2 * Performance events core code:
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
54 int sysctl_perf_event_paranoid __read_mostly = 1;
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
59 * max perf event sample rate
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
63 static atomic64_t perf_event_id;
65 void __weak perf_event_print_debug(void) { }
67 extern __weak const char *perf_pmu_name(void)
72 void perf_pmu_disable(struct pmu *pmu)
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
76 pmu->pmu_disable(pmu);
79 void perf_pmu_enable(struct pmu *pmu)
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
93 static void perf_pmu_rotate_start(struct pmu *pmu)
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
98 WARN_ON(!irqs_disabled());
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
104 static void get_ctx(struct perf_event_context *ctx)
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
109 static void free_ctx(struct rcu_head *head)
111 struct perf_event_context *ctx;
113 ctx = container_of(head, struct perf_event_context, rcu_head);
117 static void put_ctx(struct perf_event_context *ctx)
119 if (atomic_dec_and_test(&ctx->refcount)) {
121 put_ctx(ctx->parent_ctx);
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
128 static void unclone_ctx(struct perf_event_context *ctx)
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
137 * If we inherit events we want to return the parent event id
140 static u64 primary_event_id(struct perf_event *event)
145 id = event->parent->id;
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
158 struct perf_event_context *ctx;
162 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
174 raw_spin_lock_irqsave(&ctx->lock, *flags);
175 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 if (!atomic_inc_not_zero(&ctx->refcount)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
197 struct perf_event_context *ctx;
200 ctx = perf_lock_task_context(task, ctxn, &flags);
203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 static void perf_unpin_context(struct perf_event_context *ctx)
212 raw_spin_lock_irqsave(&ctx->lock, flags);
214 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 static inline u64 perf_clock(void)
220 return local_clock();
224 * Update the record of the current time in a context.
226 static void update_context_time(struct perf_event_context *ctx)
228 u64 now = perf_clock();
230 ctx->time += now - ctx->timestamp;
231 ctx->timestamp = now;
235 * Update the total_time_enabled and total_time_running fields for a event.
237 static void update_event_times(struct perf_event *event)
239 struct perf_event_context *ctx = event->ctx;
242 if (event->state < PERF_EVENT_STATE_INACTIVE ||
243 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249 run_end = event->tstamp_stopped;
251 event->total_time_enabled = run_end - event->tstamp_enabled;
253 if (event->state == PERF_EVENT_STATE_INACTIVE)
254 run_end = event->tstamp_stopped;
258 event->total_time_running = run_end - event->tstamp_running;
262 * Update total_time_enabled and total_time_running for all events in a group.
264 static void update_group_times(struct perf_event *leader)
266 struct perf_event *event;
268 update_event_times(leader);
269 list_for_each_entry(event, &leader->sibling_list, group_entry)
270 update_event_times(event);
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
276 if (event->attr.pinned)
277 return &ctx->pinned_groups;
279 return &ctx->flexible_groups;
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
289 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290 event->attach_state |= PERF_ATTACH_CONTEXT;
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
297 if (event->group_leader == event) {
298 struct list_head *list;
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
307 list_add_rcu(&event->event_entry, &ctx->event_list);
309 perf_pmu_rotate_start(ctx->pmu);
311 if (event->attr.inherit_stat)
315 static void perf_group_attach(struct perf_event *event)
317 struct perf_event *group_leader = event->group_leader;
320 * We can have double attach due to group movement in perf_event_open.
322 if (event->attach_state & PERF_ATTACH_GROUP)
325 event->attach_state |= PERF_ATTACH_GROUP;
327 if (group_leader == event)
330 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331 !is_software_event(event))
332 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
334 list_add_tail(&event->group_entry, &group_leader->sibling_list);
335 group_leader->nr_siblings++;
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
346 * We can have double detach due to exit/hot-unplug + close.
348 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
351 event->attach_state &= ~PERF_ATTACH_CONTEXT;
354 if (event->attr.inherit_stat)
357 list_del_rcu(&event->event_entry);
359 if (event->group_leader == event)
360 list_del_init(&event->group_entry);
362 update_group_times(event);
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
371 if (event->state > PERF_EVENT_STATE_OFF)
372 event->state = PERF_EVENT_STATE_OFF;
375 static void perf_group_detach(struct perf_event *event)
377 struct perf_event *sibling, *tmp;
378 struct list_head *list = NULL;
381 * We can have double detach due to exit/hot-unplug + close.
383 if (!(event->attach_state & PERF_ATTACH_GROUP))
386 event->attach_state &= ~PERF_ATTACH_GROUP;
389 * If this is a sibling, remove it from its group.
391 if (event->group_leader != event) {
392 list_del_init(&event->group_entry);
393 event->group_leader->nr_siblings--;
397 if (!list_empty(&event->group_entry))
398 list = &event->group_entry;
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
405 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
407 list_move_tail(&sibling->group_entry, list);
408 sibling->group_leader = sibling;
410 /* Inherit group flags from the previous leader */
411 sibling->group_flags = event->group_flags;
416 event_filter_match(struct perf_event *event)
418 return event->cpu == -1 || event->cpu == smp_processor_id();
422 event_sched_out(struct perf_event *event,
423 struct perf_cpu_context *cpuctx,
424 struct perf_event_context *ctx)
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
433 if (event->state == PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event)) {
435 delta = ctx->time - event->tstamp_stopped;
436 event->tstamp_running += delta;
437 event->tstamp_stopped = ctx->time;
440 if (event->state != PERF_EVENT_STATE_ACTIVE)
443 event->state = PERF_EVENT_STATE_INACTIVE;
444 if (event->pending_disable) {
445 event->pending_disable = 0;
446 event->state = PERF_EVENT_STATE_OFF;
448 event->tstamp_stopped = ctx->time;
449 event->pmu->del(event, 0);
452 if (!is_software_event(event))
453 cpuctx->active_oncpu--;
455 if (event->attr.exclusive || !cpuctx->active_oncpu)
456 cpuctx->exclusive = 0;
460 group_sched_out(struct perf_event *group_event,
461 struct perf_cpu_context *cpuctx,
462 struct perf_event_context *ctx)
464 struct perf_event *event;
465 int state = group_event->state;
467 event_sched_out(group_event, cpuctx, ctx);
470 * Schedule out siblings (if any):
472 list_for_each_entry(event, &group_event->sibling_list, group_entry)
473 event_sched_out(event, cpuctx, ctx);
475 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 cpuctx->exclusive = 0;
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
482 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
486 * Cross CPU call to remove a performance event
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
491 static void __perf_event_remove_from_context(void *info)
493 struct perf_event *event = info;
494 struct perf_event_context *ctx = event->ctx;
495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
502 if (ctx->task && cpuctx->task_ctx != ctx)
505 raw_spin_lock(&ctx->lock);
507 event_sched_out(event, cpuctx, ctx);
509 list_del_event(event, ctx);
511 raw_spin_unlock(&ctx->lock);
516 * Remove the event from a task's (or a CPU's) list of events.
518 * Must be called with ctx->mutex held.
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
530 static void perf_event_remove_from_context(struct perf_event *event)
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
550 raw_spin_lock_irq(&ctx->lock);
552 * If the context is active we need to retry the smp call.
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
570 * Cross CPU call to disable a performance event
572 static void __perf_event_disable(void *info)
574 struct perf_event *event = info;
575 struct perf_event_context *ctx = event->ctx;
576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
582 if (ctx->task && cpuctx->task_ctx != ctx)
585 raw_spin_lock(&ctx->lock);
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock(&ctx->lock);
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
617 void perf_event_disable(struct perf_event *event)
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
624 * Disable the event on the cpu that it's on
626 smp_call_function_single(event->cpu, __perf_event_disable,
632 task_oncpu_function_call(task, __perf_event_disable, event);
634 raw_spin_lock_irq(&ctx->lock);
636 * If the event is still active, we need to retry the cross-call.
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
652 raw_spin_unlock_irq(&ctx->lock);
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
660 if (event->state <= PERF_EVENT_STATE_OFF)
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
666 * The new state must be visible before we turn it on in the hardware:
670 if (event->pmu->add(event, PERF_EF_START)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
678 event->shadow_ctx_time = ctx->time - ctx->timestamp;
680 if (!is_software_event(event))
681 cpuctx->active_oncpu++;
684 if (event->attr.exclusive)
685 cpuctx->exclusive = 1;
691 group_sched_in(struct perf_event *group_event,
692 struct perf_cpu_context *cpuctx,
693 struct perf_event_context *ctx)
695 struct perf_event *event, *partial_group = NULL;
696 struct pmu *pmu = group_event->pmu;
698 bool simulate = false;
700 if (group_event->state == PERF_EVENT_STATE_OFF)
705 if (event_sched_in(group_event, cpuctx, ctx)) {
706 pmu->cancel_txn(pmu);
711 * Schedule in siblings as one group (if any):
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event_sched_in(event, cpuctx, ctx)) {
715 partial_group = event;
720 if (!pmu->commit_txn(pmu))
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
738 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739 if (event == partial_group)
743 event->tstamp_running += now - event->tstamp_stopped;
744 event->tstamp_stopped = now;
746 event_sched_out(event, cpuctx, ctx);
749 event_sched_out(group_event, cpuctx, ctx);
751 pmu->cancel_txn(pmu);
757 * Work out whether we can put this event group on the CPU now.
759 static int group_can_go_on(struct perf_event *event,
760 struct perf_cpu_context *cpuctx,
764 * Groups consisting entirely of software events can always go on.
766 if (event->group_flags & PERF_GROUP_SOFTWARE)
769 * If an exclusive group is already on, no other hardware
772 if (cpuctx->exclusive)
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
778 if (event->attr.exclusive && cpuctx->active_oncpu)
781 * Otherwise, try to add it if all previous groups were able
787 static void add_event_to_ctx(struct perf_event *event,
788 struct perf_event_context *ctx)
790 list_add_event(event, ctx);
791 perf_group_attach(event);
792 event->tstamp_enabled = ctx->time;
793 event->tstamp_running = ctx->time;
794 event->tstamp_stopped = ctx->time;
798 * Cross CPU call to install and enable a performance event
800 * Must be called with ctx->mutex held
802 static void __perf_install_in_context(void *info)
804 struct perf_event *event = info;
805 struct perf_event_context *ctx = event->ctx;
806 struct perf_event *leader = event->group_leader;
807 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
817 if (ctx->task && cpuctx->task_ctx != ctx) {
818 if (cpuctx->task_ctx || ctx->task != current)
820 cpuctx->task_ctx = ctx;
823 raw_spin_lock(&ctx->lock);
825 update_context_time(ctx);
827 add_event_to_ctx(event, ctx);
829 if (event->cpu != -1 && event->cpu != smp_processor_id())
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
836 if (event->state != PERF_EVENT_STATE_INACTIVE ||
837 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
845 if (!group_can_go_on(event, cpuctx, 1))
848 err = event_sched_in(event, cpuctx, ctx);
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
857 group_sched_out(leader, cpuctx, ctx);
858 if (leader->attr.pinned) {
859 update_group_times(leader);
860 leader->state = PERF_EVENT_STATE_ERROR;
865 raw_spin_unlock(&ctx->lock);
869 * Attach a performance event to a context
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
878 * Must be called with ctx->mutex held.
881 perf_install_in_context(struct perf_event_context *ctx,
882 struct perf_event *event,
885 struct task_struct *task = ctx->task;
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
894 smp_call_function_single(cpu, __perf_install_in_context,
900 task_oncpu_function_call(task, __perf_install_in_context,
903 raw_spin_lock_irq(&ctx->lock);
905 * we need to retry the smp call.
907 if (ctx->is_active && list_empty(&event->group_entry)) {
908 raw_spin_unlock_irq(&ctx->lock);
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
917 if (list_empty(&event->group_entry))
918 add_event_to_ctx(event, ctx);
919 raw_spin_unlock_irq(&ctx->lock);
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
930 static void __perf_event_mark_enabled(struct perf_event *event,
931 struct perf_event_context *ctx)
933 struct perf_event *sub;
935 event->state = PERF_EVENT_STATE_INACTIVE;
936 event->tstamp_enabled = ctx->time - event->total_time_enabled;
937 list_for_each_entry(sub, &event->sibling_list, group_entry) {
938 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 sub->tstamp_enabled =
940 ctx->time - sub->total_time_enabled;
946 * Cross CPU call to enable a performance event
948 static void __perf_event_enable(void *info)
950 struct perf_event *event = info;
951 struct perf_event_context *ctx = event->ctx;
952 struct perf_event *leader = event->group_leader;
953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
960 if (ctx->task && cpuctx->task_ctx != ctx) {
961 if (cpuctx->task_ctx || ctx->task != current)
963 cpuctx->task_ctx = ctx;
966 raw_spin_lock(&ctx->lock);
968 update_context_time(ctx);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
972 __perf_event_mark_enabled(event, ctx);
974 if (event->cpu != -1 && event->cpu != smp_processor_id())
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
984 if (!group_can_go_on(event, cpuctx, 1)) {
988 err = group_sched_in(event, cpuctx, ctx);
990 err = event_sched_in(event, cpuctx, ctx);
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
999 group_sched_out(leader, cpuctx, ctx);
1000 if (leader->attr.pinned) {
1001 update_group_times(leader);
1002 leader->state = PERF_EVENT_STATE_ERROR;
1007 raw_spin_unlock(&ctx->lock);
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1019 void perf_event_enable(struct perf_event *event)
1021 struct perf_event_context *ctx = event->ctx;
1022 struct task_struct *task = ctx->task;
1026 * Enable the event on the cpu that it's on
1028 smp_call_function_single(event->cpu, __perf_event_enable,
1033 raw_spin_lock_irq(&ctx->lock);
1034 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1044 if (event->state == PERF_EVENT_STATE_ERROR)
1045 event->state = PERF_EVENT_STATE_OFF;
1048 raw_spin_unlock_irq(&ctx->lock);
1049 task_oncpu_function_call(task, __perf_event_enable, event);
1051 raw_spin_lock_irq(&ctx->lock);
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1057 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1064 if (event->state == PERF_EVENT_STATE_OFF)
1065 __perf_event_mark_enabled(event, ctx);
1068 raw_spin_unlock_irq(&ctx->lock);
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1074 * not supported on inherited events
1076 if (event->attr.inherit)
1079 atomic_add(refresh, &event->event_limit);
1080 perf_event_enable(event);
1086 EVENT_FLEXIBLE = 0x1,
1088 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092 struct perf_cpu_context *cpuctx,
1093 enum event_type_t event_type)
1095 struct perf_event *event;
1097 raw_spin_lock(&ctx->lock);
1098 perf_pmu_disable(ctx->pmu);
1100 if (likely(!ctx->nr_events))
1102 update_context_time(ctx);
1104 if (!ctx->nr_active)
1107 if (event_type & EVENT_PINNED) {
1108 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109 group_sched_out(event, cpuctx, ctx);
1112 if (event_type & EVENT_FLEXIBLE) {
1113 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114 group_sched_out(event, cpuctx, ctx);
1117 perf_pmu_enable(ctx->pmu);
1118 raw_spin_unlock(&ctx->lock);
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1132 static int context_equiv(struct perf_event_context *ctx1,
1133 struct perf_event_context *ctx2)
1135 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136 && ctx1->parent_gen == ctx2->parent_gen
1137 && !ctx1->pin_count && !ctx2->pin_count;
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141 struct perf_event *next_event)
1145 if (!event->attr.inherit_stat)
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1155 switch (event->state) {
1156 case PERF_EVENT_STATE_ACTIVE:
1157 event->pmu->read(event);
1160 case PERF_EVENT_STATE_INACTIVE:
1161 update_event_times(event);
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1172 value = local64_read(&next_event->count);
1173 value = local64_xchg(&event->count, value);
1174 local64_set(&next_event->count, value);
1176 swap(event->total_time_enabled, next_event->total_time_enabled);
1177 swap(event->total_time_running, next_event->total_time_running);
1180 * Since we swizzled the values, update the user visible data too.
