]> Git Repo - linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge branch 'work.sock_recvmsg' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / tegra / dc.c
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <soc/tegra/pmc.h>
18
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_plane_helper.h>
26
27 struct tegra_plane {
28         struct drm_plane base;
29         unsigned int index;
30 };
31
32 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
33 {
34         return container_of(plane, struct tegra_plane, base);
35 }
36
37 struct tegra_dc_state {
38         struct drm_crtc_state base;
39
40         struct clk *clk;
41         unsigned long pclk;
42         unsigned int div;
43
44         u32 planes;
45 };
46
47 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
48 {
49         if (state)
50                 return container_of(state, struct tegra_dc_state, base);
51
52         return NULL;
53 }
54
55 struct tegra_plane_state {
56         struct drm_plane_state base;
57
58         struct tegra_bo_tiling tiling;
59         u32 format;
60         u32 swap;
61 };
62
63 static inline struct tegra_plane_state *
64 to_tegra_plane_state(struct drm_plane_state *state)
65 {
66         if (state)
67                 return container_of(state, struct tegra_plane_state, base);
68
69         return NULL;
70 }
71
72 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
73 {
74         stats->frames = 0;
75         stats->vblank = 0;
76         stats->underflow = 0;
77         stats->overflow = 0;
78 }
79
80 /*
81  * Reads the active copy of a register. This takes the dc->lock spinlock to
82  * prevent races with the VBLANK processing which also needs access to the
83  * active copy of some registers.
84  */
85 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
86 {
87         unsigned long flags;
88         u32 value;
89
90         spin_lock_irqsave(&dc->lock, flags);
91
92         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
93         value = tegra_dc_readl(dc, offset);
94         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
95
96         spin_unlock_irqrestore(&dc->lock, flags);
97         return value;
98 }
99
100 /*
101  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
102  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
103  * Latching happens mmediately if the display controller is in STOP mode or
104  * on the next frame boundary otherwise.
105  *
106  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
107  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
108  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
109  * into the ACTIVE copy, either immediately if the display controller is in
110  * STOP mode, or at the next frame boundary otherwise.
111  */
112 void tegra_dc_commit(struct tegra_dc *dc)
113 {
114         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
115         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
116 }
117
118 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
119 {
120         /* assume no swapping of fetched data */
121         if (swap)
122                 *swap = BYTE_SWAP_NOSWAP;
123
124         switch (fourcc) {
125         case DRM_FORMAT_XBGR8888:
126                 *format = WIN_COLOR_DEPTH_R8G8B8A8;
127                 break;
128
129         case DRM_FORMAT_XRGB8888:
130                 *format = WIN_COLOR_DEPTH_B8G8R8A8;
131                 break;
132
133         case DRM_FORMAT_RGB565:
134                 *format = WIN_COLOR_DEPTH_B5G6R5;
135                 break;
136
137         case DRM_FORMAT_UYVY:
138                 *format = WIN_COLOR_DEPTH_YCbCr422;
139                 break;
140
141         case DRM_FORMAT_YUYV:
142                 if (swap)
143                         *swap = BYTE_SWAP_SWAP2;
144
145                 *format = WIN_COLOR_DEPTH_YCbCr422;
146                 break;
147
148         case DRM_FORMAT_YUV420:
149                 *format = WIN_COLOR_DEPTH_YCbCr420P;
150                 break;
151
152         case DRM_FORMAT_YUV422:
153                 *format = WIN_COLOR_DEPTH_YCbCr422P;
154                 break;
155
156         default:
157                 return -EINVAL;
158         }
159
160         return 0;
161 }
162
163 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
164 {
165         switch (format) {
166         case WIN_COLOR_DEPTH_YCbCr422:
167         case WIN_COLOR_DEPTH_YUV422:
168                 if (planar)
169                         *planar = false;
170
171                 return true;
172
173         case WIN_COLOR_DEPTH_YCbCr420P:
174         case WIN_COLOR_DEPTH_YUV420P:
175         case WIN_COLOR_DEPTH_YCbCr422P:
176         case WIN_COLOR_DEPTH_YUV422P:
177         case WIN_COLOR_DEPTH_YCbCr422R:
178         case WIN_COLOR_DEPTH_YUV422R:
179         case WIN_COLOR_DEPTH_YCbCr422RA:
180         case WIN_COLOR_DEPTH_YUV422RA:
181                 if (planar)
182                         *planar = true;
183
184                 return true;
185         }
186
187         if (planar)
188                 *planar = false;
189
190         return false;
191 }
192
193 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
194                                   unsigned int bpp)
195 {
196         fixed20_12 outf = dfixed_init(out);
197         fixed20_12 inf = dfixed_init(in);
198         u32 dda_inc;
199         int max;
200
201         if (v)
202                 max = 15;
203         else {
204                 switch (bpp) {
205                 case 2:
206                         max = 8;
207                         break;
208
209                 default:
210                         WARN_ON_ONCE(1);
211                         /* fallthrough */
212                 case 4:
213                         max = 4;
214                         break;
215                 }
216         }
217
218         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
219         inf.full -= dfixed_const(1);
220
221         dda_inc = dfixed_div(inf, outf);
222         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
223
224         return dda_inc;
225 }
226
227 static inline u32 compute_initial_dda(unsigned int in)
228 {
229         fixed20_12 inf = dfixed_init(in);
230         return dfixed_frac(inf);
231 }
232
233 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
234                                   const struct tegra_dc_window *window)
235 {
236         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
237         unsigned long value, flags;
238         bool yuv, planar;
239
240         /*
241          * For YUV planar modes, the number of bytes per pixel takes into
242          * account only the luma component and therefore is 1.
243          */
244         yuv = tegra_dc_format_is_yuv(window->format, &planar);
245         if (!yuv)
246                 bpp = window->bits_per_pixel / 8;
247         else
248                 bpp = planar ? 1 : 2;
249
250         spin_lock_irqsave(&dc->lock, flags);
251
252         value = WINDOW_A_SELECT << index;
253         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
254
255         tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
256         tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
257
258         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
259         tegra_dc_writel(dc, value, DC_WIN_POSITION);
260
261         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
262         tegra_dc_writel(dc, value, DC_WIN_SIZE);
263
264         h_offset = window->src.x * bpp;
265         v_offset = window->src.y;
266         h_size = window->src.w * bpp;
267         v_size = window->src.h;
268
269         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
270         tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
271
272         /*
273          * For DDA computations the number of bytes per pixel for YUV planar
274          * modes needs to take into account all Y, U and V components.
