4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 if (WARN_ON(!fmt->load_binary))
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
101 bool path_noexec(const struct path *path)
103 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
104 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
109 * Note that a shared library must be both readable and executable due to
112 * Also note that we take the address to load from from the file itself.
114 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 struct linux_binfmt *fmt;
118 struct filename *tmp = getname(library);
119 int error = PTR_ERR(tmp);
120 static const struct open_flags uselib_flags = {
121 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
122 .acc_mode = MAY_READ | MAY_EXEC,
123 .intent = LOOKUP_OPEN,
124 .lookup_flags = LOOKUP_FOLLOW,
130 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 error = PTR_ERR(file);
137 if (!S_ISREG(file_inode(file)->i_mode))
141 if (path_noexec(&file->f_path))
148 read_lock(&binfmt_lock);
149 list_for_each_entry(fmt, &formats, lh) {
150 if (!fmt->load_shlib)
152 if (!try_module_get(fmt->module))
154 read_unlock(&binfmt_lock);
155 error = fmt->load_shlib(file);
156 read_lock(&binfmt_lock);
158 if (error != -ENOEXEC)
161 read_unlock(&binfmt_lock);
167 #endif /* #ifdef CONFIG_USELIB */
171 * The nascent bprm->mm is not visible until exec_mmap() but it can
172 * use a lot of memory, account these pages in current->mm temporary
173 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
174 * change the counter back via acct_arg_size(0).
176 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 struct mm_struct *mm = current->mm;
179 long diff = (long)(pages - bprm->vma_pages);
184 bprm->vma_pages = pages;
185 add_mm_counter(mm, MM_ANONPAGES, diff);
188 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
194 #ifdef CONFIG_STACK_GROWSUP
196 ret = expand_downwards(bprm->vma, pos);
202 * We are doing an exec(). 'current' is the process
203 * doing the exec and bprm->mm is the new process's mm.
205 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
211 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214 acct_arg_size(bprm, size / PAGE_SIZE);
217 * We've historically supported up to 32 pages (ARG_MAX)
218 * of argument strings even with small stacks
224 * Limit to 1/4-th the stack size for the argv+env strings.
226 * - the remaining binfmt code will not run out of stack space,
227 * - the program will have a reasonable amount of stack left
230 rlim = current->signal->rlim;
231 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
240 static void put_arg_page(struct page *page)
245 static void free_arg_page(struct linux_binprm *bprm, int i)
249 static void free_arg_pages(struct linux_binprm *bprm)
253 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 static int __bprm_mm_init(struct linux_binprm *bprm)
262 struct vm_area_struct *vma = NULL;
263 struct mm_struct *mm = bprm->mm;
265 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
269 down_write(&mm->mmap_sem);
273 * Place the stack at the largest stack address the architecture
274 * supports. Later, we'll move this to an appropriate place. We don't
275 * use STACK_TOP because that can depend on attributes which aren't
278 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_end = STACK_TOP_MAX;
280 vma->vm_start = vma->vm_end - PAGE_SIZE;
281 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 INIT_LIST_HEAD(&vma->anon_vma_chain);
285 err = insert_vm_struct(mm, vma);
289 mm->stack_vm = mm->total_vm = 1;
290 arch_bprm_mm_init(mm, vma);
291 up_write(&mm->mmap_sem);
292 bprm->p = vma->vm_end - sizeof(void *);
295 up_write(&mm->mmap_sem);
297 kmem_cache_free(vm_area_cachep, vma);
301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 return len <= MAX_ARG_STRLEN;
308 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
312 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
317 page = bprm->page[pos / PAGE_SIZE];
318 if (!page && write) {
319 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
322 bprm->page[pos / PAGE_SIZE] = page;
328 static void put_arg_page(struct page *page)
332 static void free_arg_page(struct linux_binprm *bprm, int i)
335 __free_page(bprm->page[i]);
336 bprm->page[i] = NULL;
340 static void free_arg_pages(struct linux_binprm *bprm)
344 for (i = 0; i < MAX_ARG_PAGES; i++)
345 free_arg_page(bprm, i);
348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
353 static int __bprm_mm_init(struct linux_binprm *bprm)
355 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 return len <= bprm->p;
364 #endif /* CONFIG_MMU */
367 * Create a new mm_struct and populate it with a temporary stack
368 * vm_area_struct. We don't have enough context at this point to set the stack
369 * flags, permissions, and offset, so we use temporary values. We'll update
370 * them later in setup_arg_pages().