1182 perf_event_update_userpage(event);
1183 perf_event_update_userpage(next_event);
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190 struct perf_event_context *next_ctx)
1192 struct perf_event *event, *next_event;
1197 update_context_time(ctx);
1199 event = list_first_entry(&ctx->event_list,
1200 struct perf_event, event_entry);
1202 next_event = list_first_entry(&next_ctx->event_list,
1203 struct perf_event, event_entry);
1205 while (&event->event_entry != &ctx->event_list &&
1206 &next_event->event_entry != &next_ctx->event_list) {
1208 __perf_event_sync_stat(event, next_event);
1210 event = list_next_entry(event, event_entry);
1211 next_event = list_next_entry(next_event, event_entry);
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216 struct task_struct *next)
1218 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 struct perf_event_context *next_ctx;
1220 struct perf_event_context *parent;
1221 struct perf_cpu_context *cpuctx;
1227 cpuctx = __get_cpu_context(ctx);
1228 if (!cpuctx->task_ctx)
1232 parent = rcu_dereference(ctx->parent_ctx);
1233 next_ctx = next->perf_event_ctxp[ctxn];
1234 if (parent && next_ctx &&
1235 rcu_dereference(next_ctx->parent_ctx) == parent) {
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1245 raw_spin_lock(&ctx->lock);
1246 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247 if (context_equiv(ctx, next_ctx)) {
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1252 task->perf_event_ctxp[ctxn] = next_ctx;
1253 next->perf_event_ctxp[ctxn] = ctx;
1255 next_ctx->task = task;
1258 perf_event_sync_stat(ctx, next_ctx);
1260 raw_spin_unlock(&next_ctx->lock);
1261 raw_spin_unlock(&ctx->lock);
1266 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 cpuctx->task_ctx = NULL;
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1278 * We stop each event and update the event value in event->count.
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286 struct task_struct *next)
1290 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1292 for_each_task_context_nr(ctxn)
1293 perf_event_context_sched_out(task, ctxn, next);
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297 enum event_type_t event_type)
1299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1301 if (!cpuctx->task_ctx)
1304 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1307 ctx_sched_out(ctx, cpuctx, event_type);
1308 cpuctx->task_ctx = NULL;
1312 * Called with IRQs disabled
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315 enum event_type_t event_type)
1317 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322 struct perf_cpu_context *cpuctx)
1324 struct perf_event *event;
1326 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327 if (event->state <= PERF_EVENT_STATE_OFF)
1329 if (event->cpu != -1 && event->cpu != smp_processor_id())
1332 if (group_can_go_on(event, cpuctx, 1))
1333 group_sched_in(event, cpuctx, ctx);
1336 * If this pinned group hasn't been scheduled,
1337 * put it in error state.
1339 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340 update_group_times(event);
1341 event->state = PERF_EVENT_STATE_ERROR;
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348 struct perf_cpu_context *cpuctx)
1350 struct perf_event *event;
1353 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354 /* Ignore events in OFF or ERROR state */
1355 if (event->state <= PERF_EVENT_STATE_OFF)
1358 * Listen to the 'cpu' scheduling filter constraint
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1364 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365 if (group_sched_in(event, cpuctx, ctx))
1372 ctx_sched_in(struct perf_event_context *ctx,
1373 struct perf_cpu_context *cpuctx,
1374 enum event_type_t event_type)
1376 raw_spin_lock(&ctx->lock);
1378 if (likely(!ctx->nr_events))
1381 ctx->timestamp = perf_clock();
1384 * First go through the list and put on any pinned groups
1385 * in order to give them the best chance of going on.
1387 if (event_type & EVENT_PINNED)
1388 ctx_pinned_sched_in(ctx, cpuctx);
1390 /* Then walk through the lower prio flexible groups */
1391 if (event_type & EVENT_FLEXIBLE)
1392 ctx_flexible_sched_in(ctx, cpuctx);
1395 raw_spin_unlock(&ctx->lock);
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399 enum event_type_t event_type)
1401 struct perf_event_context *ctx = &cpuctx->ctx;
1403 ctx_sched_in(ctx, cpuctx, event_type);
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407 enum event_type_t event_type)
1409 struct perf_cpu_context *cpuctx;
1411 cpuctx = __get_cpu_context(ctx);
1412 if (cpuctx->task_ctx == ctx)
1415 ctx_sched_in(ctx, cpuctx, event_type);
1416 cpuctx->task_ctx = ctx;
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1421 struct perf_cpu_context *cpuctx;
1423 cpuctx = __get_cpu_context(ctx);
1424 if (cpuctx->task_ctx == ctx)
1427 perf_pmu_disable(ctx->pmu);
1429 * We want to keep the following priority order:
1430 * cpu pinned (that don't need to move), task pinned,
1431 * cpu flexible, task flexible.
1433 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1435 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1439 cpuctx->task_ctx = ctx;
1442 * Since these rotations are per-cpu, we need to ensure the
1443 * cpu-context we got scheduled on is actually rotating.
1445 perf_pmu_rotate_start(ctx->pmu);
1446 perf_pmu_enable(ctx->pmu);
1450 * Called from scheduler to add the events of the current task
1451 * with interrupts disabled.
1453 * We restore the event value and then enable it.
1455 * This does not protect us against NMI, but enable()
1456 * sets the enabled bit in the control field of event _before_
1457 * accessing the event control register. If a NMI hits, then it will
1458 * keep the event running.
1460 void __perf_event_task_sched_in(struct task_struct *task)
1462 struct perf_event_context *ctx;
1465 for_each_task_context_nr(ctxn) {
1466 ctx = task->perf_event_ctxp[ctxn];
1470 perf_event_context_sched_in(ctx);
1474 #define MAX_INTERRUPTS (~0ULL)
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1480 u64 frequency = event->attr.sample_freq;
1481 u64 sec = NSEC_PER_SEC;
1482 u64 divisor, dividend;
1484 int count_fls, nsec_fls, frequency_fls, sec_fls;
1486 count_fls = fls64(count);
1487 nsec_fls = fls64(nsec);
1488 frequency_fls = fls64(frequency);
1492 * We got @count in @nsec, with a target of sample_freq HZ
1493 * the target period becomes:
1496 * period = -------------------
1497 * @nsec * sample_freq
1502 * Reduce accuracy by one bit such that @a and @b converge
1503 * to a similar magnitude.
1505 #define REDUCE_FLS(a, b) \
1507 if (a##_fls > b##_fls) { \
1517 * Reduce accuracy until either term fits in a u64, then proceed with
1518 * the other, so that finally we can do a u64/u64 division.
1520 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521 REDUCE_FLS(nsec, frequency);
1522 REDUCE_FLS(sec, count);
1525 if (count_fls + sec_fls > 64) {
1526 divisor = nsec * frequency;
1528 while (count_fls + sec_fls > 64) {
1529 REDUCE_FLS(count, sec);
1533 dividend = count * sec;
1535 dividend = count * sec;
1537 while (nsec_fls + frequency_fls > 64) {
1538 REDUCE_FLS(nsec, frequency);
1542 divisor = nsec * frequency;
1548 return div64_u64(dividend, divisor);
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1553 struct hw_perf_event *hwc = &event->hw;
1554 s64 period, sample_period;
1557 period = perf_calculate_period(event, nsec, count);
1559 delta = (s64)(period - hwc->sample_period);
1560 delta = (delta + 7) / 8; /* low pass filter */
1562 sample_period = hwc->sample_period + delta;
1567 hwc->sample_period = sample_period;
1569 if (local64_read(&hwc->period_left) > 8*sample_period) {
1570 event->pmu->stop(event, PERF_EF_UPDATE);
1571 local64_set(&hwc->period_left, 0);
1572 event->pmu->start(event, PERF_EF_RELOAD);
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1578 struct perf_event *event;
1579 struct hw_perf_event *hwc;
1580 u64 interrupts, now;
1583 raw_spin_lock(&ctx->lock);
1584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585 if (event->state != PERF_EVENT_STATE_ACTIVE)
1588 if (event->cpu != -1 && event->cpu != smp_processor_id())
1593 interrupts = hwc->interrupts;
1594 hwc->interrupts = 0;
1597 * unthrottle events on the tick
1599 if (interrupts == MAX_INTERRUPTS) {
1600 perf_log_throttle(event, 1);
1601 event->pmu->start(event, 0);
1604 if (!event->attr.freq || !event->attr.sample_freq)
1607 event->pmu->read(event);
1608 now = local64_read(&event->count);
1609 delta = now - hwc->freq_count_stamp;
1610 hwc->freq_count_stamp = now;
1613 perf_adjust_period(event, period, delta);
1615 raw_spin_unlock(&ctx->lock);
1619 * Round-robin a context's events:
1621 static void rotate_ctx(struct perf_event_context *ctx)
1623 raw_spin_lock(&ctx->lock);
1625 /* Rotate the first entry last of non-pinned groups */
1626 list_rotate_left(&ctx->flexible_groups);
1628 raw_spin_unlock(&ctx->lock);
1632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1633 * because they're strictly cpu affine and rotate_start is called with IRQs
1634 * disabled, while rotate_context is called from IRQ context.
1636 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1638 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1639 struct perf_event_context *ctx = NULL;
1640 int rotate = 0, remove = 1;
1642 if (cpuctx->ctx.nr_events) {
1644 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1648 ctx = cpuctx->task_ctx;
1649 if (ctx && ctx->nr_events) {
1651 if (ctx->nr_events != ctx->nr_active)
1655 perf_pmu_disable(cpuctx->ctx.pmu);
1656 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1658 perf_ctx_adjust_freq(ctx, interval);
1663 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1665 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1667 rotate_ctx(&cpuctx->ctx);
1671 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1673 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1677 list_del_init(&cpuctx->rotation_list);
1679 perf_pmu_enable(cpuctx->ctx.pmu);
1682 void perf_event_task_tick(void)
1684 struct list_head *head = &__get_cpu_var(rotation_list);
1685 struct perf_cpu_context *cpuctx, *tmp;
1687 WARN_ON(!irqs_disabled());
1689 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1690 if (cpuctx->jiffies_interval == 1 ||
1691 !(jiffies % cpuctx->jiffies_interval))
1692 perf_rotate_context(cpuctx);
1696 static int event_enable_on_exec(struct perf_event *event,
1697 struct perf_event_context *ctx)
1699 if (!event->attr.enable_on_exec)
1702 event->attr.enable_on_exec = 0;
1703 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1706 __perf_event_mark_enabled(event, ctx);
1712 * Enable all of a task's events that have been marked enable-on-exec.
1713 * This expects task == current.
1715 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1717 struct perf_event *event;
1718 unsigned long flags;
1722 local_irq_save(flags);
1723 if (!ctx || !ctx->nr_events)
1726 task_ctx_sched_out(ctx, EVENT_ALL);
1728 raw_spin_lock(&ctx->lock);
1730 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1731 ret = event_enable_on_exec(event, ctx);
1736 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1737 ret = event_enable_on_exec(event, ctx);
1743 * Unclone this context if we enabled any event.
1748 raw_spin_unlock(&ctx->lock);
1750 perf_event_context_sched_in(ctx);
1752 local_irq_restore(flags);
1756 * Cross CPU call to read the hardware event
1758 static void __perf_event_read(void *info)
1760 struct perf_event *event = info;
1761 struct perf_event_context *ctx = event->ctx;
1762 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765 * If this is a task context, we need to check whether it is
1766 * the current task context of this cpu. If not it has been
1767 * scheduled out before the smp call arrived. In that case
1768 * event->count would have been updated to a recent sample
1769 * when the event was scheduled out.
1771 if (ctx->task && cpuctx->task_ctx != ctx)
1774 raw_spin_lock(&ctx->lock);
1775 update_context_time(ctx);
1776 update_event_times(event);
1777 raw_spin_unlock(&ctx->lock);
1779 event->pmu->read(event);
1782 static inline u64 perf_event_count(struct perf_event *event)
1784 return local64_read(&event->count) + atomic64_read(&event->child_count);
1787 static u64 perf_event_read(struct perf_event *event)
1790 * If event is enabled and currently active on a CPU, update the
1791 * value in the event structure:
1793 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1794 smp_call_function_single(event->oncpu,
1795 __perf_event_read, event, 1);
1796 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1797 struct perf_event_context *ctx = event->ctx;
1798 unsigned long flags;
1800 raw_spin_lock_irqsave(&ctx->lock, flags);
1802 * may read while context is not active
1803 * (e.g., thread is blocked), in that case
1804 * we cannot update context time
1807 update_context_time(ctx);
1808 update_event_times(event);
1809 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1812 return perf_event_count(event);
1819 struct callchain_cpus_entries {
1820 struct rcu_head rcu_head;
1821 struct perf_callchain_entry *cpu_entries[0];
1824 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1825 static atomic_t nr_callchain_events;
1826 static DEFINE_MUTEX(callchain_mutex);
1827 struct callchain_cpus_entries *callchain_cpus_entries;
1830 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1831 struct pt_regs *regs)
1835 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1836 struct pt_regs *regs)
1840 static void release_callchain_buffers_rcu(struct rcu_head *head)
1842 struct callchain_cpus_entries *entries;
1845 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1847 for_each_possible_cpu(cpu)
1848 kfree(entries->cpu_entries[cpu]);
1853 static void release_callchain_buffers(void)
1855 struct callchain_cpus_entries *entries;
1857 entries = callchain_cpus_entries;
1858 rcu_assign_pointer(callchain_cpus_entries, NULL);
1859 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1862 static int alloc_callchain_buffers(void)
1866 struct callchain_cpus_entries *entries;
1869 * We can't use the percpu allocation API for data that can be
1870 * accessed from NMI. Use a temporary manual per cpu allocation
1871 * until that gets sorted out.
