1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_verifier.h>
19 #include <linux/filter.h>
20 #include <net/netlink.h>
21 #include <linux/file.h>
22 #include <linux/vmalloc.h>
23 #include <linux/stringify.h>
24 #include <linux/bsearch.h>
25 #include <linux/sort.h>
26 #include <linux/perf_event.h>
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name) \
32 [_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #include <linux/bpf_types.h>
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
170 struct bpf_verifier_state st;
173 struct bpf_verifier_stack_elem *next;
176 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
177 #define BPF_COMPLEXITY_LIMIT_STACK 1024
178 #define BPF_COMPLEXITY_LIMIT_STATES 64
180 #define BPF_MAP_PTR_UNPRIV 1UL
181 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
182 POISON_POINTER_DELTA))
183 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
185 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
187 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
192 return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
196 const struct bpf_map *map, bool unpriv)
198 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
199 unpriv |= bpf_map_ptr_unpriv(aux);
200 aux->map_state = (unsigned long)map |
201 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 struct bpf_call_arg_meta {
205 struct bpf_map *map_ptr;
210 s64 msize_smax_value;
211 u64 msize_umax_value;
215 static DEFINE_MUTEX(bpf_verifier_lock);
217 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
222 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
224 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
225 "verifier log line truncated - local buffer too short\n");
227 n = min(log->len_total - log->len_used - 1, n);
230 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
236 /* log_level controls verbosity level of eBPF verifier.
237 * bpf_verifier_log_write() is used to dump the verification trace to the log,
238 * so the user can figure out what's wrong with the program
240 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
241 const char *fmt, ...)
245 if (!bpf_verifier_log_needed(&env->log))
249 bpf_verifier_vlog(&env->log, fmt, args);
252 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
254 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
256 struct bpf_verifier_env *env = private_data;
259 if (!bpf_verifier_log_needed(&env->log))
263 bpf_verifier_vlog(&env->log, fmt, args);
267 static bool type_is_pkt_pointer(enum bpf_reg_type type)
269 return type == PTR_TO_PACKET ||
270 type == PTR_TO_PACKET_META;
273 static bool reg_type_may_be_null(enum bpf_reg_type type)
275 return type == PTR_TO_MAP_VALUE_OR_NULL ||
276 type == PTR_TO_SOCKET_OR_NULL;
279 static bool type_is_refcounted(enum bpf_reg_type type)
281 return type == PTR_TO_SOCKET;
284 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
286 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
289 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
291 return type_is_refcounted(reg->type);
294 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
296 return type_is_refcounted_or_null(reg->type);
299 static bool arg_type_is_refcounted(enum bpf_arg_type type)
301 return type == ARG_PTR_TO_SOCKET;
304 /* Determine whether the function releases some resources allocated by another
305 * function call. The first reference type argument will be assumed to be
306 * released by release_reference().
308 static bool is_release_function(enum bpf_func_id func_id)
310 return func_id == BPF_FUNC_sk_release;
313 /* string representation of 'enum bpf_reg_type' */
314 static const char * const reg_type_str[] = {
316 [SCALAR_VALUE] = "inv",
317 [PTR_TO_CTX] = "ctx",
318 [CONST_PTR_TO_MAP] = "map_ptr",
319 [PTR_TO_MAP_VALUE] = "map_value",
320 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
321 [PTR_TO_STACK] = "fp",
322 [PTR_TO_PACKET] = "pkt",
323 [PTR_TO_PACKET_META] = "pkt_meta",
324 [PTR_TO_PACKET_END] = "pkt_end",
325 [PTR_TO_FLOW_KEYS] = "flow_keys",
326 [PTR_TO_SOCKET] = "sock",
327 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
330 static char slot_type_char[] = {
331 [STACK_INVALID] = '?',
337 static void print_liveness(struct bpf_verifier_env *env,
338 enum bpf_reg_liveness live)
340 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
342 if (live & REG_LIVE_READ)
344 if (live & REG_LIVE_WRITTEN)
348 static struct bpf_func_state *func(struct bpf_verifier_env *env,
349 const struct bpf_reg_state *reg)
351 struct bpf_verifier_state *cur = env->cur_state;
353 return cur->frame[reg->frameno];
356 static void print_verifier_state(struct bpf_verifier_env *env,
357 const struct bpf_func_state *state)
359 const struct bpf_reg_state *reg;
364 verbose(env, " frame%d:", state->frameno);
365 for (i = 0; i < MAX_BPF_REG; i++) {
366 reg = &state->regs[i];
370 verbose(env, " R%d", i);
371 print_liveness(env, reg->live);
372 verbose(env, "=%s", reg_type_str[t]);
373 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
374 tnum_is_const(reg->var_off)) {
375 /* reg->off should be 0 for SCALAR_VALUE */
376 verbose(env, "%lld", reg->var_off.value + reg->off);
377 if (t == PTR_TO_STACK)
378 verbose(env, ",call_%d", func(env, reg)->callsite);
380 verbose(env, "(id=%d", reg->id);
381 if (t != SCALAR_VALUE)
382 verbose(env, ",off=%d", reg->off);
383 if (type_is_pkt_pointer(t))
384 verbose(env, ",r=%d", reg->range);
385 else if (t == CONST_PTR_TO_MAP ||
386 t == PTR_TO_MAP_VALUE ||
387 t == PTR_TO_MAP_VALUE_OR_NULL)
388 verbose(env, ",ks=%d,vs=%d",
389 reg->map_ptr->key_size,
390 reg->map_ptr->value_size);
391 if (tnum_is_const(reg->var_off)) {
392 /* Typically an immediate SCALAR_VALUE, but
393 * could be a pointer whose offset is too big
396 verbose(env, ",imm=%llx", reg->var_off.value);
398 if (reg->smin_value != reg->umin_value &&
399 reg->smin_value != S64_MIN)
400 verbose(env, ",smin_value=%lld",
401 (long long)reg->smin_value);
402 if (reg->smax_value != reg->umax_value &&
403 reg->smax_value != S64_MAX)
404 verbose(env, ",smax_value=%lld",
405 (long long)reg->smax_value);
406 if (reg->umin_value != 0)
407 verbose(env, ",umin_value=%llu",
408 (unsigned long long)reg->umin_value);
409 if (reg->umax_value != U64_MAX)
410 verbose(env, ",umax_value=%llu",
411 (unsigned long long)reg->umax_value);
412 if (!tnum_is_unknown(reg->var_off)) {
415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 verbose(env, ",var_off=%s", tn_buf);
422 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
423 char types_buf[BPF_REG_SIZE + 1];
427 for (j = 0; j < BPF_REG_SIZE; j++) {
428 if (state->stack[i].slot_type[j] != STACK_INVALID)
430 types_buf[j] = slot_type_char[
431 state->stack[i].slot_type[j]];
433 types_buf[BPF_REG_SIZE] = 0;
436 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
437 print_liveness(env, state->stack[i].spilled_ptr.live);
438 if (state->stack[i].slot_type[0] == STACK_SPILL)
440 reg_type_str[state->stack[i].spilled_ptr.type]);
442 verbose(env, "=%s", types_buf);
444 if (state->acquired_refs && state->refs[0].id) {
445 verbose(env, " refs=%d", state->refs[0].id);
446 for (i = 1; i < state->acquired_refs; i++)
447 if (state->refs[i].id)
448 verbose(env, ",%d", state->refs[i].id);
453 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
454 static int copy_##NAME##_state(struct bpf_func_state *dst, \
455 const struct bpf_func_state *src) \
459 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
460 /* internal bug, make state invalid to reject the program */ \
461 memset(dst, 0, sizeof(*dst)); \
464 memcpy(dst->FIELD, src->FIELD, \
465 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
468 /* copy_reference_state() */
469 COPY_STATE_FN(reference, acquired_refs, refs, 1)
470 /* copy_stack_state() */
471 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
474 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
475 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
478 u32 old_size = state->COUNT; \
479 struct bpf_##NAME##_state *new_##FIELD; \
480 int slot = size / SIZE; \
482 if (size <= old_size || !size) { \
485 state->COUNT = slot * SIZE; \
486 if (!size && old_size) { \
487 kfree(state->FIELD); \
488 state->FIELD = NULL; \
492 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
498 memcpy(new_##FIELD, state->FIELD, \
499 sizeof(*new_##FIELD) * (old_size / SIZE)); \
500 memset(new_##FIELD + old_size / SIZE, 0, \
501 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
503 state->COUNT = slot * SIZE; \
504 kfree(state->FIELD); \
505 state->FIELD = new_##FIELD; \
508 /* realloc_reference_state() */
509 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
510 /* realloc_stack_state() */
511 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
512 #undef REALLOC_STATE_FN
514 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
515 * make it consume minimal amount of memory. check_stack_write() access from
516 * the program calls into realloc_func_state() to grow the stack size.
517 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
518 * which realloc_stack_state() copies over. It points to previous
519 * bpf_verifier_state which is never reallocated.
521 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
522 int refs_size, bool copy_old)
524 int err = realloc_reference_state(state, refs_size, copy_old);
527 return realloc_stack_state(state, stack_size, copy_old);
530 /* Acquire a pointer id from the env and update the state->refs to include
531 * this new pointer reference.
532 * On success, returns a valid pointer id to associate with the register
533 * On failure, returns a negative errno.
535 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
537 struct bpf_func_state *state = cur_func(env);
538 int new_ofs = state->acquired_refs;
541 err = realloc_reference_state(state, state->acquired_refs + 1, true);
545 state->refs[new_ofs].id = id;
546 state->refs[new_ofs].insn_idx = insn_idx;
551 /* release function corresponding to acquire_reference_state(). Idempotent. */
552 static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
559 last_idx = state->acquired_refs - 1;
560 for (i = 0; i < state->acquired_refs; i++) {
561 if (state->refs[i].id == ptr_id) {
562 if (last_idx && i != last_idx)
563 memcpy(&state->refs[i], &state->refs[last_idx],
564 sizeof(*state->refs));
565 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
566 state->acquired_refs--;
573 /* variation on the above for cases where we expect that there must be an
574 * outstanding reference for the specified ptr_id.
576 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
578 struct bpf_func_state *state = cur_func(env);
581 err = __release_reference_state(state, ptr_id);
582 if (WARN_ON_ONCE(err != 0))
583 verbose(env, "verifier internal error: can't release reference\n");
587 static int transfer_reference_state(struct bpf_func_state *dst,
588 struct bpf_func_state *src)
590 int err = realloc_reference_state(dst, src->acquired_refs, false);
593 err = copy_reference_state(dst, src);
599 static void free_func_state(struct bpf_func_state *state)
608 static void free_verifier_state(struct bpf_verifier_state *state,
613 for (i = 0; i <= state->curframe; i++) {
614 free_func_state(state->frame[i]);
615 state->frame[i] = NULL;
621 /* copy verifier state from src to dst growing dst stack space
622 * when necessary to accommodate larger src stack
624 static int copy_func_state(struct bpf_func_state *dst,
625 const struct bpf_func_state *src)
629 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
633 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
634 err = copy_reference_state(dst, src);
637 return copy_stack_state(dst, src);
640 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
641 const struct bpf_verifier_state *src)
643 struct bpf_func_state *dst;
646 /* if dst has more stack frames then src frame, free them */
647 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
648 free_func_state(dst_state->frame[i]);
649 dst_state->frame[i] = NULL;
651 dst_state->curframe = src->curframe;
652 for (i = 0; i <= src->curframe; i++) {
653 dst = dst_state->frame[i];
655 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
658 dst_state->frame[i] = dst;
660 err = copy_func_state(dst, src->frame[i]);
667 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
670 struct bpf_verifier_state *cur = env->cur_state;
671 struct bpf_verifier_stack_elem *elem, *head = env->head;
674 if (env->head == NULL)
678 err = copy_verifier_state(cur, &head->st);
683 *insn_idx = head->insn_idx;
685 *prev_insn_idx = head->prev_insn_idx;
687 free_verifier_state(&head->st, false);
694 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
695 int insn_idx, int prev_insn_idx)
697 struct bpf_verifier_state *cur = env->cur_state;
698 struct bpf_verifier_stack_elem *elem;
701 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
705 elem->insn_idx = insn_idx;
706 elem->prev_insn_idx = prev_insn_idx;
707 elem->next = env->head;
710 err = copy_verifier_state(&elem->st, cur);
713 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
714 verbose(env, "BPF program is too complex\n");
719 free_verifier_state(env->cur_state, true);
720 env->cur_state = NULL;
721 /* pop all elements and return */
722 while (!pop_stack(env, NULL, NULL));
726 #define CALLER_SAVED_REGS 6
727 static const int caller_saved[CALLER_SAVED_REGS] = {
728 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
731 static void __mark_reg_not_init(struct bpf_reg_state *reg);
733 /* Mark the unknown part of a register (variable offset or scalar value) as
734 * known to have the value @imm.
736 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
738 /* Clear id, off, and union(map_ptr, range) */
739 memset(((u8 *)reg) + sizeof(reg->type), 0,
740 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
741 reg->var_off = tnum_const(imm);
742 reg->smin_value = (s64)imm;
743 reg->smax_value = (s64)imm;
744 reg->umin_value = imm;
745 reg->umax_value = imm;
748 /* Mark the 'variable offset' part of a register as zero. This should be
749 * used only on registers holding a pointer type.
751 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
753 __mark_reg_known(reg, 0);
756 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
758 __mark_reg_known(reg, 0);
759 reg->type = SCALAR_VALUE;
762 static void mark_reg_known_zero(struct bpf_verifier_env *env,
763 struct bpf_reg_state *regs, u32 regno)
765 if (WARN_ON(regno >= MAX_BPF_REG)) {
766 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
767 /* Something bad happened, let's kill all regs */
768 for (regno = 0; regno < MAX_BPF_REG; regno++)
769 __mark_reg_not_init(regs + regno);
772 __mark_reg_known_zero(regs + regno);
775 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
777 return type_is_pkt_pointer(reg->type);
780 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
782 return reg_is_pkt_pointer(reg) ||
783 reg->type == PTR_TO_PACKET_END;
786 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
787 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
788 enum bpf_reg_type which)
790 /* The register can already have a range from prior markings.
791 * This is fine as long as it hasn't been advanced from its
794 return reg->type == which &&
797 tnum_equals_const(reg->var_off, 0);
800 /* Attempts to improve min/max values based on var_off information */
801 static void __update_reg_bounds(struct bpf_reg_state *reg)
803 /* min signed is max(sign bit) | min(other bits) */
804 reg->smin_value = max_t(s64, reg->smin_value,
805 reg->var_off.value | (reg->var_off.mask & S64_MIN));
806 /* max signed is min(sign bit) | max(other bits) */
807 reg->smax_value = min_t(s64, reg->smax_value,
808 reg->var_off.value | (reg->var_off.mask & S64_MAX));
809 reg->umin_value = max(reg->umin_value, reg->var_off.value);
810 reg->umax_value = min(reg->umax_value,
811 reg->var_off.value | reg->var_off.mask);
814 /* Uses signed min/max values to inform unsigned, and vice-versa */
815 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
817 /* Learn sign from signed bounds.
818 * If we cannot cross the sign boundary, then signed and unsigned bounds
819 * are the same, so combine. This works even in the negative case, e.g.
820 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
822 if (reg->smin_value >= 0 || reg->smax_value < 0) {
823 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
825 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
829 /* Learn sign from unsigned bounds. Signed bounds cross the sign
830 * boundary, so we must be careful.
832 if ((s64)reg->umax_value >= 0) {
833 /* Positive. We can't learn anything from the smin, but smax
834 * is positive, hence safe.
836 reg->smin_value = reg->umin_value;
837 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
839 } else if ((s64)reg->umin_value < 0) {
840 /* Negative. We can't learn anything from the smax, but smin
841 * is negative, hence safe.
843 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
845 reg->smax_value = reg->umax_value;
849 /* Attempts to improve var_off based on unsigned min/max information */
850 static void __reg_bound_offset(struct bpf_reg_state *reg)
852 reg->var_off = tnum_intersect(reg->var_off,
853 tnum_range(reg->umin_value,
857 /* Reset the min/max bounds of a register */
858 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
860 reg->smin_value = S64_MIN;
861 reg->smax_value = S64_MAX;
863 reg->umax_value = U64_MAX;
866 /* Mark a register as having a completely unknown (scalar) value. */
867 static void __mark_reg_unknown(struct bpf_reg_state *reg)
870 * Clear type, id, off, and union(map_ptr, range) and
871 * padding between 'type' and union
873 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
874 reg->type = SCALAR_VALUE;
875 reg->var_off = tnum_unknown;
877 __mark_reg_unbounded(reg);
880 static void mark_reg_unknown(struct bpf_verifier_env *env,
881 struct bpf_reg_state *regs, u32 regno)
883 if (WARN_ON(regno >= MAX_BPF_REG)) {
884 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
885 /* Something bad happened, let's kill all regs except FP */
886 for (regno = 0; regno < BPF_REG_FP; regno++)
887 __mark_reg_not_init(regs + regno);
890 __mark_reg_unknown(regs + regno);
893 static void __mark_reg_not_init(struct bpf_reg_state *reg)
895 __mark_reg_unknown(reg);
896 reg->type = NOT_INIT;
899 static void mark_reg_not_init(struct bpf_verifier_env *env,
900 struct bpf_reg_state *regs, u32 regno)
902 if (WARN_ON(regno >= MAX_BPF_REG)) {
903 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
904 /* Something bad happened, let's kill all regs except FP */
905 for (regno = 0; regno < BPF_REG_FP; regno++)
906 __mark_reg_not_init(regs + regno);
909 __mark_reg_not_init(regs + regno);
912 static void init_reg_state(struct bpf_verifier_env *env,
913 struct bpf_func_state *state)
915 struct bpf_reg_state *regs = state->regs;
918 for (i = 0; i < MAX_BPF_REG; i++) {
919 mark_reg_not_init(env, regs, i);
920 regs[i].live = REG_LIVE_NONE;
921 regs[i].parent = NULL;
925 regs[BPF_REG_FP].type = PTR_TO_STACK;
926 mark_reg_known_zero(env, regs, BPF_REG_FP);
927 regs[BPF_REG_FP].frameno = state->frameno;
929 /* 1st arg to a function */
930 regs[BPF_REG_1].type = PTR_TO_CTX;
931 mark_reg_known_zero(env, regs, BPF_REG_1);
934 #define BPF_MAIN_FUNC (-1)
935 static void init_func_state(struct bpf_verifier_env *env,
936 struct bpf_func_state *state,
937 int callsite, int frameno, int subprogno)
939 state->callsite = callsite;
940 state->frameno = frameno;
941 state->subprogno = subprogno;
942 init_reg_state(env, state);
946 SRC_OP, /* register is used as source operand */
947 DST_OP, /* register is used as destination operand */
948 DST_OP_NO_MARK /* same as above, check only, don't mark */
951 static int cmp_subprogs(const void *a, const void *b)
953 return ((struct bpf_subprog_info *)a)->start -
954 ((struct bpf_subprog_info *)b)->start;
957 static int find_subprog(struct bpf_verifier_env *env, int off)
959 struct bpf_subprog_info *p;
961 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
962 sizeof(env->subprog_info[0]), cmp_subprogs);
965 return p - env->subprog_info;
969 static int add_subprog(struct bpf_verifier_env *env, int off)
971 int insn_cnt = env->prog->len;
974 if (off >= insn_cnt || off < 0) {
975 verbose(env, "call to invalid destination\n");
978 ret = find_subprog(env, off);
981 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
982 verbose(env, "too many subprograms\n");
985 env->subprog_info[env->subprog_cnt++].start = off;
986 sort(env->subprog_info, env->subprog_cnt,
987 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
991 static int check_subprogs(struct bpf_verifier_env *env)
993 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
994 struct bpf_subprog_info *subprog = env->subprog_info;
995 struct bpf_insn *insn = env->prog->insnsi;
996 int insn_cnt = env->prog->len;
998 /* Add entry function. */
999 ret = add_subprog(env, 0);
1003 /* determine subprog starts. The end is one before the next starts */
1004 for (i = 0; i < insn_cnt; i++) {
1005 if (insn[i].code != (BPF_JMP | BPF_CALL))
1007 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1009 if (!env->allow_ptr_leaks) {
1010 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1013 ret = add_subprog(env, i + insn[i].imm + 1);
1018 /* Add a fake 'exit' subprog which could simplify subprog iteration
1019 * logic. 'subprog_cnt' should not be increased.
