;
2055 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2057 /* Make sure we're fully resumed: */
2058 if (unlikely(timekeeping_suspended))
2061 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2062 offset = real_tk->cycle_interval;
2064 if (mode != TK_ADV_TICK)
2067 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2068 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2070 /* Check if there's really nothing to do */
2071 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2075 /* Do some additional sanity checking */
2076 timekeeping_check_update(tk, offset);
2079 * With NO_HZ we may have to accumulate many cycle_intervals
2080 * (think "ticks") worth of time at once. To do this efficiently,
2081 * we calculate the largest doubling multiple of cycle_intervals
2082 * that is smaller than the offset. We then accumulate that
2083 * chunk in one go, and then try to consume the next smaller
2086 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2087 shift = max(0, shift);
2088 /* Bound shift to one less than what overflows tick_length */
2089 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2090 shift = min(shift, maxshift);
2091 while (offset >= tk->cycle_interval) {
2092 offset = logarithmic_accumulation(tk, offset, shift,
2094 if (offset < tk->cycle_interval<<shift)
2098 /* Adjust the multiplier to correct NTP error */
2099 timekeeping_adjust(tk, offset);
2102 * Finally, make sure that after the rounding
2103 * xtime_nsec isn't larger than NSEC_PER_SEC
2105 clock_set |= accumulate_nsecs_to_secs(tk);
2107 write_seqcount_begin(&tk_core.seq);
2109 * Update the real timekeeper.
2111 * We could avoid this memcpy by switching pointers, but that
2112 * requires changes to all other timekeeper usage sites as
2113 * well, i.e. move the timekeeper pointer getter into the
2114 * spinlocked/seqcount protected sections. And we trade this
2115 * memcpy under the tk_core.seq against one before we start
2118 timekeeping_update(tk, clock_set);
2119 memcpy(real_tk, tk, sizeof(*tk));
2120 /* The memcpy must come last. Do not put anything here! */
2121 write_seqcount_end(&tk_core.seq);
2123 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2125 /* Have to call _delayed version, since in irq context*/
2126 clock_was_set_delayed();
2130 * update_wall_time - Uses the current clocksource to increment the wall time
2133 void update_wall_time(void)
2135 timekeeping_advance(TK_ADV_TICK);
2139 * getboottime64 - Return the real time of system boot.
2140 * @ts: pointer to the timespec64 to be set
2142 * Returns the wall-time of boot in a timespec64.
2144 * This is based on the wall_to_monotonic offset and the total suspend
2145 * time. Calls to settimeofday will affect the value returned (which
2146 * basically means that however wrong your real time clock is at boot time,
2147 * you get the right time here).
2149 void getboottime64(struct timespec64 *ts)
2151 struct timekeeper *tk = &tk_core.timekeeper;
2152 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2154 *ts = ktime_to_timespec64(t);
2156 EXPORT_SYMBOL_GPL(getboottime64);
2158 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2160 struct timekeeper *tk = &tk_core.timekeeper;
2164 seq = read_seqcount_begin(&tk_core.seq);
2167 } while (read_seqcount_retry(&tk_core.seq, seq));
2169 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2171 void ktime_get_coarse_ts64(struct timespec64 *ts)
2173 struct timekeeper *tk = &tk_core.timekeeper;
2174 struct timespec64 now, mono;
2178 seq = read_seqcount_begin(&tk_core.seq);
2181 mono = tk->wall_to_monotonic;
2182 } while (read_seqcount_retry(&tk_core.seq, seq));
2184 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2185 now.tv_nsec + mono.tv_nsec);
2187 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2190 * Must hold jiffies_lock
2192 void do_timer(unsigned long ticks)
2194 jiffies_64 += ticks;
2195 calc_global_load(ticks);
2199 * ktime_get_update_offsets_now - hrtimer helper
2200 * @cwsseq: pointer to check and store the clock was set sequence number
2201 * @offs_real: pointer to storage for monotonic -> realtime offset
2202 * @offs_boot: pointer to storage for monotonic -> boottime offset
2203 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2205 * Returns current monotonic time and updates the offsets if the
2206 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2209 * Called from hrtimer_interrupt() or retrigger_next_event()
2211 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2212 ktime_t *offs_boot, ktime_t *offs_tai)
2214 struct timekeeper *tk = &tk_core.timekeeper;
2220 seq = read_seqcount_begin(&tk_core.seq);
2222 base = tk->tkr_mono.base;
2223 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2224 base = ktime_add_ns(base, nsecs);
2226 if (*cwsseq != tk->clock_was_set_seq) {
2227 *cwsseq = tk->clock_was_set_seq;
2228 *offs_real = tk->offs_real;
2229 *offs_boot = tk->offs_boot;
2230 *offs_tai = tk->offs_tai;
2233 /* Handle leapsecond insertion adjustments */
2234 if (unlikely(base >= tk->next_leap_ktime))
2235 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2237 } while (read_seqcount_retry(&tk_core.seq, seq));
2243 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2245 static int timekeeping_validate_timex(const struct timex *txc)
2247 if (txc->modes & ADJ_ADJTIME) {
2248 /* singleshot must not be used with any other mode bits */
2249 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2251 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2252 !capable(CAP_SYS_TIME))
2255 /* In order to modify anything, you gotta be super-user! */
2256 if (txc->modes && !capable(CAP_SYS_TIME))
2259 * if the quartz is off by more than 10% then
2260 * something is VERY wrong!