1873 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1874 num_possible_cpus();
1876 entries = kzalloc(size, GFP_KERNEL);
1880 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1882 for_each_possible_cpu(cpu) {
1883 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1885 if (!entries->cpu_entries[cpu])
1889 rcu_assign_pointer(callchain_cpus_entries, entries);
1894 for_each_possible_cpu(cpu)
1895 kfree(entries->cpu_entries[cpu]);
1901 static int get_callchain_buffers(void)
1906 mutex_lock(&callchain_mutex);
1908 count = atomic_inc_return(&nr_callchain_events);
1909 if (WARN_ON_ONCE(count < 1)) {
1915 /* If the allocation failed, give up */
1916 if (!callchain_cpus_entries)
1921 err = alloc_callchain_buffers();
1923 release_callchain_buffers();
1925 mutex_unlock(&callchain_mutex);
1930 static void put_callchain_buffers(void)
1932 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1933 release_callchain_buffers();
1934 mutex_unlock(&callchain_mutex);
1938 static int get_recursion_context(int *recursion)
1946 else if (in_softirq())
1951 if (recursion[rctx])
1960 static inline void put_recursion_context(int *recursion, int rctx)
1966 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1969 struct callchain_cpus_entries *entries;
1971 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1975 entries = rcu_dereference(callchain_cpus_entries);
1979 cpu = smp_processor_id();
1981 return &entries->cpu_entries[cpu][*rctx];
1985 put_callchain_entry(int rctx)
1987 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1990 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1993 struct perf_callchain_entry *entry;
1996 entry = get_callchain_entry(&rctx);
2005 if (!user_mode(regs)) {
2006 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2007 perf_callchain_kernel(entry, regs);
2009 regs = task_pt_regs(current);
2015 perf_callchain_store(entry, PERF_CONTEXT_USER);
2016 perf_callchain_user(entry, regs);
2020 put_callchain_entry(rctx);
2026 * Initialize the perf_event context in a task_struct:
2028 static void __perf_event_init_context(struct perf_event_context *ctx)
2030 raw_spin_lock_init(&ctx->lock);
2031 mutex_init(&ctx->mutex);
2032 INIT_LIST_HEAD(&ctx->pinned_groups);
2033 INIT_LIST_HEAD(&ctx->flexible_groups);
2034 INIT_LIST_HEAD(&ctx->event_list);
2035 atomic_set(&ctx->refcount, 1);
2038 static struct perf_event_context *
2039 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2041 struct perf_event_context *ctx;
2043 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2047 __perf_event_init_context(ctx);
2050 get_task_struct(task);
2057 static struct task_struct *
2058 find_lively_task_by_vpid(pid_t vpid)
2060 struct task_struct *task;
2067 task = find_task_by_vpid(vpid);
2069 get_task_struct(task);
2073 return ERR_PTR(-ESRCH);
2076 * Can't attach events to a dying task.
2079 if (task->flags & PF_EXITING)
2082 /* Reuse ptrace permission checks for now. */
2084 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2089 put_task_struct(task);
2090 return ERR_PTR(err);
2094 static struct perf_event_context *
2095 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2097 struct perf_event_context *ctx;
2098 struct perf_cpu_context *cpuctx;
2099 unsigned long flags;
2102 if (!task && cpu != -1) {
2103 /* Must be root to operate on a CPU event: */
2104 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2105 return ERR_PTR(-EACCES);
2107 if (cpu < 0 || cpu >= nr_cpumask_bits)
2108 return ERR_PTR(-EINVAL);
2111 * We could be clever and allow to attach a event to an
2112 * offline CPU and activate it when the CPU comes up, but
2115 if (!cpu_online(cpu))
2116 return ERR_PTR(-ENODEV);
2118 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2126 ctxn = pmu->task_ctx_nr;
2131 ctx = perf_lock_task_context(task, ctxn, &flags);
2134 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2138 ctx = alloc_perf_context(pmu, task);
2145 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2147 * We raced with some other task; use
2148 * the context they set.
2150 put_task_struct(task);
2159 return ERR_PTR(err);
2162 static void perf_event_free_filter(struct perf_event *event);
2164 static void free_event_rcu(struct rcu_head *head)
2166 struct perf_event *event;
2168 event = container_of(head, struct perf_event, rcu_head);
2170 put_pid_ns(event->ns);
2171 perf_event_free_filter(event);
2175 static void perf_buffer_put(struct perf_buffer *buffer);
2177 static void free_event(struct perf_event *event)
2179 irq_work_sync(&event->pending);
2181 if (!event->parent) {
2182 if (event->attach_state & PERF_ATTACH_TASK)
2183 jump_label_dec(&perf_task_events);
2184 if (event->attr.mmap || event->attr.mmap_data)
2185 atomic_dec(&nr_mmap_events);
2186 if (event->attr.comm)
2187 atomic_dec(&nr_comm_events);
2188 if (event->attr.task)
2189 atomic_dec(&nr_task_events);
2190 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2191 put_callchain_buffers();
2194 if (event->buffer) {
2195 perf_buffer_put(event->buffer);
2196 event->buffer = NULL;
2200 event->destroy(event);
2203 put_ctx(event->ctx);
2205 call_rcu(&event->rcu_head, free_event_rcu);
2208 int perf_event_release_kernel(struct perf_event *event)
2210 struct perf_event_context *ctx = event->ctx;
2213 * Remove from the PMU, can't get re-enabled since we got
2214 * here because the last ref went.
2216 perf_event_disable(event);
2218 WARN_ON_ONCE(ctx->parent_ctx);
2220 * There are two ways this annotation is useful:
2222 * 1) there is a lock recursion from perf_event_exit_task
2223 * see the comment there.
2225 * 2) there is a lock-inversion with mmap_sem through
2226 * perf_event_read_group(), which takes faults while
2227 * holding ctx->mutex, however this is called after
2228 * the last filedesc died, so there is no possibility
2229 * to trigger the AB-BA case.
2231 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2232 raw_spin_lock_irq(&ctx->lock);
2233 perf_group_detach(event);
2234 list_del_event(event, ctx);
2235 raw_spin_unlock_irq(&ctx->lock);
2236 mutex_unlock(&ctx->mutex);
2242 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2245 * Called when the last reference to the file is gone.
2247 static int perf_release(struct inode *inode, struct file *file)
2249 struct perf_event *event = file->private_data;
2250 struct task_struct *owner;
2252 file->private_data = NULL;
2255 owner = ACCESS_ONCE(event->owner);
2257 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2258 * !owner it means the list deletion is complete and we can indeed
2259 * free this event, otherwise we need to serialize on
2260 * owner->perf_event_mutex.
2262 smp_read_barrier_depends();
2265 * Since delayed_put_task_struct() also drops the last
2266 * task reference we can safely take a new reference
2267 * while holding the rcu_read_lock().
2269 get_task_struct(owner);
2274 mutex_lock(&owner->perf_event_mutex);
2276 * We have to re-check the event->owner field, if it is cleared
2277 * we raced with perf_event_exit_task(), acquiring the mutex
2278 * ensured they're done, and we can proceed with freeing the
2282 list_del_init(&event->owner_entry);
2283 mutex_unlock(&owner->perf_event_mutex);
2284 put_task_struct(owner);
2287 return perf_event_release_kernel(event);
2290 static int perf_event_read_size(struct perf_event *event)
2292 int entry = sizeof(u64); /* value */
2296 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2297 size += sizeof(u64);
2299 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2300 size += sizeof(u64);
2302 if (event->attr.read_format & PERF_FORMAT_ID)
2303 entry += sizeof(u64);
2305 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2306 nr += event->group_leader->nr_siblings;
2307 size += sizeof(u64);
2315 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2317 struct perf_event *child;
2323 mutex_lock(&event->child_mutex);
2324 total += perf_event_read(event);
2325 *enabled += event->total_time_enabled +
2326 atomic64_read(&event->child_total_time_enabled);
2327 *running += event->total_time_running +
2328 atomic64_read(&event->child_total_time_running);
2330 list_for_each_entry(child, &event->child_list, child_list) {
2331 total += perf_event_read(child);
2332 *enabled += child->total_time_enabled;
2333 *running += child->total_time_running;
2335 mutex_unlock(&event->child_mutex);
2339 EXPORT_SYMBOL_GPL(perf_event_read_value);
2341 static int perf_event_read_group(struct perf_event *event,
2342 u64 read_format, char __user *buf)
2344 struct perf_event *leader = event->group_leader, *sub;
2345 int n = 0, size = 0, ret = -EFAULT;
2346 struct perf_event_context *ctx = leader->ctx;
2348 u64 count, enabled, running;
2350 mutex_lock(&ctx->mutex);
2351 count = perf_event_read_value(leader, &enabled, &running);
2353 values[n++] = 1 + leader->nr_siblings;
2354 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2355 values[n++] = enabled;
2356 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2357 values[n++] = running;
2358 values[n++] = count;
2359 if (read_format & PERF_FORMAT_ID)
2360 values[n++] = primary_event_id(leader);
2362 size = n * sizeof(u64);
2364 if (copy_to_user(buf, values, size))
2369 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2372 values[n++] = perf_event_read_value(sub, &enabled, &running);
2373 if (read_format & PERF_FORMAT_ID)
2374 values[n++] = primary_event_id(sub);
2376 size = n * sizeof(u64);
2378 if (copy_to_user(buf + ret, values, size)) {
2386 mutex_unlock(&ctx->mutex);
2391 static int perf_event_read_one(struct perf_event *event,
2392 u64 read_format, char __user *buf)
2394 u64 enabled, running;
2398 values[n++] = perf_event_read_value(event, &enabled, &running);
2399 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2400 values[n++] = enabled;
2401 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2402 values[n++] = running;
2403 if (read_format & PERF_FORMAT_ID)
2404 values[n++] = primary_event_id(event);
2406 if (copy_to_user(buf, values, n * sizeof(u64)))
2409 return n * sizeof(u64);
2413 * Read the performance event - simple non blocking version for now
2416 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2418 u64 read_format = event->attr.read_format;
2422 * Return end-of-file for a read on a event that is in
2423 * error state (i.e. because it was pinned but it couldn't be
2424 * scheduled on to the CPU at some point).
2426 if (event->state == PERF_EVENT_STATE_ERROR)
2429 if (count < perf_event_read_size(event))
2432 WARN_ON_ONCE(event->ctx->parent_ctx);
2433 if (read_format & PERF_FORMAT_GROUP)
2434 ret = perf_event_read_group(event, read_format, buf);
2436 ret = perf_event_read_one(event, read_format, buf);
2442 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2444 struct perf_event *event = file->private_data;
2446 return perf_read_hw(event, buf, count);
2449 static unsigned int perf_poll(struct file *file, poll_table *wait)
2451 struct perf_event *event = file->private_data;
2452 struct perf_buffer *buffer;
2453 unsigned int events = POLL_HUP;
2456 buffer = rcu_dereference(event->buffer);
2458 events = atomic_xchg(&buffer->poll, 0);
2461 poll_wait(file, &event->waitq, wait);
2466 static void perf_event_reset(struct perf_event *event)
2468 (void)perf_event_read(event);
2469 local64_set(&event->count, 0);
2470 perf_event_update_userpage(event);
2474 * Holding the top-level event's child_mutex means that any
2475 * descendant process that has inherited this event will block
2476 * in sync_child_event if it goes to exit, thus satisfying the
2477 * task existence requirements of perf_event_enable/disable.
2479 static void perf_event_for_each_child(struct perf_event *event,
2480 void (*func)(struct perf_event *))
2482 struct perf_event *child;
2484 WARN_ON_ONCE(event->ctx->parent_ctx);
2485 mutex_lock(&event->child_mutex);
2487 list_for_each_entry(child, &event->child_list, child_list)
2489 mutex_unlock(&event->child_mutex);
2492 static void perf_event_for_each(struct perf_event *event,
2493 void (*func)(struct perf_event *))
2495 struct perf_event_context *ctx = event->ctx;
2496 struct perf_event *sibling;
2498 WARN_ON_ONCE(ctx->parent_ctx);
2499 mutex_lock(&ctx->mutex);
2500 event = event->group_leader;
2502 perf_event_for_each_child(event, func);
2504 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2505 perf_event_for_each_child(event, func);
2506 mutex_unlock(&ctx->mutex);
2509 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2511 struct perf_event_context *ctx = event->ctx;
2515 if (!event->attr.sample_period)
2518 if (copy_from_user(&value, arg, sizeof(value)))
2524 raw_spin_lock_irq(&ctx->lock);
2525 if (event->attr.freq) {
2526 if (value > sysctl_perf_event_sample_rate) {
2531 event->attr.sample_freq = value;
2533 event->attr.sample_period = value;
2534 event->hw.sample_period = value;
2537 raw_spin_unlock_irq(&ctx->lock);
2542 static const struct file_operations perf_fops;
2544 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2548 file = fget_light(fd, fput_needed);
2550 return ERR_PTR(-EBADF);
2552 if (file->f_op != &perf_fops) {
2553 fput_light(file, *fput_needed);
2555 return ERR_PTR(-EBADF);
2558 return file->private_data;
2561 static int perf_event_set_output(struct perf_event *event,
2562 struct perf_event *output_event);
2563 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2565 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2567 struct perf_event *event = file->private_data;
2568 void (*func)(struct perf_event *);
2572 case PERF_EVENT_IOC_ENABLE:
2573 func = perf_event_enable;
2575 case PERF_EVENT_IOC_DISABLE:
2576 func = perf_event_disable;
2578 case PERF_EVENT_IOC_RESET:
2579 func = perf_event_reset;
2582 case PERF_EVENT_IOC_REFRESH:
2583 return perf_event_refresh(event, arg);
2585 case PERF_EVENT_IOC_PERIOD:
2586 return perf_event_period(event, (u64 __user *)arg);
2588 case PERF_EVENT_IOC_SET_OUTPUT:
2590 struct perf_event *output_event = NULL;
2591 int fput_needed = 0;
2595 output_event = perf_fget_light(arg, &fput_needed);
2596 if (IS_ERR(output_event))
2597 return PTR_ERR(output_event);
2600 ret = perf_event_set_output(event, output_event);
2602 fput_light(output_event->filp, fput_needed);
2607 case PERF_EVENT_IOC_SET_FILTER:
2608 return perf_event_set_filter(event, (void __user *)arg);
2614 if (flags & PERF_IOC_FLAG_GROUP)
2615 perf_event_for_each(event, func);
2617 perf_event_for_each_child(event, func);
2622 int perf_event_task_enable(void)
2624 struct perf_event *event;
2626 mutex_lock(¤t->perf_event_mutex);
2627 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2628 perf_event_for_each_child(event, perf_event_enable);
2629 mutex_unlock(¤t->perf_event_mutex);
2634 int perf_event_task_disable(void)
2636 struct perf_event *event;
2638 mutex_lock(¤t->perf_event_mutex);
2639 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
2640 perf_event_for_each_child(event, perf_event_disable);
2641 mutex_unlock(¤t->perf_event_mutex);
2646 #ifndef PERF_EVENT_INDEX_OFFSET
2647 # define PERF_EVENT_INDEX_OFFSET 0
2650 static int perf_event_index(struct perf_event *event)
2652 if (event->hw.state & PERF_HES_STOPPED)
2655 if (event->state != PERF_EVENT_STATE_ACTIVE)
2658 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2662 * Callers need to ensure there can be no nesting of this function, otherwise
2663 * the seqlock logic goes bad. We can not serialize this because the arch
2664 * code calls this from NMI context.
2666 void perf_event_update_userpage(struct perf_event *event)
2668 struct perf_event_mmap_page *userpg;
2669 struct perf_buffer *buffer;
2672 buffer = rcu_dereference(event->buffer);
2676 userpg = buffer->user_page;
2679 * Disable preemption so as to not let the corresponding user-space
2680 * spin too long if we get preempted.