372 static int bprm_mm_init(struct linux_binprm *bprm)
375 struct mm_struct *mm = NULL;
377 bprm->mm = mm = mm_alloc();
382 err = __bprm_mm_init(bprm);
397 struct user_arg_ptr {
402 const char __user *const __user *native;
404 const compat_uptr_t __user *compat;
409 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 const char __user *native;
414 if (unlikely(argv.is_compat)) {
415 compat_uptr_t compat;
417 if (get_user(compat, argv.ptr.compat + nr))
418 return ERR_PTR(-EFAULT);
420 return compat_ptr(compat);
424 if (get_user(native, argv.ptr.native + nr))
425 return ERR_PTR(-EFAULT);
431 * count() counts the number of strings in array ARGV.
433 static int count(struct user_arg_ptr argv, int max)
437 if (argv.ptr.native != NULL) {
439 const char __user *p = get_user_arg_ptr(argv, i);
451 if (fatal_signal_pending(current))
452 return -ERESTARTNOHAND;
460 * 'copy_strings()' copies argument/environment strings from the old
461 * processes's memory to the new process's stack. The call to get_user_pages()
462 * ensures the destination page is created and not swapped out.
464 static int copy_strings(int argc, struct user_arg_ptr argv,
465 struct linux_binprm *bprm)
467 struct page *kmapped_page = NULL;
469 unsigned long kpos = 0;
473 const char __user *str;
478 str = get_user_arg_ptr(argv, argc);
482 len = strnlen_user(str, MAX_ARG_STRLEN);
487 if (!valid_arg_len(bprm, len))
490 /* We're going to work our way backwords. */
496 int offset, bytes_to_copy;
498 if (fatal_signal_pending(current)) {
499 ret = -ERESTARTNOHAND;
504 offset = pos % PAGE_SIZE;
508 bytes_to_copy = offset;
509 if (bytes_to_copy > len)
512 offset -= bytes_to_copy;
513 pos -= bytes_to_copy;
514 str -= bytes_to_copy;
515 len -= bytes_to_copy;
517 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
520 page = get_arg_page(bprm, pos, 1);
527 flush_kernel_dcache_page(kmapped_page);
528 kunmap(kmapped_page);
529 put_arg_page(kmapped_page);
532 kaddr = kmap(kmapped_page);
533 kpos = pos & PAGE_MASK;
534 flush_arg_page(bprm, kpos, kmapped_page);
536 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545 flush_kernel_dcache_page(kmapped_page);
546 kunmap(kmapped_page);
547 put_arg_page(kmapped_page);
553 * Like copy_strings, but get argv and its values from kernel memory.
555 int copy_strings_kernel(int argc, const char *const *__argv,
556 struct linux_binprm *bprm)
559 mm_segment_t oldfs = get_fs();
560 struct user_arg_ptr argv = {
561 .ptr.native = (const char __user *const __user *)__argv,
565 r = copy_strings(argc, argv, bprm);
570 EXPORT_SYMBOL(copy_strings_kernel);
575 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
576 * the binfmt code determines where the new stack should reside, we shift it to
577 * its final location. The process proceeds as follows:
579 * 1) Use shift to calculate the new vma endpoints.
580 * 2) Extend vma to cover both the old and new ranges. This ensures the
581 * arguments passed to subsequent functions are consistent.
582 * 3) Move vma's page tables to the new range.
583 * 4) Free up any cleared pgd range.
584 * 5) Shrink the vma to cover only the new range.
586 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 struct mm_struct *mm = vma->vm_mm;
589 unsigned long old_start = vma->vm_start;
590 unsigned long old_end = vma->vm_end;
591 unsigned long length = old_end - old_start;
592 unsigned long new_start = old_start - shift;
593 unsigned long new_end = old_end - shift;
594 struct mmu_gather tlb;
596 BUG_ON(new_start > new_end);
599 * ensure there are no vmas between where we want to go
602 if (vma != find_vma(mm, new_start))
606 * cover the whole range: [new_start, old_end)
608 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
612 * move the page tables downwards, on failure we rely on
613 * process cleanup to remove whatever mess we made.