275          */
276         if (yuv && planar)
277                 bpp = 2;
278
279         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
280         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
281
282         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
283         tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
284
285         h_dda = compute_initial_dda(window->src.x);
286         v_dda = compute_initial_dda(window->src.y);
287
288         tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
289         tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
290
291         tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
292         tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
293
294         tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
295
296         if (yuv && planar) {
297                 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
298                 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
299                 value = window->stride[1] << 16 | window->stride[0];
300                 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
301         } else {
302                 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
303         }
304
305         if (window->bottom_up)
306                 v_offset += window->src.h - 1;
307
308         tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
309         tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
310
311         if (dc->soc->supports_block_linear) {
312                 unsigned long height = window->tiling.value;
313
314                 switch (window->tiling.mode) {
315                 case TEGRA_BO_TILING_MODE_PITCH:
316                         value = DC_WINBUF_SURFACE_KIND_PITCH;
317                         break;
318
319                 case TEGRA_BO_TILING_MODE_TILED:
320                         value = DC_WINBUF_SURFACE_KIND_TILED;
321                         break;
322
323                 case TEGRA_BO_TILING_MODE_BLOCK:
324                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
325                                 DC_WINBUF_SURFACE_KIND_BLOCK;
326                         break;
327                 }
328
329                 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
330         } else {
331                 switch (window->tiling.mode) {
332                 case TEGRA_BO_TILING_MODE_PITCH:
333                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
334                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
335                         break;
336
337                 case TEGRA_BO_TILING_MODE_TILED:
338                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
339                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
340                         break;
341
342                 case TEGRA_BO_TILING_MODE_BLOCK:
343                         /*
344                          * No need to handle this here because ->atomic_check
345                          * will already have filtered it out.
346                          */
347                         break;
348                 }
349
350                 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
351         }
352
353         value = WIN_ENABLE;
354
355         if (yuv) {
356                 /* setup default colorspace conversion coefficients */
357                 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
358                 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
359                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
360                 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
361                 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
362                 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
363                 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
364                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
365
366                 value |= CSC_ENABLE;
367         } else if (window->bits_per_pixel < 24) {
368                 value |= COLOR_EXPAND;
369         }
370
371         if (window->bottom_up)
372                 value |= V_DIRECTION;
373
374         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
375
376         /*
377          * Disable blending and assume Window A is the bottom-most window,
378          * Window C is the top-most window and Window B is in the middle.
379          */
380         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
381         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
382
383         switch (index) {
384         case 0:
385                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
386                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
387                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
388                 break;
389
390         case 1:
391                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
392                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
393                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
394                 break;
395
396         case 2:
397                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
398                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
399                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
400                 break;
401         }
402
403         spin_unlock_irqrestore(&dc->lock, flags);
404 }
405
406 static void tegra_plane_destroy(struct drm_plane *plane)
407 {
408         struct tegra_plane *p = to_tegra_plane(plane);
409
410         drm_plane_cleanup(plane);
411         kfree(p);
412 }
413
414 static const u32 tegra_primary_plane_formats[] = {
415         DRM_FORMAT_XBGR8888,
416         DRM_FORMAT_XRGB8888,
417         DRM_FORMAT_RGB565,
418 };
419
420 static void tegra_primary_plane_destroy(struct drm_plane *plane)
421 {
422         tegra_plane_destroy(plane);
423 }
424
425 static void tegra_plane_reset(struct drm_plane *plane)
426 {
427         struct tegra_plane_state *state;
428
429         if (plane->state)
430                 __drm_atomic_helper_plane_destroy_state(plane->state);
431
432         kfree(plane->state);
433         plane->state = NULL;
434
435         state = kzalloc(sizeof(*state), GFP_KERNEL);
436         if (state) {
437                 plane->state = &state->base;
438                 plane->state->plane = plane;
439         }
440 }
441
442 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
443 {
444         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
445         struct tegra_plane_state *copy;
446
447         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
448         if (!copy)
449                 return NULL;
450
451         __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
452         copy->tiling = state->tiling;
453         copy->format = state->format;
454         copy->swap = state->swap;
455
456         return &copy->base;
457 }
458
459 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
460                                              struct drm_plane_state *state)
461 {
462         __drm_atomic_helper_plane_destroy_state(state);
463         kfree(state);
464 }
465
466 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
467         .update_plane = drm_atomic_helper_update_plane,
468         .disable_plane = drm_atomic_helper_disable_plane,
469         .destroy = tegra_primary_plane_destroy,
470         .reset = tegra_plane_reset,
471         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
472         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
473 };
474
475 static int tegra_plane_state_add(struct tegra_plane *plane,
476                                  struct drm_plane_state *state)
477 {
478         struct drm_crtc_state *crtc_state;
479         struct tegra_dc_state *tegra;
480         struct drm_rect clip;
481         int err;
482
483         /* Propagate errors from allocation or locking failures. */
484         crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
485         if (IS_ERR(crtc_state))
486                 return PTR_ERR(crtc_state);
487
488         clip.x1 = 0;
489         clip.y1 = 0;
490         clip.x2 = crtc_state->mode.hdisplay;
491         clip.y2 = crtc_state->mode.vdisplay;
492
493         /* Check plane state for visibility and calculate clipping bounds */
494         err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
495                                            true, true);
496         if (err < 0)
497                 return err;
498
499         tegra = to_dc_state(crtc_state);
500
501         tegra->planes |= WIN_A_ACT_REQ << plane->index;
502
503         return 0;
504 }
505
506 static int tegra_plane_atomic_check(struct drm_plane *plane,
507                                     struct drm_plane_state *state)
508 {
509         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
510         struct tegra_bo_tiling *tiling = &plane_state->tiling;
511         struct tegra_plane *tegra = to_tegra_plane(plane);
512         struct tegra_dc *dc = to_tegra_dc(state->crtc);
513         int err;
514
515         /* no need for further checks if the plane is being disabled */
516         if (!state->crtc)
517                 return 0;
518
519         err = tegra_dc_format(state->fb->format->format, &plane_state->format,
520                               &plane_state->swap);
521         if (err < 0)
522                 return err;
523
524         err = tegra_fb_get_tiling(state->fb, tiling);
525         if (err < 0)
526                 return err;
527
528         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
529             !dc->soc->supports_block_linear) {
530                 DRM_ERROR("hardware doesn't support block linear mode\n");
531                 return -EINVAL;
532         }
533
534         /*
535          * Tegra doesn't support different strides for U and V planes so we
536          * error out if the user tries to display a framebuffer with such a
537          * configuration.
538          */
539         if (state->fb->format->num_planes > 2) {
540                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
541                         DRM_ERROR("unsupported UV-plane configuration\n");
542                         return -EINVAL;
543                 }
544         }
545
546         err = tegra_plane_state_add(tegra, state);
547         if (err < 0)
548                 return err;
549
550         return 0;
551 }
552
553 static void tegra_plane_atomic_disable(struct drm_plane *plane,
554                                        struct drm_plane_state *old_state)
555 {
556         struct tegra_dc *dc = to_tegra_dc(old_state->crtc);
557         struct tegra_plane *p = to_tegra_plane(plane);
558         unsigned long flags;
559         u32 value;
560
561         /* rien ne va plus */
562         if (!old_state || !old_state->crtc)
563                 return;
564
565         spin_lock_irqsave(&dc->lock, flags);
566
567         value = WINDOW_A_SELECT << p->index;
568         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
569
570         value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
571         value &= ~WIN_ENABLE;
572         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
573
574         spin_unlock_irqrestore(&dc->lock, flags);
575 }
576
577 static void tegra_plane_atomic_update(struct drm_plane *plane,
578                                       struct drm_plane_state *old_state)
579 {
580         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
581         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
582         struct drm_framebuffer *fb = plane->state->fb;
583         struct tegra_plane *p = to_tegra_plane(plane);
584         struct tegra_dc_window window;
585         unsigned int i;
586
587         /* rien ne va plus */
588         if (!plane->state->crtc || !plane->state->fb)
589                 return;
590
591         if (!plane->state->visible)
592                 return tegra_plane_atomic_disable(plane, old_state);
593
594         memset(&window, 0, sizeof(window));
595         window.src.x = plane->state->src.x1 >> 16;
596         window.src.y = plane->state->src.y1 >> 16;
597         window.src.w = drm_rect_width(&plane->state->src) >> 16;
598         window.src.h = drm_rect_height(&plane->state->src) >> 16;
599         window.dst.x = plane->state->dst.x1;
600         window.dst.y = plane->state->dst.y1;
601         window.dst.w = drm_rect_width(&plane->state->dst);
602         window.dst.h = drm_rect_height(&plane->state->dst);
603         window.bits_per_pixel = fb->format->cpp[0] * 8;
604         window.bottom_up = tegra_fb_is_bottom_up(fb);
605
606         /* copy from state */
607         window.tiling = state->tiling;
608         window.format = state->format;
609         window.swap = state->swap;
610
611         for (i = 0; i < fb->format->num_planes; i++) {
612                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
613
614                 window.base[i] = bo->paddr + fb->offsets[i];
615
616                 /*
617                  * Tegra uses a shared stride for UV planes. Framebuffers are
618                  * already checked for this in the tegra_plane_atomic_check()
619                  * function, so it's safe to ignore the V-plane pitch here.