1021 subprog[env->subprog_cnt].start = insn_cnt;
1023 if (env->log.level > 1)
1024 for (i = 0; i < env->subprog_cnt; i++)
1025 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1027 /* now check that all jumps are within the same subprog */
1028 subprog_start = subprog[cur_subprog].start;
1029 subprog_end = subprog[cur_subprog + 1].start;
1030 for (i = 0; i < insn_cnt; i++) {
1031 u8 code = insn[i].code;
1033 if (BPF_CLASS(code) != BPF_JMP)
1035 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1037 off = i + insn[i].off + 1;
1038 if (off < subprog_start || off >= subprog_end) {
1039 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1043 if (i == subprog_end - 1) {
1044 /* to avoid fall-through from one subprog into another
1045 * the last insn of the subprog should be either exit
1046 * or unconditional jump back
1048 if (code != (BPF_JMP | BPF_EXIT) &&
1049 code != (BPF_JMP | BPF_JA)) {
1050 verbose(env, "last insn is not an exit or jmp\n");
1053 subprog_start = subprog_end;
1055 if (cur_subprog < env->subprog_cnt)
1056 subprog_end = subprog[cur_subprog + 1].start;
1062 /* Parentage chain of this register (or stack slot) should take care of all
1063 * issues like callee-saved registers, stack slot allocation time, etc.
1065 static int mark_reg_read(struct bpf_verifier_env *env,
1066 const struct bpf_reg_state *state,
1067 struct bpf_reg_state *parent)
1069 bool writes = parent == state->parent; /* Observe write marks */
1072 /* if read wasn't screened by an earlier write ... */
1073 if (writes && state->live & REG_LIVE_WRITTEN)
1075 /* ... then we depend on parent's value */
1076 parent->live |= REG_LIVE_READ;
1078 parent = state->parent;
1084 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1085 enum reg_arg_type t)
1087 struct bpf_verifier_state *vstate = env->cur_state;
1088 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1089 struct bpf_reg_state *regs = state->regs;
1091 if (regno >= MAX_BPF_REG) {
1092 verbose(env, "R%d is invalid\n", regno);
1097 /* check whether register used as source operand can be read */
1098 if (regs[regno].type == NOT_INIT) {
1099 verbose(env, "R%d !read_ok\n", regno);
1102 /* We don't need to worry about FP liveness because it's read-only */
1103 if (regno != BPF_REG_FP)
1104 return mark_reg_read(env, ®s[regno],
1105 regs[regno].parent);
1107 /* check whether register used as dest operand can be written to */
1108 if (regno == BPF_REG_FP) {
1109 verbose(env, "frame pointer is read only\n");
1112 regs[regno].live |= REG_LIVE_WRITTEN;
1114 mark_reg_unknown(env, regs, regno);
1119 static bool is_spillable_regtype(enum bpf_reg_type type)
1122 case PTR_TO_MAP_VALUE:
1123 case PTR_TO_MAP_VALUE_OR_NULL:
1127 case PTR_TO_PACKET_META:
1128 case PTR_TO_PACKET_END:
1129 case PTR_TO_FLOW_KEYS:
1130 case CONST_PTR_TO_MAP:
1132 case PTR_TO_SOCKET_OR_NULL:
1139 /* Does this register contain a constant zero? */
1140 static bool register_is_null(struct bpf_reg_state *reg)
1142 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1145 /* check_stack_read/write functions track spill/fill of registers,
1146 * stack boundary and alignment are checked in check_mem_access()
1148 static int check_stack_write(struct bpf_verifier_env *env,
1149 struct bpf_func_state *state, /* func where register points to */
1150 int off, int size, int value_regno, int insn_idx)
1152 struct bpf_func_state *cur; /* state of the current function */
1153 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1154 enum bpf_reg_type type;
1156 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1157 state->acquired_refs, true);
1160 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1161 * so it's aligned access and [off, off + size) are within stack limits
1163 if (!env->allow_ptr_leaks &&
1164 state->stack[spi].slot_type[0] == STACK_SPILL &&
1165 size != BPF_REG_SIZE) {
1166 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1170 cur = env->cur_state->frame[env->cur_state->curframe];
1171 if (value_regno >= 0 &&
1172 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1174 /* register containing pointer is being spilled into stack */
1175 if (size != BPF_REG_SIZE) {
1176 verbose(env, "invalid size of register spill\n");
1180 if (state != cur && type == PTR_TO_STACK) {
1181 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1185 /* save register state */
1186 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1187 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1189 for (i = 0; i < BPF_REG_SIZE; i++) {
1190 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1191 !env->allow_ptr_leaks) {
1192 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1193 int soff = (-spi - 1) * BPF_REG_SIZE;
1195 /* detected reuse of integer stack slot with a pointer
1196 * which means either llvm is reusing stack slot or
1197 * an attacker is trying to exploit CVE-2018-3639
1198 * (speculative store bypass)
1199 * Have to sanitize that slot with preemptive
1202 if (*poff && *poff != soff) {
1203 /* disallow programs where single insn stores
1204 * into two different stack slots, since verifier
1205 * cannot sanitize them
1208 "insn %d cannot access two stack slots fp%d and fp%d",
1209 insn_idx, *poff, soff);
1214 state->stack[spi].slot_type[i] = STACK_SPILL;
1217 u8 type = STACK_MISC;
1219 /* regular write of data into stack destroys any spilled ptr */
1220 state->stack[spi].spilled_ptr.type = NOT_INIT;
1222 /* only mark the slot as written if all 8 bytes were written
1223 * otherwise read propagation may incorrectly stop too soon
1224 * when stack slots are partially written.
1225 * This heuristic means that read propagation will be
1226 * conservative, since it will add reg_live_read marks
1227 * to stack slots all the way to first state when programs
1228 * writes+reads less than 8 bytes
1230 if (size == BPF_REG_SIZE)
1231 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1233 /* when we zero initialize stack slots mark them as such */
1234 if (value_regno >= 0 &&
1235 register_is_null(&cur->regs[value_regno]))
1238 for (i = 0; i < size; i++)
1239 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1245 static int check_stack_read(struct bpf_verifier_env *env,
1246 struct bpf_func_state *reg_state /* func where register points to */,
1247 int off, int size, int value_regno)
1249 struct bpf_verifier_state *vstate = env->cur_state;
1250 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1251 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1254 if (reg_state->allocated_stack <= slot) {
1255 verbose(env, "invalid read from stack off %d+0 size %d\n",
1259 stype = reg_state->stack[spi].slot_type;
1261 if (stype[0] == STACK_SPILL) {
1262 if (size != BPF_REG_SIZE) {
1263 verbose(env, "invalid size of register spill\n");
1266 for (i = 1; i < BPF_REG_SIZE; i++) {
1267 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1268 verbose(env, "corrupted spill memory\n");
1273 if (value_regno >= 0) {
1274 /* restore register state from stack */
1275 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1276 /* mark reg as written since spilled pointer state likely
1277 * has its liveness marks cleared by is_state_visited()
1278 * which resets stack/reg liveness for state transitions
1280 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1282 mark_reg_read(env, ®_state->stack[spi].spilled_ptr,
1283 reg_state->stack[spi].spilled_ptr.parent);
1288 for (i = 0; i < size; i++) {
1289 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1291 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1295 verbose(env, "invalid read from stack off %d+%d size %d\n",
1299 mark_reg_read(env, ®_state->stack[spi].spilled_ptr,
1300 reg_state->stack[spi].spilled_ptr.parent);
1301 if (value_regno >= 0) {
1302 if (zeros == size) {
1303 /* any size read into register is zero extended,
1304 * so the whole register == const_zero
1306 __mark_reg_const_zero(&state->regs[value_regno]);
1308 /* have read misc data from the stack */
1309 mark_reg_unknown(env, state->regs, value_regno);
1311 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1317 /* check read/write into map element returned by bpf_map_lookup_elem() */
1318 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1319 int size, bool zero_size_allowed)
1321 struct bpf_reg_state *regs = cur_regs(env);
1322 struct bpf_map *map = regs[regno].map_ptr;
1324 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1325 off + size > map->value_size) {
1326 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1327 map->value_size, off, size);
1333 /* check read/write into a map element with possible variable offset */
1334 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1335 int off, int size, bool zero_size_allowed)
1337 struct bpf_verifier_state *vstate = env->cur_state;
1338 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1339 struct bpf_reg_state *reg = &state->regs[regno];
1342 /* We may have adjusted the register to this map value, so we
1343 * need to try adding each of min_value and max_value to off
1344 * to make sure our theoretical access will be safe.
1347 print_verifier_state(env, state);
1348 /* The minimum value is only important with signed
1349 * comparisons where we can't assume the floor of a
1350 * value is 0. If we are using signed variables for our
1351 * index'es we need to make sure that whatever we use
1352 * will have a set floor within our range.
1354 if (reg->smin_value < 0) {
1355 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1359 err = __check_map_access(env, regno, reg->smin_value + off, size,
1362 verbose(env, "R%d min value is outside of the array range\n",
1367 /* If we haven't set a max value then we need to bail since we can't be
1368 * sure we won't do bad things.
1369 * If reg->umax_value + off could overflow, treat that as unbounded too.
1371 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1372 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1376 err = __check_map_access(env, regno, reg->umax_value + off, size,
1379 verbose(env, "R%d max value is outside of the array range\n",
1384 #define MAX_PACKET_OFF 0xffff
1386 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1387 const struct bpf_call_arg_meta *meta,
1388 enum bpf_access_type t)
1390 switch (env->prog->type) {
1391 /* Program types only with direct read access go here! */
1392 case BPF_PROG_TYPE_LWT_IN:
1393 case BPF_PROG_TYPE_LWT_OUT:
1394 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1395 case BPF_PROG_TYPE_SK_REUSEPORT:
1396 case BPF_PROG_TYPE_FLOW_DISSECTOR:
1397 case BPF_PROG_TYPE_CGROUP_SKB:
1402 /* Program types with direct read + write access go here! */
1403 case BPF_PROG_TYPE_SCHED_CLS:
1404 case BPF_PROG_TYPE_SCHED_ACT:
1405 case BPF_PROG_TYPE_XDP:
1406 case BPF_PROG_TYPE_LWT_XMIT:
1407 case BPF_PROG_TYPE_SK_SKB:
1408 case BPF_PROG_TYPE_SK_MSG:
1410 return meta->pkt_access;
1412 env->seen_direct_write = true;
1419 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1420 int off, int size, bool zero_size_allowed)
1422 struct bpf_reg_state *regs = cur_regs(env);
1423 struct bpf_reg_state *reg = ®s[regno];
1425 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1426 (u64)off + size > reg->range) {
1427 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1428 off, size, regno, reg->id, reg->off, reg->range);
1434 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1435 int size, bool zero_size_allowed)
1437 struct bpf_reg_state *regs = cur_regs(env);
1438 struct bpf_reg_state *reg = ®s[regno];
1441 /* We may have added a variable offset to the packet pointer; but any
1442 * reg->range we have comes after that. We are only checking the fixed
1446 /* We don't allow negative numbers, because we aren't tracking enough
1447 * detail to prove they're safe.
1449 if (reg->smin_value < 0) {
1450 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1454 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1456 verbose(env, "R%d offset is outside of the packet\n", regno);
1462 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1463 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1464 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1466 struct bpf_insn_access_aux info = {
1467 .reg_type = *reg_type,
1470 if (env->ops->is_valid_access &&
1471 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1472 /* A non zero info.ctx_field_size indicates that this field is a
1473 * candidate for later verifier transformation to load the whole
1474 * field and then apply a mask when accessed with a narrower
1475 * access than actual ctx access size. A zero info.ctx_field_size
1476 * will only allow for whole field access and rejects any other
1477 * type of narrower access.
1479 *reg_type = info.reg_type;
1481 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1482 /* remember the offset of last byte accessed in ctx */
1483 if (env->prog->aux->max_ctx_offset < off + size)
1484 env->prog->aux->max_ctx_offset = off + size;
1488 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1492 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1495 if (size < 0 || off < 0 ||
1496 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1497 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1504 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1505 int size, enum bpf_access_type t)
1507 struct bpf_reg_state *regs = cur_regs(env);
1508 struct bpf_reg_state *reg = ®s[regno];
1509 struct bpf_insn_access_aux info;
1511 if (reg->smin_value < 0) {
1512 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1517 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1518 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1526 static bool __is_pointer_value(bool allow_ptr_leaks,
1527 const struct bpf_reg_state *reg)
1529 if (allow_ptr_leaks)
1532 return reg->type != SCALAR_VALUE;
1535 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1537 return cur_regs(env) + regno;
1540 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1542 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1545 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1547 const struct bpf_reg_state *reg = reg_state(env, regno);
1549 return reg->type == PTR_TO_CTX ||
1550 reg->type == PTR_TO_SOCKET;
1553 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1555 const struct bpf_reg_state *reg = reg_state(env, regno);
1557 return type_is_pkt_pointer(reg->type);
1560 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1562 const struct bpf_reg_state *reg = reg_state(env, regno);
1564 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1565 return reg->type == PTR_TO_FLOW_KEYS;
1568 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1569 const struct bpf_reg_state *reg,
1570 int off, int size, bool strict)
1572 struct tnum reg_off;
1575 /* Byte size accesses are always allowed. */
1576 if (!strict || size == 1)
1579 /* For platforms that do not have a Kconfig enabling
1580 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1581 * NET_IP_ALIGN is universally set to '2'. And on platforms
1582 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1583 * to this code only in strict mode where we want to emulate
1584 * the NET_IP_ALIGN==2 checking. Therefore use an
1585 * unconditional IP align value of '2'.
1589 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1590 if (!tnum_is_aligned(reg_off, size)) {
1593 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1595 "misaligned packet access off %d+%s+%d+%d size %d\n",
1596 ip_align, tn_buf, reg->off, off, size);
1603 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1604 const struct bpf_reg_state *reg,
1605 const char *pointer_desc,
1606 int off, int size, bool strict)
1608 struct tnum reg_off;
1610 /* Byte size accesses are always allowed. */
1611 if (!strict || size == 1)
1614 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1615 if (!tnum_is_aligned(reg_off, size)) {
1618 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1619 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1620 pointer_desc, tn_buf, reg->off, off, size);
1627 static int check_ptr_alignment(struct bpf_verifier_env *env,
1628 const struct bpf_reg_state *reg, int off,
1629 int size, bool strict_alignment_once)
1631 bool strict = env->strict_alignment || strict_alignment_once;
1632 const char *pointer_desc = "";
1634 switch (reg->type) {
1636 case PTR_TO_PACKET_META:
1637 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1638 * right in front, treat it the very same way.
1640 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1641 case PTR_TO_FLOW_KEYS:
1642 pointer_desc = "flow keys ";
1644 case PTR_TO_MAP_VALUE:
1645 pointer_desc = "value ";
1648 pointer_desc = "context ";
1651 pointer_desc = "stack ";
1652 /* The stack spill tracking logic in check_stack_write()
1653 * and check_stack_read() relies on stack accesses being
1659 pointer_desc = "sock ";
1664 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1668 static int update_stack_depth(struct bpf_verifier_env *env,
1669 const struct bpf_func_state *func,
1672 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1677 /* update known max for given subprogram */
1678 env->subprog_info[func->subprogno].stack_depth = -off;
1682 /* starting from main bpf function walk all instructions of the function
1683 * and recursively walk all callees that given function can call.
1684 * Ignore jump and exit insns.
1685 * Since recursion is prevented by check_cfg() this algorithm
1686 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1688 static int check_max_stack_depth(struct bpf_verifier_env *env)
1690 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1691 struct bpf_subprog_info *subprog = env->subprog_info;
1692 struct bpf_insn *insn = env->prog->insnsi;
1693 int ret_insn[MAX_CALL_FRAMES];
1694 int ret_prog[MAX_CALL_FRAMES];
1697 /* round up to 32-bytes, since this is granularity
1698 * of interpreter stack size
1700 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1701 if (depth > MAX_BPF_STACK) {
1702 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1707 subprog_end = subprog[idx + 1].start;
1708 for (; i < subprog_end; i++) {
1709 if (insn[i].code != (BPF_JMP | BPF_CALL))
1711 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1713 /* remember insn and function to return to */
1714 ret_insn[frame] = i + 1;
1715 ret_prog[frame] = idx;
1717 /* find the callee */
1718 i = i + insn[i].imm + 1;
1719 idx = find_subprog(env, i);
1721 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1726 if (frame >= MAX_CALL_FRAMES) {
1727 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1732 /* end of for() loop means the last insn of the 'subprog'
1733 * was reached. Doesn't matter whether it was JA or EXIT
1737 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1739 i = ret_insn[frame];
1740 idx = ret_prog[frame];
1744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1745 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1746 const struct bpf_insn *insn, int idx)
1748 int start = idx + insn->imm + 1, subprog;
1750 subprog = find_subprog(env, start);
1752 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1756 return env->subprog_info[subprog].stack_depth;
1760 static int check_ctx_reg(struct bpf_verifier_env *env,
1761 const struct bpf_reg_state *reg, int regno)
1763 /* Access to ctx or passing it to a helper is only allowed in
1764 * its original, unmodified form.