2685 userpg->index = perf_event_index(event);
2686 userpg->offset = perf_event_count(event);
2687 if (event->state == PERF_EVENT_STATE_ACTIVE)
2688 userpg->offset -= local64_read(&event->hw.prev_count);
2690 userpg->time_enabled = event->total_time_enabled +
2691 atomic64_read(&event->child_total_time_enabled);
2693 userpg->time_running = event->total_time_running +
2694 atomic64_read(&event->child_total_time_running);
2703 static unsigned long perf_data_size(struct perf_buffer *buffer);
2706 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2708 long max_size = perf_data_size(buffer);
2711 buffer->watermark = min(max_size, watermark);
2713 if (!buffer->watermark)
2714 buffer->watermark = max_size / 2;
2716 if (flags & PERF_BUFFER_WRITABLE)
2717 buffer->writable = 1;
2719 atomic_set(&buffer->refcount, 1);
2722 #ifndef CONFIG_PERF_USE_VMALLOC
2725 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2728 static struct page *
2729 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2731 if (pgoff > buffer->nr_pages)
2735 return virt_to_page(buffer->user_page);
2737 return virt_to_page(buffer->data_pages[pgoff - 1]);
2740 static void *perf_mmap_alloc_page(int cpu)
2745 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2746 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2750 return page_address(page);
2753 static struct perf_buffer *
2754 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2756 struct perf_buffer *buffer;
2760 size = sizeof(struct perf_buffer);
2761 size += nr_pages * sizeof(void *);
2763 buffer = kzalloc(size, GFP_KERNEL);
2767 buffer->user_page = perf_mmap_alloc_page(cpu);
2768 if (!buffer->user_page)
2769 goto fail_user_page;
2771 for (i = 0; i < nr_pages; i++) {
2772 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2773 if (!buffer->data_pages[i])
2774 goto fail_data_pages;
2777 buffer->nr_pages = nr_pages;
2779 perf_buffer_init(buffer, watermark, flags);
2784 for (i--; i >= 0; i--)
2785 free_page((unsigned long)buffer->data_pages[i]);
2787 free_page((unsigned long)buffer->user_page);
2796 static void perf_mmap_free_page(unsigned long addr)
2798 struct page *page = virt_to_page((void *)addr);
2800 page->mapping = NULL;
2804 static void perf_buffer_free(struct perf_buffer *buffer)
2808 perf_mmap_free_page((unsigned long)buffer->user_page);
2809 for (i = 0; i < buffer->nr_pages; i++)
2810 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2814 static inline int page_order(struct perf_buffer *buffer)
2822 * Back perf_mmap() with vmalloc memory.
2824 * Required for architectures that have d-cache aliasing issues.
2827 static inline int page_order(struct perf_buffer *buffer)
2829 return buffer->page_order;
2832 static struct page *
2833 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2835 if (pgoff > (1UL << page_order(buffer)))
2838 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2841 static void perf_mmap_unmark_page(void *addr)
2843 struct page *page = vmalloc_to_page(addr);
2845 page->mapping = NULL;
2848 static void perf_buffer_free_work(struct work_struct *work)
2850 struct perf_buffer *buffer;
2854 buffer = container_of(work, struct perf_buffer, work);
2855 nr = 1 << page_order(buffer);
2857 base = buffer->user_page;
2858 for (i = 0; i < nr + 1; i++)
2859 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2865 static void perf_buffer_free(struct perf_buffer *buffer)
2867 schedule_work(&buffer->work);
2870 static struct perf_buffer *
2871 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2873 struct perf_buffer *buffer;
2877 size = sizeof(struct perf_buffer);
2878 size += sizeof(void *);
2880 buffer = kzalloc(size, GFP_KERNEL);
2884 INIT_WORK(&buffer->work, perf_buffer_free_work);
2886 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2890 buffer->user_page = all_buf;
2891 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2892 buffer->page_order = ilog2(nr_pages);
2893 buffer->nr_pages = 1;
2895 perf_buffer_init(buffer, watermark, flags);
2908 static unsigned long perf_data_size(struct perf_buffer *buffer)
2910 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2913 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2915 struct perf_event *event = vma->vm_file->private_data;
2916 struct perf_buffer *buffer;
2917 int ret = VM_FAULT_SIGBUS;
2919 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2920 if (vmf->pgoff == 0)
2926 buffer = rcu_dereference(event->buffer);
2930 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2933 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2937 get_page(vmf->page);
2938 vmf->page->mapping = vma->vm_file->f_mapping;
2939 vmf->page->index = vmf->pgoff;
2948 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2950 struct perf_buffer *buffer;
2952 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2953 perf_buffer_free(buffer);
2956 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2958 struct perf_buffer *buffer;
2961 buffer = rcu_dereference(event->buffer);
2963 if (!atomic_inc_not_zero(&buffer->refcount))
2971 static void perf_buffer_put(struct perf_buffer *buffer)
2973 if (!atomic_dec_and_test(&buffer->refcount))
2976 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2979 static void perf_mmap_open(struct vm_area_struct *vma)
2981 struct perf_event *event = vma->vm_file->private_data;
2983 atomic_inc(&event->mmap_count);
2986 static void perf_mmap_close(struct vm_area_struct *vma)
2988 struct perf_event *event = vma->vm_file->private_data;
2990 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2991 unsigned long size = perf_data_size(event->buffer);
2992 struct user_struct *user = event->mmap_user;
2993 struct perf_buffer *buffer = event->buffer;
2995 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2996 vma->vm_mm->locked_vm -= event->mmap_locked;
2997 rcu_assign_pointer(event->buffer, NULL);
2998 mutex_unlock(&event->mmap_mutex);
3000 perf_buffer_put(buffer);
3005 static const struct vm_operations_struct perf_mmap_vmops = {
3006 .open = perf_mmap_open,
3007 .close = perf_mmap_close,
3008 .fault = perf_mmap_fault,
3009 .page_mkwrite = perf_mmap_fault,
3012 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3014 struct perf_event *event = file->private_data;
3015 unsigned long user_locked, user_lock_limit;
3016 struct user_struct *user = current_user();
3017 unsigned long locked, lock_limit;
3018 struct perf_buffer *buffer;
3019 unsigned long vma_size;
3020 unsigned long nr_pages;
3021 long user_extra, extra;
3022 int ret = 0, flags = 0;
3025 * Don't allow mmap() of inherited per-task counters. This would
3026 * create a performance issue due to all children writing to the
3029 if (event->cpu == -1 && event->attr.inherit)
3032 if (!(vma->vm_flags & VM_SHARED))
3035 vma_size = vma->vm_end - vma->vm_start;
3036 nr_pages = (vma_size / PAGE_SIZE) - 1;
3039 * If we have buffer pages ensure they're a power-of-two number, so we
3040 * can do bitmasks instead of modulo.
3042 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3045 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3048 if (vma->vm_pgoff != 0)
3051 WARN_ON_ONCE(event->ctx->parent_ctx);
3052 mutex_lock(&event->mmap_mutex);
3053 if (event->buffer) {
3054 if (event->buffer->nr_pages == nr_pages)
3055 atomic_inc(&event->buffer->refcount);
3061 user_extra = nr_pages + 1;
3062 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3065 * Increase the limit linearly with more CPUs:
3067 user_lock_limit *= num_online_cpus();
3069 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3072 if (user_locked > user_lock_limit)
3073 extra = user_locked - user_lock_limit;
3075 lock_limit = rlimit(RLIMIT_MEMLOCK);
3076 lock_limit >>= PAGE_SHIFT;
3077 locked = vma->vm_mm->locked_vm + extra;
3079 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3080 !capable(CAP_IPC_LOCK)) {
3085 WARN_ON(event->buffer);
3087 if (vma->vm_flags & VM_WRITE)
3088 flags |= PERF_BUFFER_WRITABLE;
3090 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3096 rcu_assign_pointer(event->buffer, buffer);
3098 atomic_long_add(user_extra, &user->locked_vm);
3099 event->mmap_locked = extra;
3100 event->mmap_user = get_current_user();
3101 vma->vm_mm->locked_vm += event->mmap_locked;
3105 atomic_inc(&event->mmap_count);
3106 mutex_unlock(&event->mmap_mutex);
3108 vma->vm_flags |= VM_RESERVED;
3109 vma->vm_ops = &perf_mmap_vmops;
3114 static int perf_fasync(int fd, struct file *filp, int on)
3116 struct inode *inode = filp->f_path.dentry->d_inode;
3117 struct perf_event *event = filp->private_data;
3120 mutex_lock(&inode->i_mutex);
3121 retval = fasync_helper(fd, filp, on, &event->fasync);
3122 mutex_unlock(&inode->i_mutex);
3130 static const struct file_operations perf_fops = {
3131 .llseek = no_llseek,
3132 .release = perf_release,
3135 .unlocked_ioctl = perf_ioctl,
3136 .compat_ioctl = perf_ioctl,
3138 .fasync = perf_fasync,
3144 * If there's data, ensure we set the poll() state and publish everything
3145 * to user-space before waking everybody up.
3148 void perf_event_wakeup(struct perf_event *event)
3150 wake_up_all(&event->waitq);
3152 if (event->pending_kill) {
3153 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3154 event->pending_kill = 0;
3158 static void perf_pending_event(struct irq_work *entry)
3160 struct perf_event *event = container_of(entry,
3161 struct perf_event, pending);
3163 if (event->pending_disable) {
3164 event->pending_disable = 0;
3165 __perf_event_disable(event);
3168 if (event->pending_wakeup) {
3169 event->pending_wakeup = 0;
3170 perf_event_wakeup(event);
3175 * We assume there is only KVM supporting the callbacks.
3176 * Later on, we might change it to a list if there is
3177 * another virtualization implementation supporting the callbacks.
3179 struct perf_guest_info_callbacks *perf_guest_cbs;
3181 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3183 perf_guest_cbs = cbs;
3186 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3188 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3190 perf_guest_cbs = NULL;
3193 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3198 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3199 unsigned long offset, unsigned long head)
3203 if (!buffer->writable)
3206 mask = perf_data_size(buffer) - 1;
3208 offset = (offset - tail) & mask;
3209 head = (head - tail) & mask;
3211 if ((int)(head - offset) < 0)
3217 static void perf_output_wakeup(struct perf_output_handle *handle)
3219 atomic_set(&handle->buffer->poll, POLL_IN);
3222 handle->event->pending_wakeup = 1;
3223 irq_work_queue(&handle->event->pending);
3225 perf_event_wakeup(handle->event);
3229 * We need to ensure a later event_id doesn't publish a head when a former
3230 * event isn't done writing. However since we need to deal with NMIs we
3231 * cannot fully serialize things.
3233 * We only publish the head (and generate a wakeup) when the outer-most
3236 static void perf_output_get_handle(struct perf_output_handle *handle)
3238 struct perf_buffer *buffer = handle->buffer;
3241 local_inc(&buffer->nest);
3242 handle->wakeup = local_read(&buffer->wakeup);
3245 static void perf_output_put_handle(struct perf_output_handle *handle)
3247 struct perf_buffer *buffer = handle->buffer;
3251 head = local_read(&buffer->head);
3254 * IRQ/NMI can happen here, which means we can miss a head update.
3257 if (!local_dec_and_test(&buffer->nest))
3261 * Publish the known good head. Rely on the full barrier implied
3262 * by atomic_dec_and_test() order the buffer->head read and this
3265 buffer->user_page->data_head = head;
3268 * Now check if we missed an update, rely on the (compiler)
3269 * barrier in atomic_dec_and_test() to re-read buffer->head.
3271 if (unlikely(head != local_read(&buffer->head))) {
3272 local_inc(&buffer->nest);
3276 if (handle->wakeup != local_read(&buffer->wakeup))
3277 perf_output_wakeup(handle);
3283 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3284 const void *buf, unsigned int len)
3287 unsigned long size = min_t(unsigned long, handle->size, len);
3289 memcpy(handle->addr, buf, size);
3292 handle->addr += size;
3294 handle->size -= size;
3295 if (!handle->size) {
3296 struct perf_buffer *buffer = handle->buffer;
3299 handle->page &= buffer->nr_pages - 1;
3300 handle->addr = buffer->data_pages[handle->page];
3301 handle->size = PAGE_SIZE << page_order(buffer);
3306 int perf_output_begin(struct perf_output_handle *handle,
3307 struct perf_event *event, unsigned int size,
3308 int nmi, int sample)
3310 struct perf_buffer *buffer;
3311 unsigned long tail, offset, head;
3314 struct perf_event_header header;
3321 * For inherited events we send all the output towards the parent.
3324 event = event->parent;
3326 buffer = rcu_dereference(event->buffer);
3330 handle->buffer = buffer;
3331 handle->event = event;
3333 handle->sample = sample;
3335 if (!buffer->nr_pages)
3338 have_lost = local_read(&buffer->lost);
3340 size += sizeof(lost_event);
3342 perf_output_get_handle(handle);
3346 * Userspace could choose to issue a mb() before updating the
3347 * tail pointer. So that all reads will be completed before the
3350 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3352 offset = head = local_read(&buffer->head);
3354 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3356 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3358 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3359 local_add(buffer->watermark, &buffer->wakeup);
3361 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3362 handle->page &= buffer->nr_pages - 1;
3363 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3364 handle->addr = buffer->data_pages[handle->page];
3365 handle->addr += handle->size;
3366 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3369 lost_event.header.type = PERF_RECORD_LOST;
3370 lost_event.header.misc = 0;
3371 lost_event.header.size = sizeof(lost_event);
3372 lost_event.id = event->id;
3373 lost_event.lost = local_xchg(&buffer->lost, 0);
3375 perf_output_put(handle, lost_event);
3381 local_inc(&buffer->lost);
3382 perf_output_put_handle(handle);
3389 void perf_output_end(struct perf_output_handle *handle)
3391 struct perf_event *event = handle->event;
3392 struct perf_buffer *buffer = handle->buffer;
3394 int wakeup_events = event->attr.wakeup_events;
3396 if (handle->sample && wakeup_events) {
3397 int events = local_inc_return(&buffer->events);
3398 if (events >= wakeup_events) {
3399 local_sub(wakeup_events, &buffer->events);
3400 local_inc(&buffer->wakeup);
3404 perf_output_put_handle(handle);
3408 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3411 * only top level events have the pid namespace they were created in
3414 event = event->parent;
3416 return task_tgid_nr_ns(p, event->ns);
3419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3422 * only top level events have the pid namespace they were created in
3425 event = event->parent;
3427 return task_pid_nr_ns(p, event->ns);
3430 static void perf_output_read_one(struct perf_output_handle *handle,
3431 struct perf_event *event,
3432 u64 enabled, u64 running)
3434 u64 read_format = event->attr.read_format;
3438 values[n++] = perf_event_count(event);
3439 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3440 values[n++] = enabled +
3441 atomic64_read(&event->child_total_time_enabled);
3443 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3444 values[n++] = running +
3445 atomic64_read(&event->child_total_time_running);
3447 if (read_format & PERF_FORMAT_ID)
3448 values[n++] = primary_event_id(event);
3450 perf_output_copy(handle, values, n * sizeof(u64));
3454 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3456 static void perf_output_read_group(struct perf_output_handle *handle,
3457 struct perf_event *event,
3458 u64 enabled, u64 running)
3460 struct perf_event *leader = event->group_leader, *sub;
3461 u64 read_format = event->attr.read_format;
3465 values[n++] = 1 + leader->nr_siblings;
3467 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3468 values[n++] = enabled;
3470 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3471 values[n++] = running;
3473 if (leader != event)
3474 leader->pmu->read(leader);
3476 values[n++] = perf_event_count(leader);
3477 if (read_format & PERF_FORMAT_ID)
3478 values[n++] = primary_event_id(leader);
3480 perf_output_copy(handle, values, n * sizeof(u64));
3482 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3486 sub->pmu->read(sub);
3488 values[n++] = perf_event_count(sub);
3489 if (read_format & PERF_FORMAT_ID)
3490 values[n++] = primary_event_id(sub);
3492 perf_output_copy(handle, values, n * sizeof(u64));
3496 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3497 PERF_FORMAT_TOTAL_TIME_RUNNING)
3499 static void perf_output_read(struct perf_output_handle *handle,
3500 struct perf_event *event)
3502 u64 enabled = 0, running = 0, now, ctx_time;
3503 u64 read_format = event->attr.read_format;
3506 * compute total_time_enabled, total_time_running
3507 * based on snapshot values taken when the event
3508 * was last scheduled in.