615 if (length != move_page_tables(vma, old_start,
616 vma, new_start, length, false))
620 tlb_gather_mmu(&tlb, mm, old_start, old_end);
621 if (new_end > old_start) {
623 * when the old and new regions overlap clear from new_end.
625 free_pgd_range(&tlb, new_end, old_end, new_end,
626 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 * otherwise, clean from old_start; this is done to not touch
630 * the address space in [new_end, old_start) some architectures
631 * have constraints on va-space that make this illegal (IA64) -
632 * for the others its just a little faster.
634 free_pgd_range(&tlb, old_start, old_end, new_end,
635 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 tlb_finish_mmu(&tlb, old_start, old_end);
640 * Shrink the vma to just the new range. Always succeeds.
642 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
648 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
649 * the stack is optionally relocated, and some extra space is added.
651 int setup_arg_pages(struct linux_binprm *bprm,
652 unsigned long stack_top,
653 int executable_stack)
656 unsigned long stack_shift;
657 struct mm_struct *mm = current->mm;
658 struct vm_area_struct *vma = bprm->vma;
659 struct vm_area_struct *prev = NULL;
660 unsigned long vm_flags;
661 unsigned long stack_base;
662 unsigned long stack_size;
663 unsigned long stack_expand;
664 unsigned long rlim_stack;
666 #ifdef CONFIG_STACK_GROWSUP
667 /* Limit stack size */
668 stack_base = rlimit_max(RLIMIT_STACK);
669 if (stack_base > STACK_SIZE_MAX)
670 stack_base = STACK_SIZE_MAX;
672 /* Add space for stack randomization. */
673 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675 /* Make sure we didn't let the argument array grow too large. */
676 if (vma->vm_end - vma->vm_start > stack_base)
679 stack_base = PAGE_ALIGN(stack_top - stack_base);
681 stack_shift = vma->vm_start - stack_base;
682 mm->arg_start = bprm->p - stack_shift;
683 bprm->p = vma->vm_end - stack_shift;
685 stack_top = arch_align_stack(stack_top);
686 stack_top = PAGE_ALIGN(stack_top);
688 if (unlikely(stack_top < mmap_min_addr) ||
689 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
692 stack_shift = vma->vm_end - stack_top;
694 bprm->p -= stack_shift;
695 mm->arg_start = bprm->p;
699 bprm->loader -= stack_shift;
700 bprm->exec -= stack_shift;
702 down_write(&mm->mmap_sem);
703 vm_flags = VM_STACK_FLAGS;
706 * Adjust stack execute permissions; explicitly enable for
707 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
708 * (arch default) otherwise.
710 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 else if (executable_stack == EXSTACK_DISABLE_X)
713 vm_flags &= ~VM_EXEC;
714 vm_flags |= mm->def_flags;
715 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723 /* Move stack pages down in memory. */
725 ret = shift_arg_pages(vma, stack_shift);
730 /* mprotect_fixup is overkill to remove the temporary stack flags */
731 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
734 stack_size = vma->vm_end - vma->vm_start;
736 * Align this down to a page boundary as expand_stack
739 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
740 #ifdef CONFIG_STACK_GROWSUP
741 if (stack_size + stack_expand > rlim_stack)
742 stack_base = vma->vm_start + rlim_stack;
744 stack_base = vma->vm_end + stack_expand;
746 if (stack_size + stack_expand > rlim_stack)
747 stack_base = vma->vm_end - rlim_stack;
749 stack_base = vma->vm_start - stack_expand;
751 current->mm->start_stack = bprm->p;
752 ret = expand_stack(vma, stack_base);
757 up_write(&mm->mmap_sem);
760 EXPORT_SYMBOL(setup_arg_pages);
762 #endif /* CONFIG_MMU */
764 static struct file *do_open_execat(int fd, struct filename *name, int flags)
768 struct open_flags open_exec_flags = {
769 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
770 .acc_mode = MAY_EXEC,
771 .intent = LOOKUP_OPEN,
772 .lookup_flags = LOOKUP_FOLLOW,
775 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
776 return ERR_PTR(-EINVAL);
777 if (flags & AT_SYMLINK_NOFOLLOW)
778 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
779 if (flags & AT_EMPTY_PATH)
780 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
782 file = do_filp_open(fd, name, &open_exec_flags);
787 if (!S_ISREG(file_inode(file)->i_mode))
790 if (path_noexec(&file->f_path))
793 err = deny_write_access(file);
797 if (name->name[0] != '\0')
808 struct file *open_exec(const char *name)
810 struct filename *filename = getname_kernel(name);
811 struct file *f = ERR_CAST(filename);
813 if (!IS_ERR(filename)) {
814 f = do_open_execat(AT_FDCWD, filename, 0);
819 EXPORT_SYMBOL(open_exec);
821 int kernel_read(struct file *file, loff_t offset,
822 char *addr, unsigned long count)
830 /* The cast to a user pointer is valid due to the set_fs() */
831 result = vfs_read(file, (void __user *)addr, count, &pos);
836 EXPORT_SYMBOL(kernel_read);
838 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
840 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
842 flush_icache_range(addr, addr + len);
845 EXPORT_SYMBOL(read_code);
847 static int exec_mmap(struct mm_struct *mm)
849 struct task_struct *tsk;
850 struct mm_struct *old_mm, *active_mm;
852 /* Notify parent that we're no longer interested in the old VM */
854 old_mm = current->mm;
855 mm_release(tsk, old_mm);
860 * Make sure that if there is a core dump in progress
861 * for the old mm, we get out and die instead of going
862 * through with the exec. We must hold mmap_sem around
863 * checking core_state and changing tsk->mm.
