9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 pgprot_t protection_map[16] = {
93 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
94 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 pgprot_t vm_get_page_prot(unsigned long vm_flags)
99 return __pgprot(pgprot_val(protection_map[vm_flags &
100 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
101 pgprot_val(arch_vm_get_page_prot(vm_flags)));
103 EXPORT_SYMBOL(vm_get_page_prot);
105 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
107 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct *vma)
113 unsigned long vm_flags = vma->vm_flags;
115 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116 if (vma_wants_writenotify(vma)) {
117 vm_flags &= ~VM_SHARED;
118 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
124 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly;
127 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
131 * Make sure vm_committed_as in one cacheline and not cacheline shared with
132 * other variables. It can be updated by several CPUs frequently.
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
137 * The global memory commitment made in the system can be a metric
138 * that can be used to drive ballooning decisions when Linux is hosted
139 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140 * balancing memory across competing virtual machines that are hosted.
141 * Several metrics drive this policy engine including the guest reported
144 unsigned long vm_memory_committed(void)
146 return percpu_counter_read_positive(&vm_committed_as);
148 EXPORT_SYMBOL_GPL(vm_memory_committed);
151 * Check that a process has enough memory to allocate a new virtual
152 * mapping. 0 means there is enough memory for the allocation to
153 * succeed and -ENOMEM implies there is not.
155 * We currently support three overcommit policies, which are set via the
156 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
158 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159 * Additional code 2002 Jul 20 by Robert Love.
161 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
163 * Note this is a helper function intended to be used by LSMs which
164 * wish to use this logic.
166 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
168 long free, allowed, reserve;
170 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
171 -(s64)vm_committed_as_batch * num_online_cpus(),
172 "memory commitment underflow");
174 vm_acct_memory(pages);
177 * Sometimes we want to use more memory than we have
179 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
182 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
183 free = global_page_state(NR_FREE_PAGES);
184 free += global_page_state(NR_FILE_PAGES);
187 * shmem pages shouldn't be counted as free in this
188 * case, they can't be purged, only swapped out, and
189 * that won't affect the overall amount of available
190 * memory in the system.
192 free -= global_page_state(NR_SHMEM);
194 free += get_nr_swap_pages();
197 * Any slabs which are created with the
198 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199 * which are reclaimable, under pressure. The dentry
200 * cache and most inode caches should fall into this
202 free += global_page_state(NR_SLAB_RECLAIMABLE);
205 * Leave reserved pages. The pages are not for anonymous pages.
207 if (free <= totalreserve_pages)
210 free -= totalreserve_pages;
213 * Reserve some for root
216 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed = vm_commit_limit();
226 * Reserve some for root
229 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
232 * Don't let a single process grow so big a user can't recover
235 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
236 allowed -= min_t(long, mm->total_vm / 32, reserve);
239 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
242 vm_unacct_memory(pages);
248 * Requires inode->i_mapping->i_mmap_rwsem
250 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
251 struct file *file, struct address_space *mapping)
253 if (vma->vm_flags & VM_DENYWRITE)
254 atomic_inc(&file_inode(file)->i_writecount);
255 if (vma->vm_flags & VM_SHARED)
256 mapping_unmap_writable(mapping);
258 flush_dcache_mmap_lock(mapping);
259 vma_interval_tree_remove(vma, &mapping->i_mmap);
260 flush_dcache_mmap_unlock(mapping);
264 * Unlink a file-based vm structure from its interval tree, to hide
265 * vma from rmap and vmtruncate before freeing its page tables.
267 void unlink_file_vma(struct vm_area_struct *vma)
269 struct file *file = vma->vm_file;
272 struct address_space *mapping = file->f_mapping;
273 i_mmap_lock_write(mapping);
274 __remove_shared_vm_struct(vma, file, mapping);
275 i_mmap_unlock_write(mapping);
280 * Close a vm structure and free it, returning the next.