3510 * we cannot simply called update_context_time()
3511 * because of locking issue as we are called in
3514 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3516 ctx_time = event->shadow_ctx_time + now;
3517 enabled = ctx_time - event->tstamp_enabled;
3518 running = ctx_time - event->tstamp_running;
3521 if (event->attr.read_format & PERF_FORMAT_GROUP)
3522 perf_output_read_group(handle, event, enabled, running);
3524 perf_output_read_one(handle, event, enabled, running);
3527 void perf_output_sample(struct perf_output_handle *handle,
3528 struct perf_event_header *header,
3529 struct perf_sample_data *data,
3530 struct perf_event *event)
3532 u64 sample_type = data->type;
3534 perf_output_put(handle, *header);
3536 if (sample_type & PERF_SAMPLE_IP)
3537 perf_output_put(handle, data->ip);
3539 if (sample_type & PERF_SAMPLE_TID)
3540 perf_output_put(handle, data->tid_entry);
3542 if (sample_type & PERF_SAMPLE_TIME)
3543 perf_output_put(handle, data->time);
3545 if (sample_type & PERF_SAMPLE_ADDR)
3546 perf_output_put(handle, data->addr);
3548 if (sample_type & PERF_SAMPLE_ID)
3549 perf_output_put(handle, data->id);
3551 if (sample_type & PERF_SAMPLE_STREAM_ID)
3552 perf_output_put(handle, data->stream_id);
3554 if (sample_type & PERF_SAMPLE_CPU)
3555 perf_output_put(handle, data->cpu_entry);
3557 if (sample_type & PERF_SAMPLE_PERIOD)
3558 perf_output_put(handle, data->period);
3560 if (sample_type & PERF_SAMPLE_READ)
3561 perf_output_read(handle, event);
3563 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3564 if (data->callchain) {
3567 if (data->callchain)
3568 size += data->callchain->nr;
3570 size *= sizeof(u64);
3572 perf_output_copy(handle, data->callchain, size);
3575 perf_output_put(handle, nr);
3579 if (sample_type & PERF_SAMPLE_RAW) {
3581 perf_output_put(handle, data->raw->size);
3582 perf_output_copy(handle, data->raw->data,
3589 .size = sizeof(u32),
3592 perf_output_put(handle, raw);
3597 void perf_prepare_sample(struct perf_event_header *header,
3598 struct perf_sample_data *data,
3599 struct perf_event *event,
3600 struct pt_regs *regs)
3602 u64 sample_type = event->attr.sample_type;
3604 data->type = sample_type;
3606 header->type = PERF_RECORD_SAMPLE;
3607 header->size = sizeof(*header);
3610 header->misc |= perf_misc_flags(regs);
3612 if (sample_type & PERF_SAMPLE_IP) {
3613 data->ip = perf_instruction_pointer(regs);
3615 header->size += sizeof(data->ip);
3618 if (sample_type & PERF_SAMPLE_TID) {
3619 /* namespace issues */
3620 data->tid_entry.pid = perf_event_pid(event, current);
3621 data->tid_entry.tid = perf_event_tid(event, current);
3623 header->size += sizeof(data->tid_entry);
3626 if (sample_type & PERF_SAMPLE_TIME) {
3627 data->time = perf_clock();
3629 header->size += sizeof(data->time);
3632 if (sample_type & PERF_SAMPLE_ADDR)
3633 header->size += sizeof(data->addr);
3635 if (sample_type & PERF_SAMPLE_ID) {
3636 data->id = primary_event_id(event);
3638 header->size += sizeof(data->id);
3641 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3642 data->stream_id = event->id;
3644 header->size += sizeof(data->stream_id);
3647 if (sample_type & PERF_SAMPLE_CPU) {
3648 data->cpu_entry.cpu = raw_smp_processor_id();
3649 data->cpu_entry.reserved = 0;
3651 header->size += sizeof(data->cpu_entry);
3654 if (sample_type & PERF_SAMPLE_PERIOD)
3655 header->size += sizeof(data->period);
3657 if (sample_type & PERF_SAMPLE_READ)
3658 header->size += perf_event_read_size(event);
3660 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3663 data->callchain = perf_callchain(regs);
3665 if (data->callchain)
3666 size += data->callchain->nr;
3668 header->size += size * sizeof(u64);
3671 if (sample_type & PERF_SAMPLE_RAW) {
3672 int size = sizeof(u32);
3675 size += data->raw->size;
3677 size += sizeof(u32);
3679 WARN_ON_ONCE(size & (sizeof(u64)-1));
3680 header->size += size;
3684 static void perf_event_output(struct perf_event *event, int nmi,
3685 struct perf_sample_data *data,
3686 struct pt_regs *regs)
3688 struct perf_output_handle handle;
3689 struct perf_event_header header;
3691 /* protect the callchain buffers */
3694 perf_prepare_sample(&header, data, event, regs);
3696 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3699 perf_output_sample(&handle, &header, data, event);
3701 perf_output_end(&handle);
3711 struct perf_read_event {
3712 struct perf_event_header header;
3719 perf_event_read_event(struct perf_event *event,
3720 struct task_struct *task)
3722 struct perf_output_handle handle;
3723 struct perf_read_event read_event = {
3725 .type = PERF_RECORD_READ,
3727 .size = sizeof(read_event) + perf_event_read_size(event),
3729 .pid = perf_event_pid(event, task),
3730 .tid = perf_event_tid(event, task),
3734 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3738 perf_output_put(&handle, read_event);
3739 perf_output_read(&handle, event);
3741 perf_output_end(&handle);
3745 * task tracking -- fork/exit
3747 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3750 struct perf_task_event {
3751 struct task_struct *task;
3752 struct perf_event_context *task_ctx;
3755 struct perf_event_header header;
3765 static void perf_event_task_output(struct perf_event *event,
3766 struct perf_task_event *task_event)
3768 struct perf_output_handle handle;
3769 struct task_struct *task = task_event->task;
3772 size = task_event->event_id.header.size;
3773 ret = perf_output_begin(&handle, event, size, 0, 0);
3778 task_event->event_id.pid = perf_event_pid(event, task);
3779 task_event->event_id.ppid = perf_event_pid(event, current);
3781 task_event->event_id.tid = perf_event_tid(event, task);
3782 task_event->event_id.ptid = perf_event_tid(event, current);
3784 perf_output_put(&handle, task_event->event_id);
3786 perf_output_end(&handle);
3789 static int perf_event_task_match(struct perf_event *event)
3791 if (event->state < PERF_EVENT_STATE_INACTIVE)
3794 if (event->cpu != -1 && event->cpu != smp_processor_id())
3797 if (event->attr.comm || event->attr.mmap ||
3798 event->attr.mmap_data || event->attr.task)
3804 static void perf_event_task_ctx(struct perf_event_context *ctx,
3805 struct perf_task_event *task_event)
3807 struct perf_event *event;
3809 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3810 if (perf_event_task_match(event))
3811 perf_event_task_output(event, task_event);
3815 static void perf_event_task_event(struct perf_task_event *task_event)
3817 struct perf_cpu_context *cpuctx;
3818 struct perf_event_context *ctx;
3823 list_for_each_entry_rcu(pmu, &pmus, entry) {
3824 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3825 perf_event_task_ctx(&cpuctx->ctx, task_event);
3827 ctx = task_event->task_ctx;
3829 ctxn = pmu->task_ctx_nr;
3832 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3835 perf_event_task_ctx(ctx, task_event);
3837 put_cpu_ptr(pmu->pmu_cpu_context);
3842 static void perf_event_task(struct task_struct *task,
3843 struct perf_event_context *task_ctx,
3846 struct perf_task_event task_event;
3848 if (!atomic_read(&nr_comm_events) &&
3849 !atomic_read(&nr_mmap_events) &&
3850 !atomic_read(&nr_task_events))
3853 task_event = (struct perf_task_event){
3855 .task_ctx = task_ctx,
3858 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3860 .size = sizeof(task_event.event_id),
3866 .time = perf_clock(),
3870 perf_event_task_event(&task_event);
3873 void perf_event_fork(struct task_struct *task)
3875 perf_event_task(task, NULL, 1);
3882 struct perf_comm_event {
3883 struct task_struct *task;
3888 struct perf_event_header header;
3895 static void perf_event_comm_output(struct perf_event *event,
3896 struct perf_comm_event *comm_event)
3898 struct perf_output_handle handle;
3899 int size = comm_event->event_id.header.size;
3900 int ret = perf_output_begin(&handle, event, size, 0, 0);
3905 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3906 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3908 perf_output_put(&handle, comm_event->event_id);
3909 perf_output_copy(&handle, comm_event->comm,
3910 comm_event->comm_size);
3911 perf_output_end(&handle);
3914 static int perf_event_comm_match(struct perf_event *event)
3916 if (event->state < PERF_EVENT_STATE_INACTIVE)
3919 if (event->cpu != -1 && event->cpu != smp_processor_id())
3922 if (event->attr.comm)
3928 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3929 struct perf_comm_event *comm_event)
3931 struct perf_event *event;
3933 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3934 if (perf_event_comm_match(event))
3935 perf_event_comm_output(event, comm_event);
3939 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3941 struct perf_cpu_context *cpuctx;
3942 struct perf_event_context *ctx;
3943 char comm[TASK_COMM_LEN];
3948 memset(comm, 0, sizeof(comm));
3949 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3950 size = ALIGN(strlen(comm)+1, sizeof(u64));
3952 comm_event->comm = comm;
3953 comm_event->comm_size = size;
3955 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3958 list_for_each_entry_rcu(pmu, &pmus, entry) {
3959 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3960 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3962 ctxn = pmu->task_ctx_nr;
3966 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3968 perf_event_comm_ctx(ctx, comm_event);
3970 put_cpu_ptr(pmu->pmu_cpu_context);
3975 void perf_event_comm(struct task_struct *task)
3977 struct perf_comm_event comm_event;
3978 struct perf_event_context *ctx;
3981 for_each_task_context_nr(ctxn) {
3982 ctx = task->perf_event_ctxp[ctxn];
3986 perf_event_enable_on_exec(ctx);
3989 if (!atomic_read(&nr_comm_events))
3992 comm_event = (struct perf_comm_event){
3998 .type = PERF_RECORD_COMM,
4007 perf_event_comm_event(&comm_event);
4014 struct perf_mmap_event {
4015 struct vm_area_struct *vma;
4017 const char *file_name;
4021 struct perf_event_header header;
4031 static void perf_event_mmap_output(struct perf_event *event,
4032 struct perf_mmap_event *mmap_event)
4034 struct perf_output_handle handle;
4035 int size = mmap_event->event_id.header.size;
4036 int ret = perf_output_begin(&handle, event, size, 0, 0);
4041 mmap_event->event_id.pid = perf_event_pid(event, current);
4042 mmap_event->event_id.tid = perf_event_tid(event, current);
4044 perf_output_put(&handle, mmap_event->event_id);
4045 perf_output_copy(&handle, mmap_event->file_name,
4046 mmap_event->file_size);
4047 perf_output_end(&handle);
4050 static int perf_event_mmap_match(struct perf_event *event,
4051 struct perf_mmap_event *mmap_event,
4054 if (event->state < PERF_EVENT_STATE_INACTIVE)
4057 if (event->cpu != -1 && event->cpu != smp_processor_id())
4060 if ((!executable && event->attr.mmap_data) ||
4061 (executable && event->attr.mmap))
4067 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4068 struct perf_mmap_event *mmap_event,
4071 struct perf_event *event;
4073 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4074 if (perf_event_mmap_match(event, mmap_event, executable))
4075 perf_event_mmap_output(event, mmap_event);
4079 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4081 struct perf_cpu_context *cpuctx;
4082 struct perf_event_context *ctx;
4083 struct vm_area_struct *vma = mmap_event->vma;
4084 struct file *file = vma->vm_file;
4092 memset(tmp, 0, sizeof(tmp));
4096 * d_path works from the end of the buffer backwards, so we
4097 * need to add enough zero bytes after the string to handle
4098 * the 64bit alignment we do later.
4100 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4102 name = strncpy(tmp, "//enomem", sizeof(tmp));
4105 name = d_path(&file->f_path, buf, PATH_MAX);
4107 name = strncpy(tmp, "//toolong", sizeof(tmp));
4111 if (arch_vma_name(mmap_event->vma)) {
4112 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4118 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4120 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4121 vma->vm_end >= vma->vm_mm->brk) {
4122 name = strncpy(tmp, "[heap]", sizeof(tmp));
4124 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4125 vma->vm_end >= vma->vm_mm->start_stack) {
4126 name = strncpy(tmp, "[stack]", sizeof(tmp));
4130 name = strncpy(tmp, "//anon", sizeof(tmp));
4135 size = ALIGN(strlen(name)+1, sizeof(u64));
4137 mmap_event->file_name = name;
4138 mmap_event->file_size = size;
4140 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4143 list_for_each_entry_rcu(pmu, &pmus, entry) {
4144 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4145 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4146 vma->vm_flags & VM_EXEC);
4148 ctxn = pmu->task_ctx_nr;
4152 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4154 perf_event_mmap_ctx(ctx, mmap_event,
4155 vma->vm_flags & VM_EXEC);
4158 put_cpu_ptr(pmu->pmu_cpu_context);
4165 void perf_event_mmap(struct vm_area_struct *vma)
4167 struct perf_mmap_event mmap_event;
4169 if (!atomic_read(&nr_mmap_events))
4172 mmap_event = (struct perf_mmap_event){
4178 .type = PERF_RECORD_MMAP,
4179 .misc = PERF_RECORD_MISC_USER,
4184 .start = vma->vm_start,
4185 .len = vma->vm_end - vma->vm_start,
4186 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4190 perf_event_mmap_event(&mmap_event);
4194 * IRQ throttle logging
4197 static void perf_log_throttle(struct perf_event *event, int enable)
4199 struct perf_output_handle handle;
4203 struct perf_event_header header;
4207 } throttle_event = {
4209 .type = PERF_RECORD_THROTTLE,
4211 .size = sizeof(throttle_event),
4213 .time = perf_clock(),
4214 .id = primary_event_id(event),
4215 .stream_id = event->id,
4219 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4221 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4225 perf_output_put(&handle, throttle_event);
4226 perf_output_end(&handle);
4230 * Generic event overflow handling, sampling.