865 down_read(&old_mm->mmap_sem);
866 if (unlikely(old_mm->core_state)) {
867 up_read(&old_mm->mmap_sem);
872 active_mm = tsk->active_mm;
875 activate_mm(active_mm, mm);
876 tsk->mm->vmacache_seqnum = 0;
880 up_read(&old_mm->mmap_sem);
881 BUG_ON(active_mm != old_mm);
882 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
883 mm_update_next_owner(old_mm);
892 * This function makes sure the current process has its own signal table,
893 * so that flush_signal_handlers can later reset the handlers without
894 * disturbing other processes. (Other processes might share the signal
895 * table via the CLONE_SIGHAND option to clone().)
897 static int de_thread(struct task_struct *tsk)
899 struct signal_struct *sig = tsk->signal;
900 struct sighand_struct *oldsighand = tsk->sighand;
901 spinlock_t *lock = &oldsighand->siglock;
903 if (thread_group_empty(tsk))
904 goto no_thread_group;
907 * Kill all other threads in the thread group.
910 if (signal_group_exit(sig)) {
912 * Another group action in progress, just
913 * return so that the signal is processed.
915 spin_unlock_irq(lock);
919 sig->group_exit_task = tsk;
920 sig->notify_count = zap_other_threads(tsk);
921 if (!thread_group_leader(tsk))
924 while (sig->notify_count) {
925 __set_current_state(TASK_KILLABLE);
926 spin_unlock_irq(lock);
928 if (unlikely(__fatal_signal_pending(tsk)))
932 spin_unlock_irq(lock);
935 * At this point all other threads have exited, all we have to
936 * do is to wait for the thread group leader to become inactive,
937 * and to assume its PID:
939 if (!thread_group_leader(tsk)) {
940 struct task_struct *leader = tsk->group_leader;
943 threadgroup_change_begin(tsk);
944 write_lock_irq(&tasklist_lock);
946 * Do this under tasklist_lock to ensure that
947 * exit_notify() can't miss ->group_exit_task
949 sig->notify_count = -1;
950 if (likely(leader->exit_state))
952 __set_current_state(TASK_KILLABLE);
953 write_unlock_irq(&tasklist_lock);
954 threadgroup_change_end(tsk);
956 if (unlikely(__fatal_signal_pending(tsk)))
961 * The only record we have of the real-time age of a
962 * process, regardless of execs it's done, is start_time.
963 * All the past CPU time is accumulated in signal_struct
964 * from sister threads now dead. But in this non-leader
965 * exec, nothing survives from the original leader thread,
966 * whose birth marks the true age of this process now.
967 * When we take on its identity by switching to its PID, we
968 * also take its birthdate (always earlier than our own).
970 tsk->start_time = leader->start_time;
971 tsk->real_start_time = leader->real_start_time;
973 BUG_ON(!same_thread_group(leader, tsk));
974 BUG_ON(has_group_leader_pid(tsk));
976 * An exec() starts a new thread group with the
977 * TGID of the previous thread group. Rehash the
978 * two threads with a switched PID, and release
979 * the former thread group leader:
982 /* Become a process group leader with the old leader's pid.