620                  */
621                 if (i < 2)
622                         window.stride[i] = fb->pitches[i];
623         }
624
625         tegra_dc_setup_window(dc, p->index, &window);
626 }
627
628 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
629         .atomic_check = tegra_plane_atomic_check,
630         .atomic_disable = tegra_plane_atomic_disable,
631         .atomic_update = tegra_plane_atomic_update,
632 };
633
634 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
635                                                        struct tegra_dc *dc)
636 {
637         /*
638          * Ideally this would use drm_crtc_mask(), but that would require the
639          * CRTC to already be in the mode_config's list of CRTCs. However, it
640          * will only be added to that list in the drm_crtc_init_with_planes()
641          * (in tegra_dc_init()), which in turn requires registration of these
642          * planes. So we have ourselves a nice little chicken and egg problem
643          * here.
644          *
645          * We work around this by manually creating the mask from the number
646          * of CRTCs that have been registered, and should therefore always be
647          * the same as drm_crtc_index() after registration.
648          */
649         unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
650         struct tegra_plane *plane;
651         unsigned int num_formats;
652         const u32 *formats;
653         int err;
654
655         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
656         if (!plane)
657                 return ERR_PTR(-ENOMEM);
658
659         num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
660         formats = tegra_primary_plane_formats;
661
662         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
663                                        &tegra_primary_plane_funcs, formats,
664                                        num_formats, NULL,
665                                        DRM_PLANE_TYPE_PRIMARY, NULL);
666         if (err < 0) {
667                 kfree(plane);
668                 return ERR_PTR(err);
669         }
670
671         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
672
673         return &plane->base;
674 }
675
676 static const u32 tegra_cursor_plane_formats[] = {
677         DRM_FORMAT_RGBA8888,
678 };
679
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681                                      struct drm_plane_state *state)
682 {
683         struct tegra_plane *tegra = to_tegra_plane(plane);
684         int err;
685
686         /* no need for further checks if the plane is being disabled */
687         if (!state->crtc)
688                 return 0;
689
690         /* scaling not supported for cursor */
691         if ((state->src_w >> 16 != state->crtc_w) ||
692             (state->src_h >> 16 != state->crtc_h))
693                 return -EINVAL;
694
695         /* only square cursors supported */
696         if (state->src_w != state->src_h)
697                 return -EINVAL;
698
699         if (state->crtc_w != 32 && state->crtc_w != 64 &&
700             state->crtc_w != 128 && state->crtc_w != 256)
701                 return -EINVAL;
702
703         err = tegra_plane_state_add(tegra, state);
704         if (err < 0)
705                 return err;
706
707         return 0;
708 }
709
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711                                        struct drm_plane_state *old_state)
712 {
713         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715         struct drm_plane_state *state = plane->state;
716         u32 value = CURSOR_CLIP_DISPLAY;
717
718         /* rien ne va plus */
719         if (!plane->state->crtc || !plane->state->fb)
720                 return;
721
722         switch (state->crtc_w) {
723         case 32:
724                 value |= CURSOR_SIZE_32x32;
725                 break;
726
727         case 64:
728                 value |= CURSOR_SIZE_64x64;
729                 break;
730
731         case 128:
732                 value |= CURSOR_SIZE_128x128;
733                 break;
734
735         case 256:
736                 value |= CURSOR_SIZE_256x256;
737                 break;
738
739         default:
740                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741                      state->crtc_h);
742                 return;
743         }
744
745         value |= (bo->paddr >> 10) & 0x3fffff;
746         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749         value = (bo->paddr >> 32) & 0x3;
750         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752
753         /* enable cursor and set blend mode */
754         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755         value |= CURSOR_ENABLE;
756         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757
758         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759         value &= ~CURSOR_DST_BLEND_MASK;
760         value &= ~CURSOR_SRC_BLEND_MASK;
761         value |= CURSOR_MODE_NORMAL;
762         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764         value |= CURSOR_ALPHA;
765         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766
767         /* position the cursor */
768         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773                                         struct drm_plane_state *old_state)
774 {
775         struct tegra_dc *dc;
776         u32 value;
777
778         /* rien ne va plus */
779         if (!old_state || !old_state->crtc)
780                 return;
781
782         dc = to_tegra_dc(old_state->crtc);
783
784         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785         value &= ~CURSOR_ENABLE;
786         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790         .update_plane = drm_atomic_helper_update_plane,
791         .disable_plane = drm_atomic_helper_disable_plane,
792         .destroy = tegra_plane_destroy,
793         .reset = tegra_plane_reset,
794         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799         .atomic_check = tegra_cursor_atomic_check,
800         .atomic_update = tegra_cursor_atomic_update,
801         .atomic_disable = tegra_cursor_atomic_disable,
802 };
803
804 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
805                                                       struct tegra_dc *dc)
806 {
807         struct tegra_plane *plane;
808         unsigned int num_formats;
809         const u32 *formats;
810         int err;
811
812         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813         if (!plane)
814                 return ERR_PTR(-ENOMEM);
815
816         /*
817          * This index is kind of fake. The cursor isn't a regular plane, but
818          * its update and activation request bits in DC_CMD_STATE_CONTROL do
819          * use the same programming. Setting this fake index here allows the
820          * code in tegra_add_plane_state() to do the right thing without the
821          * need to special-casing the cursor plane.