1768 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1773 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1777 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1784 /* truncate register to smaller size (in bytes)
1785 * must be called with size < BPF_REG_SIZE
1787 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1791 /* clear high bits in bit representation */
1792 reg->var_off = tnum_cast(reg->var_off, size);
1794 /* fix arithmetic bounds */
1795 mask = ((u64)1 << (size * 8)) - 1;
1796 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1797 reg->umin_value &= mask;
1798 reg->umax_value &= mask;
1800 reg->umin_value = 0;
1801 reg->umax_value = mask;
1803 reg->smin_value = reg->umin_value;
1804 reg->smax_value = reg->umax_value;
1807 /* check whether memory at (regno + off) is accessible for t = (read | write)
1808 * if t==write, value_regno is a register which value is stored into memory
1809 * if t==read, value_regno is a register which will receive the value from memory
1810 * if t==write && value_regno==-1, some unknown value is stored into memory
1811 * if t==read && value_regno==-1, don't care what we read from memory
1813 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1814 int off, int bpf_size, enum bpf_access_type t,
1815 int value_regno, bool strict_alignment_once)
1817 struct bpf_reg_state *regs = cur_regs(env);
1818 struct bpf_reg_state *reg = regs + regno;
1819 struct bpf_func_state *state;
1822 size = bpf_size_to_bytes(bpf_size);
1826 /* alignment checks will add in reg->off themselves */
1827 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1831 /* for access checks, reg->off is just part of off */
1834 if (reg->type == PTR_TO_MAP_VALUE) {
1835 if (t == BPF_WRITE && value_regno >= 0 &&
1836 is_pointer_value(env, value_regno)) {
1837 verbose(env, "R%d leaks addr into map\n", value_regno);
1841 err = check_map_access(env, regno, off, size, false);
1842 if (!err && t == BPF_READ && value_regno >= 0)
1843 mark_reg_unknown(env, regs, value_regno);
1845 } else if (reg->type == PTR_TO_CTX) {
1846 enum bpf_reg_type reg_type = SCALAR_VALUE;
1848 if (t == BPF_WRITE && value_regno >= 0 &&
1849 is_pointer_value(env, value_regno)) {
1850 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1854 err = check_ctx_reg(env, reg, regno);
1858 err = check_ctx_access(env, insn_idx, off, size, t, ®_type);
1859 if (!err && t == BPF_READ && value_regno >= 0) {
1860 /* ctx access returns either a scalar, or a
1861 * PTR_TO_PACKET[_META,_END]. In the latter
1862 * case, we know the offset is zero.
1864 if (reg_type == SCALAR_VALUE)
1865 mark_reg_unknown(env, regs, value_regno);
1867 mark_reg_known_zero(env, regs,
1869 regs[value_regno].type = reg_type;
1872 } else if (reg->type == PTR_TO_STACK) {
1873 /* stack accesses must be at a fixed offset, so that we can
1874 * determine what type of data were returned.
1875 * See check_stack_read().
1877 if (!tnum_is_const(reg->var_off)) {
1880 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1881 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1885 off += reg->var_off.value;
1886 if (off >= 0 || off < -MAX_BPF_STACK) {
1887 verbose(env, "invalid stack off=%d size=%d\n", off,
1892 state = func(env, reg);
1893 err = update_stack_depth(env, state, off);
1898 err = check_stack_write(env, state, off, size,
1899 value_regno, insn_idx);
1901 err = check_stack_read(env, state, off, size,
1903 } else if (reg_is_pkt_pointer(reg)) {
1904 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1905 verbose(env, "cannot write into packet\n");
1908 if (t == BPF_WRITE && value_regno >= 0 &&
1909 is_pointer_value(env, value_regno)) {
1910 verbose(env, "R%d leaks addr into packet\n",
1914 err = check_packet_access(env, regno, off, size, false);
1915 if (!err && t == BPF_READ && value_regno >= 0)
1916 mark_reg_unknown(env, regs, value_regno);
1917 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1918 if (t == BPF_WRITE && value_regno >= 0 &&
1919 is_pointer_value(env, value_regno)) {
1920 verbose(env, "R%d leaks addr into flow keys\n",
1925 err = check_flow_keys_access(env, off, size);
1926 if (!err && t == BPF_READ && value_regno >= 0)
1927 mark_reg_unknown(env, regs, value_regno);
1928 } else if (reg->type == PTR_TO_SOCKET) {
1929 if (t == BPF_WRITE) {
1930 verbose(env, "cannot write into socket\n");
1933 err = check_sock_access(env, regno, off, size, t);
1934 if (!err && value_regno >= 0)
1935 mark_reg_unknown(env, regs, value_regno);
1937 verbose(env, "R%d invalid mem access '%s'\n", regno,
1938 reg_type_str[reg->type]);
1942 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1943 regs[value_regno].type == SCALAR_VALUE) {
1944 /* b/h/w load zero-extends, mark upper bits as known 0 */
1945 coerce_reg_to_size(®s[value_regno], size);
1950 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1954 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1956 verbose(env, "BPF_XADD uses reserved fields\n");
1960 /* check src1 operand */
1961 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1965 /* check src2 operand */
1966 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1970 if (is_pointer_value(env, insn->src_reg)) {
1971 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1975 if (is_ctx_reg(env, insn->dst_reg) ||
1976 is_pkt_reg(env, insn->dst_reg) ||
1977 is_flow_key_reg(env, insn->dst_reg)) {
1978 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1980 reg_type_str[reg_state(env, insn->dst_reg)->type]);
1984 /* check whether atomic_add can read the memory */
1985 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1986 BPF_SIZE(insn->code), BPF_READ, -1, true);
1990 /* check whether atomic_add can write into the same memory */
1991 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1992 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1995 /* when register 'regno' is passed into function that will read 'access_size'
1996 * bytes from that pointer, make sure that it's within stack boundary
1997 * and all elements of stack are initialized.
1998 * Unlike most pointer bounds-checking functions, this one doesn't take an
1999 * 'off' argument, so it has to add in reg->off itself.
2001 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2002 int access_size, bool zero_size_allowed,
2003 struct bpf_call_arg_meta *meta)
2005 struct bpf_reg_state *reg = reg_state(env, regno);
2006 struct bpf_func_state *state = func(env, reg);
2007 int off, i, slot, spi;
2009 if (reg->type != PTR_TO_STACK) {
2010 /* Allow zero-byte read from NULL, regardless of pointer type */
2011 if (zero_size_allowed && access_size == 0 &&
2012 register_is_null(reg))
2015 verbose(env, "R%d type=%s expected=%s\n", regno,
2016 reg_type_str[reg->type],
2017 reg_type_str[PTR_TO_STACK]);
2021 /* Only allow fixed-offset stack reads */
2022 if (!tnum_is_const(reg->var_off)) {
2025 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2026 verbose(env, "invalid variable stack read R%d var_off=%s\n",
2030 off = reg->off + reg->var_off.value;
2031 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2032 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2033 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2034 regno, off, access_size);
2038 if (meta && meta->raw_mode) {
2039 meta->access_size = access_size;
2040 meta->regno = regno;
2044 for (i = 0; i < access_size; i++) {
2047 slot = -(off + i) - 1;
2048 spi = slot / BPF_REG_SIZE;
2049 if (state->allocated_stack <= slot)
2051 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2052 if (*stype == STACK_MISC)
2054 if (*stype == STACK_ZERO) {
2055 /* helper can write anything into the stack */
2056 *stype = STACK_MISC;
2060 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2061 off, i, access_size);
2064 /* reading any byte out of 8-byte 'spill_slot' will cause
2065 * the whole slot to be marked as 'read'
2067 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2068 state->stack[spi].spilled_ptr.parent);
2070 return update_stack_depth(env, state, off);
2073 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2074 int access_size, bool zero_size_allowed,
2075 struct bpf_call_arg_meta *meta)
2077 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
2079 switch (reg->type) {
2081 case PTR_TO_PACKET_META:
2082 return check_packet_access(env, regno, reg->off, access_size,
2084 case PTR_TO_MAP_VALUE:
2085 return check_map_access(env, regno, reg->off, access_size,
2087 default: /* scalar_value|ptr_to_stack or invalid ptr */
2088 return check_stack_boundary(env, regno, access_size,
2089 zero_size_allowed, meta);
2093 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2095 return type == ARG_PTR_TO_MEM ||
2096 type == ARG_PTR_TO_MEM_OR_NULL ||
2097 type == ARG_PTR_TO_UNINIT_MEM;
2100 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2102 return type == ARG_CONST_SIZE ||
2103 type == ARG_CONST_SIZE_OR_ZERO;
2106 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2107 enum bpf_arg_type arg_type,
2108 struct bpf_call_arg_meta *meta)
2110 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
2111 enum bpf_reg_type expected_type, type = reg->type;
2114 if (arg_type == ARG_DONTCARE)
2117 err = check_reg_arg(env, regno, SRC_OP);
2121 if (arg_type == ARG_ANYTHING) {
2122 if (is_pointer_value(env, regno)) {
2123 verbose(env, "R%d leaks addr into helper function\n",
2130 if (type_is_pkt_pointer(type) &&
2131 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2132 verbose(env, "helper access to the packet is not allowed\n");
2136 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2137 arg_type == ARG_PTR_TO_MAP_VALUE ||
2138 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2139 expected_type = PTR_TO_STACK;
2140 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2141 type != expected_type)
2143 } else if (arg_type == ARG_CONST_SIZE ||
2144 arg_type == ARG_CONST_SIZE_OR_ZERO) {
2145 expected_type = SCALAR_VALUE;
2146 if (type != expected_type)
2148 } else if (arg_type == ARG_CONST_MAP_PTR) {
2149 expected_type = CONST_PTR_TO_MAP;
2150 if (type != expected_type)
2152 } else if (arg_type == ARG_PTR_TO_CTX) {
2153 expected_type = PTR_TO_CTX;
2154 if (type != expected_type)
2156 err = check_ctx_reg(env, reg, regno);
2159 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2160 expected_type = PTR_TO_SOCKET;
2161 if (type != expected_type)
2163 if (meta->ptr_id || !reg->id) {
2164 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2165 meta->ptr_id, reg->id);
2168 meta->ptr_id = reg->id;
2169 } else if (arg_type_is_mem_ptr(arg_type)) {
2170 expected_type = PTR_TO_STACK;
2171 /* One exception here. In case function allows for NULL to be
2172 * passed in as argument, it's a SCALAR_VALUE type. Final test
2173 * happens during stack boundary checking.
2175 if (register_is_null(reg) &&
2176 arg_type == ARG_PTR_TO_MEM_OR_NULL)
2177 /* final test in check_stack_boundary() */;
2178 else if (!type_is_pkt_pointer(type) &&
2179 type != PTR_TO_MAP_VALUE &&
2180 type != expected_type)
2182 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2184 verbose(env, "unsupported arg_type %d\n", arg_type);
2188 if (arg_type == ARG_CONST_MAP_PTR) {
2189 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2190 meta->map_ptr = reg->map_ptr;
2191 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2192 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2193 * check that [key, key + map->key_size) are within
2194 * stack limits and initialized
2196 if (!meta->map_ptr) {
2197 /* in function declaration map_ptr must come before
2198 * map_key, so that it's verified and known before
2199 * we have to check map_key here. Otherwise it means
2200 * that kernel subsystem misconfigured verifier
2202 verbose(env, "invalid map_ptr to access map->key\n");
2205 err = check_helper_mem_access(env, regno,
2206 meta->map_ptr->key_size, false,
2208 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2209 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2210 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2211 * check [value, value + map->value_size) validity
2213 if (!meta->map_ptr) {
2214 /* kernel subsystem misconfigured verifier */
2215 verbose(env, "invalid map_ptr to access map->value\n");
2218 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2219 err = check_helper_mem_access(env, regno,
2220 meta->map_ptr->value_size, false,
2222 } else if (arg_type_is_mem_size(arg_type)) {
2223 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2225 /* remember the mem_size which may be used later
2226 * to refine return values.
2228 meta->msize_smax_value = reg->smax_value;
2229 meta->msize_umax_value = reg->umax_value;
2231 /* The register is SCALAR_VALUE; the access check
2232 * happens using its boundaries.
2234 if (!tnum_is_const(reg->var_off))
2235 /* For unprivileged variable accesses, disable raw
2236 * mode so that the program is required to
2237 * initialize all the memory that the helper could
2238 * just partially fill up.
2242 if (reg->smin_value < 0) {
2243 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2248 if (reg->umin_value == 0) {
2249 err = check_helper_mem_access(env, regno - 1, 0,
2256 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2257 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2261 err = check_helper_mem_access(env, regno - 1,
2263 zero_size_allowed, meta);
2268 verbose(env, "R%d type=%s expected=%s\n", regno,
2269 reg_type_str[type], reg_type_str[expected_type]);
2273 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2274 struct bpf_map *map, int func_id)
2279 /* We need a two way check, first is from map perspective ... */
2280 switch (map->map_type) {
2281 case BPF_MAP_TYPE_PROG_ARRAY:
2282 if (func_id != BPF_FUNC_tail_call)
2285 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2286 if (func_id != BPF_FUNC_perf_event_read &&
2287 func_id != BPF_FUNC_perf_event_output &&
2288 func_id != BPF_FUNC_perf_event_read_value)
2291 case BPF_MAP_TYPE_STACK_TRACE:
2292 if (func_id != BPF_FUNC_get_stackid)
2295 case BPF_MAP_TYPE_CGROUP_ARRAY:
2296 if (func_id != BPF_FUNC_skb_under_cgroup &&
2297 func_id != BPF_FUNC_current_task_under_cgroup)
2300 case BPF_MAP_TYPE_CGROUP_STORAGE:
2301 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2302 if (func_id != BPF_FUNC_get_local_storage)
2305 /* devmap returns a pointer to a live net_device ifindex that we cannot
2306 * allow to be modified from bpf side. So do not allow lookup elements
2309 case BPF_MAP_TYPE_DEVMAP:
2310 if (func_id != BPF_FUNC_redirect_map)
2313 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2316 case BPF_MAP_TYPE_CPUMAP:
2317 case BPF_MAP_TYPE_XSKMAP:
2318 if (func_id != BPF_FUNC_redirect_map)
2321 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2322 case BPF_MAP_TYPE_HASH_OF_MAPS:
2323 if (func_id != BPF_FUNC_map_lookup_elem)
2326 case BPF_MAP_TYPE_SOCKMAP:
2327 if (func_id != BPF_FUNC_sk_redirect_map &&
2328 func_id != BPF_FUNC_sock_map_update &&
2329 func_id != BPF_FUNC_map_delete_elem &&
2330 func_id != BPF_FUNC_msg_redirect_map)
2333 case BPF_MAP_TYPE_SOCKHASH:
2334 if (func_id != BPF_FUNC_sk_redirect_hash &&
2335 func_id != BPF_FUNC_sock_hash_update &&
2336 func_id != BPF_FUNC_map_delete_elem &&
2337 func_id != BPF_FUNC_msg_redirect_hash)
2340 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2341 if (func_id != BPF_FUNC_sk_select_reuseport)
2344 case BPF_MAP_TYPE_QUEUE:
2345 case BPF_MAP_TYPE_STACK:
2346 if (func_id != BPF_FUNC_map_peek_elem &&
2347 func_id != BPF_FUNC_map_pop_elem &&
2348 func_id != BPF_FUNC_map_push_elem)
2355 /* ... and second from the function itself. */
2357 case BPF_FUNC_tail_call:
2358 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2360 if (env->subprog_cnt > 1) {
2361 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2365 case BPF_FUNC_perf_event_read:
2366 case BPF_FUNC_perf_event_output:
2367 case BPF_FUNC_perf_event_read_value:
2368 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2371 case BPF_FUNC_get_stackid:
2372 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2375 case BPF_FUNC_current_task_under_cgroup:
2376 case BPF_FUNC_skb_under_cgroup:
2377 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2380 case BPF_FUNC_redirect_map:
2381 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2382 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2383 map->map_type != BPF_MAP_TYPE_XSKMAP)
2386 case BPF_FUNC_sk_redirect_map:
2387 case BPF_FUNC_msg_redirect_map:
2388 case BPF_FUNC_sock_map_update:
2389 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2392 case BPF_FUNC_sk_redirect_hash:
2393 case BPF_FUNC_msg_redirect_hash:
2394 case BPF_FUNC_sock_hash_update:
2395 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2398 case BPF_FUNC_get_local_storage:
2399 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2400 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2403 case BPF_FUNC_sk_select_reuseport:
2404 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2407 case BPF_FUNC_map_peek_elem:
2408 case BPF_FUNC_map_pop_elem:
2409 case BPF_FUNC_map_push_elem:
2410 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2411 map->map_type != BPF_MAP_TYPE_STACK)
2420 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2421 map->map_type, func_id_name(func_id), func_id);
2425 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2429 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2431 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2433 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2435 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2437 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2440 /* We only support one arg being in raw mode at the moment,
2441 * which is sufficient for the helper functions we have
2447 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2448 enum bpf_arg_type arg_next)
2450 return (arg_type_is_mem_ptr(arg_curr) &&
2451 !arg_type_is_mem_size(arg_next)) ||
2452 (!arg_type_is_mem_ptr(arg_curr) &&
2453 arg_type_is_mem_size(arg_next));
2456 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2458 /* bpf_xxx(..., buf, len) call will access 'len'
2459 * bytes from memory 'buf'. Both arg types need
2460 * to be paired, so make sure there's no buggy
2461 * helper function specification.
2463 if (arg_type_is_mem_size(fn->arg1_type) ||
2464 arg_type_is_mem_ptr(fn->arg5_type) ||
2465 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2466 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2467 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2468 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2474 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2478 if (arg_type_is_refcounted(fn->arg1_type))
2480 if (arg_type_is_refcounted(fn->arg2_type))
2482 if (arg_type_is_refcounted(fn->arg3_type))
2484 if (arg_type_is_refcounted(fn->arg4_type))
2486 if (arg_type_is_refcounted(fn->arg5_type))
2489 /* We only support one arg being unreferenced at the moment,
2490 * which is sufficient for the helper functions we have right now.
2495 static int check_func_proto(const struct bpf_func_proto *fn)
2497 return check_raw_mode_ok(fn) &&
2498 check_arg_pair_ok(fn) &&
2499 check_refcount_ok(fn) ? 0 : -EINVAL;
2502 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2503 * are now invalid, so turn them into unknown SCALAR_VALUE.
2505 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2506 struct bpf_func_state *state)
2508 struct bpf_reg_state *regs = state->regs, *reg;
2511 for (i = 0; i < MAX_BPF_REG; i++)
2512 if (reg_is_pkt_pointer_any(®s[i]))
2513 mark_reg_unknown(env, regs, i);
2515 bpf_for_each_spilled_reg(i, state, reg) {
2518 if (reg_is_pkt_pointer_any(reg))
2519 __mark_reg_unknown(reg);
2523 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2525 struct bpf_verifier_state *vstate = env->cur_state;
2528 for (i = 0; i <= vstate->curframe; i++)
2529 __clear_all_pkt_pointers(env, vstate->frame[i]);
2532 static void release_reg_references(struct bpf_verifier_env *env,
2533 struct bpf_func_state *state, int id)
2535 struct bpf_reg_state *regs = state->regs, *reg;
2538 for (i = 0; i < MAX_BPF_REG; i++)
2539 if (regs[i].id == id)
2540 mark_reg_unknown(env, regs, i);
2542 bpf_for_each_spilled_reg(i, state, reg) {
2545 if (reg_is_refcounted(reg) && reg->id == id)
2546 __mark_reg_unknown(reg);
2550 /* The pointer with the specified id has released its reference to kernel
2551 * resources. Identify all copies of the same pointer and clear the reference.