983 * The old leader becomes a thread of the this thread group.
984 * Note: The old leader also uses this pid until release_task
985 * is called. Odd but simple and correct.
987 tsk->pid = leader->pid;
988 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
989 transfer_pid(leader, tsk, PIDTYPE_PGID);
990 transfer_pid(leader, tsk, PIDTYPE_SID);
992 list_replace_rcu(&leader->tasks, &tsk->tasks);
993 list_replace_init(&leader->sibling, &tsk->sibling);
995 tsk->group_leader = tsk;
996 leader->group_leader = tsk;
998 tsk->exit_signal = SIGCHLD;
999 leader->exit_signal = -1;
1001 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1002 leader->exit_state = EXIT_DEAD;
1005 * We are going to release_task()->ptrace_unlink() silently,
1006 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1007 * the tracer wont't block again waiting for this thread.
1009 if (unlikely(leader->ptrace))
1010 __wake_up_parent(leader, leader->parent);
1011 write_unlock_irq(&tasklist_lock);
1012 threadgroup_change_end(tsk);
1014 release_task(leader);
1017 sig->group_exit_task = NULL;
1018 sig->notify_count = 0;
1021 /* we have changed execution domain */
1022 tsk->exit_signal = SIGCHLD;
1025 flush_itimer_signals();
1027 if (atomic_read(&oldsighand->count) != 1) {
1028 struct sighand_struct *newsighand;
1030 * This ->sighand is shared with the CLONE_SIGHAND
1031 * but not CLONE_THREAD task, switch to the new one.
1033 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1037 atomic_set(&newsighand->count, 1);
1038 memcpy(newsighand->action, oldsighand->action,
1039 sizeof(newsighand->action));
1041 write_lock_irq(&tasklist_lock);
1042 spin_lock(&oldsighand->siglock);
1043 rcu_assign_pointer(tsk->sighand, newsighand);
1044 spin_unlock(&oldsighand->siglock);
1045 write_unlock_irq(&tasklist_lock);
1047 __cleanup_sighand(oldsighand);
1050 BUG_ON(!thread_group_leader(tsk));
1054 /* protects against exit_notify() and __exit_signal() */
1055 read_lock(&tasklist_lock);
1056 sig->group_exit_task = NULL;
1057 sig->notify_count = 0;
1058 read_unlock(&tasklist_lock);
1062 char *get_task_comm(char *buf, struct task_struct *tsk)
1064 /* buf must be at least sizeof(tsk->comm) in size */
1066 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1070 EXPORT_SYMBOL_GPL(get_task_comm);
1073 * These functions flushes out all traces of the currently running executable
1074 * so that a new one can be started
1077 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1080 trace_task_rename(tsk, buf);
1081 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1083 perf_event_comm(tsk, exec);
1086 int flush_old_exec(struct linux_binprm * bprm)
1091 * Make sure we have a private signal table and that
1092 * we are unassociated from the previous thread group.
1094 retval = de_thread(current);
1099 * Must be called _before_ exec_mmap() as bprm->mm is
1100 * not visibile until then. This also enables the update
1103 set_mm_exe_file(bprm->mm, bprm->file);
1106 * Release all of the old mmap stuff
1108 acct_arg_size(bprm, 0);
1109 retval = exec_mmap(bprm->mm);
1113 bprm->mm = NULL; /* We're using it now */
1116 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1117 PF_NOFREEZE | PF_NO_SETAFFINITY);
1119 current->personality &= ~bprm->per_clear;
1126 EXPORT_SYMBOL(flush_old_exec);
1128 void would_dump(struct linux_binprm *bprm, struct file *file)
1130 if (inode_permission(file_inode(file), MAY_READ) < 0)
1131 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1133 EXPORT_SYMBOL(would_dump);
1135 void setup_new_exec(struct linux_binprm * bprm)
1137 arch_pick_mmap_layout(current->mm);
1139 /* This is the point of no return */
1140 current->sas_ss_sp = current->sas_ss_size = 0;
1142 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1143 set_dumpable(current->mm, SUID_DUMP_USER);
1145 set_dumpable(current->mm, suid_dumpable);
1148 __set_task_comm(current, kbasename(bprm->filename), true);
1150 /* Set the new mm task size. We have to do that late because it may
1151 * depend on TIF_32BIT which is only updated in flush_thread() on
1152 * some architectures like powerpc
1154 current->mm->task_size = TASK_SIZE;
1156 /* install the new credentials */
1157 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1158 !gid_eq(bprm->cred->gid, current_egid())) {
1159 current->pdeath_signal = 0;
1161 would_dump(bprm, bprm->file);
1162 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1163 set_dumpable(current->mm, suid_dumpable);
1166 /* An exec changes our domain. We are no longer part of the thread
1168 current->self_exec_id++;
1169 flush_signal_handlers(current, 0);
1170 do_close_on_exec(current->files);
1172 EXPORT_SYMBOL(setup_new_exec);
1175 * Prepare credentials and lock ->cred_guard_mutex.