4233 static int __perf_event_overflow(struct perf_event *event, int nmi,
4234 int throttle, struct perf_sample_data *data,
4235 struct pt_regs *regs)
4237 int events = atomic_read(&event->event_limit);
4238 struct hw_perf_event *hwc = &event->hw;
4244 if (hwc->interrupts != MAX_INTERRUPTS) {
4246 if (HZ * hwc->interrupts >
4247 (u64)sysctl_perf_event_sample_rate) {
4248 hwc->interrupts = MAX_INTERRUPTS;
4249 perf_log_throttle(event, 0);
4254 * Keep re-disabling events even though on the previous
4255 * pass we disabled it - just in case we raced with a
4256 * sched-in and the event got enabled again:
4262 if (event->attr.freq) {
4263 u64 now = perf_clock();
4264 s64 delta = now - hwc->freq_time_stamp;
4266 hwc->freq_time_stamp = now;
4268 if (delta > 0 && delta < 2*TICK_NSEC)
4269 perf_adjust_period(event, delta, hwc->last_period);
4273 * XXX event_limit might not quite work as expected on inherited
4277 event->pending_kill = POLL_IN;
4278 if (events && atomic_dec_and_test(&event->event_limit)) {
4280 event->pending_kill = POLL_HUP;
4282 event->pending_disable = 1;
4283 irq_work_queue(&event->pending);
4285 perf_event_disable(event);
4288 if (event->overflow_handler)
4289 event->overflow_handler(event, nmi, data, regs);
4291 perf_event_output(event, nmi, data, regs);
4296 int perf_event_overflow(struct perf_event *event, int nmi,
4297 struct perf_sample_data *data,
4298 struct pt_regs *regs)
4300 return __perf_event_overflow(event, nmi, 1, data, regs);
4304 * Generic software event infrastructure
4307 struct swevent_htable {
4308 struct swevent_hlist *swevent_hlist;
4309 struct mutex hlist_mutex;
4312 /* Recursion avoidance in each contexts */
4313 int recursion[PERF_NR_CONTEXTS];
4316 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4319 * We directly increment event->count and keep a second value in
4320 * event->hw.period_left to count intervals. This period event
4321 * is kept in the range [-sample_period, 0] so that we can use the
4325 static u64 perf_swevent_set_period(struct perf_event *event)
4327 struct hw_perf_event *hwc = &event->hw;
4328 u64 period = hwc->last_period;
4332 hwc->last_period = hwc->sample_period;
4335 old = val = local64_read(&hwc->period_left);
4339 nr = div64_u64(period + val, period);
4340 offset = nr * period;
4342 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4348 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4349 int nmi, struct perf_sample_data *data,
4350 struct pt_regs *regs)
4352 struct hw_perf_event *hwc = &event->hw;
4355 data->period = event->hw.last_period;
4357 overflow = perf_swevent_set_period(event);
4359 if (hwc->interrupts == MAX_INTERRUPTS)
4362 for (; overflow; overflow--) {
4363 if (__perf_event_overflow(event, nmi, throttle,
4366 * We inhibit the overflow from happening when
4367 * hwc->interrupts == MAX_INTERRUPTS.
4375 static void perf_swevent_event(struct perf_event *event, u64 nr,
4376 int nmi, struct perf_sample_data *data,
4377 struct pt_regs *regs)
4379 struct hw_perf_event *hwc = &event->hw;
4381 local64_add(nr, &event->count);
4386 if (!hwc->sample_period)
4389 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4390 return perf_swevent_overflow(event, 1, nmi, data, regs);
4392 if (local64_add_negative(nr, &hwc->period_left))
4395 perf_swevent_overflow(event, 0, nmi, data, regs);
4398 static int perf_exclude_event(struct perf_event *event,
4399 struct pt_regs *regs)
4401 if (event->hw.state & PERF_HES_STOPPED)
4405 if (event->attr.exclude_user && user_mode(regs))
4408 if (event->attr.exclude_kernel && !user_mode(regs))
4415 static int perf_swevent_match(struct perf_event *event,
4416 enum perf_type_id type,
4418 struct perf_sample_data *data,
4419 struct pt_regs *regs)
4421 if (event->attr.type != type)
4424 if (event->attr.config != event_id)
4427 if (perf_exclude_event(event, regs))
4433 static inline u64 swevent_hash(u64 type, u32 event_id)
4435 u64 val = event_id | (type << 32);
4437 return hash_64(val, SWEVENT_HLIST_BITS);
4440 static inline struct hlist_head *
4441 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4443 u64 hash = swevent_hash(type, event_id);
4445 return &hlist->heads[hash];
4448 /* For the read side: events when they trigger */
4449 static inline struct hlist_head *
4450 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4452 struct swevent_hlist *hlist;
4454 hlist = rcu_dereference(swhash->swevent_hlist);
4458 return __find_swevent_head(hlist, type, event_id);
4461 /* For the event head insertion and removal in the hlist */
4462 static inline struct hlist_head *
4463 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4465 struct swevent_hlist *hlist;
4466 u32 event_id = event->attr.config;
4467 u64 type = event->attr.type;
4470 * Event scheduling is always serialized against hlist allocation
4471 * and release. Which makes the protected version suitable here.
4472 * The context lock guarantees that.
4474 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4475 lockdep_is_held(&event->ctx->lock));
4479 return __find_swevent_head(hlist, type, event_id);
4482 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4484 struct perf_sample_data *data,
4485 struct pt_regs *regs)
4487 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488 struct perf_event *event;
4489 struct hlist_node *node;
4490 struct hlist_head *head;
4493 head = find_swevent_head_rcu(swhash, type, event_id);
4497 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4498 if (perf_swevent_match(event, type, event_id, data, regs))
4499 perf_swevent_event(event, nr, nmi, data, regs);
4505 int perf_swevent_get_recursion_context(void)
4507 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4509 return get_recursion_context(swhash->recursion);
4511 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4513 void inline perf_swevent_put_recursion_context(int rctx)
4515 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4517 put_recursion_context(swhash->recursion, rctx);
4520 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4521 struct pt_regs *regs, u64 addr)
4523 struct perf_sample_data data;
4526 preempt_disable_notrace();
4527 rctx = perf_swevent_get_recursion_context();
4531 perf_sample_data_init(&data, addr);
4533 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4535 perf_swevent_put_recursion_context(rctx);
4536 preempt_enable_notrace();
4539 static void perf_swevent_read(struct perf_event *event)
4543 static int perf_swevent_add(struct perf_event *event, int flags)
4545 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4546 struct hw_perf_event *hwc = &event->hw;
4547 struct hlist_head *head;
4549 if (hwc->sample_period) {
4550 hwc->last_period = hwc->sample_period;
4551 perf_swevent_set_period(event);
4554 hwc->state = !(flags & PERF_EF_START);
4556 head = find_swevent_head(swhash, event);
4557 if (WARN_ON_ONCE(!head))
4560 hlist_add_head_rcu(&event->hlist_entry, head);
4565 static void perf_swevent_del(struct perf_event *event, int flags)
4567 hlist_del_rcu(&event->hlist_entry);
4570 static void perf_swevent_start(struct perf_event *event, int flags)
4572 event->hw.state = 0;
4575 static void perf_swevent_stop(struct perf_event *event, int flags)
4577 event->hw.state = PERF_HES_STOPPED;
4580 /* Deref the hlist from the update side */
4581 static inline struct swevent_hlist *
4582 swevent_hlist_deref(struct swevent_htable *swhash)
4584 return rcu_dereference_protected(swhash->swevent_hlist,
4585 lockdep_is_held(&swhash->hlist_mutex));
4588 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4590 struct swevent_hlist *hlist;
4592 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4596 static void swevent_hlist_release(struct swevent_htable *swhash)
4598 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4603 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4604 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4607 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4609 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4611 mutex_lock(&swhash->hlist_mutex);
4613 if (!--swhash->hlist_refcount)
4614 swevent_hlist_release(swhash);
4616 mutex_unlock(&swhash->hlist_mutex);
4619 static void swevent_hlist_put(struct perf_event *event)
4623 if (event->cpu != -1) {
4624 swevent_hlist_put_cpu(event, event->cpu);
4628 for_each_possible_cpu(cpu)
4629 swevent_hlist_put_cpu(event, cpu);
4632 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4634 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4637 mutex_lock(&swhash->hlist_mutex);
4639 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4640 struct swevent_hlist *hlist;
4642 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4647 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4649 swhash->hlist_refcount++;
4651 mutex_unlock(&swhash->hlist_mutex);
4656 static int swevent_hlist_get(struct perf_event *event)
4659 int cpu, failed_cpu;
4661 if (event->cpu != -1)
4662 return swevent_hlist_get_cpu(event, event->cpu);
4665 for_each_possible_cpu(cpu) {
4666 err = swevent_hlist_get_cpu(event, cpu);
4676 for_each_possible_cpu(cpu) {
4677 if (cpu == failed_cpu)
4679 swevent_hlist_put_cpu(event, cpu);
4686 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4688 static void sw_perf_event_destroy(struct perf_event *event)
4690 u64 event_id = event->attr.config;
4692 WARN_ON(event->parent);
4694 jump_label_dec(&perf_swevent_enabled[event_id]);
4695 swevent_hlist_put(event);
4698 static int perf_swevent_init(struct perf_event *event)
4700 int event_id = event->attr.config;
4702 if (event->attr.type != PERF_TYPE_SOFTWARE)
4706 case PERF_COUNT_SW_CPU_CLOCK:
4707 case PERF_COUNT_SW_TASK_CLOCK:
4714 if (event_id > PERF_COUNT_SW_MAX)
4717 if (!event->parent) {
4720 err = swevent_hlist_get(event);
4724 jump_label_inc(&perf_swevent_enabled[event_id]);
4725 event->destroy = sw_perf_event_destroy;
4731 static struct pmu perf_swevent = {
4732 .task_ctx_nr = perf_sw_context,
4734 .event_init = perf_swevent_init,
4735 .add = perf_swevent_add,
4736 .del = perf_swevent_del,
4737 .start = perf_swevent_start,
4738 .stop = perf_swevent_stop,
4739 .read = perf_swevent_read,
4742 #ifdef CONFIG_EVENT_TRACING
4744 static int perf_tp_filter_match(struct perf_event *event,
4745 struct perf_sample_data *data)
4747 void *record = data->raw->data;
4749 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4754 static int perf_tp_event_match(struct perf_event *event,
4755 struct perf_sample_data *data,
4756 struct pt_regs *regs)
4759 * All tracepoints are from kernel-space.
4761 if (event->attr.exclude_kernel)
4764 if (!perf_tp_filter_match(event, data))
4770 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4771 struct pt_regs *regs, struct hlist_head *head, int rctx)
4773 struct perf_sample_data data;
4774 struct perf_event *event;
4775 struct hlist_node *node;
4777 struct perf_raw_record raw = {
4782 perf_sample_data_init(&data, addr);
4785 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4786 if (perf_tp_event_match(event, &data, regs))
4787 perf_swevent_event(event, count, 1, &data, regs);
4790 perf_swevent_put_recursion_context(rctx);
4792 EXPORT_SYMBOL_GPL(perf_tp_event);
4794 static void tp_perf_event_destroy(struct perf_event *event)
4796 perf_trace_destroy(event);
4799 static int perf_tp_event_init(struct perf_event *event)
4803 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4807 * Raw tracepoint data is a severe data leak, only allow root to
4810 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4811 perf_paranoid_tracepoint_raw() &&
4812 !capable(CAP_SYS_ADMIN))
4815 err = perf_trace_init(event);
4819 event->destroy = tp_perf_event_destroy;
4824 static struct pmu perf_tracepoint = {
4825 .task_ctx_nr = perf_sw_context,
4827 .event_init = perf_tp_event_init,
4828 .add = perf_trace_add,
4829 .del = perf_trace_del,
4830 .start = perf_swevent_start,
4831 .stop = perf_swevent_stop,
4832 .read = perf_swevent_read,
4835 static inline void perf_tp_register(void)
4837 perf_pmu_register(&perf_tracepoint);
4840 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4845 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4848 filter_str = strndup_user(arg, PAGE_SIZE);
4849 if (IS_ERR(filter_str))
4850 return PTR_ERR(filter_str);
4852 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4858 static void perf_event_free_filter(struct perf_event *event)
4860 ftrace_profile_free_filter(event);
4865 static inline void perf_tp_register(void)
4869 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4874 static void perf_event_free_filter(struct perf_event *event)
4878 #endif /* CONFIG_EVENT_TRACING */
4880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4881 void perf_bp_event(struct perf_event *bp, void *data)
4883 struct perf_sample_data sample;
4884 struct pt_regs *regs = data;
4886 perf_sample_data_init(&sample, bp->attr.bp_addr);
4888 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4889 perf_swevent_event(bp, 1, 1, &sample, regs);
4894 * hrtimer based swevent callback
4897 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4899 enum hrtimer_restart ret = HRTIMER_RESTART;
4900 struct perf_sample_data data;
4901 struct pt_regs *regs;
4902 struct perf_event *event;
4905 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4906 event->pmu->read(event);
4908 perf_sample_data_init(&data, 0);
4909 data.period = event->hw.last_period;
4910 regs = get_irq_regs();
4912 if (regs && !perf_exclude_event(event, regs)) {
4913 if (!(event->attr.exclude_idle && current->pid == 0))
4914 if (perf_event_overflow(event, 0, &data, regs))
4915 ret = HRTIMER_NORESTART;
4918 period = max_t(u64, 10000, event->hw.sample_period);
4919 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4924 static void perf_swevent_start_hrtimer(struct perf_event *event)
4926 struct hw_perf_event *hwc = &event->hw;
4928 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4929 hwc->hrtimer.function = perf_swevent_hrtimer;
4930 if (hwc->sample_period) {
4931 s64 period = local64_read(&hwc->period_left);
4937 local64_set(&hwc->period_left, 0);
4939 period = max_t(u64, 10000, hwc->sample_period);
4941 __hrtimer_start_range_ns(&hwc->hrtimer,
4942 ns_to_ktime(period), 0,
4943 HRTIMER_MODE_REL_PINNED, 0);
4947 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4949 struct hw_perf_event *hwc = &event->hw;
4951 if (hwc->sample_period) {
4952 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4953 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4955 hrtimer_cancel(&hwc->hrtimer);
4960 * Software event: cpu wall time clock
4963 static void cpu_clock_event_update(struct perf_event *event)
4968 now = local_clock();
4969 prev = local64_xchg(&event->hw.prev_count, now);
4970 local64_add(now - prev, &event->count);
4973 static void cpu_clock_event_start(struct perf_event *event, int flags)
4975 local64_set(&event->hw.prev_count, local_clock());
4976 perf_swevent_start_hrtimer(event);
4979 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4981 perf_swevent_cancel_hrtimer(event);
4982 cpu_clock_event_update(event);
4985 static int cpu_clock_event_add(struct perf_event *event, int flags)
4987 if (flags & PERF_EF_START)
4988 cpu_clock_event_start(event, flags);
4993 static void cpu_clock_event_del(struct perf_event *event, int flags)
4995 cpu_clock_event_stop(event, flags);
4998 static void cpu_clock_event_read(struct perf_event *event)
5000 cpu_clock_event_update(event);
5003 static int cpu_clock_event_init(struct perf_event *event)
5005 if (event->attr.type != PERF_TYPE_SOFTWARE)
5008 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5014 static struct pmu perf_cpu_clock = {
5015 .task_ctx_nr = perf_sw_context,
5017 .event_init = cpu_clock_event_init,
5018 .add = cpu_clock_event_add,
5019 .del = cpu_clock_event_del,
5020 .start = cpu_clock_event_start,
5021 .stop = cpu_clock_event_stop,
5022 .read = cpu_clock_event_read,
5026 * Software event: task time clock
5029 static void task_clock_event_update(struct perf_event *event, u64 now)
5034 prev = local64_xchg(&event->hw.prev_count, now);
5036 local64_add(delta, &event->count);
5039 static void task_clock_event_start(struct perf_event *event, int flags)
5041 local64_set(&event->hw.prev_count, event->ctx->time);
5042 perf_swevent_start_hrtimer(event);
5045 static void task_clock_event_stop(struct perf_event *event, int flags)
5047 perf_swevent_cancel_hrtimer(event);
5048 task_clock_event_update(event, event->ctx->time);
5051 static int task_clock_event_add(struct perf_event *event, int flags)
5053 if (flags & PERF_EF_START)
5054 task_clock_event_start(event, flags);
5059 static void task_clock_event_del(struct perf_event *event, int flags)
5061 task_clock_event_stop(event, PERF_EF_UPDATE);
5064 static void task_clock_event_read(struct perf_event *event)
5069 update_context_time(event->ctx);
5070 time = event->ctx->time;
5072 u64 now = perf_clock();
5073 u64 delta = now - event->ctx->timestamp;
5074 time = event->ctx->time + delta;
5077 task_clock_event_update(event, time);
5080 static int task_clock_event_init(struct perf_event *event)
5082 if (event->attr.type != PERF_TYPE_SOFTWARE)
5085 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5091 static struct pmu perf_task_clock = {
5092 .task_ctx_nr = perf_sw_context,
5094 .event_init = task_clock_event_init,
5095 .add = task_clock_event_add,
5096 .del = task_clock_event_del,
5097 .start = task_clock_event_start,
5098 .stop = task_clock_event_stop,
5099 .read = task_clock_event_read,
5102 static void perf_pmu_nop_void(struct pmu *pmu)
5106 static int perf_pmu_nop_int(struct pmu *pmu)
5111 static void perf_pmu_start_txn(struct pmu *pmu)
5113 perf_pmu_disable(pmu);
5116 static int perf_pmu_commit_txn(struct pmu *pmu)
5118 perf_pmu_enable(pmu);
5122 static void perf_pmu_cancel_txn(struct pmu *pmu)
5124 perf_pmu_enable(pmu);
5128 * Ensures all contexts with the same task_ctx_nr have the same
5129 * pmu_cpu_context too.