822          */
823         plane->index = 6;
824
825         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826         formats = tegra_cursor_plane_formats;
827
828         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829                                        &tegra_cursor_plane_funcs, formats,
830                                        num_formats, NULL,
831                                        DRM_PLANE_TYPE_CURSOR, NULL);
832         if (err < 0) {
833                 kfree(plane);
834                 return ERR_PTR(err);
835         }
836
837         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
838
839         return &plane->base;
840 }
841
842 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
843 {
844         tegra_plane_destroy(plane);
845 }
846
847 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
848         .update_plane = drm_atomic_helper_update_plane,
849         .disable_plane = drm_atomic_helper_disable_plane,
850         .destroy = tegra_overlay_plane_destroy,
851         .reset = tegra_plane_reset,
852         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
853         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
854 };
855
856 static const uint32_t tegra_overlay_plane_formats[] = {
857         DRM_FORMAT_XBGR8888,
858         DRM_FORMAT_XRGB8888,
859         DRM_FORMAT_RGB565,
860         DRM_FORMAT_UYVY,
861         DRM_FORMAT_YUYV,
862         DRM_FORMAT_YUV420,
863         DRM_FORMAT_YUV422,
864 };
865
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867                                                        struct tegra_dc *dc,
868                                                        unsigned int index)
869 {
870         struct tegra_plane *plane;
871         unsigned int num_formats;
872         const u32 *formats;
873         int err;
874
875         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876         if (!plane)
877                 return ERR_PTR(-ENOMEM);
878
879         plane->index = index;
880
881         num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882         formats = tegra_overlay_plane_formats;
883
884         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885                                        &tegra_overlay_plane_funcs, formats,
886                                        num_formats, NULL,
887                                        DRM_PLANE_TYPE_OVERLAY, NULL);
888         if (err < 0) {
889                 kfree(plane);
890                 return ERR_PTR(err);
891         }
892
893         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
894
895         return &plane->base;
896 }
897
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 {
900         struct drm_plane *plane;
901         unsigned int i;
902
903         for (i = 0; i < 2; i++) {
904                 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
905                 if (IS_ERR(plane))
906                         return PTR_ERR(plane);
907         }
908
909         return 0;
910 }
911
912 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
913 {
914         struct tegra_dc *dc = to_tegra_dc(crtc);
915
916         if (dc->syncpt)
917                 return host1x_syncpt_read(dc->syncpt);
918
919         /* fallback to software emulated VBLANK counter */
920         return drm_crtc_vblank_count(&dc->base);
921 }
922
923 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
924 {
925         struct tegra_dc *dc = to_tegra_dc(crtc);
926         unsigned long value, flags;
927
928         spin_lock_irqsave(&dc->lock, flags);
929
930         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
931         value |= VBLANK_INT;
932         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
933
934         spin_unlock_irqrestore(&dc->lock, flags);
935
936         return 0;
937 }
938
939 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
940 {
941         struct tegra_dc *dc = to_tegra_dc(crtc);
942         unsigned long value, flags;
943
944         spin_lock_irqsave(&dc->lock, flags);
945
946         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947         value &= ~VBLANK_INT;
948         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949
950         spin_unlock_irqrestore(&dc->lock, flags);
951 }
952
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954 {
955         struct drm_device *drm = dc->base.dev;
956         struct drm_crtc *crtc = &dc->base;
957         unsigned long flags, base;
958         struct tegra_bo *bo;
959
960         spin_lock_irqsave(&drm->event_lock, flags);
961
962         if (!dc->event) {
963                 spin_unlock_irqrestore(&drm->event_lock, flags);
964                 return;
965         }
966
967         bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968
969         spin_lock(&dc->lock);
970
971         /* check if new start address has been latched */
972         tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974         base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976
977         spin_unlock(&dc->lock);
978
979         if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980                 drm_crtc_send_vblank_event(crtc, dc->event);
981                 drm_crtc_vblank_put(crtc);
982                 dc->event = NULL;
983         }
984
985         spin_unlock_irqrestore(&drm->event_lock, flags);
986 }
987
988 static void tegra_dc_destroy(struct drm_crtc *crtc)
989 {
990         drm_crtc_cleanup(crtc);
991 }
992
993 static void tegra_crtc_reset(struct drm_crtc *crtc)
994 {
995         struct tegra_dc_state *state;
996
997         if (crtc->state)
998                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
999
1000         kfree(crtc->state);
1001         crtc->state = NULL;
1002
1003         state = kzalloc(sizeof(*state), GFP_KERNEL);
1004         if (state) {
1005                 crtc->state = &state->base;
1006                 crtc->state->crtc = crtc;
1007         }
1008
1009         drm_crtc_vblank_reset(crtc);
1010 }
1011
1012 static struct drm_crtc_state *
1013 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1014 {
1015         struct tegra_dc_state *state = to_dc_state(crtc->state);
1016         struct tegra_dc_state *copy;
1017
1018         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1019         if (!copy)
1020                 return NULL;
1021
1022         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1023         copy->clk = state->clk;
1024         copy->pclk = state->pclk;
1025         copy->div = state->div;
1026         copy->planes = state->planes;
1027
1028         return &copy->base;
1029 }
1030
1031 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1032                                             struct drm_crtc_state *state)
1033 {
1034         __drm_atomic_helper_crtc_destroy_state(state);
1035         kfree(state);
1036 }
1037
1038 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1039         .page_flip = drm_atomic_helper_page_flip,
1040         .set_config = drm_atomic_helper_set_config,
1041         .destroy = tegra_dc_destroy,
1042         .reset = tegra_crtc_reset,
1043         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1044         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1045         .get_vblank_counter = tegra_dc_get_vblank_counter,
1046         .enable_vblank = tegra_dc_enable_vblank,
1047         .disable_vblank = tegra_dc_disable_vblank,
1048 };
1049
1050 static int tegra_dc_set_timings(struct tegra_dc *dc,
1051                                 struct drm_display_mode *mode)
1052 {
1053         unsigned int h_ref_to_sync = 1;
1054         unsigned int v_ref_to_sync = 1;
1055         unsigned long value;
1056
1057         tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058
1059         value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060         tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061
1062         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063                 ((mode->hsync_end - mode->hsync_start) <<  0);
1064         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066         value = ((mode->vtotal - mode->vsync_end) << 16) |
1067                 ((mode->htotal - mode->hsync_end) <<  0);
1068         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071                 ((mode->hsync_start - mode->hdisplay) <<  0);
1072         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074         value = (mode->vdisplay << 16) | mode->hdisplay;
1075         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077         return 0;
1078 }
1079
1080 /**
1081  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082  *     state
1083  * @dc: display controller
1084  * @crtc_state: CRTC atomic state
1085  * @clk: parent clock for display controller
1086  * @pclk: pixel clock
1087  * @div: shift clock divider
1088  *
1089  * Returns:
1090  * 0 on success or a negative error-code on failure.
1091  */
1092 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093                                struct drm_crtc_state *crtc_state,
1094                                struct clk *clk, unsigned long pclk,
1095                                unsigned int div)
1096 {
1097         struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099         if (!clk_has_parent(dc->clk, clk))
1100                 return -EINVAL;
1101
1102         state->clk = clk;
1103         state->pclk = pclk;
1104         state->div = div;
1105
1106         return 0;
1107 }
1108
1109 static void tegra_dc_commit_state(struct tegra_dc *dc,
1110                                   struct tegra_dc_state *state)
1111 {
1112         u32 value;
1113         int err;
1114
1115         err = clk_set_parent(dc->clk, state->clk);
1116         if (err < 0)
1117                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119         /*
1120          * Outputs may not want to change the parent clock rate. This is only
1121          * relevant to Tegra20 where only a single display PLL is available.