1176 * install_exec_creds() commits the new creds and drops the lock.
1177 * Or, if exec fails before, free_bprm() should release ->cred and
1180 int prepare_bprm_creds(struct linux_binprm *bprm)
1182 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1183 return -ERESTARTNOINTR;
1185 bprm->cred = prepare_exec_creds();
1186 if (likely(bprm->cred))
1189 mutex_unlock(¤t->signal->cred_guard_mutex);
1193 static void free_bprm(struct linux_binprm *bprm)
1195 free_arg_pages(bprm);
1197 mutex_unlock(¤t->signal->cred_guard_mutex);
1198 abort_creds(bprm->cred);
1201 allow_write_access(bprm->file);
1204 /* If a binfmt changed the interp, free it. */
1205 if (bprm->interp != bprm->filename)
1206 kfree(bprm->interp);
1210 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1212 /* If a binfmt changed the interp, free it first. */
1213 if (bprm->interp != bprm->filename)
1214 kfree(bprm->interp);
1215 bprm->interp = kstrdup(interp, GFP_KERNEL);
1220 EXPORT_SYMBOL(bprm_change_interp);
1223 * install the new credentials for this executable
1225 void install_exec_creds(struct linux_binprm *bprm)
1227 security_bprm_committing_creds(bprm);
1229 commit_creds(bprm->cred);
1233 * Disable monitoring for regular users
1234 * when executing setuid binaries. Must
1235 * wait until new credentials are committed
1236 * by commit_creds() above
1238 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1239 perf_event_exit_task(current);
1241 * cred_guard_mutex must be held at least to this point to prevent
1242 * ptrace_attach() from altering our determination of the task's
1243 * credentials; any time after this it may be unlocked.
1245 security_bprm_committed_creds(bprm);
1246 mutex_unlock(¤t->signal->cred_guard_mutex);
1248 EXPORT_SYMBOL(install_exec_creds);
1251 * determine how safe it is to execute the proposed program
1252 * - the caller must hold ->cred_guard_mutex to protect against
1253 * PTRACE_ATTACH or seccomp thread-sync
1255 static void check_unsafe_exec(struct linux_binprm *bprm)
1257 struct task_struct *p = current, *t;
1261 if (p->ptrace & PT_PTRACE_CAP)
1262 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1264 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1268 * This isn't strictly necessary, but it makes it harder for LSMs to
1271 if (task_no_new_privs(current))
1272 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1276 spin_lock(&p->fs->lock);
1278 while_each_thread(p, t) {
1284 if (p->fs->users > n_fs)
1285 bprm->unsafe |= LSM_UNSAFE_SHARE;
1288 spin_unlock(&p->fs->lock);
1291 static void bprm_fill_uid(struct linux_binprm *bprm)
1293 struct inode *inode;
1298 /* clear any previous set[ug]id data from a previous binary */
1299 bprm->cred->euid = current_euid();
1300 bprm->cred->egid = current_egid();
1302 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1305 if (task_no_new_privs(current))
1308 inode = file_inode(bprm->file);
1309 mode = READ_ONCE(inode->i_mode);
1310 if (!(mode & (S_ISUID|S_ISGID)))
1313 /* Be careful if suid/sgid is set */
1316 /* reload atomically mode/uid/gid now that lock held */
1317 mode = inode->i_mode;
1320 inode_unlock(inode);
1322 /* We ignore suid/sgid if there are no mappings for them in the ns */
1323 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1324 !kgid_has_mapping(bprm->cred->user_ns, gid))
1327 if (mode & S_ISUID) {
1328 bprm->per_clear |= PER_CLEAR_ON_SETID;
1329 bprm->cred->euid = uid;
1332 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1333 bprm->per_clear |= PER_CLEAR_ON_SETID;
1334 bprm->cred->egid = gid;
1339 * Fill the binprm structure from the inode.