2262 if (txc->modes & ADJ_TICK &&
2263 (txc->tick < 900000/USER_HZ ||
2264 txc->tick > 1100000/USER_HZ))
2268 if (txc->modes & ADJ_SETOFFSET) {
2269 /* In order to inject time, you gotta be super-user! */
2270 if (!capable(CAP_SYS_TIME))
2274 * Validate if a timespec/timeval used to inject a time
2275 * offset is valid. Offsets can be postive or negative, so
2276 * we don't check tv_sec. The value of the timeval/timespec
2277 * is the sum of its fields,but *NOTE*:
2278 * The field tv_usec/tv_nsec must always be non-negative and
2279 * we can't have more nanoseconds/microseconds than a second.
2281 if (txc->time.tv_usec < 0)
2284 if (txc->modes & ADJ_NANO) {
2285 if (txc->time.tv_usec >= NSEC_PER_SEC)
2288 if (txc->time.tv_usec >= USEC_PER_SEC)
2294 * Check for potential multiplication overflows that can
2295 * only happen on 64-bit systems:
2297 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2298 if (LLONG_MIN / PPM_SCALE > txc->freq)
2300 if (LLONG_MAX / PPM_SCALE < txc->freq)
2309 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2311 int do_adjtimex(struct timex *txc)
2313 struct timekeeper *tk = &tk_core.timekeeper;
2314 unsigned long flags;
2315 struct timespec64 ts;
2319 /* Validate the data before disabling interrupts */
2320 ret = timekeeping_validate_timex(txc);
2324 if (txc->modes & ADJ_SETOFFSET) {
2325 struct timespec64 delta;
2326 delta.tv_sec = txc->time.tv_sec;
2327 delta.tv_nsec = txc->time.tv_usec;
2328 if (!(txc->modes & ADJ_NANO))
2329 delta.tv_nsec *= 1000;
2330 ret = timekeeping_inject_offset(&delta);
2335 ktime_get_real_ts64(&ts);
2337 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2338 write_seqcount_begin(&tk_core.seq);
2340 orig_tai = tai = tk->tai_offset;
2341 ret = __do_adjtimex(txc, &ts, &tai);
2343 if (tai != orig_tai) {
2344 __timekeeping_set_tai_offset(tk, tai);
2345 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2347 tk_update_leap_state(tk);
2349 write_seqcount_end(&tk_core.seq);
2350 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2352 /* Update the multiplier immediately if frequency was set directly */
2353 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2354 timekeeping_advance(TK_ADV_FREQ);
2356 if (tai != orig_tai)
2359 ntp_notify_cmos_timer();
2364 #ifdef CONFIG_NTP_PPS
2366 * hardpps() - Accessor function to NTP __hardpps function
2368 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2370 unsigned long flags;
2372 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2373 write_seqcount_begin(&tk_core.seq);
2375 __hardpps(phase_ts, raw_ts);
2377 write_seqcount_end(&tk_core.seq);
2378 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2380 EXPORT_SYMBOL(hardpps);
2381 #endif /* CONFIG_NTP_PPS */
2384 * xtime_update() - advances the timekeeping infrastructure
2385 * @ticks: number of ticks, that have elapsed since the last call.
2387 * Must be called with interrupts disabled.
2389 void xtime_update(unsigned long ticks)
2391 write_seqlock(&jiffies_lock);
2393 write_sequnlock(&jiffies_lock);