282 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
284 struct vm_area_struct *next = vma->vm_next;
287 if (vma->vm_ops && vma->vm_ops->close)
288 vma->vm_ops->close(vma);
291 mpol_put(vma_policy(vma));
292 kmem_cache_free(vm_area_cachep, vma);
296 static unsigned long do_brk(unsigned long addr, unsigned long len);
298 SYSCALL_DEFINE1(brk, unsigned long, brk)
300 unsigned long retval;
301 unsigned long newbrk, oldbrk;
302 struct mm_struct *mm = current->mm;
303 unsigned long min_brk;
306 down_write(&mm->mmap_sem);
308 #ifdef CONFIG_COMPAT_BRK
310 * CONFIG_COMPAT_BRK can still be overridden by setting
311 * randomize_va_space to 2, which will still cause mm->start_brk
312 * to be arbitrarily shifted
314 if (current->brk_randomized)
315 min_brk = mm->start_brk;
317 min_brk = mm->end_data;
319 min_brk = mm->start_brk;
325 * Check against rlimit here. If this check is done later after the test
326 * of oldbrk with newbrk then it can escape the test and let the data
327 * segment grow beyond its set limit the in case where the limit is
328 * not page aligned -Ram Gupta
330 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
331 mm->end_data, mm->start_data))
334 newbrk = PAGE_ALIGN(brk);
335 oldbrk = PAGE_ALIGN(mm->brk);
336 if (oldbrk == newbrk)
339 /* Always allow shrinking brk. */
340 if (brk <= mm->brk) {
341 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
346 /* Check against existing mmap mappings. */
347 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
350 /* Ok, looks good - let it rip. */
351 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
356 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
357 up_write(&mm->mmap_sem);
359 mm_populate(oldbrk, newbrk - oldbrk);
364 up_write(&mm->mmap_sem);
368 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
370 unsigned long max, subtree_gap;
373 max -= vma->vm_prev->vm_end;
374 if (vma->vm_rb.rb_left) {
375 subtree_gap = rb_entry(vma->vm_rb.rb_left,
376 struct vm_area_struct, vm_rb)->rb_subtree_gap;
377 if (subtree_gap > max)
380 if (vma->vm_rb.rb_right) {
381 subtree_gap = rb_entry(vma->vm_rb.rb_right,
382 struct vm_area_struct, vm_rb)->rb_subtree_gap;
383 if (subtree_gap > max)
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root *root)
392 int i = 0, j, bug = 0;
393 struct rb_node *nd, *pn = NULL;
394 unsigned long prev = 0, pend = 0;
396 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
397 struct vm_area_struct *vma;
398 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
399 if (vma->vm_start < prev) {
400 pr_emerg("vm_start %lx < prev %lx\n",
401 vma->vm_start, prev);
404 if (vma->vm_start < pend) {
405 pr_emerg("vm_start %lx < pend %lx\n",
406 vma->vm_start, pend);
409 if (vma->vm_start > vma->vm_end) {
410 pr_emerg("vm_start %lx > vm_end %lx\n",
411 vma->vm_start, vma->vm_end);
414 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
415 pr_emerg("free gap %lx, correct %lx\n",
417 vma_compute_subtree_gap(vma));
422 prev = vma->vm_start;
426 for (nd = pn; nd; nd = rb_prev(nd))
429 pr_emerg("backwards %d, forwards %d\n", j, i);
435 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
439 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
440 struct vm_area_struct *vma;
441 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
442 VM_BUG_ON_VMA(vma != ignore &&
443 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
448 static void validate_mm(struct mm_struct *mm)
452 unsigned long highest_address = 0;
453 struct vm_area_struct *vma = mm->mmap;
456 struct anon_vma_chain *avc;
458 vma_lock_anon_vma(vma);
459 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
460 anon_vma_interval_tree_verify(avc);
461 vma_unlock_anon_vma(vma);
462 highest_address = vma->vm_end;
466 if (i != mm->map_count) {
467 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
470 if (highest_address != mm->highest_vm_end) {
471 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
472 mm->highest_vm_end, highest_address);
475 i = browse_rb(&mm->mm_rb);
476 if (i != mm->map_count) {
478 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
481 VM_BUG_ON_MM(bug, mm);
484 #define validate_mm_rb(root, ignore) do { } while (0)
485 #define validate_mm(mm) do { } while (0)
488 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
489 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
492 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
493 * vma->vm_prev->vm_end values changed, without modifying the vma's position
496 static void vma_gap_update(struct vm_area_struct *vma)
499 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
500 * function that does exacltly what we want.