1340 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1342 * This may be called multiple times for binary chains (scripts for example).
1344 int prepare_binprm(struct linux_binprm *bprm)
1348 bprm_fill_uid(bprm);
1350 /* fill in binprm security blob */
1351 retval = security_bprm_set_creds(bprm);
1354 bprm->cred_prepared = 1;
1356 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1357 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1360 EXPORT_SYMBOL(prepare_binprm);
1363 * Arguments are '\0' separated strings found at the location bprm->p
1364 * points to; chop off the first by relocating brpm->p to right after
1365 * the first '\0' encountered.
1367 int remove_arg_zero(struct linux_binprm *bprm)
1370 unsigned long offset;
1378 offset = bprm->p & ~PAGE_MASK;
1379 page = get_arg_page(bprm, bprm->p, 0);
1384 kaddr = kmap_atomic(page);
1386 for (; offset < PAGE_SIZE && kaddr[offset];
1387 offset++, bprm->p++)
1390 kunmap_atomic(kaddr);
1393 if (offset == PAGE_SIZE)
1394 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1395 } while (offset == PAGE_SIZE);
1404 EXPORT_SYMBOL(remove_arg_zero);
1406 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1408 * cycle the list of binary formats handler, until one recognizes the image
1410 int search_binary_handler(struct linux_binprm *bprm)
1412 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1413 struct linux_binfmt *fmt;
1416 /* This allows 4 levels of binfmt rewrites before failing hard. */
1417 if (bprm->recursion_depth > 5)
1420 retval = security_bprm_check(bprm);
1426 read_lock(&binfmt_lock);
1427 list_for_each_entry(fmt, &formats, lh) {
1428 if (!try_module_get(fmt->module))
1430 read_unlock(&binfmt_lock);
1431 bprm->recursion_depth++;
1432 retval = fmt->load_binary(bprm);
1433 read_lock(&binfmt_lock);
1435 bprm->recursion_depth--;
1436 if (retval < 0 && !bprm->mm) {
1437 /* we got to flush_old_exec() and failed after it */
1438 read_unlock(&binfmt_lock);
1439 force_sigsegv(SIGSEGV, current);
1442 if (retval != -ENOEXEC || !bprm->file) {
1443 read_unlock(&binfmt_lock);
1447 read_unlock(&binfmt_lock);
1450 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1451 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1453 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1461 EXPORT_SYMBOL(search_binary_handler);
1463 static int exec_binprm(struct linux_binprm *bprm)
1465 pid_t old_pid, old_vpid;
1468 /* Need to fetch pid before load_binary changes it */
1469 old_pid = current->pid;
1471 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1474 ret = search_binary_handler(bprm);
1477 trace_sched_process_exec(current, old_pid, bprm);
1478 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1479 proc_exec_connector(current);
1486 * sys_execve() executes a new program.
1488 static int do_execveat_common(int fd, struct filename *filename,
1489 struct user_arg_ptr argv,
1490 struct user_arg_ptr envp,
1493 char *pathbuf = NULL;
1494 struct linux_binprm *bprm;
1496 struct files_struct *displaced;
1499 if (IS_ERR(filename))
1500 return PTR_ERR(filename);
1503 * We move the actual failure in case of RLIMIT_NPROC excess from
1504 * set*uid() to execve() because too many poorly written programs
1505 * don't check setuid() return code. Here we additionally recheck
1506 * whether NPROC limit is still exceeded.
1508 if ((current->flags & PF_NPROC_EXCEEDED) &&
1509 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1514 /* We're below the limit (still or again), so we don't want to make
1515 * further execve() calls fail. */
1516 current->flags &= ~PF_NPROC_EXCEEDED;
1518 retval = unshare_files(&displaced);
1523 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1527 retval = prepare_bprm_creds(bprm);
1531 check_unsafe_exec(bprm);
1532 current->in_execve = 1;
1534 file = do_open_execat(fd, filename, flags);
1535 retval = PTR_ERR(file);
1542 if (fd == AT_FDCWD || filename->name[0] == '/') {
1543 bprm->filename = filename->name;
1545 if (filename->name[0] == '\0')
1546 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1548 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1549 fd, filename->name);
1555 * Record that a name derived from an O_CLOEXEC fd will be
1556 * inaccessible after exec. Relies on having exclusive access to
1557 * current->files (due to unshare_files above).