1122          * Since that PLL would typically be used for HDMI, an internal LVDS
1123          * panel would need to be driven by some other clock such as PLL_P
1124          * which is shared with other peripherals. Changing the clock rate
1125          * should therefore be avoided.
1126          */
1127         if (state->pclk > 0) {
1128                 err = clk_set_rate(state->clk, state->pclk);
1129                 if (err < 0)
1130                         dev_err(dc->dev,
1131                                 "failed to set clock rate to %lu Hz\n",
1132                                 state->pclk);
1133         }
1134
1135         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136                       state->div);
1137         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139         value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141
1142         err = clk_set_rate(dc->clk, state->pclk);
1143         if (err < 0)
1144                 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1145                         dc->clk, state->pclk, err);
1146 }
1147
1148 static void tegra_dc_stop(struct tegra_dc *dc)
1149 {
1150         u32 value;
1151
1152         /* stop the display controller */
1153         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1154         value &= ~DISP_CTRL_MODE_MASK;
1155         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1156
1157         tegra_dc_commit(dc);
1158 }
1159
1160 static bool tegra_dc_idle(struct tegra_dc *dc)
1161 {
1162         u32 value;
1163
1164         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1165
1166         return (value & DISP_CTRL_MODE_MASK) == 0;
1167 }
1168
1169 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1170 {
1171         timeout = jiffies + msecs_to_jiffies(timeout);
1172
1173         while (time_before(jiffies, timeout)) {
1174                 if (tegra_dc_idle(dc))
1175                         return 0;
1176
1177                 usleep_range(1000, 2000);
1178         }
1179
1180         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1181         return -ETIMEDOUT;
1182 }
1183
1184 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1185                                       struct drm_crtc_state *old_state)
1186 {
1187         struct tegra_dc *dc = to_tegra_dc(crtc);
1188         u32 value;
1189
1190         if (!tegra_dc_idle(dc)) {
1191                 tegra_dc_stop(dc);
1192
1193                 /*
1194                  * Ignore the return value, there isn't anything useful to do
1195                  * in case this fails.
1196                  */
1197                 tegra_dc_wait_idle(dc, 100);
1198         }
1199
1200         /*
1201          * This should really be part of the RGB encoder driver, but clearing
1202          * these bits has the side-effect of stopping the display controller.
1203          * When that happens no VBLANK interrupts will be raised. At the same
1204          * time the encoder is disabled before the display controller, so the
1205          * above code is always going to timeout waiting for the controller
1206          * to go idle.
1207          *
1208          * Given the close coupling between the RGB encoder and the display
1209          * controller doing it here is still kind of okay. None of the other
1210          * encoder drivers require these bits to be cleared.
1211          *
1212          * XXX: Perhaps given that the display controller is switched off at
1213          * this point anyway maybe clearing these bits isn't even useful for
1214          * the RGB encoder?
1215          */
1216         if (dc->rgb) {
1217                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1218                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1219                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1220                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1221         }
1222
1223         tegra_dc_stats_reset(&dc->stats);
1224         drm_crtc_vblank_off(crtc);
1225
1226         pm_runtime_put_sync(dc->dev);
1227 }
1228
1229 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1230                                      struct drm_crtc_state *old_state)
1231 {
1232         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1233         struct tegra_dc_state *state = to_dc_state(crtc->state);
1234         struct tegra_dc *dc = to_tegra_dc(crtc);
1235         u32 value;
1236
1237         pm_runtime_get_sync(dc->dev);
1238
1239         /* initialize display controller */
1240         if (dc->syncpt) {
1241                 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1242
1243                 value = SYNCPT_CNTRL_NO_STALL;
1244                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1245
1246                 value = SYNCPT_VSYNC_ENABLE | syncpt;
1247                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1248         }
1249
1250         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1251                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1252         tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1253
1254         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1255                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1256         tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1257
1258         /* initialize timer */
1259         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1260                 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1261         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1262
1263         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1264                 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1265         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1266
1267         value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1268                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1269         tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1270
1271         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1272                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1273         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1274
1275         if (dc->soc->supports_border_color)
1276                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1277
1278         /* apply PLL and pixel clock changes */
1279         tegra_dc_commit_state(dc, state);
1280
1281         /* program display mode */
1282         tegra_dc_set_timings(dc, mode);
1283
1284         /* interlacing isn't supported yet, so disable it */
1285         if (dc->soc->supports_interlacing) {
1286                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1287                 value &= ~INTERLACE_ENABLE;
1288                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1289         }
1290
1291         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1292         value &= ~DISP_CTRL_MODE_MASK;
1293         value |= DISP_CTRL_MODE_C_DISPLAY;
1294         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1295
1296         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1297         value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1298                  PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1299         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1300
1301         tegra_dc_commit(dc);
1302
1303         drm_crtc_vblank_on(crtc);
1304 }
1305
1306 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1307                                    struct drm_crtc_state *state)
1308 {
1309         return 0;
1310 }
1311
1312 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1313                                     struct drm_crtc_state *old_crtc_state)
1314 {
1315         struct tegra_dc *dc = to_tegra_dc(crtc);
1316
1317         if (crtc->state->event) {
1318                 crtc->state->event->pipe = drm_crtc_index(crtc);
1319
1320                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1321
1322                 dc->event = crtc->state->event;
1323                 crtc->state->event = NULL;
1324         }
1325 }
1326
1327 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1328                                     struct drm_crtc_state *old_crtc_state)
1329 {
1330         struct tegra_dc_state *state = to_dc_state(crtc->state);
1331         struct tegra_dc *dc = to_tegra_dc(crtc);
1332
1333         tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1334         tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1335 }
1336
1337 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1338         .atomic_check = tegra_crtc_atomic_check,
1339         .atomic_begin = tegra_crtc_atomic_begin,
1340         .atomic_flush = tegra_crtc_atomic_flush,
1341         .atomic_enable = tegra_crtc_atomic_enable,
1342         .atomic_disable = tegra_crtc_atomic_disable,
1343 };
1344
1345 static irqreturn_t tegra_dc_irq(int irq, void *data)
1346 {
1347         struct tegra_dc *dc = data;
1348         unsigned long status;
1349
1350         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1351         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1352
1353         if (status & FRAME_END_INT) {
1354                 /*
1355                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1356                 */
1357                 dc->stats.frames++;
1358         }
1359
1360         if (status & VBLANK_INT) {
1361                 /*
1362                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1363                 */
1364                 drm_crtc_handle_vblank(&dc->base);
1365                 tegra_dc_finish_page_flip(dc);
1366                 dc->stats.vblank++;
1367         }
1368
1369         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1370                 /*
1371                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1372                 */
1373                 dc->stats.underflow++;
1374         }
1375
1376         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1377                 /*
1378                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1379                 */
1380                 dc->stats.overflow++;
1381         }
1382
1383         return IRQ_HANDLED;
1384 }
1385
1386 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1387 {
1388         struct drm_info_node *node = s->private;
1389         struct tegra_dc *dc = node->info_ent->data;
1390         int err = 0;
1391
1392         drm_modeset_lock(&dc->base.mutex, NULL);
1393
1394         if (!dc->base.state->active) {
1395                 err = -EBUSY;
1396                 goto unlock;
1397         }
1398
1399 #define DUMP_REG(name)                                          \
1400         seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1401                    tegra_dc_readl(dc, name))
1402
1403         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1404         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1405         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1406         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1407         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1408         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1409         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1410         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1411         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1412         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1413         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1414         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1415         DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1416         DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1417         DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1418         DUMP_REG(DC_CMD_SIGNAL_RAISE);