502 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
505 static inline void vma_rb_insert(struct vm_area_struct *vma,
506 struct rb_root *root)
508 /* All rb_subtree_gap values must be consistent prior to insertion */
509 validate_mm_rb(root, NULL);
511 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
514 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
517 * All rb_subtree_gap values must be consistent prior to erase,
518 * with the possible exception of the vma being erased.
520 validate_mm_rb(root, vma);
523 * Note rb_erase_augmented is a fairly large inline function,
524 * so make sure we instantiate it only once with our desired
525 * augmented rbtree callbacks.
527 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
531 * vma has some anon_vma assigned, and is already inserted on that
532 * anon_vma's interval trees.
534 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
535 * vma must be removed from the anon_vma's interval trees using
536 * anon_vma_interval_tree_pre_update_vma().
538 * After the update, the vma will be reinserted using
539 * anon_vma_interval_tree_post_update_vma().
541 * The entire update must be protected by exclusive mmap_sem and by
542 * the root anon_vma's mutex.
545 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
547 struct anon_vma_chain *avc;
549 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
550 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
554 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
556 struct anon_vma_chain *avc;
558 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
562 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
563 unsigned long end, struct vm_area_struct **pprev,
564 struct rb_node ***rb_link, struct rb_node **rb_parent)
566 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
568 __rb_link = &mm->mm_rb.rb_node;
569 rb_prev = __rb_parent = NULL;
572 struct vm_area_struct *vma_tmp;
574 __rb_parent = *__rb_link;
575 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
577 if (vma_tmp->vm_end > addr) {
578 /* Fail if an existing vma overlaps the area */
579 if (vma_tmp->vm_start < end)
581 __rb_link = &__rb_parent->rb_left;
583 rb_prev = __rb_parent;
584 __rb_link = &__rb_parent->rb_right;
590 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
591 *rb_link = __rb_link;
592 *rb_parent = __rb_parent;
596 static unsigned long count_vma_pages_range(struct mm_struct *mm,
597 unsigned long addr, unsigned long end)
599 unsigned long nr_pages = 0;
600 struct vm_area_struct *vma;
602 /* Find first overlaping mapping */
603 vma = find_vma_intersection(mm, addr, end);
607 nr_pages = (min(end, vma->vm_end) -
608 max(addr, vma->vm_start)) >> PAGE_SHIFT;
610 /* Iterate over the rest of the overlaps */
611 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
612 unsigned long overlap_len;
614 if (vma->vm_start > end)
617 overlap_len = min(end, vma->vm_end) - vma->vm_start;
618 nr_pages += overlap_len >> PAGE_SHIFT;
624 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
625 struct rb_node **rb_link, struct rb_node *rb_parent)
627 /* Update tracking information for the gap following the new vma. */
629 vma_gap_update(vma->vm_next);
631 mm->highest_vm_end = vma->vm_end;
634 * vma->vm_prev wasn't known when we followed the rbtree to find the
635 * correct insertion point for that vma. As a result, we could not
636 * update the vma vm_rb parents rb_subtree_gap values on the way down.
637 * So, we first insert the vma with a zero rb_subtree_gap value
638 * (to be consistent with what we did on the way down), and then
639 * immediately update the gap to the correct value. Finally we
640 * rebalance the rbtree after all augmented values have been set.