5131 static void *find_pmu_context(int ctxn)
5138 list_for_each_entry(pmu, &pmus, entry) {
5139 if (pmu->task_ctx_nr == ctxn)
5140 return pmu->pmu_cpu_context;
5146 static void free_pmu_context(void * __percpu cpu_context)
5150 mutex_lock(&pmus_lock);
5152 * Like a real lame refcount.
5154 list_for_each_entry(pmu, &pmus, entry) {
5155 if (pmu->pmu_cpu_context == cpu_context)
5159 free_percpu(cpu_context);
5161 mutex_unlock(&pmus_lock);
5164 int perf_pmu_register(struct pmu *pmu)
5168 mutex_lock(&pmus_lock);
5170 pmu->pmu_disable_count = alloc_percpu(int);
5171 if (!pmu->pmu_disable_count)
5174 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5175 if (pmu->pmu_cpu_context)
5176 goto got_cpu_context;
5178 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5179 if (!pmu->pmu_cpu_context)
5182 for_each_possible_cpu(cpu) {
5183 struct perf_cpu_context *cpuctx;
5185 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5186 __perf_event_init_context(&cpuctx->ctx);
5187 cpuctx->ctx.type = cpu_context;
5188 cpuctx->ctx.pmu = pmu;
5189 cpuctx->jiffies_interval = 1;
5190 INIT_LIST_HEAD(&cpuctx->rotation_list);
5194 if (!pmu->start_txn) {
5195 if (pmu->pmu_enable) {
5197 * If we have pmu_enable/pmu_disable calls, install
5198 * transaction stubs that use that to try and batch
5199 * hardware accesses.
5201 pmu->start_txn = perf_pmu_start_txn;
5202 pmu->commit_txn = perf_pmu_commit_txn;
5203 pmu->cancel_txn = perf_pmu_cancel_txn;
5205 pmu->start_txn = perf_pmu_nop_void;
5206 pmu->commit_txn = perf_pmu_nop_int;
5207 pmu->cancel_txn = perf_pmu_nop_void;
5211 if (!pmu->pmu_enable) {
5212 pmu->pmu_enable = perf_pmu_nop_void;
5213 pmu->pmu_disable = perf_pmu_nop_void;
5216 list_add_rcu(&pmu->entry, &pmus);
5219 mutex_unlock(&pmus_lock);
5224 free_percpu(pmu->pmu_disable_count);
5228 void perf_pmu_unregister(struct pmu *pmu)
5230 mutex_lock(&pmus_lock);
5231 list_del_rcu(&pmu->entry);
5232 mutex_unlock(&pmus_lock);
5235 * We dereference the pmu list under both SRCU and regular RCU, so
5236 * synchronize against both of those.
5238 synchronize_srcu(&pmus_srcu);
5241 free_percpu(pmu->pmu_disable_count);
5242 free_pmu_context(pmu->pmu_cpu_context);
5245 struct pmu *perf_init_event(struct perf_event *event)
5247 struct pmu *pmu = NULL;
5250 idx = srcu_read_lock(&pmus_srcu);
5251 list_for_each_entry_rcu(pmu, &pmus, entry) {
5252 int ret = pmu->event_init(event);
5256 if (ret != -ENOENT) {
5261 pmu = ERR_PTR(-ENOENT);
5263 srcu_read_unlock(&pmus_srcu, idx);
5269 * Allocate and initialize a event structure
5271 static struct perf_event *
5272 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5273 struct task_struct *task,
5274 struct perf_event *group_leader,
5275 struct perf_event *parent_event,
5276 perf_overflow_handler_t overflow_handler)
5279 struct perf_event *event;
5280 struct hw_perf_event *hwc;
5283 event = kzalloc(sizeof(*event), GFP_KERNEL);
5285 return ERR_PTR(-ENOMEM);
5288 * Single events are their own group leaders, with an
5289 * empty sibling list:
5292 group_leader = event;
5294 mutex_init(&event->child_mutex);
5295 INIT_LIST_HEAD(&event->child_list);
5297 INIT_LIST_HEAD(&event->group_entry);
5298 INIT_LIST_HEAD(&event->event_entry);
5299 INIT_LIST_HEAD(&event->sibling_list);
5300 init_waitqueue_head(&event->waitq);
5301 init_irq_work(&event->pending, perf_pending_event);
5303 mutex_init(&event->mmap_mutex);
5306 event->attr = *attr;
5307 event->group_leader = group_leader;
5311 event->parent = parent_event;
5313 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5314 event->id = atomic64_inc_return(&perf_event_id);
5316 event->state = PERF_EVENT_STATE_INACTIVE;
5319 event->attach_state = PERF_ATTACH_TASK;
5320 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5322 * hw_breakpoint is a bit difficult here..
5324 if (attr->type == PERF_TYPE_BREAKPOINT)
5325 event->hw.bp_target = task;
5329 if (!overflow_handler && parent_event)
5330 overflow_handler = parent_event->overflow_handler;
5332 event->overflow_handler = overflow_handler;
5335 event->state = PERF_EVENT_STATE_OFF;
5340 hwc->sample_period = attr->sample_period;
5341 if (attr->freq && attr->sample_freq)
5342 hwc->sample_period = 1;
5343 hwc->last_period = hwc->sample_period;
5345 local64_set(&hwc->period_left, hwc->sample_period);
5348 * we currently do not support PERF_FORMAT_GROUP on inherited events
5350 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5353 pmu = perf_init_event(event);
5359 else if (IS_ERR(pmu))
5364 put_pid_ns(event->ns);
5366 return ERR_PTR(err);
5371 if (!event->parent) {
5372 if (event->attach_state & PERF_ATTACH_TASK)
5373 jump_label_inc(&perf_task_events);
5374 if (event->attr.mmap || event->attr.mmap_data)
5375 atomic_inc(&nr_mmap_events);
5376 if (event->attr.comm)
5377 atomic_inc(&nr_comm_events);
5378 if (event->attr.task)
5379 atomic_inc(&nr_task_events);
5380 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5381 err = get_callchain_buffers();
5384 return ERR_PTR(err);
5392 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5393 struct perf_event_attr *attr)
5398 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5402 * zero the full structure, so that a short copy will be nice.
5404 memset(attr, 0, sizeof(*attr));
5406 ret = get_user(size, &uattr->size);
5410 if (size > PAGE_SIZE) /* silly large */
5413 if (!size) /* abi compat */
5414 size = PERF_ATTR_SIZE_VER0;
5416 if (size < PERF_ATTR_SIZE_VER0)
5420 * If we're handed a bigger struct than we know of,
5421 * ensure all the unknown bits are 0 - i.e. new
5422 * user-space does not rely on any kernel feature
5423 * extensions we dont know about yet.
5425 if (size > sizeof(*attr)) {
5426 unsigned char __user *addr;
5427 unsigned char __user *end;
5430 addr = (void __user *)uattr + sizeof(*attr);
5431 end = (void __user *)uattr + size;
5433 for (; addr < end; addr++) {
5434 ret = get_user(val, addr);
5440 size = sizeof(*attr);
5443 ret = copy_from_user(attr, uattr, size);
5448 * If the type exists, the corresponding creation will verify
5451 if (attr->type >= PERF_TYPE_MAX)
5454 if (attr->__reserved_1)
5457 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5460 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5467 put_user(sizeof(*attr), &uattr->size);
5473 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5475 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5481 /* don't allow circular references */
5482 if (event == output_event)
5486 * Don't allow cross-cpu buffers
5488 if (output_event->cpu != event->cpu)
5492 * If its not a per-cpu buffer, it must be the same task.
5494 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5498 mutex_lock(&event->mmap_mutex);
5499 /* Can't redirect output if we've got an active mmap() */
5500 if (atomic_read(&event->mmap_count))
5504 /* get the buffer we want to redirect to */
5505 buffer = perf_buffer_get(output_event);
5510 old_buffer = event->buffer;
5511 rcu_assign_pointer(event->buffer, buffer);
5514 mutex_unlock(&event->mmap_mutex);
5517 perf_buffer_put(old_buffer);
5523 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5525 * @attr_uptr: event_id type attributes for monitoring/sampling
5528 * @group_fd: group leader event fd
5530 SYSCALL_DEFINE5(perf_event_open,
5531 struct perf_event_attr __user *, attr_uptr,
5532 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5534 struct perf_event *group_leader = NULL, *output_event = NULL;
5535 struct perf_event *event, *sibling;
5536 struct perf_event_attr attr;
5537 struct perf_event_context *ctx;
5538 struct file *event_file = NULL;
5539 struct file *group_file = NULL;
5540 struct task_struct *task = NULL;
5544 int fput_needed = 0;
5547 /* for future expandability... */
5548 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5551 err = perf_copy_attr(attr_uptr, &attr);
5555 if (!attr.exclude_kernel) {
5556 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5561 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5565 event_fd = get_unused_fd_flags(O_RDWR);
5569 if (group_fd != -1) {
5570 group_leader = perf_fget_light(group_fd, &fput_needed);
5571 if (IS_ERR(group_leader)) {
5572 err = PTR_ERR(group_leader);
5575 group_file = group_leader->filp;
5576 if (flags & PERF_FLAG_FD_OUTPUT)
5577 output_event = group_leader;
5578 if (flags & PERF_FLAG_FD_NO_GROUP)
5579 group_leader = NULL;
5583 task = find_lively_task_by_vpid(pid);
5585 err = PTR_ERR(task);
5590 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5591 if (IS_ERR(event)) {
5592 err = PTR_ERR(event);
5597 * Special case software events and allow them to be part of
5598 * any hardware group.
5603 (is_software_event(event) != is_software_event(group_leader))) {
5604 if (is_software_event(event)) {
5606 * If event and group_leader are not both a software
5607 * event, and event is, then group leader is not.
5609 * Allow the addition of software events to !software
5610 * groups, this is safe because software events never
5613 pmu = group_leader->pmu;
5614 } else if (is_software_event(group_leader) &&
5615 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5617 * In case the group is a pure software group, and we
5618 * try to add a hardware event, move the whole group to
5619 * the hardware context.
5626 * Get the target context (task or percpu):
5628 ctx = find_get_context(pmu, task, cpu);
5635 * Look up the group leader (we will attach this event to it):
5641 * Do not allow a recursive hierarchy (this new sibling
5642 * becoming part of another group-sibling):
5644 if (group_leader->group_leader != group_leader)
5647 * Do not allow to attach to a group in a different
5648 * task or CPU context:
5651 if (group_leader->ctx->type != ctx->type)
5654 if (group_leader->ctx != ctx)
5659 * Only a group leader can be exclusive or pinned
5661 if (attr.exclusive || attr.pinned)
5666 err = perf_event_set_output(event, output_event);
5671 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5672 if (IS_ERR(event_file)) {
5673 err = PTR_ERR(event_file);
5678 struct perf_event_context *gctx = group_leader->ctx;
5680 mutex_lock(&gctx->mutex);
5681 perf_event_remove_from_context(group_leader);
5682 list_for_each_entry(sibling, &group_leader->sibling_list,
5684 perf_event_remove_from_context(sibling);
5687 mutex_unlock(&gctx->mutex);
5691 event->filp = event_file;
5692 WARN_ON_ONCE(ctx->parent_ctx);
5693 mutex_lock(&ctx->mutex);
5696 perf_install_in_context(ctx, group_leader, cpu);
5698 list_for_each_entry(sibling, &group_leader->sibling_list,
5700 perf_install_in_context(ctx, sibling, cpu);
5705 perf_install_in_context(ctx, event, cpu);
5707 mutex_unlock(&ctx->mutex);
5709 event->owner = current;
5711 mutex_lock(¤t->perf_event_mutex);
5712 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
5713 mutex_unlock(¤t->perf_event_mutex);
5716 * Drop the reference on the group_event after placing the
5717 * new event on the sibling_list. This ensures destruction
5718 * of the group leader will find the pointer to itself in
5719 * perf_group_detach().