1419         DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1420         DUMP_REG(DC_CMD_INT_STATUS);
1421         DUMP_REG(DC_CMD_INT_MASK);
1422         DUMP_REG(DC_CMD_INT_ENABLE);
1423         DUMP_REG(DC_CMD_INT_TYPE);
1424         DUMP_REG(DC_CMD_INT_POLARITY);
1425         DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1426         DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1427         DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1428         DUMP_REG(DC_CMD_STATE_ACCESS);
1429         DUMP_REG(DC_CMD_STATE_CONTROL);
1430         DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1431         DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1432         DUMP_REG(DC_COM_CRC_CONTROL);
1433         DUMP_REG(DC_COM_CRC_CHECKSUM);
1434         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1435         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1436         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1437         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1438         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1439         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1440         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1441         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1442         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1443         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1444         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1445         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1446         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1447         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1448         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1449         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1450         DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1451         DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1452         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1453         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1454         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1455         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1456         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1457         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1458         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1459         DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1460         DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1461         DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1462         DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1463         DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1464         DUMP_REG(DC_COM_SPI_CONTROL);
1465         DUMP_REG(DC_COM_SPI_START_BYTE);
1466         DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1467         DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1468         DUMP_REG(DC_COM_HSPI_CS_DC);
1469         DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1470         DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1471         DUMP_REG(DC_COM_GPIO_CTRL);
1472         DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1473         DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1474         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1475         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1476         DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1477         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1478         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1479         DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1480         DUMP_REG(DC_DISP_REF_TO_SYNC);
1481         DUMP_REG(DC_DISP_SYNC_WIDTH);
1482         DUMP_REG(DC_DISP_BACK_PORCH);
1483         DUMP_REG(DC_DISP_ACTIVE);
1484         DUMP_REG(DC_DISP_FRONT_PORCH);
1485         DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1486         DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1487         DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1488         DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1489         DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1490         DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1491         DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1492         DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1493         DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1494         DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1495         DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1496         DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1497         DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1498         DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1499         DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1500         DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1501         DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1502         DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1503         DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1504         DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1505         DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1506         DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1507         DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1508         DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1509         DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1510         DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1511         DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1512         DUMP_REG(DC_DISP_M0_CONTROL);
1513         DUMP_REG(DC_DISP_M1_CONTROL);
1514         DUMP_REG(DC_DISP_DI_CONTROL);
1515         DUMP_REG(DC_DISP_PP_CONTROL);
1516         DUMP_REG(DC_DISP_PP_SELECT_A);
1517         DUMP_REG(DC_DISP_PP_SELECT_B);
1518         DUMP_REG(DC_DISP_PP_SELECT_C);
1519         DUMP_REG(DC_DISP_PP_SELECT_D);
1520         DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1521         DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1522         DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1523         DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1524         DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1525         DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1526         DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1527         DUMP_REG(DC_DISP_BORDER_COLOR);
1528         DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1529         DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1530         DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1531         DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1532         DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1533         DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1534         DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1535         DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1536         DUMP_REG(DC_DISP_CURSOR_POSITION);
1537         DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1538         DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1539         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1540         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1541         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1542         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1543         DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1544         DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1545         DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1546         DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1547         DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1548         DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1549         DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1550         DUMP_REG(DC_DISP_SD_CONTROL);
1551         DUMP_REG(DC_DISP_SD_CSC_COEFF);
1552         DUMP_REG(DC_DISP_SD_LUT(0));
1553         DUMP_REG(DC_DISP_SD_LUT(1));
1554         DUMP_REG(DC_DISP_SD_LUT(2));
1555         DUMP_REG(DC_DISP_SD_LUT(3));
1556         DUMP_REG(DC_DISP_SD_LUT(4));
1557         DUMP_REG(DC_DISP_SD_LUT(5));
1558         DUMP_REG(DC_DISP_SD_LUT(6));
1559         DUMP_REG(DC_DISP_SD_LUT(7));
1560         DUMP_REG(DC_DISP_SD_LUT(8));
1561         DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1562         DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1563         DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1564         DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1565         DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1566         DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1567         DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1568         DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1569         DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1570         DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1571         DUMP_REG(DC_DISP_SD_BL_TF(0));
1572         DUMP_REG(DC_DISP_SD_BL_TF(1));
1573         DUMP_REG(DC_DISP_SD_BL_TF(2));
1574         DUMP_REG(DC_DISP_SD_BL_TF(3));
1575         DUMP_REG(DC_DISP_SD_BL_CONTROL);
1576         DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1577         DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1578         DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1579         DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1580         DUMP_REG(DC_WIN_WIN_OPTIONS);
1581         DUMP_REG(DC_WIN_BYTE_SWAP);
1582         DUMP_REG(DC_WIN_BUFFER_CONTROL);
1583         DUMP_REG(DC_WIN_COLOR_DEPTH);
1584         DUMP_REG(DC_WIN_POSITION);
1585         DUMP_REG(DC_WIN_SIZE);
1586         DUMP_REG(DC_WIN_PRESCALED_SIZE);
1587         DUMP_REG(DC_WIN_H_INITIAL_DDA);
1588         DUMP_REG(DC_WIN_V_INITIAL_DDA);
1589         DUMP_REG(DC_WIN_DDA_INC);
1590         DUMP_REG(DC_WIN_LINE_STRIDE);
1591         DUMP_REG(DC_WIN_BUF_STRIDE);
1592         DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1593         DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1594         DUMP_REG(DC_WIN_DV_CONTROL);
1595         DUMP_REG(DC_WIN_BLEND_NOKEY);
1596         DUMP_REG(DC_WIN_BLEND_1WIN);
1597         DUMP_REG(DC_WIN_BLEND_2WIN_X);
1598         DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1599         DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1600         DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1601         DUMP_REG(DC_WINBUF_START_ADDR);
1602         DUMP_REG(DC_WINBUF_START_ADDR_NS);
1603         DUMP_REG(DC_WINBUF_START_ADDR_U);
1604         DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1605         DUMP_REG(DC_WINBUF_START_ADDR_V);
1606         DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1607         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1608         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1609         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1610         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1611         DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1612         DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1613         DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1614         DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1615