2553 static int release_reference(struct bpf_verifier_env *env,
2554 struct bpf_call_arg_meta *meta)
2556 struct bpf_verifier_state *vstate = env->cur_state;
2559 for (i = 0; i <= vstate->curframe; i++)
2560 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2562 return release_reference_state(env, meta->ptr_id);
2565 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2568 struct bpf_verifier_state *state = env->cur_state;
2569 struct bpf_func_state *caller, *callee;
2570 int i, err, subprog, target_insn;
2572 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2573 verbose(env, "the call stack of %d frames is too deep\n",
2574 state->curframe + 2);
2578 target_insn = *insn_idx + insn->imm;
2579 subprog = find_subprog(env, target_insn + 1);
2581 verbose(env, "verifier bug. No program starts at insn %d\n",
2586 caller = state->frame[state->curframe];
2587 if (state->frame[state->curframe + 1]) {
2588 verbose(env, "verifier bug. Frame %d already allocated\n",
2589 state->curframe + 1);
2593 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2596 state->frame[state->curframe + 1] = callee;
2598 /* callee cannot access r0, r6 - r9 for reading and has to write
2599 * into its own stack before reading from it.
2600 * callee can read/write into caller's stack
2602 init_func_state(env, callee,
2603 /* remember the callsite, it will be used by bpf_exit */
2604 *insn_idx /* callsite */,
2605 state->curframe + 1 /* frameno within this callchain */,
2606 subprog /* subprog number within this prog */);
2608 /* Transfer references to the callee */
2609 err = transfer_reference_state(callee, caller);
2613 /* copy r1 - r5 args that callee can access. The copy includes parent
2614 * pointers, which connects us up to the liveness chain
2616 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2617 callee->regs[i] = caller->regs[i];
2619 /* after the call registers r0 - r5 were scratched */
2620 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2621 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2622 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2625 /* only increment it after check_reg_arg() finished */
2628 /* and go analyze first insn of the callee */
2629 *insn_idx = target_insn;
2631 if (env->log.level) {
2632 verbose(env, "caller:\n");
2633 print_verifier_state(env, caller);
2634 verbose(env, "callee:\n");
2635 print_verifier_state(env, callee);
2640 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2642 struct bpf_verifier_state *state = env->cur_state;
2643 struct bpf_func_state *caller, *callee;
2644 struct bpf_reg_state *r0;
2647 callee = state->frame[state->curframe];
2648 r0 = &callee->regs[BPF_REG_0];
2649 if (r0->type == PTR_TO_STACK) {
2650 /* technically it's ok to return caller's stack pointer
2651 * (or caller's caller's pointer) back to the caller,
2652 * since these pointers are valid. Only current stack
2653 * pointer will be invalid as soon as function exits,
2654 * but let's be conservative
2656 verbose(env, "cannot return stack pointer to the caller\n");
2661 caller = state->frame[state->curframe];
2662 /* return to the caller whatever r0 had in the callee */
2663 caller->regs[BPF_REG_0] = *r0;
2665 /* Transfer references to the caller */
2666 err = transfer_reference_state(caller, callee);
2670 *insn_idx = callee->callsite + 1;
2671 if (env->log.level) {
2672 verbose(env, "returning from callee:\n");
2673 print_verifier_state(env, callee);
2674 verbose(env, "to caller at %d:\n", *insn_idx);
2675 print_verifier_state(env, caller);
2677 /* clear everything in the callee */
2678 free_func_state(callee);
2679 state->frame[state->curframe + 1] = NULL;
2683 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2685 struct bpf_call_arg_meta *meta)
2687 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
2689 if (ret_type != RET_INTEGER ||
2690 (func_id != BPF_FUNC_get_stack &&
2691 func_id != BPF_FUNC_probe_read_str))
2694 ret_reg->smax_value = meta->msize_smax_value;
2695 ret_reg->umax_value = meta->msize_umax_value;
2696 __reg_deduce_bounds(ret_reg);
2697 __reg_bound_offset(ret_reg);
2701 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2702 int func_id, int insn_idx)
2704 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2706 if (func_id != BPF_FUNC_tail_call &&
2707 func_id != BPF_FUNC_map_lookup_elem &&
2708 func_id != BPF_FUNC_map_update_elem &&
2709 func_id != BPF_FUNC_map_delete_elem &&
2710 func_id != BPF_FUNC_map_push_elem &&
2711 func_id != BPF_FUNC_map_pop_elem &&
2712 func_id != BPF_FUNC_map_peek_elem)
2715 if (meta->map_ptr == NULL) {
2716 verbose(env, "kernel subsystem misconfigured verifier\n");
2720 if (!BPF_MAP_PTR(aux->map_state))
2721 bpf_map_ptr_store(aux, meta->map_ptr,
2722 meta->map_ptr->unpriv_array);
2723 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2724 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2725 meta->map_ptr->unpriv_array);
2729 static int check_reference_leak(struct bpf_verifier_env *env)
2731 struct bpf_func_state *state = cur_func(env);
2734 for (i = 0; i < state->acquired_refs; i++) {
2735 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2736 state->refs[i].id, state->refs[i].insn_idx);
2738 return state->acquired_refs ? -EINVAL : 0;
2741 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2743 const struct bpf_func_proto *fn = NULL;
2744 struct bpf_reg_state *regs;
2745 struct bpf_call_arg_meta meta;
2749 /* find function prototype */
2750 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2751 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2756 if (env->ops->get_func_proto)
2757 fn = env->ops->get_func_proto(func_id, env->prog);
2759 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2764 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2765 if (!env->prog->gpl_compatible && fn->gpl_only) {
2766 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2770 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2771 changes_data = bpf_helper_changes_pkt_data(fn->func);
2772 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2773 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2774 func_id_name(func_id), func_id);
2778 memset(&meta, 0, sizeof(meta));
2779 meta.pkt_access = fn->pkt_access;
2781 err = check_func_proto(fn);
2783 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2784 func_id_name(func_id), func_id);
2789 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2792 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2795 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2798 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2801 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2805 err = record_func_map(env, &meta, func_id, insn_idx);
2809 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2810 * is inferred from register state.
2812 for (i = 0; i < meta.access_size; i++) {
2813 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2814 BPF_WRITE, -1, false);
2819 if (func_id == BPF_FUNC_tail_call) {
2820 err = check_reference_leak(env);
2822 verbose(env, "tail_call would lead to reference leak\n");
2825 } else if (is_release_function(func_id)) {
2826 err = release_reference(env, &meta);
2831 regs = cur_regs(env);
2833 /* check that flags argument in get_local_storage(map, flags) is 0,
2834 * this is required because get_local_storage() can't return an error.
2836 if (func_id == BPF_FUNC_get_local_storage &&
2837 !register_is_null(®s[BPF_REG_2])) {
2838 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2842 /* reset caller saved regs */
2843 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2844 mark_reg_not_init(env, regs, caller_saved[i]);
2845 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2848 /* update return register (already marked as written above) */
2849 if (fn->ret_type == RET_INTEGER) {
2850 /* sets type to SCALAR_VALUE */
2851 mark_reg_unknown(env, regs, BPF_REG_0);
2852 } else if (fn->ret_type == RET_VOID) {
2853 regs[BPF_REG_0].type = NOT_INIT;
2854 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2855 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2856 /* There is no offset yet applied, variable or fixed */
2857 mark_reg_known_zero(env, regs, BPF_REG_0);
2858 /* remember map_ptr, so that check_map_access()
2859 * can check 'value_size' boundary of memory access
2860 * to map element returned from bpf_map_lookup_elem()
2862 if (meta.map_ptr == NULL) {
2864 "kernel subsystem misconfigured verifier\n");
2867 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2868 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2869 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2871 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2872 regs[BPF_REG_0].id = ++env->id_gen;
2874 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
2875 int id = acquire_reference_state(env, insn_idx);
2878 mark_reg_known_zero(env, regs, BPF_REG_0);
2879 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
2880 regs[BPF_REG_0].id = id;
2882 verbose(env, "unknown return type %d of func %s#%d\n",
2883 fn->ret_type, func_id_name(func_id), func_id);
2887 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2889 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2893 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2894 const char *err_str;
2896 #ifdef CONFIG_PERF_EVENTS
2897 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2898 err_str = "cannot get callchain buffer for func %s#%d\n";
2901 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2904 verbose(env, err_str, func_id_name(func_id), func_id);
2908 env->prog->has_callchain_buf = true;
2912 clear_all_pkt_pointers(env);
2916 static bool signed_add_overflows(s64 a, s64 b)
2918 /* Do the add in u64, where overflow is well-defined */
2919 s64 res = (s64)((u64)a + (u64)b);
2926 static bool signed_sub_overflows(s64 a, s64 b)
2928 /* Do the sub in u64, where overflow is well-defined */
2929 s64 res = (s64)((u64)a - (u64)b);
2936 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2937 const struct bpf_reg_state *reg,
2938 enum bpf_reg_type type)
2940 bool known = tnum_is_const(reg->var_off);
2941 s64 val = reg->var_off.value;
2942 s64 smin = reg->smin_value;
2944 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2945 verbose(env, "math between %s pointer and %lld is not allowed\n",
2946 reg_type_str[type], val);
2950 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2951 verbose(env, "%s pointer offset %d is not allowed\n",
2952 reg_type_str[type], reg->off);
2956 if (smin == S64_MIN) {
2957 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2958 reg_type_str[type]);
2962 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2963 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2964 smin, reg_type_str[type]);
2971 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2972 * Caller should also handle BPF_MOV case separately.
2973 * If we return -EACCES, caller may want to try again treating pointer as a
2974 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2976 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2977 struct bpf_insn *insn,
2978 const struct bpf_reg_state *ptr_reg,
2979 const struct bpf_reg_state *off_reg)
2981 struct bpf_verifier_state *vstate = env->cur_state;
2982 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2983 struct bpf_reg_state *regs = state->regs, *dst_reg;
2984 bool known = tnum_is_const(off_reg->var_off);
2985 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2986 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2987 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2988 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2989 u8 opcode = BPF_OP(insn->code);
2990 u32 dst = insn->dst_reg;
2992 dst_reg = ®s[dst];
2994 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2995 smin_val > smax_val || umin_val > umax_val) {
2996 /* Taint dst register if offset had invalid bounds derived from
2997 * e.g. dead branches.
2999 __mark_reg_unknown(dst_reg);
3003 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3004 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3006 "R%d 32-bit pointer arithmetic prohibited\n",
3011 switch (ptr_reg->type) {
3012 case PTR_TO_MAP_VALUE_OR_NULL:
3013 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3014 dst, reg_type_str[ptr_reg->type]);
3016 case CONST_PTR_TO_MAP:
3017 case PTR_TO_PACKET_END:
3019 case PTR_TO_SOCKET_OR_NULL:
3020 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3021 dst, reg_type_str[ptr_reg->type]);
3027 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3028 * The id may be overwritten later if we create a new variable offset.
3030 dst_reg->type = ptr_reg->type;
3031 dst_reg->id = ptr_reg->id;
3033 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3034 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3039 /* We can take a fixed offset as long as it doesn't overflow
3040 * the s32 'off' field
3042 if (known && (ptr_reg->off + smin_val ==
3043 (s64)(s32)(ptr_reg->off + smin_val))) {
3044 /* pointer += K. Accumulate it into fixed offset */
3045 dst_reg->smin_value = smin_ptr;
3046 dst_reg->smax_value = smax_ptr;
3047 dst_reg->umin_value = umin_ptr;
3048 dst_reg->umax_value = umax_ptr;
3049 dst_reg->var_off = ptr_reg->var_off;
3050 dst_reg->off = ptr_reg->off + smin_val;
3051 dst_reg->raw = ptr_reg->raw;
3054 /* A new variable offset is created. Note that off_reg->off
3055 * == 0, since it's a scalar.
3056 * dst_reg gets the pointer type and since some positive
3057 * integer value was added to the pointer, give it a new 'id'
3058 * if it's a PTR_TO_PACKET.
3059 * this creates a new 'base' pointer, off_reg (variable) gets
3060 * added into the variable offset, and we copy the fixed offset
3063 if (signed_add_overflows(smin_ptr, smin_val) ||
3064 signed_add_overflows(smax_ptr, smax_val)) {
3065 dst_reg->smin_value = S64_MIN;
3066 dst_reg->smax_value = S64_MAX;
3068 dst_reg->smin_value = smin_ptr + smin_val;
3069 dst_reg->smax_value = smax_ptr + smax_val;
3071 if (umin_ptr + umin_val < umin_ptr ||
3072 umax_ptr + umax_val < umax_ptr) {
3073 dst_reg->umin_value = 0;
3074 dst_reg->umax_value = U64_MAX;
3076 dst_reg->umin_value = umin_ptr + umin_val;
3077 dst_reg->umax_value = umax_ptr + umax_val;
3079 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3080 dst_reg->off = ptr_reg->off;
3081 dst_reg->raw = ptr_reg->raw;
3082 if (reg_is_pkt_pointer(ptr_reg)) {
3083 dst_reg->id = ++env->id_gen;
3084 /* something was added to pkt_ptr, set range to zero */
3089 if (dst_reg == off_reg) {
3090 /* scalar -= pointer. Creates an unknown scalar */
3091 verbose(env, "R%d tried to subtract pointer from scalar\n",
3095 /* We don't allow subtraction from FP, because (according to
3096 * test_verifier.c test "invalid fp arithmetic", JITs might not
3097 * be able to deal with it.
3099 if (ptr_reg->type == PTR_TO_STACK) {
3100 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3104 if (known && (ptr_reg->off - smin_val ==
3105 (s64)(s32)(ptr_reg->off - smin_val))) {
3106 /* pointer -= K. Subtract it from fixed offset */
3107 dst_reg->smin_value = smin_ptr;
3108 dst_reg->smax_value = smax_ptr;
3109 dst_reg->umin_value = umin_ptr;
3110 dst_reg->umax_value = umax_ptr;
3111 dst_reg->var_off = ptr_reg->var_off;
3112 dst_reg->id = ptr_reg->id;
3113 dst_reg->off = ptr_reg->off - smin_val;
3114 dst_reg->raw = ptr_reg->raw;
3117 /* A new variable offset is created. If the subtrahend is known
3118 * nonnegative, then any reg->range we had before is still good.
3120 if (signed_sub_overflows(smin_ptr, smax_val) ||
3121 signed_sub_overflows(smax_ptr, smin_val)) {
3122 /* Overflow possible, we know nothing */
3123 dst_reg->smin_value = S64_MIN;
3124 dst_reg->smax_value = S64_MAX;
3126 dst_reg->smin_value = smin_ptr - smax_val;
3127 dst_reg->smax_value = smax_ptr - smin_val;
3129 if (umin_ptr < umax_val) {
3130 /* Overflow possible, we know nothing */
3131 dst_reg->umin_value = 0;
3132 dst_reg->umax_value = U64_MAX;
3134 /* Cannot overflow (as long as bounds are consistent) */
3135 dst_reg->umin_value = umin_ptr - umax_val;
3136 dst_reg->umax_value = umax_ptr - umin_val;
3138 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3139 dst_reg->off = ptr_reg->off;
3140 dst_reg->raw = ptr_reg->raw;
3141 if (reg_is_pkt_pointer(ptr_reg)) {
3142 dst_reg->id = ++env->id_gen;
3143 /* something was added to pkt_ptr, set range to zero */
3151 /* bitwise ops on pointers are troublesome, prohibit. */
3152 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3153 dst, bpf_alu_string[opcode >> 4]);
3156 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3157 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3158 dst, bpf_alu_string[opcode >> 4]);
3162 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3165 __update_reg_bounds(dst_reg);
3166 __reg_deduce_bounds(dst_reg);
3167 __reg_bound_offset(dst_reg);
3171 /* WARNING: This function does calculations on 64-bit values, but the actual
3172 * execution may occur on 32-bit values. Therefore, things like bitshifts
3173 * need extra checks in the 32-bit case.
3175 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3176 struct bpf_insn *insn,
3177 struct bpf_reg_state *dst_reg,
3178 struct bpf_reg_state src_reg)
3180 struct bpf_reg_state *regs = cur_regs(env);
3181 u8 opcode = BPF_OP(insn->code);
3182 bool src_known, dst_known;
3183 s64 smin_val, smax_val;
3184 u64 umin_val, umax_val;
3185 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3187 if (insn_bitness == 32) {
3188 /* Relevant for 32-bit RSH: Information can propagate towards
3189 * LSB, so it isn't sufficient to only truncate the output to
3192 coerce_reg_to_size(dst_reg, 4);
3193 coerce_reg_to_size(&src_reg, 4);
3196 smin_val = src_reg.smin_value;
3197 smax_val = src_reg.smax_value;
3198 umin_val = src_reg.umin_value;
3199 umax_val = src_reg.umax_value;
3200 src_known = tnum_is_const(src_reg.var_off);
3201 dst_known = tnum_is_const(dst_reg->var_off);
3203 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3204 smin_val > smax_val || umin_val > umax_val) {
3205 /* Taint dst register if offset had invalid bounds derived from
3206 * e.g. dead branches.
3208 __mark_reg_unknown(dst_reg);
3213 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3214 __mark_reg_unknown(dst_reg);
3220 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3221 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3222 dst_reg->smin_value = S64_MIN;
3223 dst_reg->smax_value = S64_MAX;
3225 dst_reg->smin_value += smin_val;
3226 dst_reg->smax_value += smax_val;
3228 if (dst_reg->umin_value + umin_val < umin_val ||
3229 dst_reg->umax_value + umax_val < umax_val) {
3230 dst_reg->umin_value = 0;
3231 dst_reg->umax_value = U64_MAX;
3233 dst_reg->umin_value += umin_val;
3234 dst_reg->umax_value += umax_val;
3236 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3239 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3240 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3241 /* Overflow possible, we know nothing */
3242 dst_reg->smin_value = S64_MIN;
3243 dst_reg->smax_value = S64_MAX;
3245 dst_reg->smin_value -= smax_val;
3246 dst_reg->smax_value -= smin_val;
3248 if (dst_reg->umin_value < umax_val) {
3249 /* Overflow possible, we know nothing */
3250 dst_reg->umin_value = 0;
3251 dst_reg->umax_value = U64_MAX;
3253 /* Cannot overflow (as long as bounds are consistent) */
3254 dst_reg->umin_value -= umax_val;
3255 dst_reg->umax_value -= umin_val;
3257 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3260 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3261 if (smin_val < 0 || dst_reg->smin_value < 0) {
3262 /* Ain't nobody got time to multiply that sign */
3263 __mark_reg_unbounded(dst_reg);
3264 __update_reg_bounds(dst_reg);
3267 /* Both values are positive, so we can work with unsigned and
3268 * copy the result to signed (unless it exceeds S64_MAX).