1559 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1560 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1561 bprm->filename = pathbuf;
1563 bprm->interp = bprm->filename;
1565 retval = bprm_mm_init(bprm);
1569 bprm->argc = count(argv, MAX_ARG_STRINGS);
1570 if ((retval = bprm->argc) < 0)
1573 bprm->envc = count(envp, MAX_ARG_STRINGS);
1574 if ((retval = bprm->envc) < 0)
1577 retval = prepare_binprm(bprm);
1581 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1585 bprm->exec = bprm->p;
1586 retval = copy_strings(bprm->envc, envp, bprm);
1590 retval = copy_strings(bprm->argc, argv, bprm);
1594 retval = exec_binprm(bprm);
1598 /* execve succeeded */
1599 current->fs->in_exec = 0;
1600 current->in_execve = 0;
1601 acct_update_integrals(current);
1602 task_numa_free(current);
1607 put_files_struct(displaced);
1612 acct_arg_size(bprm, 0);
1617 current->fs->in_exec = 0;
1618 current->in_execve = 0;
1626 reset_files_struct(displaced);
1632 int do_execve(struct filename *filename,
1633 const char __user *const __user *__argv,
1634 const char __user *const __user *__envp)
1636 struct user_arg_ptr argv = { .ptr.native = __argv };
1637 struct user_arg_ptr envp = { .ptr.native = __envp };
1638 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1641 int do_execveat(int fd, struct filename *filename,
1642 const char __user *const __user *__argv,
1643 const char __user *const __user *__envp,
1646 struct user_arg_ptr argv = { .ptr.native = __argv };
1647 struct user_arg_ptr envp = { .ptr.native = __envp };
1649 return do_execveat_common(fd, filename, argv, envp, flags);
1652 #ifdef CONFIG_COMPAT
1653 static int compat_do_execve(struct filename *filename,
1654 const compat_uptr_t __user *__argv,
1655 const compat_uptr_t __user *__envp)
1657 struct user_arg_ptr argv = {
1659 .ptr.compat = __argv,
1661 struct user_arg_ptr envp = {
1663 .ptr.compat = __envp,
1665 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1668 static int compat_do_execveat(int fd, struct filename *filename,
1669 const compat_uptr_t __user *__argv,
1670 const compat_uptr_t __user *__envp,
1673 struct user_arg_ptr argv = {
1675 .ptr.compat = __argv,
1677 struct user_arg_ptr envp = {
1679 .ptr.compat = __envp,
1681 return do_execveat_common(fd, filename, argv, envp, flags);
1685 void set_binfmt(struct linux_binfmt *new)
1687 struct mm_struct *mm = current->mm;
1690 module_put(mm->binfmt->module);
1694 __module_get(new->module);
1696 EXPORT_SYMBOL(set_binfmt);
1699 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1701 void set_dumpable(struct mm_struct *mm, int value)
1703 unsigned long old, new;
1705 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1709 old = ACCESS_ONCE(mm->flags);
1710 new = (old & ~MMF_DUMPABLE_MASK) | value;
1711 } while (cmpxchg(&mm->flags, old, new) != old);
1714 SYSCALL_DEFINE3(execve,
1715 const char __user *, filename,
1716 const char __user *const __user *, argv,
1717 const char __user *const __user *, envp)
1719 return do_execve(getname(filename), argv, envp);
1722 SYSCALL_DEFINE5(execveat,
1723 int, fd, const char __user *, filename,
1724 const char __user *const __user *, argv,
1725 const char __user *const __user *, envp,
1728 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1730 return do_execveat(fd,
1731 getname_flags(filename, lookup_flags, NULL),
1735 #ifdef CONFIG_COMPAT
1736 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1737 const compat_uptr_t __user *, argv,
1738 const compat_uptr_t __user *, envp)
1740 return compat_do_execve(getname(filename), argv, envp);
1743 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1744 const char __user *, filename,
1745 const compat_uptr_t __user *, argv,
1746 const compat_uptr_t __user *, envp,
1749 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1751 return compat_do_execveat(fd,
1752 getname_flags(filename, lookup_flags, NULL),