5721 fput_light(group_file, fput_needed);
5722 fd_install(event_fd, event_file);
5731 put_task_struct(task);
5733 fput_light(group_file, fput_needed);
5735 put_unused_fd(event_fd);
5740 * perf_event_create_kernel_counter
5742 * @attr: attributes of the counter to create
5743 * @cpu: cpu in which the counter is bound
5744 * @task: task to profile (NULL for percpu)
5747 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5748 struct task_struct *task,
5749 perf_overflow_handler_t overflow_handler)
5751 struct perf_event_context *ctx;
5752 struct perf_event *event;
5756 * Get the target context (task or percpu):
5759 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5760 if (IS_ERR(event)) {
5761 err = PTR_ERR(event);
5765 ctx = find_get_context(event->pmu, task, cpu);
5772 WARN_ON_ONCE(ctx->parent_ctx);
5773 mutex_lock(&ctx->mutex);
5774 perf_install_in_context(ctx, event, cpu);
5776 mutex_unlock(&ctx->mutex);
5783 return ERR_PTR(err);
5785 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5787 static void sync_child_event(struct perf_event *child_event,
5788 struct task_struct *child)
5790 struct perf_event *parent_event = child_event->parent;
5793 if (child_event->attr.inherit_stat)
5794 perf_event_read_event(child_event, child);
5796 child_val = perf_event_count(child_event);
5799 * Add back the child's count to the parent's count:
5801 atomic64_add(child_val, &parent_event->child_count);
5802 atomic64_add(child_event->total_time_enabled,
5803 &parent_event->child_total_time_enabled);
5804 atomic64_add(child_event->total_time_running,
5805 &parent_event->child_total_time_running);
5808 * Remove this event from the parent's list
5810 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5811 mutex_lock(&parent_event->child_mutex);
5812 list_del_init(&child_event->child_list);
5813 mutex_unlock(&parent_event->child_mutex);
5816 * Release the parent event, if this was the last
5819 fput(parent_event->filp);
5823 __perf_event_exit_task(struct perf_event *child_event,
5824 struct perf_event_context *child_ctx,
5825 struct task_struct *child)
5827 struct perf_event *parent_event;
5829 perf_event_remove_from_context(child_event);
5831 parent_event = child_event->parent;
5833 * It can happen that parent exits first, and has events
5834 * that are still around due to the child reference. These
5835 * events need to be zapped - but otherwise linger.
5838 sync_child_event(child_event, child);
5839 free_event(child_event);
5843 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5845 struct perf_event *child_event, *tmp;
5846 struct perf_event_context *child_ctx;
5847 unsigned long flags;
5849 if (likely(!child->perf_event_ctxp[ctxn])) {
5850 perf_event_task(child, NULL, 0);
5854 local_irq_save(flags);
5856 * We can't reschedule here because interrupts are disabled,
5857 * and either child is current or it is a task that can't be
5858 * scheduled, so we are now safe from rescheduling changing
5861 child_ctx = child->perf_event_ctxp[ctxn];
5862 task_ctx_sched_out(child_ctx, EVENT_ALL);
5865 * Take the context lock here so that if find_get_context is
5866 * reading child->perf_event_ctxp, we wait until it has
5867 * incremented the context's refcount before we do put_ctx below.
5869 raw_spin_lock(&child_ctx->lock);
5870 child->perf_event_ctxp[ctxn] = NULL;
5872 * If this context is a clone; unclone it so it can't get
5873 * swapped to another process while we're removing all
5874 * the events from it.
5876 unclone_ctx(child_ctx);
5877 update_context_time(child_ctx);
5878 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5881 * Report the task dead after unscheduling the events so that we
5882 * won't get any samples after PERF_RECORD_EXIT. We can however still
5883 * get a few PERF_RECORD_READ events.
5885 perf_event_task(child, child_ctx, 0);
5888 * We can recurse on the same lock type through:
5890 * __perf_event_exit_task()
5891 * sync_child_event()
5892 * fput(parent_event->filp)
5894 * mutex_lock(&ctx->mutex)
5896 * But since its the parent context it won't be the same instance.
5898 mutex_lock(&child_ctx->mutex);
5901 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5903 __perf_event_exit_task(child_event, child_ctx, child);
5905 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5907 __perf_event_exit_task(child_event, child_ctx, child);
5910 * If the last event was a group event, it will have appended all
5911 * its siblings to the list, but we obtained 'tmp' before that which
5912 * will still point to the list head terminating the iteration.
5914 if (!list_empty(&child_ctx->pinned_groups) ||
5915 !list_empty(&child_ctx->flexible_groups))
5918 mutex_unlock(&child_ctx->mutex);
5924 * When a child task exits, feed back event values to parent events.
5926 void perf_event_exit_task(struct task_struct *child)
5928 struct perf_event *event, *tmp;
5931 mutex_lock(&child->perf_event_mutex);
5932 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5934 list_del_init(&event->owner_entry);
5937 * Ensure the list deletion is visible before we clear
5938 * the owner, closes a race against perf_release() where
5939 * we need to serialize on the owner->perf_event_mutex.
5942 event->owner = NULL;
5944 mutex_unlock(&child->perf_event_mutex);
5946 for_each_task_context_nr(ctxn)
5947 perf_event_exit_task_context(child, ctxn);
5950 static void perf_free_event(struct perf_event *event,
5951 struct perf_event_context *ctx)
5953 struct perf_event *parent = event->parent;
5955 if (WARN_ON_ONCE(!parent))
5958 mutex_lock(&parent->child_mutex);
5959 list_del_init(&event->child_list);
5960 mutex_unlock(&parent->child_mutex);
5964 perf_group_detach(event);
5965 list_del_event(event, ctx);
5970 * free an unexposed, unused context as created by inheritance by
5971 * perf_event_init_task below, used by fork() in case of fail.
5973 void perf_event_free_task(struct task_struct *task)
5975 struct perf_event_context *ctx;
5976 struct perf_event *event, *tmp;
5979 for_each_task_context_nr(ctxn) {
5980 ctx = task->perf_event_ctxp[ctxn];
5984 mutex_lock(&ctx->mutex);
5986 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5988 perf_free_event(event, ctx);
5990 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5992 perf_free_event(event, ctx);
5994 if (!list_empty(&ctx->pinned_groups) ||
5995 !list_empty(&ctx->flexible_groups))
5998 mutex_unlock(&ctx->mutex);
6004 void perf_event_delayed_put(struct task_struct *task)
6008 for_each_task_context_nr(ctxn)
6009 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6013 * inherit a event from parent task to child task:
6015 static struct perf_event *
6016 inherit_event(struct perf_event *parent_event,
6017 struct task_struct *parent,
6018 struct perf_event_context *parent_ctx,
6019 struct task_struct *child,
6020 struct perf_event *group_leader,
6021 struct perf_event_context *child_ctx)
6023 struct perf_event *child_event;
6024 unsigned long flags;
6027 * Instead of creating recursive hierarchies of events,
6028 * we link inherited events back to the original parent,
6029 * which has a filp for sure, which we use as the reference
6032 if (parent_event->parent)
6033 parent_event = parent_event->parent;
6035 child_event = perf_event_alloc(&parent_event->attr,
6038 group_leader, parent_event,
6040 if (IS_ERR(child_event))
6045 * Make the child state follow the state of the parent event,
6046 * not its attr.disabled bit. We hold the parent's mutex,
6047 * so we won't race with perf_event_{en, dis}able_family.
6049 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6050 child_event->state = PERF_EVENT_STATE_INACTIVE;
6052 child_event->state = PERF_EVENT_STATE_OFF;
6054 if (parent_event->attr.freq) {
6055 u64 sample_period = parent_event->hw.sample_period;
6056 struct hw_perf_event *hwc = &child_event->hw;
6058 hwc->sample_period = sample_period;
6059 hwc->last_period = sample_period;
6061 local64_set(&hwc->period_left, sample_period);
6064 child_event->ctx = child_ctx;
6065 child_event->overflow_handler = parent_event->overflow_handler;
6068 * Link it up in the child's context:
6070 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6071 add_event_to_ctx(child_event, child_ctx);
6072 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6075 * Get a reference to the parent filp - we will fput it
6076 * when the child event exits. This is safe to do because
6077 * we are in the parent and we know that the filp still
6078 * exists and has a nonzero count:
6080 atomic_long_inc(&parent_event->filp->f_count);
6083 * Link this into the parent event's child list
6085 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6086 mutex_lock(&parent_event->child_mutex);
6087 list_add_tail(&child_event->child_list, &parent_event->child_list);
6088 mutex_unlock(&parent_event->child_mutex);
6093 static int inherit_group(struct perf_event *parent_event,
6094 struct task_struct *parent,
6095 struct perf_event_context *parent_ctx,
6096 struct task_struct *child,
6097 struct perf_event_context *child_ctx)
6099 struct perf_event *leader;
6100 struct perf_event *sub;
6101 struct perf_event *child_ctr;
6103 leader = inherit_event(parent_event, parent, parent_ctx,
6104 child, NULL, child_ctx);
6106 return PTR_ERR(leader);
6107 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6108 child_ctr = inherit_event(sub, parent, parent_ctx,
6109 child, leader, child_ctx);
6110 if (IS_ERR(child_ctr))
6111 return PTR_ERR(child_ctr);
6117 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6118 struct perf_event_context *parent_ctx,
6119 struct task_struct *child, int ctxn,
6123 struct perf_event_context *child_ctx;
6125 if (!event->attr.inherit) {
6130 child_ctx = child->perf_event_ctxp[ctxn];
6133 * This is executed from the parent task context, so
6134 * inherit events that have been marked for cloning.
6135 * First allocate and initialize a context for the
6139 child_ctx = alloc_perf_context(event->pmu, child);
6143 child->perf_event_ctxp[ctxn] = child_ctx;
6146 ret = inherit_group(event, parent, parent_ctx,
6156 * Initialize the perf_event context in task_struct
6158 int perf_event_init_context(struct task_struct *child, int ctxn)
6160 struct perf_event_context *child_ctx, *parent_ctx;
6161 struct perf_event_context *cloned_ctx;
6162 struct perf_event *event;
6163 struct task_struct *parent = current;
6164 int inherited_all = 1;
6167 child->perf_event_ctxp[ctxn] = NULL;
6169 mutex_init(&child->perf_event_mutex);
6170 INIT_LIST_HEAD(&child->perf_event_list);
6172 if (likely(!parent->perf_event_ctxp[ctxn]))
6176 * If the parent's context is a clone, pin it so it won't get
6179 parent_ctx = perf_pin_task_context(parent, ctxn);
6182 * No need to check if parent_ctx != NULL here; since we saw
6183 * it non-NULL earlier, the only reason for it to become NULL
6184 * is if we exit, and since we're currently in the middle of
6185 * a fork we can't be exiting at the same time.
6189 * Lock the parent list. No need to lock the child - not PID
6190 * hashed yet and not running, so nobody can access it.
6192 mutex_lock(&parent_ctx->mutex);
6195 * We dont have to disable NMIs - we are only looking at
6196 * the list, not manipulating it:
6198 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6199 ret = inherit_task_group(event, parent, parent_ctx,
6200 child, ctxn, &inherited_all);
6205 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6206 ret = inherit_task_group(event, parent, parent_ctx,
6207 child, ctxn, &inherited_all);
6212 child_ctx = child->perf_event_ctxp[ctxn];
6214 if (child_ctx && inherited_all) {
6216 * Mark the child context as a clone of the parent
6217 * context, or of whatever the parent is a clone of.
6218 * Note that if the parent is a clone, it could get
6219 * uncloned at any point, but that doesn't matter
6220 * because the list of events and the generation
6221 * count can't have changed since we took the mutex.
6223 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6225 child_ctx->parent_ctx = cloned_ctx;
6226 child_ctx->parent_gen = parent_ctx->parent_gen;
6228 child_ctx->parent_ctx = parent_ctx;
6229 child_ctx->parent_gen = parent_ctx->generation;
6231 get_ctx(child_ctx->parent_ctx);
6234 mutex_unlock(&parent_ctx->mutex);
6236 perf_unpin_context(parent_ctx);
6242 * Initialize the perf_event context in task_struct
6244 int perf_event_init_task(struct task_struct *child)
6248 for_each_task_context_nr(ctxn) {
6249 ret = perf_event_init_context(child, ctxn);
6257 static void __init perf_event_init_all_cpus(void)
6259 struct swevent_htable *swhash;
6262 for_each_possible_cpu(cpu) {
6263 swhash = &per_cpu(swevent_htable, cpu);
6264 mutex_init(&swhash->hlist_mutex);
6265 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6269 static void __cpuinit perf_event_init_cpu(int cpu)
6271 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6273 mutex_lock(&swhash->hlist_mutex);
6274 if (swhash->hlist_refcount > 0) {
6275 struct swevent_hlist *hlist;
6277 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6279 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6281 mutex_unlock(&swhash->hlist_mutex);
6284 #ifdef CONFIG_HOTPLUG_CPU
6285 static void perf_pmu_rotate_stop(struct pmu *pmu)
6287 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6289 WARN_ON(!irqs_disabled());
6291 list_del_init(&cpuctx->rotation_list);
6294 static void __perf_event_exit_context(void *__info)
6296 struct perf_event_context *ctx = __info;
6297 struct perf_event *event, *tmp;
6299 perf_pmu_rotate_stop(ctx->pmu);
6301 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6302 __perf_event_remove_from_context(event);
6303 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6304 __perf_event_remove_from_context(event);
6307 static void perf_event_exit_cpu_context(int cpu)
6309 struct perf_event_context *ctx;
6313 idx = srcu_read_lock(&pmus_srcu);
6314 list_for_each_entry_rcu(pmu, &pmus, entry) {
6315 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6317 mutex_lock(&ctx->mutex);
6318 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6319 mutex_unlock(&ctx->mutex);
6321 srcu_read_unlock(&pmus_srcu, idx);
6324 static void perf_event_exit_cpu(int cpu)
6326 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6328 mutex_lock(&swhash->hlist_mutex);
6329 swevent_hlist_release(swhash);
6330 mutex_unlock(&swhash->hlist_mutex);
6332 perf_event_exit_cpu_context(cpu);
6335 static inline void perf_event_exit_cpu(int cpu) { }
6338 static int __cpuinit
6339 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6341 unsigned int cpu = (long)hcpu;
6343 switch (action & ~CPU_TASKS_FROZEN) {
6345 case CPU_UP_PREPARE:
6346 case CPU_DOWN_FAILED:
6347 perf_event_init_cpu(cpu);
6350 case CPU_UP_CANCELED:
6351 case CPU_DOWN_PREPARE:
6352 perf_event_exit_cpu(cpu);
6362 void __init perf_event_init(void)
6366 perf_event_init_all_cpus();
6367 init_srcu_struct(&pmus_srcu);
6368 perf_pmu_register(&perf_swevent);
6369 perf_pmu_register(&perf_cpu_clock);
6370 perf_pmu_register(&perf_task_clock);
6372 perf_cpu_notifier(perf_cpu_notify);
6374 ret = init_hw_breakpoint();
6375 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);