1616 #undef DUMP_REG
1617
1618 unlock:
1619         drm_modeset_unlock(&dc->base.mutex);
1620         return err;
1621 }
1622
1623 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1624 {
1625         struct drm_info_node *node = s->private;
1626         struct tegra_dc *dc = node->info_ent->data;
1627         int err = 0;
1628         u32 value;
1629
1630         drm_modeset_lock(&dc->base.mutex, NULL);
1631
1632         if (!dc->base.state->active) {
1633                 err = -EBUSY;
1634                 goto unlock;
1635         }
1636
1637         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1638         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1639         tegra_dc_commit(dc);
1640
1641         drm_crtc_wait_one_vblank(&dc->base);
1642         drm_crtc_wait_one_vblank(&dc->base);
1643
1644         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1645         seq_printf(s, "%08x\n", value);
1646
1647         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1648
1649 unlock:
1650         drm_modeset_unlock(&dc->base.mutex);
1651         return err;
1652 }
1653
1654 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1655 {
1656         struct drm_info_node *node = s->private;
1657         struct tegra_dc *dc = node->info_ent->data;
1658
1659         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1660         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1661         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1662         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1663
1664         return 0;
1665 }
1666
1667 static struct drm_info_list debugfs_files[] = {
1668         { "regs", tegra_dc_show_regs, 0, NULL },
1669         { "crc", tegra_dc_show_crc, 0, NULL },
1670         { "stats", tegra_dc_show_stats, 0, NULL },
1671 };
1672
1673 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1674 {
1675         unsigned int i;
1676         char *name;
1677         int err;
1678
1679         name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1680         dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1681         kfree(name);
1682
1683         if (!dc->debugfs)
1684                 return -ENOMEM;
1685
1686         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1687                                     GFP_KERNEL);
1688         if (!dc->debugfs_files) {
1689                 err = -ENOMEM;
1690                 goto remove;
1691         }
1692
1693         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1694                 dc->debugfs_files[i].data = dc;
1695
1696         err = drm_debugfs_create_files(dc->debugfs_files,
1697                                        ARRAY_SIZE(debugfs_files),
1698                                        dc->debugfs, minor);
1699         if (err < 0)
1700                 goto free;
1701
1702         dc->minor = minor;
1703
1704         return 0;
1705
1706 free:
1707         kfree(dc->debugfs_files);
1708         dc->debugfs_files = NULL;
1709 remove:
1710         debugfs_remove(dc->debugfs);
1711         dc->debugfs = NULL;
1712
1713         return err;
1714 }
1715
1716 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1717 {
1718         drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1719                                  dc->minor);
1720         dc->minor = NULL;
1721
1722         kfree(dc->debugfs_files);
1723         dc->debugfs_files = NULL;
1724
1725         debugfs_remove(dc->debugfs);
1726         dc->debugfs = NULL;
1727
1728         return 0;
1729 }
1730
1731 static int tegra_dc_init(struct host1x_client *client)
1732 {
1733         struct drm_device *drm = dev_get_drvdata(client->parent);
1734         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1735         struct tegra_dc *dc = host1x_client_to_dc(client);
1736         struct tegra_drm *tegra = drm->dev_private;
1737         struct drm_plane *primary = NULL;
1738         struct drm_plane *cursor = NULL;
1739         int err;
1740
1741         dc->syncpt = host1x_syncpt_request(client, flags);
1742         if (!dc->syncpt)
1743                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1744
1745         if (tegra->domain) {
1746                 err = iommu_attach_device(tegra->domain, dc->dev);
1747                 if (err < 0) {
1748                         dev_err(dc->dev, "failed to attach to domain: %d\n",
1749                                 err);
1750                         return err;
1751                 }
1752
1753                 dc->domain = tegra->domain;
1754         }
1755
1756         primary = tegra_dc_primary_plane_create(drm, dc);
1757         if (IS_ERR(primary)) {
1758                 err = PTR_ERR(primary);
1759                 goto cleanup;
1760         }
1761
1762         if (dc->soc->supports_cursor) {
1763                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1764                 if (IS_ERR(cursor)) {
1765                         err = PTR_ERR(cursor);
1766                         goto cleanup;
1767                 }
1768         }
1769
1770         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1771                                         &tegra_crtc_funcs, NULL);
1772         if (err < 0)
1773                 goto cleanup;
1774
1775         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1776
1777         /*
1778          * Keep track of the minimum pitch alignment across all display
1779          * controllers.
1780          */
1781         if (dc->soc->pitch_align > tegra->pitch_align)
1782                 tegra->pitch_align = dc->soc->pitch_align;
1783
1784         err = tegra_dc_rgb_init(drm, dc);
1785         if (err < 0 && err != -ENODEV) {
1786                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1787                 goto cleanup;
1788         }
1789
1790         err = tegra_dc_add_planes(drm, dc);
1791         if (err < 0)
1792                 goto cleanup;
1793
1794         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1795                 err = tegra_dc_debugfs_init(dc, drm->primary);
1796                 if (err < 0)
1797                         dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1798         }
1799
1800         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1801                                dev_name(dc->dev), dc);
1802         if (err < 0) {
1803                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1804                         err);
1805                 goto cleanup;
1806         }
1807
1808         return 0;
1809
1810 cleanup:
1811         if (cursor)
1812                 drm_plane_cleanup(cursor);
1813
1814         if (primary)
1815                 drm_plane_cleanup(primary);
1816
1817         if (tegra->domain) {
1818                 iommu_detach_device(tegra->domain, dc->dev);
1819                 dc->domain = NULL;
1820         }
1821
1822         return err;
1823 }
1824
1825 static int tegra_dc_exit(struct host1x_client *client)
1826 {
1827         struct tegra_dc *dc = host1x_client_to_dc(client);
1828         int err;
1829
1830         devm_free_irq(dc->dev, dc->irq, dc);
1831
1832         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1833                 err = tegra_dc_debugfs_exit(dc);
1834                 if (err < 0)
1835                         dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1836         }
1837
1838         err = tegra_dc_rgb_exit(dc);
1839         if (err) {
1840                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1841                 return err;
1842         }
1843
1844         if (dc->domain) {
1845                 iommu_detach_device(dc->domain, dc->dev);
1846                 dc->domain = NULL;
1847         }
1848
1849         host1x_syncpt_free(dc->syncpt);
1850
1851         return 0;
1852 }
1853
1854 static const struct host1x_client_ops dc_client_ops = {
1855         .init = tegra_dc_init,
1856         .exit = tegra_dc_exit,
1857 };
1858
1859 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1860         .supports_border_color = true,
1861         .supports_interlacing = false,
1862         .supports_cursor = false,
1863         .supports_block_linear = false,
1864         .pitch_align = 8,
1865         .has_powergate = false,
1866         .broken_reset = true,
1867 };
1868
1869 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1870         .supports_border_color = true,
1871         .supports_interlacing = false,
1872         .supports_cursor = false,
1873         .supports_block_linear = false,
1874         .pitch_align = 8,
1875         .has_powergate = false,
1876         .broken_reset = false,
1877 };
1878
1879 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1880         .supports_border_color = true,
1881         .supports_interlacing = false,
1882         .supports_cursor = false,
1883         .supports_block_linear = false,
1884         .pitch_align = 64,
1885         .has_powergate = true,
1886         .broken_reset = false,
1887 };
1888
1889 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1890         .supports_border_color = false,
1891         .supports_interlacing = true,
1892         .supports_cursor = true,
1893         .supports_block_linear = true,
1894         .pitch_align = 64,
1895         .has_powergate = true,
1896         .broken_reset = false,
1897 };
1898
1899 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1900         .supports_border_color = false,
1901         .supports_interlacing = true,
1902         .supports_cursor = true,
1903         .supports_block_linear = true,
1904         .pitch_align = 64,
1905         .has_powergate = true,
1906         .broken_reset = false,
1907 };
1908
1909 static const struct of_device_id tegra_dc_of_match[] = {
1910         {
1911                 .compatible = "nvidia,tegra210-dc",
1912                 .data = &tegra210_dc_soc_info,
1913         }, {
1914                 .compatible = "nvidia,tegra124-dc",
1915                 .data = &tegra124_dc_soc_info,
1916         }, {
1917                 .compatible = "nvidia,tegra114-dc",
1918                 .data = &tegra114_dc_soc_info,
1919         }, {
1920                 .compatible = "nvidia,tegra30-dc",
1921                 .data = &tegra30_dc_soc_info,
1922         }, {
1923                 .compatible = "nvidia,tegra20-dc",
1924                 .data = &tegra20_dc_soc_info,
1925         }, {
1926                 /* sentinel */
1927         }
1928 };
1929 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1930
1931 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1932 {
1933         struct device_node *np;
1934         u32 value = 0;
1935         int err;
1936
1937         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1938         if (err < 0) {
1939                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1940
1941                 /*
1942                  * If the nvidia,head property isn't present, try to find the
1943                  * correct head number by looking up the position of this
1944                  * display controller's node within the device tree. Assuming
1945                  * that the nodes are ordered properly in the DTS file and
1946                  * that the translation into a flattened device tree blob
1947                  * preserves that ordering this will actually yield the right
1948                  * head number.