3270 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3271 /* Potential overflow, we know nothing */
3272 __mark_reg_unbounded(dst_reg);
3273 /* (except what we can learn from the var_off) */
3274 __update_reg_bounds(dst_reg);
3277 dst_reg->umin_value *= umin_val;
3278 dst_reg->umax_value *= umax_val;
3279 if (dst_reg->umax_value > S64_MAX) {
3280 /* Overflow possible, we know nothing */
3281 dst_reg->smin_value = S64_MIN;
3282 dst_reg->smax_value = S64_MAX;
3284 dst_reg->smin_value = dst_reg->umin_value;
3285 dst_reg->smax_value = dst_reg->umax_value;
3289 if (src_known && dst_known) {
3290 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3291 src_reg.var_off.value);
3294 /* We get our minimum from the var_off, since that's inherently
3295 * bitwise. Our maximum is the minimum of the operands' maxima.
3297 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3298 dst_reg->umin_value = dst_reg->var_off.value;
3299 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3300 if (dst_reg->smin_value < 0 || smin_val < 0) {
3301 /* Lose signed bounds when ANDing negative numbers,
3302 * ain't nobody got time for that.
3304 dst_reg->smin_value = S64_MIN;
3305 dst_reg->smax_value = S64_MAX;
3307 /* ANDing two positives gives a positive, so safe to
3308 * cast result into s64.
3310 dst_reg->smin_value = dst_reg->umin_value;
3311 dst_reg->smax_value = dst_reg->umax_value;
3313 /* We may learn something more from the var_off */
3314 __update_reg_bounds(dst_reg);
3317 if (src_known && dst_known) {
3318 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3319 src_reg.var_off.value);
3322 /* We get our maximum from the var_off, and our minimum is the
3323 * maximum of the operands' minima
3325 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3326 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3327 dst_reg->umax_value = dst_reg->var_off.value |
3328 dst_reg->var_off.mask;
3329 if (dst_reg->smin_value < 0 || smin_val < 0) {
3330 /* Lose signed bounds when ORing negative numbers,
3331 * ain't nobody got time for that.
3333 dst_reg->smin_value = S64_MIN;
3334 dst_reg->smax_value = S64_MAX;
3336 /* ORing two positives gives a positive, so safe to
3337 * cast result into s64.
3339 dst_reg->smin_value = dst_reg->umin_value;
3340 dst_reg->smax_value = dst_reg->umax_value;
3342 /* We may learn something more from the var_off */
3343 __update_reg_bounds(dst_reg);
3346 if (umax_val >= insn_bitness) {
3347 /* Shifts greater than 31 or 63 are undefined.
3348 * This includes shifts by a negative number.
3350 mark_reg_unknown(env, regs, insn->dst_reg);
3353 /* We lose all sign bit information (except what we can pick
3356 dst_reg->smin_value = S64_MIN;
3357 dst_reg->smax_value = S64_MAX;
3358 /* If we might shift our top bit out, then we know nothing */
3359 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3360 dst_reg->umin_value = 0;
3361 dst_reg->umax_value = U64_MAX;
3363 dst_reg->umin_value <<= umin_val;
3364 dst_reg->umax_value <<= umax_val;
3366 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3367 /* We may learn something more from the var_off */
3368 __update_reg_bounds(dst_reg);
3371 if (umax_val >= insn_bitness) {
3372 /* Shifts greater than 31 or 63 are undefined.
3373 * This includes shifts by a negative number.
3375 mark_reg_unknown(env, regs, insn->dst_reg);
3378 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3379 * be negative, then either:
3380 * 1) src_reg might be zero, so the sign bit of the result is
3381 * unknown, so we lose our signed bounds
3382 * 2) it's known negative, thus the unsigned bounds capture the
3384 * 3) the signed bounds cross zero, so they tell us nothing
3386 * If the value in dst_reg is known nonnegative, then again the
3387 * unsigned bounts capture the signed bounds.
3388 * Thus, in all cases it suffices to blow away our signed bounds
3389 * and rely on inferring new ones from the unsigned bounds and
3390 * var_off of the result.
3392 dst_reg->smin_value = S64_MIN;
3393 dst_reg->smax_value = S64_MAX;
3394 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3395 dst_reg->umin_value >>= umax_val;
3396 dst_reg->umax_value >>= umin_val;
3397 /* We may learn something more from the var_off */
3398 __update_reg_bounds(dst_reg);
3401 if (umax_val >= insn_bitness) {
3402 /* Shifts greater than 31 or 63 are undefined.
3403 * This includes shifts by a negative number.
3405 mark_reg_unknown(env, regs, insn->dst_reg);
3409 /* Upon reaching here, src_known is true and
3410 * umax_val is equal to umin_val.
3412 dst_reg->smin_value >>= umin_val;
3413 dst_reg->smax_value >>= umin_val;
3414 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3416 /* blow away the dst_reg umin_value/umax_value and rely on
3417 * dst_reg var_off to refine the result.
3419 dst_reg->umin_value = 0;
3420 dst_reg->umax_value = U64_MAX;
3421 __update_reg_bounds(dst_reg);
3424 mark_reg_unknown(env, regs, insn->dst_reg);
3428 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3429 /* 32-bit ALU ops are (32,32)->32 */
3430 coerce_reg_to_size(dst_reg, 4);
3433 __reg_deduce_bounds(dst_reg);
3434 __reg_bound_offset(dst_reg);
3438 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3441 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3442 struct bpf_insn *insn)
3444 struct bpf_verifier_state *vstate = env->cur_state;
3445 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3446 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3447 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3448 u8 opcode = BPF_OP(insn->code);
3450 dst_reg = ®s[insn->dst_reg];
3452 if (dst_reg->type != SCALAR_VALUE)
3454 if (BPF_SRC(insn->code) == BPF_X) {
3455 src_reg = ®s[insn->src_reg];
3456 if (src_reg->type != SCALAR_VALUE) {
3457 if (dst_reg->type != SCALAR_VALUE) {
3458 /* Combining two pointers by any ALU op yields
3459 * an arbitrary scalar. Disallow all math except
3460 * pointer subtraction
3462 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3463 mark_reg_unknown(env, regs, insn->dst_reg);
3466 verbose(env, "R%d pointer %s pointer prohibited\n",
3468 bpf_alu_string[opcode >> 4]);
3471 /* scalar += pointer
3472 * This is legal, but we have to reverse our
3473 * src/dest handling in computing the range
3475 return adjust_ptr_min_max_vals(env, insn,
3478 } else if (ptr_reg) {
3479 /* pointer += scalar */
3480 return adjust_ptr_min_max_vals(env, insn,
3484 /* Pretend the src is a reg with a known value, since we only
3485 * need to be able to read from this state.
3487 off_reg.type = SCALAR_VALUE;
3488 __mark_reg_known(&off_reg, insn->imm);
3490 if (ptr_reg) /* pointer += K */
3491 return adjust_ptr_min_max_vals(env, insn,
3495 /* Got here implies adding two SCALAR_VALUEs */
3496 if (WARN_ON_ONCE(ptr_reg)) {
3497 print_verifier_state(env, state);
3498 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3501 if (WARN_ON(!src_reg)) {
3502 print_verifier_state(env, state);
3503 verbose(env, "verifier internal error: no src_reg\n");
3506 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3509 /* check validity of 32-bit and 64-bit arithmetic operations */
3510 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3512 struct bpf_reg_state *regs = cur_regs(env);
3513 u8 opcode = BPF_OP(insn->code);
3516 if (opcode == BPF_END || opcode == BPF_NEG) {
3517 if (opcode == BPF_NEG) {
3518 if (BPF_SRC(insn->code) != 0 ||
3519 insn->src_reg != BPF_REG_0 ||
3520 insn->off != 0 || insn->imm != 0) {
3521 verbose(env, "BPF_NEG uses reserved fields\n");
3525 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3526 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3527 BPF_CLASS(insn->code) == BPF_ALU64) {
3528 verbose(env, "BPF_END uses reserved fields\n");
3533 /* check src operand */
3534 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3538 if (is_pointer_value(env, insn->dst_reg)) {
3539 verbose(env, "R%d pointer arithmetic prohibited\n",
3544 /* check dest operand */
3545 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3549 } else if (opcode == BPF_MOV) {
3551 if (BPF_SRC(insn->code) == BPF_X) {
3552 if (insn->imm != 0 || insn->off != 0) {
3553 verbose(env, "BPF_MOV uses reserved fields\n");
3557 /* check src operand */
3558 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3562 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3563 verbose(env, "BPF_MOV uses reserved fields\n");
3568 /* check dest operand, mark as required later */
3569 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3573 if (BPF_SRC(insn->code) == BPF_X) {
3574 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3576 * copy register state to dest reg
3578 regs[insn->dst_reg] = regs[insn->src_reg];
3579 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3582 if (is_pointer_value(env, insn->src_reg)) {
3584 "R%d partial copy of pointer\n",
3588 mark_reg_unknown(env, regs, insn->dst_reg);
3589 coerce_reg_to_size(®s[insn->dst_reg], 4);
3593 * remember the value we stored into this reg
3595 /* clear any state __mark_reg_known doesn't set */
3596 mark_reg_unknown(env, regs, insn->dst_reg);
3597 regs[insn->dst_reg].type = SCALAR_VALUE;
3598 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3599 __mark_reg_known(regs + insn->dst_reg,
3602 __mark_reg_known(regs + insn->dst_reg,
3607 } else if (opcode > BPF_END) {
3608 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3611 } else { /* all other ALU ops: and, sub, xor, add, ... */
3613 if (BPF_SRC(insn->code) == BPF_X) {
3614 if (insn->imm != 0 || insn->off != 0) {
3615 verbose(env, "BPF_ALU uses reserved fields\n");
3618 /* check src1 operand */
3619 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3623 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3624 verbose(env, "BPF_ALU uses reserved fields\n");
3629 /* check src2 operand */
3630 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3634 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3635 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3636 verbose(env, "div by zero\n");
3640 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3641 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3645 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3646 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3647 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3649 if (insn->imm < 0 || insn->imm >= size) {
3650 verbose(env, "invalid shift %d\n", insn->imm);
3655 /* check dest operand */
3656 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3660 return adjust_reg_min_max_vals(env, insn);
3666 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3667 struct bpf_reg_state *dst_reg,
3668 enum bpf_reg_type type,
3669 bool range_right_open)
3671 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3672 struct bpf_reg_state *regs = state->regs, *reg;
3676 if (dst_reg->off < 0 ||
3677 (dst_reg->off == 0 && range_right_open))
3678 /* This doesn't give us any range */
3681 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3682 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3683 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3684 * than pkt_end, but that's because it's also less than pkt.
3688 new_range = dst_reg->off;
3689 if (range_right_open)
3692 /* Examples for register markings:
3694 * pkt_data in dst register:
3698 * if (r2 > pkt_end) goto <handle exception>
3703 * if (r2 < pkt_end) goto <access okay>
3704 * <handle exception>
3707 * r2 == dst_reg, pkt_end == src_reg
3708 * r2=pkt(id=n,off=8,r=0)
3709 * r3=pkt(id=n,off=0,r=0)
3711 * pkt_data in src register:
3715 * if (pkt_end >= r2) goto <access okay>
3716 * <handle exception>
3720 * if (pkt_end <= r2) goto <handle exception>
3724 * pkt_end == dst_reg, r2 == src_reg
3725 * r2=pkt(id=n,off=8,r=0)
3726 * r3=pkt(id=n,off=0,r=0)
3728 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3729 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3730 * and [r3, r3 + 8-1) respectively is safe to access depending on
3734 /* If our ids match, then we must have the same max_value. And we
3735 * don't care about the other reg's fixed offset, since if it's too big
3736 * the range won't allow anything.
3737 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3739 for (i = 0; i < MAX_BPF_REG; i++)
3740 if (regs[i].type == type && regs[i].id == dst_reg->id)
3741 /* keep the maximum range already checked */
3742 regs[i].range = max(regs[i].range, new_range);
3744 for (j = 0; j <= vstate->curframe; j++) {
3745 state = vstate->frame[j];
3746 bpf_for_each_spilled_reg(i, state, reg) {
3749 if (reg->type == type && reg->id == dst_reg->id)
3750 reg->range = max(reg->range, new_range);
3755 /* compute branch direction of the expression "if (reg opcode val) goto target;"
3757 * 1 - branch will be taken and "goto target" will be executed
3758 * 0 - branch will not be taken and fall-through to next insn
3759 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3761 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3763 if (__is_pointer_value(false, reg))
3768 if (tnum_is_const(reg->var_off))
3769 return !!tnum_equals_const(reg->var_off, val);
3772 if (tnum_is_const(reg->var_off))
3773 return !tnum_equals_const(reg->var_off, val);
3776 if (reg->umin_value > val)
3778 else if (reg->umax_value <= val)
3782 if (reg->smin_value > (s64)val)
3784 else if (reg->smax_value < (s64)val)
3788 if (reg->umax_value < val)
3790 else if (reg->umin_value >= val)
3794 if (reg->smax_value < (s64)val)
3796 else if (reg->smin_value >= (s64)val)
3800 if (reg->umin_value >= val)
3802 else if (reg->umax_value < val)
3806 if (reg->smin_value >= (s64)val)
3808 else if (reg->smax_value < (s64)val)
3812 if (reg->umax_value <= val)
3814 else if (reg->umin_value > val)
3818 if (reg->smax_value <= (s64)val)
3820 else if (reg->smin_value > (s64)val)
3828 /* Adjusts the register min/max values in the case that the dst_reg is the
3829 * variable register that we are working on, and src_reg is a constant or we're
3830 * simply doing a BPF_K check.
3831 * In JEQ/JNE cases we also adjust the var_off values.
3833 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3834 struct bpf_reg_state *false_reg, u64 val,
3837 /* If the dst_reg is a pointer, we can't learn anything about its
3838 * variable offset from the compare (unless src_reg were a pointer into
3839 * the same object, but we don't bother with that.
3840 * Since false_reg and true_reg have the same type by construction, we
3841 * only need to check one of them for pointerness.
3843 if (__is_pointer_value(false, false_reg))
3848 /* If this is false then we know nothing Jon Snow, but if it is
3849 * true then we know for sure.
3851 __mark_reg_known(true_reg, val);
3854 /* If this is true we know nothing Jon Snow, but if it is false
3855 * we know the value for sure;
3857 __mark_reg_known(false_reg, val);
3860 false_reg->umax_value = min(false_reg->umax_value, val);
3861 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3864 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3865 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3868 false_reg->umin_value = max(false_reg->umin_value, val);
3869 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3872 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3873 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3876 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3877 true_reg->umin_value = max(true_reg->umin_value, val);
3880 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3881 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3884 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3885 true_reg->umax_value = min(true_reg->umax_value, val);
3888 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3889 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3895 __reg_deduce_bounds(false_reg);
3896 __reg_deduce_bounds(true_reg);
3897 /* We might have learned some bits from the bounds. */
3898 __reg_bound_offset(false_reg);
3899 __reg_bound_offset(true_reg);
3900 /* Intersecting with the old var_off might have improved our bounds
3901 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3902 * then new var_off is (0; 0x7f...fc) which improves our umax.
3904 __update_reg_bounds(false_reg);
3905 __update_reg_bounds(true_reg);
3908 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3911 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3912 struct bpf_reg_state *false_reg, u64 val,
3915 if (__is_pointer_value(false, false_reg))
3920 /* If this is false then we know nothing Jon Snow, but if it is
3921 * true then we know for sure.
3923 __mark_reg_known(true_reg, val);
3926 /* If this is true we know nothing Jon Snow, but if it is false
3927 * we know the value for sure;
3929 __mark_reg_known(false_reg, val);
3932 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3933 false_reg->umin_value = max(false_reg->umin_value, val);
3936 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3937 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3940 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3941 false_reg->umax_value = min(false_reg->umax_value, val);
3944 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3945 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3948 true_reg->umax_value = min(true_reg->umax_value, val);
3949 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3952 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3953 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3956 true_reg->umin_value = max(true_reg->umin_value, val);
3957 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3960 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3961 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3967 __reg_deduce_bounds(false_reg);
3968 __reg_deduce_bounds(true_reg);
3969 /* We might have learned some bits from the bounds. */
3970 __reg_bound_offset(false_reg);
3971 __reg_bound_offset(true_reg);
3972 /* Intersecting with the old var_off might have improved our bounds
3973 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3974 * then new var_off is (0; 0x7f...fc) which improves our umax.
3976 __update_reg_bounds(false_reg);
3977 __update_reg_bounds(true_reg);
3980 /* Regs are known to be equal, so intersect their min/max/var_off */
3981 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3982 struct bpf_reg_state *dst_reg)
3984 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3985 dst_reg->umin_value);
3986 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3987 dst_reg->umax_value);
3988 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3989 dst_reg->smin_value);
3990 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3991 dst_reg->smax_value);
3992 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3994 /* We might have learned new bounds from the var_off. */
3995 __update_reg_bounds(src_reg);
3996 __update_reg_bounds(dst_reg);
3997 /* We might have learned something about the sign bit. */
3998 __reg_deduce_bounds(src_reg);
3999 __reg_deduce_bounds(dst_reg);
4000 /* We might have learned some bits from the bounds. */
4001 __reg_bound_offset(src_reg);
4002 __reg_bound_offset(dst_reg);
4003 /* Intersecting with the old var_off might have improved our bounds
4004 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4005 * then new var_off is (0; 0x7f...fc) which improves our umax.
4007 __update_reg_bounds(src_reg);
4008 __update_reg_bounds(dst_reg);
4011 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4012 struct bpf_reg_state *true_dst,
4013 struct bpf_reg_state *false_src,
4014 struct bpf_reg_state *false_dst,
4019 __reg_combine_min_max(true_src, true_dst);
4022 __reg_combine_min_max(false_src, false_dst);
4027 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4028 struct bpf_reg_state *reg, u32 id,
4031 if (reg_type_may_be_null(reg->type) && reg->id == id) {
4032 /* Old offset (both fixed and variable parts) should
4033 * have been known-zero, because we don't allow pointer
4034 * arithmetic on pointers that might be NULL.
4036 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4037 !tnum_equals_const(reg->var_off, 0) ||
4039 __mark_reg_known_zero(reg);
4043 reg->type = SCALAR_VALUE;
4044 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4045 if (reg->map_ptr->inner_map_meta) {
4046 reg->type = CONST_PTR_TO_MAP;
4047 reg->map_ptr = reg->map_ptr->inner_map_meta;
4049 reg->type = PTR_TO_MAP_VALUE;
4051 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4052 reg->type = PTR_TO_SOCKET;
4054 if (is_null || !reg_is_refcounted(reg)) {
4055 /* We don't need id from this point onwards anymore,
4056 * thus we should better reset it, so that state
4057 * pruning has chances to take effect.