1949                  *
1950                  * If those assumptions don't hold, this will still work for
1951                  * cases where only a single display controller is used.
1952                  */
1953                 for_each_matching_node(np, tegra_dc_of_match) {
1954                         if (np == dc->dev->of_node) {
1955                                 of_node_put(np);
1956                                 break;
1957                         }
1958
1959                         value++;
1960                 }
1961         }
1962
1963         dc->pipe = value;
1964
1965         return 0;
1966 }
1967
1968 static int tegra_dc_probe(struct platform_device *pdev)
1969 {
1970         struct resource *regs;
1971         struct tegra_dc *dc;
1972         int err;
1973
1974         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1975         if (!dc)
1976                 return -ENOMEM;
1977
1978         dc->soc = of_device_get_match_data(&pdev->dev);
1979
1980         spin_lock_init(&dc->lock);
1981         INIT_LIST_HEAD(&dc->list);
1982         dc->dev = &pdev->dev;
1983
1984         err = tegra_dc_parse_dt(dc);
1985         if (err < 0)
1986                 return err;
1987
1988         dc->clk = devm_clk_get(&pdev->dev, NULL);
1989         if (IS_ERR(dc->clk)) {
1990                 dev_err(&pdev->dev, "failed to get clock\n");
1991                 return PTR_ERR(dc->clk);
1992         }
1993
1994         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1995         if (IS_ERR(dc->rst)) {
1996                 dev_err(&pdev->dev, "failed to get reset\n");
1997                 return PTR_ERR(dc->rst);
1998         }
1999
2000         /* assert reset and disable clock */
2001         if (!dc->soc->broken_reset) {
2002                 err = clk_prepare_enable(dc->clk);
2003                 if (err < 0)
2004                         return err;
2005
2006                 usleep_range(2000, 4000);
2007
2008                 err = reset_control_assert(dc->rst);
2009                 if (err < 0)
2010                         return err;
2011
2012                 usleep_range(2000, 4000);
2013
2014                 clk_disable_unprepare(dc->clk);
2015         }
2016
2017         if (dc->soc->has_powergate) {
2018                 if (dc->pipe == 0)
2019                         dc->powergate = TEGRA_POWERGATE_DIS;
2020                 else
2021                         dc->powergate = TEGRA_POWERGATE_DISB;
2022
2023                 tegra_powergate_power_off(dc->powergate);
2024         }
2025
2026         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2028         if (IS_ERR(dc->regs))
2029                 return PTR_ERR(dc->regs);
2030
2031         dc->irq = platform_get_irq(pdev, 0);
2032         if (dc->irq < 0) {
2033                 dev_err(&pdev->dev, "failed to get IRQ\n");
2034                 return -ENXIO;
2035         }
2036
2037         err = tegra_dc_rgb_probe(dc);
2038         if (err < 0 && err != -ENODEV) {
2039                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2040                 return err;
2041         }
2042
2043         platform_set_drvdata(pdev, dc);
2044         pm_runtime_enable(&pdev->dev);
2045
2046         INIT_LIST_HEAD(&dc->client.list);
2047         dc->client.ops = &dc_client_ops;
2048         dc->client.dev = &pdev->dev;
2049
2050         err = host1x_client_register(&dc->client);
2051         if (err < 0) {
2052                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2053                         err);
2054                 return err;
2055         }
2056
2057         return 0;
2058 }
2059
2060 static int tegra_dc_remove(struct platform_device *pdev)
2061 {
2062         struct tegra_dc *dc = platform_get_drvdata(pdev);
2063         int err;
2064
2065         err = host1x_client_unregister(&dc->client);
2066         if (err < 0) {
2067                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2068                         err);
2069                 return err;
2070         }
2071
2072         err = tegra_dc_rgb_remove(dc);
2073         if (err < 0) {
2074                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2075                 return err;
2076         }
2077
2078         pm_runtime_disable(&pdev->dev);
2079
2080         return 0;
2081 }
2082
2083 #ifdef CONFIG_PM
2084 static int tegra_dc_suspend(struct device *dev)
2085 {
2086         struct tegra_dc *dc = dev_get_drvdata(dev);
2087         int err;
2088
2089         if (!dc->soc->broken_reset) {
2090                 err = reset_control_assert(dc->rst);
2091                 if (err < 0) {
2092                         dev_err(dev, "failed to assert reset: %d\n", err);
2093                         return err;
2094                 }
2095         }
2096
2097         if (dc->soc->has_powergate)
2098                 tegra_powergate_power_off(dc->powergate);
2099
2100         clk_disable_unprepare(dc->clk);
2101
2102         return 0;
2103 }
2104
2105 static int tegra_dc_resume(struct device *dev)
2106 {
2107         struct tegra_dc *dc = dev_get_drvdata(dev);
2108         int err;
2109
2110         if (dc->soc->has_powergate) {
2111                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2112                                                         dc->rst);
2113                 if (err < 0) {
2114                         dev_err(dev, "failed to power partition: %d\n", err);
2115                         return err;
2116                 }
2117         } else {
2118                 err = clk_prepare_enable(dc->clk);
2119                 if (err < 0) {
2120                         dev_err(dev, "failed to enable clock: %d\n", err);
2121                         return err;
2122                 }
2123
2124                 if (!dc->soc->broken_reset) {
2125                         err = reset_control_deassert(dc->rst);
2126                         if (err < 0) {
2127                                 dev_err(dev,
2128                                         "failed to deassert reset: %d\n", err);
2129                                 return err;
2130                         }
2131                 }
2132         }
2133
2134         return 0;
2135 }
2136 #endif
2137
2138 static const struct dev_pm_ops tegra_dc_pm_ops = {
2139         SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2140 };
2141
2142 struct platform_driver tegra_dc_driver = {
2143         .driver = {
2144                 .name = "tegra-dc",
2145                 .of_match_table = tegra_dc_of_match,
2146                 .pm = &tegra_dc_pm_ops,
2147         },
2148         .probe = tegra_dc_probe,
2149         .remove = tegra_dc_remove,
2150 };
This page took 0.152246 seconds and 4 git commands to generate.