4064 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4065 * be folded together at some point.
4067 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4070 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4071 struct bpf_reg_state *reg, *regs = state->regs;
4072 u32 id = regs[regno].id;
4075 if (reg_is_refcounted_or_null(®s[regno]) && is_null)
4076 __release_reference_state(state, id);
4078 for (i = 0; i < MAX_BPF_REG; i++)
4079 mark_ptr_or_null_reg(state, ®s[i], id, is_null);
4081 for (j = 0; j <= vstate->curframe; j++) {
4082 state = vstate->frame[j];
4083 bpf_for_each_spilled_reg(i, state, reg) {
4086 mark_ptr_or_null_reg(state, reg, id, is_null);
4091 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4092 struct bpf_reg_state *dst_reg,
4093 struct bpf_reg_state *src_reg,
4094 struct bpf_verifier_state *this_branch,
4095 struct bpf_verifier_state *other_branch)
4097 if (BPF_SRC(insn->code) != BPF_X)
4100 switch (BPF_OP(insn->code)) {
4102 if ((dst_reg->type == PTR_TO_PACKET &&
4103 src_reg->type == PTR_TO_PACKET_END) ||
4104 (dst_reg->type == PTR_TO_PACKET_META &&
4105 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4106 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4107 find_good_pkt_pointers(this_branch, dst_reg,
4108 dst_reg->type, false);
4109 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4110 src_reg->type == PTR_TO_PACKET) ||
4111 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4112 src_reg->type == PTR_TO_PACKET_META)) {
4113 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4114 find_good_pkt_pointers(other_branch, src_reg,
4115 src_reg->type, true);
4121 if ((dst_reg->type == PTR_TO_PACKET &&
4122 src_reg->type == PTR_TO_PACKET_END) ||
4123 (dst_reg->type == PTR_TO_PACKET_META &&
4124 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4125 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4126 find_good_pkt_pointers(other_branch, dst_reg,
4127 dst_reg->type, true);
4128 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4129 src_reg->type == PTR_TO_PACKET) ||
4130 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4131 src_reg->type == PTR_TO_PACKET_META)) {
4132 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4133 find_good_pkt_pointers(this_branch, src_reg,
4134 src_reg->type, false);
4140 if ((dst_reg->type == PTR_TO_PACKET &&
4141 src_reg->type == PTR_TO_PACKET_END) ||
4142 (dst_reg->type == PTR_TO_PACKET_META &&
4143 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4144 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4145 find_good_pkt_pointers(this_branch, dst_reg,
4146 dst_reg->type, true);
4147 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4148 src_reg->type == PTR_TO_PACKET) ||
4149 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4150 src_reg->type == PTR_TO_PACKET_META)) {
4151 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4152 find_good_pkt_pointers(other_branch, src_reg,
4153 src_reg->type, false);
4159 if ((dst_reg->type == PTR_TO_PACKET &&
4160 src_reg->type == PTR_TO_PACKET_END) ||
4161 (dst_reg->type == PTR_TO_PACKET_META &&
4162 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4163 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4164 find_good_pkt_pointers(other_branch, dst_reg,
4165 dst_reg->type, false);
4166 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4167 src_reg->type == PTR_TO_PACKET) ||
4168 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4169 src_reg->type == PTR_TO_PACKET_META)) {
4170 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4171 find_good_pkt_pointers(this_branch, src_reg,
4172 src_reg->type, true);
4184 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4185 struct bpf_insn *insn, int *insn_idx)
4187 struct bpf_verifier_state *this_branch = env->cur_state;
4188 struct bpf_verifier_state *other_branch;
4189 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4190 struct bpf_reg_state *dst_reg, *other_branch_regs;
4191 u8 opcode = BPF_OP(insn->code);
4194 if (opcode > BPF_JSLE) {
4195 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
4199 if (BPF_SRC(insn->code) == BPF_X) {
4200 if (insn->imm != 0) {
4201 verbose(env, "BPF_JMP uses reserved fields\n");
4205 /* check src1 operand */
4206 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4210 if (is_pointer_value(env, insn->src_reg)) {
4211 verbose(env, "R%d pointer comparison prohibited\n",
4216 if (insn->src_reg != BPF_REG_0) {
4217 verbose(env, "BPF_JMP uses reserved fields\n");
4222 /* check src2 operand */
4223 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4227 dst_reg = ®s[insn->dst_reg];
4229 if (BPF_SRC(insn->code) == BPF_K) {
4230 int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4233 /* only follow the goto, ignore fall-through */
4234 *insn_idx += insn->off;
4236 } else if (pred == 0) {
4237 /* only follow fall-through branch, since
4238 * that's where the program will go
4244 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4247 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4249 /* detect if we are comparing against a constant value so we can adjust
4250 * our min/max values for our dst register.
4251 * this is only legit if both are scalars (or pointers to the same
4252 * object, I suppose, but we don't support that right now), because
4253 * otherwise the different base pointers mean the offsets aren't
4256 if (BPF_SRC(insn->code) == BPF_X) {
4257 if (dst_reg->type == SCALAR_VALUE &&
4258 regs[insn->src_reg].type == SCALAR_VALUE) {
4259 if (tnum_is_const(regs[insn->src_reg].var_off))
4260 reg_set_min_max(&other_branch_regs[insn->dst_reg],
4261 dst_reg, regs[insn->src_reg].var_off.value,
4263 else if (tnum_is_const(dst_reg->var_off))
4264 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4265 ®s[insn->src_reg],
4266 dst_reg->var_off.value, opcode);
4267 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4268 /* Comparing for equality, we can combine knowledge */
4269 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4270 &other_branch_regs[insn->dst_reg],
4271 ®s[insn->src_reg],
4272 ®s[insn->dst_reg], opcode);
4274 } else if (dst_reg->type == SCALAR_VALUE) {
4275 reg_set_min_max(&other_branch_regs[insn->dst_reg],
4276 dst_reg, insn->imm, opcode);
4279 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
4280 if (BPF_SRC(insn->code) == BPF_K &&
4281 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4282 reg_type_may_be_null(dst_reg->type)) {
4283 /* Mark all identical registers in each branch as either
4284 * safe or unknown depending R == 0 or R != 0 conditional.
4286 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4288 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4290 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
4291 this_branch, other_branch) &&
4292 is_pointer_value(env, insn->dst_reg)) {
4293 verbose(env, "R%d pointer comparison prohibited\n",
4298 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4302 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4303 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4305 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4307 return (struct bpf_map *) (unsigned long) imm64;
4310 /* verify BPF_LD_IMM64 instruction */
4311 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4313 struct bpf_reg_state *regs = cur_regs(env);
4316 if (BPF_SIZE(insn->code) != BPF_DW) {
4317 verbose(env, "invalid BPF_LD_IMM insn\n");
4320 if (insn->off != 0) {
4321 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4325 err = check_reg_arg(env, insn->dst_reg, DST_OP);
4329 if (insn->src_reg == 0) {
4330 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4332 regs[insn->dst_reg].type = SCALAR_VALUE;
4333 __mark_reg_known(®s[insn->dst_reg], imm);
4337 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4338 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4340 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4341 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4345 static bool may_access_skb(enum bpf_prog_type type)
4348 case BPF_PROG_TYPE_SOCKET_FILTER:
4349 case BPF_PROG_TYPE_SCHED_CLS:
4350 case BPF_PROG_TYPE_SCHED_ACT:
4357 /* verify safety of LD_ABS|LD_IND instructions:
4358 * - they can only appear in the programs where ctx == skb
4359 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4360 * preserve R6-R9, and store return value into R0
4363 * ctx == skb == R6 == CTX
4366 * SRC == any register
4367 * IMM == 32-bit immediate
4370 * R0 - 8/16/32-bit skb data converted to cpu endianness
4372 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
4374 struct bpf_reg_state *regs = cur_regs(env);
4375 u8 mode = BPF_MODE(insn->code);
4378 if (!may_access_skb(env->prog->type)) {
4379 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
4383 if (!env->ops->gen_ld_abs) {
4384 verbose(env, "bpf verifier is misconfigured\n");
4388 if (env->subprog_cnt > 1) {
4389 /* when program has LD_ABS insn JITs and interpreter assume
4390 * that r1 == ctx == skb which is not the case for callees
4391 * that can have arbitrary arguments. It's problematic
4392 * for main prog as well since JITs would need to analyze
4393 * all functions in order to make proper register save/restore
4394 * decisions in the main prog. Hence disallow LD_ABS with calls
4396 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4400 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
4401 BPF_SIZE(insn->code) == BPF_DW ||
4402 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
4403 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
4407 /* check whether implicit source operand (register R6) is readable */
4408 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4412 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4413 * gen_ld_abs() may terminate the program at runtime, leading to
4416 err = check_reference_leak(env);
4418 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4422 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4424 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4428 if (mode == BPF_IND) {
4429 /* check explicit source operand */
4430 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4435 /* reset caller saved regs to unreadable */
4436 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4437 mark_reg_not_init(env, regs, caller_saved[i]);
4438 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4441 /* mark destination R0 register as readable, since it contains
4442 * the value fetched from the packet.
4443 * Already marked as written above.
4445 mark_reg_unknown(env, regs, BPF_REG_0);
4449 static int check_return_code(struct bpf_verifier_env *env)
4451 struct bpf_reg_state *reg;
4452 struct tnum range = tnum_range(0, 1);
4454 switch (env->prog->type) {
4455 case BPF_PROG_TYPE_CGROUP_SKB:
4456 case BPF_PROG_TYPE_CGROUP_SOCK:
4457 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4458 case BPF_PROG_TYPE_SOCK_OPS:
4459 case BPF_PROG_TYPE_CGROUP_DEVICE:
4465 reg = cur_regs(env) + BPF_REG_0;
4466 if (reg->type != SCALAR_VALUE) {
4467 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4468 reg_type_str[reg->type]);
4472 if (!tnum_in(range, reg->var_off)) {
4473 verbose(env, "At program exit the register R0 ");
4474 if (!tnum_is_unknown(reg->var_off)) {
4477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4478 verbose(env, "has value %s", tn_buf);
4480 verbose(env, "has unknown scalar value");
4482 verbose(env, " should have been 0 or 1\n");
4488 /* non-recursive DFS pseudo code
4489 * 1 procedure DFS-iterative(G,v):
4490 * 2 label v as discovered
4491 * 3 let S be a stack
4493 * 5 while S is not empty
4495 * 7 if t is what we're looking for:
4497 * 9 for all edges e in G.adjacentEdges(t) do
4498 * 10 if edge e is already labelled
4499 * 11 continue with the next edge
4500 * 12 w <- G.adjacentVertex(t,e)
4501 * 13 if vertex w is not discovered and not explored
4502 * 14 label e as tree-edge
4503 * 15 label w as discovered
4506 * 18 else if vertex w is discovered
4507 * 19 label e as back-edge
4509 * 21 // vertex w is explored
4510 * 22 label e as forward- or cross-edge
4511 * 23 label t as explored
4516 * 0x11 - discovered and fall-through edge labelled
4517 * 0x12 - discovered and fall-through and branch edges labelled
4528 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4530 static int *insn_stack; /* stack of insns to process */
4531 static int cur_stack; /* current stack index */
4532 static int *insn_state;
4534 /* t, w, e - match pseudo-code above:
4535 * t - index of current instruction
4536 * w - next instruction
4539 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4541 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4544 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4547 if (w < 0 || w >= env->prog->len) {
4548 verbose(env, "jump out of range from insn %d to %d\n", t, w);
4553 /* mark branch target for state pruning */
4554 env->explored_states[w] = STATE_LIST_MARK;
4556 if (insn_state[w] == 0) {
4558 insn_state[t] = DISCOVERED | e;
4559 insn_state[w] = DISCOVERED;
4560 if (cur_stack >= env->prog->len)
4562 insn_stack[cur_stack++] = w;
4564 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4565 verbose(env, "back-edge from insn %d to %d\n", t, w);
4567 } else if (insn_state[w] == EXPLORED) {
4568 /* forward- or cross-edge */
4569 insn_state[t] = DISCOVERED | e;
4571 verbose(env, "insn state internal bug\n");
4577 /* non-recursive depth-first-search to detect loops in BPF program
4578 * loop == back-edge in directed graph
4580 static int check_cfg(struct bpf_verifier_env *env)
4582 struct bpf_insn *insns = env->prog->insnsi;
4583 int insn_cnt = env->prog->len;
4587 ret = check_subprogs(env);
4591 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4595 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4601 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4602 insn_stack[0] = 0; /* 0 is the first instruction */
4608 t = insn_stack[cur_stack - 1];
4610 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4611 u8 opcode = BPF_OP(insns[t].code);
4613 if (opcode == BPF_EXIT) {
4615 } else if (opcode == BPF_CALL) {
4616 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4621 if (t + 1 < insn_cnt)
4622 env->explored_states[t + 1] = STATE_LIST_MARK;
4623 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4624 env->explored_states[t] = STATE_LIST_MARK;
4625 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4631 } else if (opcode == BPF_JA) {
4632 if (BPF_SRC(insns[t].code) != BPF_K) {
4636 /* unconditional jump with single edge */
4637 ret = push_insn(t, t + insns[t].off + 1,
4643 /* tell verifier to check for equivalent states
4644 * after every call and jump
4646 if (t + 1 < insn_cnt)
4647 env->explored_states[t + 1] = STATE_LIST_MARK;
4649 /* conditional jump with two edges */
4650 env->explored_states[t] = STATE_LIST_MARK;
4651 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4657 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4664 /* all other non-branch instructions with single
4667 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4675 insn_state[t] = EXPLORED;
4676 if (cur_stack-- <= 0) {
4677 verbose(env, "pop stack internal bug\n");
4684 for (i = 0; i < insn_cnt; i++) {
4685 if (insn_state[i] != EXPLORED) {
4686 verbose(env, "unreachable insn %d\n", i);
4691 ret = 0; /* cfg looks good */
4699 /* check %cur's range satisfies %old's */
4700 static bool range_within(struct bpf_reg_state *old,
4701 struct bpf_reg_state *cur)
4703 return old->umin_value <= cur->umin_value &&
4704 old->umax_value >= cur->umax_value &&
4705 old->smin_value <= cur->smin_value &&
4706 old->smax_value >= cur->smax_value;
4709 /* Maximum number of register states that can exist at once */
4710 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4716 /* If in the old state two registers had the same id, then they need to have
4717 * the same id in the new state as well. But that id could be different from
4718 * the old state, so we need to track the mapping from old to new ids.
4719 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4720 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4721 * regs with a different old id could still have new id 9, we don't care about
4723 * So we look through our idmap to see if this old id has been seen before. If
4724 * so, we require the new id to match; otherwise, we add the id pair to the map.
4726 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4730 for (i = 0; i < ID_MAP_SIZE; i++) {
4731 if (!idmap[i].old) {
4732 /* Reached an empty slot; haven't seen this id before */
4733 idmap[i].old = old_id;
4734 idmap[i].cur = cur_id;
4737 if (idmap[i].old == old_id)
4738 return idmap[i].cur == cur_id;
4740 /* We ran out of idmap slots, which should be impossible */
4745 /* Returns true if (rold safe implies rcur safe) */
4746 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4747 struct idpair *idmap)
4751 if (!(rold->live & REG_LIVE_READ))
4752 /* explored state didn't use this */
4755 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
4757 if (rold->type == PTR_TO_STACK)
4758 /* two stack pointers are equal only if they're pointing to
4759 * the same stack frame, since fp-8 in foo != fp-8 in bar
4761 return equal && rold->frameno == rcur->frameno;
4766 if (rold->type == NOT_INIT)
4767 /* explored state can't have used this */
4769 if (rcur->type == NOT_INIT)
4771 switch (rold->type) {
4773 if (rcur->type == SCALAR_VALUE) {
4774 /* new val must satisfy old val knowledge */
4775 return range_within(rold, rcur) &&
4776 tnum_in(rold->var_off, rcur->var_off);
4778 /* We're trying to use a pointer in place of a scalar.
4779 * Even if the scalar was unbounded, this could lead to
4780 * pointer leaks because scalars are allowed to leak
4781 * while pointers are not. We could make this safe in
4782 * special cases if root is calling us, but it's
4783 * probably not worth the hassle.
4787 case PTR_TO_MAP_VALUE:
4788 /* If the new min/max/var_off satisfy the old ones and
4789 * everything else matches, we are OK.
4790 * We don't care about the 'id' value, because nothing
4791 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4793 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4794 range_within(rold, rcur) &&
4795 tnum_in(rold->var_off, rcur->var_off);
4796 case PTR_TO_MAP_VALUE_OR_NULL:
4797 /* a PTR_TO_MAP_VALUE could be safe to use as a
4798 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4799 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4800 * checked, doing so could have affected others with the same
4801 * id, and we can't check for that because we lost the id when
4802 * we converted to a PTR_TO_MAP_VALUE.
4804 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4806 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4808 /* Check our ids match any regs they're supposed to */
4809 return check_ids(rold->id, rcur->id, idmap);
4810 case PTR_TO_PACKET_META:
4812 if (rcur->type != rold->type)
4814 /* We must have at least as much range as the old ptr
4815 * did, so that any accesses which were safe before are
4816 * still safe. This is true even if old range < old off,
4817 * since someone could have accessed through (ptr - k), or
4818 * even done ptr -= k in a register, to get a safe access.
4820 if (rold->range > rcur->range)
4822 /* If the offsets don't match, we can't trust our alignment;
4823 * nor can we be sure that we won't fall out of range.
4825 if (rold->off != rcur->off)
4827 /* id relations must be preserved */
4828 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4830 /* new val must satisfy old val knowledge */
4831 return range_within(rold, rcur) &&
4832 tnum_in(rold->var_off, rcur->var_off);
4834 case CONST_PTR_TO_MAP:
4835 case PTR_TO_PACKET_END:
4836 case PTR_TO_FLOW_KEYS:
4838 case PTR_TO_SOCKET_OR_NULL:
4839 /* Only valid matches are exact, which memcmp() above
4840 * would have accepted
4843 /* Don't know what's going on, just say it's not safe */
4847 /* Shouldn't get here; if we do, say it's not safe */
4852 static bool stacksafe(struct bpf_func_state *old,
4853 struct bpf_func_state *cur,
4854 struct idpair *idmap)
4858 /* if explored stack has more populated slots than current stack
4859 * such stacks are not equivalent
4861 if (old->allocated_stack > cur->allocated_stack)
4864 /* walk slots of the explored stack and ignore any additional
4865 * slots in the current stack, since explored(safe) state
4868 for (i = 0; i < old->allocated_stack; i++) {
4869 spi = i / BPF_REG_SIZE;
4871 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4872 /* explored state didn't use this */
4875 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4877 /* if old state was safe with misc data in the stack
4878 * it will be safe with zero-initialized stack.
4879 * The opposite is not true
4881 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4882 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4884 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4885 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4886 /* Ex: old explored (safe) state has STACK_SPILL in
4887 * this stack slot, but current has has STACK_MISC ->
4888 * this verifier states are not equivalent,
4889 * return false to continue verification of this path
4892 if (i % BPF_REG_SIZE)
4894 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4896 if (!regsafe(&old->stack[spi].spilled_ptr,
4897 &cur->stack[spi].spilled_ptr,
4899 /* when explored and current stack slot are both storing
4900 * spilled registers, check that stored pointers types
4901 * are the same as well.
4902 * Ex: explored safe path could have stored
4903 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4904 * but current path has stored:
4905 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4906 * such verifier states are not equivalent.
4907 * return false to continue verification of this path
4914 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4916 if (old->acquired_refs != cur->acquired_refs)
4918 return !memcmp(old->refs, cur->refs,
4919 sizeof(*old->refs) * old->acquired_refs);
4922 /* compare two verifier states
4924 * all states stored in state_list are known to be valid, since
4925 * verifier reached 'bpf_exit' instruction through them
4927 * this function is called when verifier exploring different branches of
4928 * execution popped from the state stack. If it sees an old state that has
4929 * more strict register state and more strict stack state then this execution
4930 * branch doesn't need to be explored further, since verifier already
4931 * concluded that more strict state leads to valid finish.
4933 * Therefore two states are equivalent if register state is more conservative
4934 * and explored stack state is more conservative than the current one.
4937 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4938 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4940 * In other words if current stack state (one being explored) has more
4941 * valid slots than old one that already passed validation, it means
4942 * the verifier can stop exploring and conclude that current state is valid too
4944 * Similarly with registers. If explored state has register type as invalid
4945 * whereas register type in current state is meaningful, it means that
4946 * the current state will reach 'bpf_exit' instruction safely
4948 static bool func_states_equal(struct bpf_func_state *old,
4949 struct bpf_func_state *cur)
4951 struct idpair *idmap;
4955 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4956 /* If we failed to allocate the idmap, just say it's not safe */
4960 for (i = 0; i < MAX_BPF_REG; i++) {
4961 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4965 if (!stacksafe(old, cur, idmap))
4968 if (!refsafe(old, cur))
4976 static bool states_equal(struct bpf_verifier_env *env,
4977 struct bpf_verifier_state *old,
4978 struct bpf_verifier_state *cur)
4982 if (old->curframe != cur->curframe)
4985 /* for states to be equal callsites have to be the same
4986 * and all frame states need to be equivalent
4988 for (i = 0; i <= old->curframe; i++) {
4989 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4991 if (!func_states_equal(old->frame[i], cur->frame[i]))
4997 /* A write screens off any subsequent reads; but write marks come from the
4998 * straight-line code between a state and its parent. When we arrive at an
4999 * equivalent state (jump target or such) we didn't arrive by the straight-line
5000 * code, so read marks in the state must propagate to the parent regardless
5001 * of the state's write marks. That's what 'parent == state->parent' comparison
5002 * in mark_reg_read() is for.
5004 static int propagate_liveness(struct bpf_verifier_env *env,
5005 const struct bpf_verifier_state *vstate,
5006 struct bpf_verifier_state *vparent)
5008 int i, frame, err = 0;
5009 struct bpf_func_state *state, *parent;
5011 if (vparent->curframe != vstate->curframe) {
5012 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5013 vparent->curframe, vstate->curframe);
5016 /* Propagate read liveness of registers... */
5017 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5018 /* We don't need to worry about FP liveness because it's read-only */
5019 for (i = 0; i < BPF_REG_FP; i++) {
5020 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
5022 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
5023 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5024 &vparent->frame[vstate->curframe]->regs[i]);
5030 /* ... and stack slots */
5031 for (frame = 0; frame <= vstate->curframe; frame++) {
5032 state = vstate->frame[frame];
5033 parent = vparent->frame[frame];
5034 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5035 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
5036 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5038 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
5039 mark_reg_read(env, &state->stack[i].spilled_ptr,
5040 &parent->stack[i].spilled_ptr);
5046 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
5048 struct bpf_verifier_state_list *new_sl;
5049 struct bpf_verifier_state_list *sl;
5050 struct bpf_verifier_state *cur = env->cur_state, *new;
5051 int i, j, err, states_cnt = 0;
5053 sl = env->explored_states[insn_idx];
5055 /* this 'insn_idx' instruction wasn't marked, so we will not
5056 * be doing state search here
5060 while (sl != STATE_LIST_MARK) {
5061 if (states_equal(env, &sl->state, cur)) {
5062 /* reached equivalent register/stack state,
5064 * Registers read by the continuation are read by us.
5065 * If we have any write marks in env->cur_state, they
5066 * will prevent corresponding reads in the continuation
5067 * from reaching our parent (an explored_state). Our
5068 * own state will get the read marks recorded, but
5069 * they'll be immediately forgotten as we're pruning
5070 * this state and will pop a new one.
5072 err = propagate_liveness(env, &sl->state, cur);
5081 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5084 /* there were no equivalent states, remember current one.
5085 * technically the current state is not proven to be safe yet,
5086 * but it will either reach outer most bpf_exit (which means it's safe)
5087 * or it will be rejected. Since there are no loops, we won't be
5088 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5089 * again on the way to bpf_exit
5091 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
5095 /* add new state to the head of linked list */
5096 new = &new_sl->state;
5097 err = copy_verifier_state(new, cur);
5099 free_verifier_state(new, false);
5103 new_sl->next = env->explored_states[insn_idx];
5104 env->explored_states[insn_idx] = new_sl;
5105 /* connect new state to parentage chain. Current frame needs all
5106 * registers connected. Only r6 - r9 of the callers are alive (pushed
5107 * to the stack implicitly by JITs) so in callers' frames connect just
5108 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
5109 * the state of the call instruction (with WRITTEN set), and r0 comes
5110 * from callee with its full parentage chain, anyway.
5112 for (j = 0; j <= cur->curframe; j++)
5113 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
5114 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
5115 /* clear write marks in current state: the writes we did are not writes
5116 * our child did, so they don't screen off its reads from us.
5117 * (There are no read marks in current state, because reads always mark
5118 * their parent and current state never has children yet. Only
5119 * explored_states can get read marks.)
5121 for (i = 0; i < BPF_REG_FP; i++)
5122 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5124 /* all stack frames are accessible from callee, clear them all */
5125 for (j = 0; j <= cur->curframe; j++) {
5126 struct bpf_func_state *frame = cur->frame[j];
5127 struct bpf_func_state *newframe = new->frame[j];
5129 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
5130 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
5131 frame->stack[i].spilled_ptr.parent =
5132 &newframe->stack[i].spilled_ptr;
5138 /* Return true if it's OK to have the same insn return a different type. */
5139 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5144 case PTR_TO_SOCKET_OR_NULL:
5151 /* If an instruction was previously used with particular pointer types, then we
5152 * need to be careful to avoid cases such as the below, where it may be ok
5153 * for one branch accessing the pointer, but not ok for the other branch:
5158 * R1 = some_other_valid_ptr;
5161 * R2 = *(u32 *)(R1 + 0);
5163 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5165 return src != prev && (!reg_type_mismatch_ok(src) ||
5166 !reg_type_mismatch_ok(prev));
5169 static int do_check(struct bpf_verifier_env *env)
5171 struct bpf_verifier_state *state;
5172 struct bpf_insn *insns = env->prog->insnsi;
5173 struct bpf_reg_state *regs;
5174 int insn_cnt = env->prog->len, i;
5175 int insn_idx, prev_insn_idx = 0;
5176 int insn_processed = 0;
5177 bool do_print_state = false;
5179 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5182 state->curframe = 0;
5183 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5184 if (!state->frame[0]) {
5188 env->cur_state = state;
5189 init_func_state(env, state->frame[0],
5190 BPF_MAIN_FUNC /* callsite */,
5192 0 /* subprogno, zero == main subprog */);
5195 struct bpf_insn *insn;
5199 if (insn_idx >= insn_cnt) {
5200 verbose(env, "invalid insn idx %d insn_cnt %d\n",
5201 insn_idx, insn_cnt);
5205 insn = &insns[insn_idx];
5206 class = BPF_CLASS(insn->code);
5208 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
5210 "BPF program is too large. Processed %d insn\n",
5215 err = is_state_visited(env, insn_idx);
5219 /* found equivalent state, can prune the search */
5220 if (env->log.level) {
5222 verbose(env, "\nfrom %d to %d: safe\n",
5223 prev_insn_idx, insn_idx);
5225 verbose(env, "%d: safe\n", insn_idx);
5227 goto process_bpf_exit;
5230 if (signal_pending(current))
5236 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5237 if (env->log.level > 1)
5238 verbose(env, "%d:", insn_idx);
5240 verbose(env, "\nfrom %d to %d:",
5241 prev_insn_idx, insn_idx);
5242 print_verifier_state(env, state->frame[state->curframe]);
5243 do_print_state = false;
5246 if (env->log.level) {
5247 const struct bpf_insn_cbs cbs = {
5248 .cb_print = verbose,
5249 .private_data = env,
5252 verbose(env, "%d: ", insn_idx);
5253 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
5256 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5257 err = bpf_prog_offload_verify_insn(env, insn_idx,
5263 regs = cur_regs(env);
5264 env->insn_aux_data[insn_idx].seen = true;
5266 if (class == BPF_ALU || class == BPF_ALU64) {
5267 err = check_alu_op(env, insn);
5271 } else if (class == BPF_LDX) {
5272 enum bpf_reg_type *prev_src_type, src_reg_type;
5274 /* check for reserved fields is already done */
5276 /* check src operand */
5277 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5281 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5285 src_reg_type = regs[insn->src_reg].type;
5287 /* check that memory (src_reg + off) is readable,
5288 * the state of dst_reg will be updated by this func
5290 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
5291 BPF_SIZE(insn->code), BPF_READ,
5292 insn->dst_reg, false);
5296 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5298 if (*prev_src_type == NOT_INIT) {
5300 * dst_reg = *(u32 *)(src_reg + off)
5301 * save type to validate intersecting paths
5303 *prev_src_type = src_reg_type;
5305 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
5306 /* ABuser program is trying to use the same insn
5307 * dst_reg = *(u32*) (src_reg + off)
5308 * with different pointer types:
5309 * src_reg == ctx in one branch and
5310 * src_reg == stack|map in some other branch.
5313 verbose(env, "same insn cannot be used with different pointers\n");
5317 } else if (class == BPF_STX) {
5318 enum bpf_reg_type *prev_dst_type, dst_reg_type;
5320 if (BPF_MODE(insn->code) == BPF_XADD) {
5321 err = check_xadd(env, insn_idx, insn);
5328 /* check src1 operand */
5329 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5332 /* check src2 operand */
5333 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5337 dst_reg_type = regs[insn->dst_reg].type;
5339 /* check that memory (dst_reg + off) is writeable */
5340 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5341 BPF_SIZE(insn->code), BPF_WRITE,
5342 insn->src_reg, false);
5346 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5348 if (*prev_dst_type == NOT_INIT) {
5349 *prev_dst_type = dst_reg_type;
5350 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
5351 verbose(env, "same insn cannot be used with different pointers\n");
5355 } else if (class == BPF_ST) {
5356 if (BPF_MODE(insn->code) != BPF_MEM ||
5357 insn->src_reg != BPF_REG_0) {
5358 verbose(env, "BPF_ST uses reserved fields\n");
5361 /* check src operand */
5362 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5366 if (is_ctx_reg(env, insn->dst_reg)) {
5367 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5369 reg_type_str[reg_state(env, insn->dst_reg)->type]);
5373 /* check that memory (dst_reg + off) is writeable */
5374 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5375 BPF_SIZE(insn->code), BPF_WRITE,
5380 } else if (class == BPF_JMP) {
5381 u8 opcode = BPF_OP(insn->code);
5383 if (opcode == BPF_CALL) {
5384 if (BPF_SRC(insn->code) != BPF_K ||
5386 (insn->src_reg != BPF_REG_0 &&
5387 insn->src_reg != BPF_PSEUDO_CALL) ||
5388 insn->dst_reg != BPF_REG_0) {
5389 verbose(env, "BPF_CALL uses reserved fields\n");
5393 if (insn->src_reg == BPF_PSEUDO_CALL)
5394 err = check_func_call(env, insn, &insn_idx);
5396 err = check_helper_call(env, insn->imm, insn_idx);
5400 } else if (opcode == BPF_JA) {
5401 if (BPF_SRC(insn->code) != BPF_K ||
5403 insn->src_reg != BPF_REG_0 ||
5404 insn->dst_reg != BPF_REG_0) {
5405 verbose(env, "BPF_JA uses reserved fields\n");
5409 insn_idx += insn->off + 1;
5412 } else if (opcode == BPF_EXIT) {
5413 if (BPF_SRC(insn->code) != BPF_K ||
5415 insn->src_reg != BPF_REG_0 ||
5416 insn->dst_reg != BPF_REG_0) {
5417 verbose(env, "BPF_EXIT uses reserved fields\n");
5421 if (state->curframe) {
5422 /* exit from nested function */
5423 prev_insn_idx = insn_idx;
5424 err = prepare_func_exit(env, &insn_idx);
5427 do_print_state = true;
5431 err = check_reference_leak(env);
5435 /* eBPF calling convetion is such that R0 is used
5436 * to return the value from eBPF program.
5437 * Make sure that it's readable at this time
5438 * of bpf_exit, which means that program wrote
5439 * something into it earlier
5441 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
5445 if (is_pointer_value(env, BPF_REG_0)) {
5446 verbose(env, "R0 leaks addr as return value\n");
5450 err = check_return_code(env);
5454 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5460 do_print_state = true;
5464 err = check_cond_jmp_op(env, insn, &insn_idx);
5468 } else if (class == BPF_LD) {
5469 u8 mode = BPF_MODE(insn->code);
5471 if (mode == BPF_ABS || mode == BPF_IND) {
5472 err = check_ld_abs(env, insn);
5476 } else if (mode == BPF_IMM) {
5477 err = check_ld_imm(env, insn);
5482 env->insn_aux_data[insn_idx].seen = true;
5484 verbose(env, "invalid BPF_LD mode\n");
5488 verbose(env, "unknown insn class %d\n", class);
5495 verbose(env, "processed %d insns (limit %d), stack depth ",
5496 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5497 for (i = 0; i < env->subprog_cnt; i++) {
5498 u32 depth = env->subprog_info[i].stack_depth;
5500 verbose(env, "%d", depth);
5501 if (i + 1 < env->subprog_cnt)
5505 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5509 static int check_map_prealloc(struct bpf_map *map)
5511 return (map->map_type != BPF_MAP_TYPE_HASH &&
5512 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5513 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5514 !(map->map_flags & BPF_F_NO_PREALLOC);
5517 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5518 struct bpf_map *map,
5519 struct bpf_prog *prog)
5522 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5523 * preallocated hash maps, since doing memory allocation
5524 * in overflow_handler can crash depending on where nmi got
5527 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5528 if (!check_map_prealloc(map)) {
5529 verbose(env, "perf_event programs can only use preallocated hash map\n");
5532 if (map->inner_map_meta &&
5533 !check_map_prealloc(map->inner_map_meta)) {
5534 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5539 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5540 !bpf_offload_prog_map_match(prog, map)) {
5541 verbose(env, "offload device mismatch between prog and map\n");
5548 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5550 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5551 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5554 /* look for pseudo eBPF instructions that access map FDs and
5555 * replace them with actual map pointers
5557 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5559 struct bpf_insn *insn = env->prog->insnsi;
5560 int insn_cnt = env->prog->len;
5563 err = bpf_prog_calc_tag(env->prog);
5567 for (i = 0; i < insn_cnt; i++, insn++) {
5568 if (BPF_CLASS(insn->code) == BPF_LDX &&
5569 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5570 verbose(env, "BPF_LDX uses reserved fields\n");
5574 if (BPF_CLASS(insn->code) == BPF_STX &&
5575 ((BPF_MODE(insn->code) != BPF_MEM &&
5576 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5577 verbose(env, "BPF_STX uses reserved fields\n");
5581 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5582 struct bpf_map *map;
5585 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5586 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5588 verbose(env, "invalid bpf_ld_imm64 insn\n");
5592 if (insn->src_reg == 0)
5593 /* valid generic load 64-bit imm */
5596 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5598 "unrecognized bpf_ld_imm64 insn\n");
5602 f = fdget(insn->imm);
5603 map = __bpf_map_get(f);
5605 verbose(env, "fd %d is not pointing to valid bpf_map\n",
5607 return PTR_ERR(map);
5610 err = check_map_prog_compatibility(env, map, env->prog);
5616 /* store map pointer inside BPF_LD_IMM64 instruction */
5617 insn[0].imm = (u32) (unsigned long) map;
5618 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5620 /* check whether we recorded this map already */
5621 for (j = 0; j < env->used_map_cnt; j++)
5622 if (env->used_maps[j] == map) {
5627 if (env->used_map_cnt >= MAX_USED_MAPS) {
5632 /* hold the map. If the program is rejected by verifier,
5633 * the map will be released by release_maps() or it
5634 * will be used by the valid program until it's unloaded
5635 * and all maps are released in free_used_maps()
5637 map = bpf_map_inc(map, false);
5640 return PTR_ERR(map);
5642 env->used_maps[env->used_map_cnt++] = map;
5644 if (bpf_map_is_cgroup_storage(map) &&
5645 bpf_cgroup_storage_assign(env->prog, map)) {
5646 verbose(env, "only one cgroup storage of each type is allowed\n");
5658 /* Basic sanity check before we invest more work here. */
5659 if (!bpf_opcode_in_insntable(insn->code)) {
5660 verbose(env, "unknown opcode %02x\n", insn->code);
5665 /* now all pseudo BPF_LD_IMM64 instructions load valid
5666 * 'struct bpf_map *' into a register instead of user map_fd.
5667 * These pointers will be used later by verifier to validate map access.
5672 /* drop refcnt of maps used by the rejected program */
5673 static void release_maps(struct bpf_verifier_env *env)
5675 enum bpf_cgroup_storage_type stype;
5678 for_each_cgroup_storage_type(stype) {
5679 if (!env->prog->aux->cgroup_storage[stype])
5681 bpf_cgroup_storage_release(env->prog,
5682 env->prog->aux->cgroup_storage[stype]);
5685 for (i = 0; i < env->used_map_cnt; i++)
5686 bpf_map_put(env->used_maps[i]);
5689 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5690 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5692 struct bpf_insn *insn = env->prog->insnsi;
5693 int insn_cnt = env->prog->len;
5696 for (i = 0; i < insn_cnt; i++, insn++)
5697 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5701 /* single env->prog->insni[off] instruction was replaced with the range
5702 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5703 * [0, off) and [off, end) to new locations, so the patched range stays zero
5705 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5708 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5713 new_data = vzalloc(array_size(prog_len,
5714 sizeof(struct bpf_insn_aux_data)));
5717 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5718 memcpy(new_data + off + cnt - 1, old_data + off,
5719 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5720 for (i = off; i < off + cnt - 1; i++)
5721 new_data[i].seen = true;
5722 env->insn_aux_data = new_data;
5727 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5733 /* NOTE: fake 'exit' subprog should be updated as well. */
5734 for (i = 0; i <= env->subprog_cnt; i++) {
5735 if (env->subprog_info[i].start <= off)
5737 env->subprog_info[i].start += len - 1;
5741 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5742 const struct bpf_insn *patch, u32 len)
5744 struct bpf_prog *new_prog;
5746 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5749 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5751 adjust_subprog_starts(env, off, len);
5755 /* The verifier does more data flow analysis than llvm and will not
5756 * explore branches that are dead at run time. Malicious programs can
5757 * have dead code too. Therefore replace all dead at-run-time code
5760 * Just nops are not optimal, e.g. if they would sit at the end of the
5761 * program and through another bug we would manage to jump there, then
5762 * we'd execute beyond program memory otherwise. Returning exception
5763 * code also wouldn't work since we can have subprogs where the dead
5764 * code could be located.
5766 static void sanitize_dead_code(struct bpf_verifier_env *env)
5768 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5769 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5770 struct bpf_insn *insn = env->prog->insnsi;
5771 const int insn_cnt = env->prog->len;
5774 for (i = 0; i < insn_cnt; i++) {
5775 if (aux_data[i].seen)
5777 memcpy(insn + i, &trap, sizeof(trap));
5781 /* convert load instructions that access fields of a context type into a
5782 * sequence of instructions that access fields of the underlying structure:
5783 * struct __sk_buff -> struct sk_buff
5784 * struct bpf_sock_ops -> struct sock
5786 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5788 const struct bpf_verifier_ops *ops = env->ops;
5789 int i, cnt, size, ctx_field_size, delta = 0;
5790 const int insn_cnt = env->prog->len;
5791 struct bpf_insn insn_buf[16], *insn;
5792 struct bpf_prog *new_prog;
5793 enum bpf_access_type type;
5794 bool is_narrower_load;
5797 if (ops->gen_prologue || env->seen_direct_write) {
5798 if (!ops->gen_prologue) {
5799 verbose(env, "bpf verifier is misconfigured\n");
5802 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5804 if (cnt >= ARRAY_SIZE(insn_buf)) {
5805 verbose(env, "bpf verifier is misconfigured\n");
5808 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5812 env->prog = new_prog;
5817 if (bpf_prog_is_dev_bound(env->prog->aux))
5820 insn = env->prog->insnsi + delta;
5822 for (i = 0; i < insn_cnt; i++, insn++) {
5823 bpf_convert_ctx_access_t convert_ctx_access;
5825 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5826 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5827 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5828 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5830 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5831 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5832 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5833 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5838 if (type == BPF_WRITE &&
5839 env->insn_aux_data[i + delta].sanitize_stack_off) {
5840 struct bpf_insn patch[] = {
5841 /* Sanitize suspicious stack slot with zero.
5842 * There are no memory dependencies for this store,
5843 * since it's only using frame pointer and immediate
5846 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5847 env->insn_aux_data[i + delta].sanitize_stack_off,
5849 /* the original STX instruction will immediately
5850 * overwrite the same stack slot with appropriate value
5855 cnt = ARRAY_SIZE(patch);
5856 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5861 env->prog = new_prog;
5862 insn = new_prog->insnsi + i + delta;
5866 switch (env->insn_aux_data[i + delta].ptr_type) {
5868 if (!ops->convert_ctx_access)
5870 convert_ctx_access = ops->convert_ctx_access;
5873 convert_ctx_access = bpf_sock_convert_ctx_access;
5879 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5880 size = BPF_LDST_BYTES(insn);
5882 /* If the read access is a narrower load of the field,
5883 * convert to a 4/8-byte load, to minimum program type specific
5884 * convert_ctx_access changes. If conversion is successful,
5885 * we will apply proper mask to the result.
5887 is_narrower_load = size < ctx_field_size;
5888 if (is_narrower_load) {
5889 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5890 u32 off = insn->off;
5893 if (type == BPF_WRITE) {
5894 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5899 if (ctx_field_size == 4)
5901 else if (ctx_field_size == 8)
5904 insn->off = off & ~(size_default - 1);
5905 insn->code = BPF_LDX | BPF_MEM | size_code;
5909 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5911 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5912 (ctx_field_size && !target_size)) {
5913 verbose(env, "bpf verifier is misconfigured\n");
5917 if (is_narrower_load && size < target_size) {
5918 if (ctx_field_size <= 4)
5919 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5920 (1 << size * 8) - 1);
5922 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5923 (1 << size * 8) - 1);
5926 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5932 /* keep walking new program and skip insns we just inserted */
5933 env->prog = new_prog;
5934 insn = new_prog->insnsi + i + delta;
5940 static int jit_subprogs(struct bpf_verifier_env *env)
5942 struct bpf_prog *prog = env->prog, **func, *tmp;
5943 int i, j, subprog_start, subprog_end = 0, len, subprog;
5944 struct bpf_insn *insn;
5948 if (env->subprog_cnt <= 1)
5951 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5952 if (insn->code != (BPF_JMP | BPF_CALL) ||
5953 insn->src_reg != BPF_PSEUDO_CALL)
5955 /* Upon error here we cannot fall back to interpreter but
5956 * need a hard reject of the program. Thus -EFAULT is
5957 * propagated in any case.
5959 subprog = find_subprog(env, i + insn->imm + 1);
5961 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5965 /* temporarily remember subprog id inside insn instead of
5966 * aux_data, since next loop will split up all insns into funcs
5968 insn->off = subprog;
5969 /* remember original imm in case JIT fails and fallback
5970 * to interpreter will be needed
5972 env->insn_aux_data[i].call_imm = insn->imm;
5973 /* point imm to __bpf_call_base+1 from JITs point of view */
5977 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5981 for (i = 0; i < env->subprog_cnt; i++) {
5982 subprog_start = subprog_end;
5983 subprog_end = env->subprog_info[i + 1].start;
5985 len = subprog_end - subprog_start;
5986 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5989 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5990 len * sizeof(struct bpf_insn));
5991 func[i]->type = prog->type;
5993 if (bpf_prog_calc_tag(func[i]))
5995 func[i]->is_func = 1;
5996 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5997 * Long term would need debug info to populate names
5999 func[i]->aux->name[0] = 'F';
6000 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
6001 func[i]->jit_requested = 1;
6002 func[i] = bpf_int_jit_compile(func[i]);
6003 if (!func[i]->jited) {
6009 /* at this point all bpf functions were successfully JITed
6010 * now populate all bpf_calls with correct addresses and
6011 * run last pass of JIT
6013 for (i = 0; i < env->subprog_cnt; i++) {
6014 insn = func[i]->insnsi;
6015 for (j = 0; j < func[i]->len; j++, insn++) {
6016 if (insn->code != (BPF_JMP | BPF_CALL) ||
6017 insn->src_reg != BPF_PSEUDO_CALL)
6019 subprog = insn->off;
6020 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6021 func[subprog]->bpf_func -
6025 /* we use the aux data to keep a list of the start addresses
6026 * of the JITed images for each function in the program
6028 * for some architectures, such as powerpc64, the imm field
6029 * might not be large enough to hold the offset of the start
6030 * address of the callee's JITed image from __bpf_call_base
6032 * in such cases, we can lookup the start address of a callee
6033 * by using its subprog id, available from the off field of
6034 * the call instruction, as an index for this list
6036 func[i]->aux->func = func;
6037 func[i]->aux->func_cnt = env->subprog_cnt;
6039 for (i = 0; i < env->subprog_cnt; i++) {
6040 old_bpf_func = func[i]->bpf_func;
6041 tmp = bpf_int_jit_compile(func[i]);
6042 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6043 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
6050 /* finally lock prog and jit images for all functions and
6053 for (i = 0; i < env->subprog_cnt; i++) {
6054 bpf_prog_lock_ro(func[i]);
6055 bpf_prog_kallsyms_add(func[i]);
6058 /* Last step: make now unused interpreter insns from main
6059 * prog consistent for later dump requests, so they can
6060 * later look the same as if they were interpreted only.
6062 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6063 if (insn->code != (BPF_JMP | BPF_CALL) ||
6064 insn->src_reg != BPF_PSEUDO_CALL)
6066 insn->off = env->insn_aux_data[i].call_imm;
6067 subprog = find_subprog(env, i + insn->off + 1);
6068 insn->imm = subprog;
6072 prog->bpf_func = func[0]->bpf_func;
6073 prog->aux->func = func;
6074 prog->aux->func_cnt = env->subprog_cnt;
6077 for (i = 0; i < env->subprog_cnt; i++)
6079 bpf_jit_free(func[i]);
6082 /* cleanup main prog to be interpreted */
6083 prog->jit_requested = 0;
6084 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6085 if (insn->code != (BPF_JMP | BPF_CALL) ||
6086 insn->src_reg != BPF_PSEUDO_CALL)
6089 insn->imm = env->insn_aux_data[i].call_imm;
6094 static int fixup_call_args(struct bpf_verifier_env *env)
6096 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6097 struct bpf_prog *prog = env->prog;
6098 struct bpf_insn *insn = prog->insnsi;
6103 if (env->prog->jit_requested &&
6104 !bpf_prog_is_dev_bound(env->prog->aux)) {
6105 err = jit_subprogs(env);
6111 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6112 for (i = 0; i < prog->len; i++, insn++) {
6113 if (insn->code != (BPF_JMP | BPF_CALL) ||
6114 insn->src_reg != BPF_PSEUDO_CALL)
6116 depth = get_callee_stack_depth(env, insn, i);
6119 bpf_patch_call_args(insn, depth);
6126 /* fixup insn->imm field of bpf_call instructions
6127 * and inline eligible helpers as explicit sequence of BPF instructions
6129 * this function is called after eBPF program passed verification
6131 static int fixup_bpf_calls(struct bpf_verifier_env *env)
6133 struct bpf_prog *prog = env->prog;
6134 struct bpf_insn *insn = prog->insnsi;
6135 const struct bpf_func_proto *fn;
6136 const int insn_cnt = prog->len;
6137 const struct bpf_map_ops *ops;
6138 struct bpf_insn_aux_data *aux;
6139 struct bpf_insn insn_buf[16];
6140 struct bpf_prog *new_prog;
6141 struct bpf_map *map_ptr;
6142 int i, cnt, delta = 0;
6144 for (i = 0; i < insn_cnt; i++, insn++) {
6145 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6146 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6147 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
6148 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6149 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6150 struct bpf_insn mask_and_div[] = {
6151 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6153 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6154 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6155 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6158 struct bpf_insn mask_and_mod[] = {
6159 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6160 /* Rx mod 0 -> Rx */
6161 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6164 struct bpf_insn *patchlet;
6166 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6167 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6168 patchlet = mask_and_div + (is64 ? 1 : 0);
6169 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6171 patchlet = mask_and_mod + (is64 ? 1 : 0);
6172 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6175 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
6180 env->prog = prog = new_prog;
6181 insn = new_prog->insnsi + i + delta;
6185 if (BPF_CLASS(insn->code) == BPF_LD &&
6186 (BPF_MODE(insn->code) == BPF_ABS ||
6187 BPF_MODE(insn->code) == BPF_IND)) {
6188 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6189 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6190 verbose(env, "bpf verifier is misconfigured\n");
6194 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6199 env->prog = prog = new_prog;
6200 insn = new_prog->insnsi + i + delta;
6204 if (insn->code != (BPF_JMP | BPF_CALL))
6206 if (insn->src_reg == BPF_PSEUDO_CALL)
6209 if (insn->imm == BPF_FUNC_get_route_realm)
6210 prog->dst_needed = 1;
6211 if (insn->imm == BPF_FUNC_get_prandom_u32)
6212 bpf_user_rnd_init_once();
6213 if (insn->imm == BPF_FUNC_override_return)
6214 prog->kprobe_override = 1;
6215 if (insn->imm == BPF_FUNC_tail_call) {
6216 /* If we tail call into other programs, we
6217 * cannot make any assumptions since they can
6218 * be replaced dynamically during runtime in
6219 * the program array.
6221 prog->cb_access = 1;
6222 env->prog->aux->stack_depth = MAX_BPF_STACK;
6224 /* mark bpf_tail_call as different opcode to avoid
6225 * conditional branch in the interpeter for every normal
6226 * call and to prevent accidental JITing by JIT compiler
6227 * that doesn't support bpf_tail_call yet
6230 insn->code = BPF_JMP | BPF_TAIL_CALL;
6232 aux = &env->insn_aux_data[i + delta];
6233 if (!bpf_map_ptr_unpriv(aux))
6236 /* instead of changing every JIT dealing with tail_call
6237 * emit two extra insns:
6238 * if (index >= max_entries) goto out;
6239 * index &= array->index_mask;
6240 * to avoid out-of-bounds cpu speculation
6242 if (bpf_map_ptr_poisoned(aux)) {
6243 verbose(env, "tail_call abusing map_ptr\n");
6247 map_ptr = BPF_MAP_PTR(aux->map_state);
6248 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6249 map_ptr->max_entries, 2);
6250 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6251 container_of(map_ptr,
6254 insn_buf[2] = *insn;
6256 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6261 env->prog = prog = new_prog;
6262 insn = new_prog->insnsi + i + delta;
6266 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
6267 * and other inlining handlers are currently limited to 64 bit
6270 if (prog->jit_requested && BITS_PER_LONG == 64 &&
6271 (insn->imm == BPF_FUNC_map_lookup_elem ||
6272 insn->imm == BPF_FUNC_map_update_elem ||
6273 insn->imm == BPF_FUNC_map_delete_elem ||
6274 insn->imm == BPF_FUNC_map_push_elem ||
6275 insn->imm == BPF_FUNC_map_pop_elem ||
6276 insn->imm == BPF_FUNC_map_peek_elem)) {
6277 aux = &env->insn_aux_data[i + delta];
6278 if (bpf_map_ptr_poisoned(aux))
6279 goto patch_call_imm;
6281 map_ptr = BPF_MAP_PTR(aux->map_state);
6283 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6284 ops->map_gen_lookup) {
6285 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6286 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6287 verbose(env, "bpf verifier is misconfigured\n");
6291 new_prog = bpf_patch_insn_data(env, i + delta,
6297 env->prog = prog = new_prog;
6298 insn = new_prog->insnsi + i + delta;
6302 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6303 (void *(*)(struct bpf_map *map, void *key))NULL));
6304 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6305 (int (*)(struct bpf_map *map, void *key))NULL));
6306 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6307 (int (*)(struct bpf_map *map, void *key, void *value,
6309 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6310 (int (*)(struct bpf_map *map, void *value,
6312 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6313 (int (*)(struct bpf_map *map, void *value))NULL));
6314 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6315 (int (*)(struct bpf_map *map, void *value))NULL));
6317 switch (insn->imm) {
6318 case BPF_FUNC_map_lookup_elem:
6319 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6322 case BPF_FUNC_map_update_elem:
6323 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6326 case BPF_FUNC_map_delete_elem:
6327 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6330 case BPF_FUNC_map_push_elem:
6331 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6334 case BPF_FUNC_map_pop_elem:
6335 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6338 case BPF_FUNC_map_peek_elem:
6339 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6344 goto patch_call_imm;
6348 fn = env->ops->get_func_proto(insn->imm, env->prog);
6349 /* all functions that have prototype and verifier allowed
6350 * programs to call them, must be real in-kernel functions
6354 "kernel subsystem misconfigured func %s#%d\n",
6355 func_id_name(insn->imm), insn->imm);
6358 insn->imm = fn->func - __bpf_call_base;
6364 static void free_states(struct bpf_verifier_env *env)
6366 struct bpf_verifier_state_list *sl, *sln;
6369 if (!env->explored_states)
6372 for (i = 0; i < env->prog->len; i++) {
6373 sl = env->explored_states[i];
6376 while (sl != STATE_LIST_MARK) {
6378 free_verifier_state(&sl->state, false);
6384 kfree(env->explored_states);
6387 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
6389 struct bpf_verifier_env *env;
6390 struct bpf_verifier_log *log;
6393 /* no program is valid */
6394 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6397 /* 'struct bpf_verifier_env' can be global, but since it's not small,
6398 * allocate/free it every time bpf_check() is called
6400 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
6405 env->insn_aux_data =
6406 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6409 if (!env->insn_aux_data)
6412 env->ops = bpf_verifier_ops[env->prog->type];
6414 /* grab the mutex to protect few globals used by verifier */
6415 mutex_lock(&bpf_verifier_lock);
6417 if (attr->log_level || attr->log_buf || attr->log_size) {
6418 /* user requested verbose verifier output
6419 * and supplied buffer to store the verification trace
6421 log->level = attr->log_level;
6422 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6423 log->len_total = attr->log_size;
6426 /* log attributes have to be sane */
6427 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6428 !log->level || !log->ubuf)
6432 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6433 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
6434 env->strict_alignment = true;
6436 ret = replace_map_fd_with_map_ptr(env);
6438 goto skip_full_check;
6440 if (bpf_prog_is_dev_bound(env->prog->aux)) {
6441 ret = bpf_prog_offload_verifier_prep(env);
6443 goto skip_full_check;
6446 env->explored_states = kcalloc(env->prog->len,
6447 sizeof(struct bpf_verifier_state_list *),
6450 if (!env->explored_states)
6451 goto skip_full_check;
6453 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6455 ret = check_cfg(env);
6457 goto skip_full_check;
6459 ret = do_check(env);
6460 if (env->cur_state) {
6461 free_verifier_state(env->cur_state, true);
6462 env->cur_state = NULL;
6465 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6466 ret = bpf_prog_offload_finalize(env);
6469 while (!pop_stack(env, NULL, NULL));
6473 sanitize_dead_code(env);
6476 ret = check_max_stack_depth(env);
6479 /* program is valid, convert *(u32*)(ctx + off) accesses */
6480 ret = convert_ctx_accesses(env);
6483 ret = fixup_bpf_calls(env);
6486 ret = fixup_call_args(env);
6488 if (log->level && bpf_verifier_log_full(log))
6490 if (log->level && !log->ubuf) {
6492 goto err_release_maps;
6495 if (ret == 0 && env->used_map_cnt) {
6496 /* if program passed verifier, update used_maps in bpf_prog_info */
6497 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6498 sizeof(env->used_maps[0]),
6501 if (!env->prog->aux->used_maps) {
6503 goto err_release_maps;
6506 memcpy(env->prog->aux->used_maps, env->used_maps,
6507 sizeof(env->used_maps[0]) * env->used_map_cnt);
6508 env->prog->aux->used_map_cnt = env->used_map_cnt;
6510 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6511 * bpf_ld_imm64 instructions
6513 convert_pseudo_ld_imm64(env);
6517 if (!env->prog->aux->used_maps)
6518 /* if we didn't copy map pointers into bpf_prog_info, release
6519 * them now. Otherwise free_used_maps() will release them.
6524 mutex_unlock(&bpf_verifier_lock);
6525 vfree(env->insn_aux_data);