642 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
643 vma->rb_subtree_gap = 0;
645 vma_rb_insert(vma, &mm->mm_rb);
648 static void __vma_link_file(struct vm_area_struct *vma)
654 struct address_space *mapping = file->f_mapping;
656 if (vma->vm_flags & VM_DENYWRITE)
657 atomic_dec(&file_inode(file)->i_writecount);
658 if (vma->vm_flags & VM_SHARED)
659 atomic_inc(&mapping->i_mmap_writable);
661 flush_dcache_mmap_lock(mapping);
662 vma_interval_tree_insert(vma, &mapping->i_mmap);
663 flush_dcache_mmap_unlock(mapping);
668 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
669 struct vm_area_struct *prev, struct rb_node **rb_link,
670 struct rb_node *rb_parent)
672 __vma_link_list(mm, vma, prev, rb_parent);
673 __vma_link_rb(mm, vma, rb_link, rb_parent);
676 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev, struct rb_node **rb_link,
678 struct rb_node *rb_parent)
680 struct address_space *mapping = NULL;
683 mapping = vma->vm_file->f_mapping;
684 i_mmap_lock_write(mapping);
687 __vma_link(mm, vma, prev, rb_link, rb_parent);
688 __vma_link_file(vma);
691 i_mmap_unlock_write(mapping);
698 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
699 * mm's list and rbtree. It has already been inserted into the interval tree.
701 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
703 struct vm_area_struct *prev;
704 struct rb_node **rb_link, *rb_parent;
706 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
707 &prev, &rb_link, &rb_parent))
709 __vma_link(mm, vma, prev, rb_link, rb_parent);
714 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
715 struct vm_area_struct *prev)
717 struct vm_area_struct *next;
719 vma_rb_erase(vma, &mm->mm_rb);
720 prev->vm_next = next = vma->vm_next;
722 next->vm_prev = prev;
725 vmacache_invalidate(mm);
729 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
730 * is already present in an i_mmap tree without adjusting the tree.
731 * The following helper function should be used when such adjustments
732 * are necessary. The "insert" vma (if any) is to be inserted
733 * before we drop the necessary locks.
735 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
736 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
738 struct mm_struct *mm = vma->vm_mm;
739 struct vm_area_struct *next = vma->vm_next;
740 struct vm_area_struct *importer = NULL;
741 struct address_space *mapping = NULL;
742 struct rb_root *root = NULL;
743 struct anon_vma *anon_vma = NULL;
744 struct file *file = vma->vm_file;
745 bool start_changed = false, end_changed = false;
746 long adjust_next = 0;
749 if (next && !insert) {
750 struct vm_area_struct *exporter = NULL;
752 if (end >= next->vm_end) {
754 * vma expands, overlapping all the next, and
755 * perhaps the one after too (mprotect case 6).
757 again: remove_next = 1 + (end > next->vm_end);
761 } else if (end > next->vm_start) {
763 * vma expands, overlapping part of the next:
764 * mprotect case 5 shifting the boundary up.
766 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
769 } else if (end < vma->vm_end) {
771 * vma shrinks, and !insert tells it's not
772 * split_vma inserting another: so it must be
773 * mprotect case 4 shifting the boundary down.
775 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
781 * Easily overlooked: when mprotect shifts the boundary,
782 * make sure the expanding vma has anon_vma set if the
783 * shrinking vma had, to cover any anon pages imported.
785 if (exporter && exporter->anon_vma && !importer->anon_vma) {
788 importer->anon_vma = exporter->anon_vma;
789 error = anon_vma_clone(importer, exporter);
796 mapping = file->f_mapping;
797 root = &mapping->i_mmap;
798 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
801 uprobe_munmap(next, next->vm_start, next->vm_end);
803 i_mmap_lock_write(mapping);
806 * Put into interval tree now, so instantiated pages
807 * are visible to arm/parisc __flush_dcache_page
808 * throughout; but we cannot insert into address
809 * space until vma start or end is updated.
811 __vma_link_file(insert);
815 vma_adjust_trans_huge(vma, start, end, adjust_next);
817 anon_vma = vma->anon_vma;
818 if (!anon_vma && adjust_next)
819 anon_vma = next->anon_vma;
821 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
822 anon_vma != next->anon_vma, next);
823 anon_vma_lock_write(anon_vma);
824 anon_vma_interval_tree_pre_update_vma(vma);
826 anon_vma_interval_tree_pre_update_vma(next);
830 flush_dcache_mmap_lock(mapping);
831 vma_interval_tree_remove(vma, root);
833 vma_interval_tree_remove(next, root);
836 if (start != vma->vm_start) {
837 vma->vm_start = start;
838 start_changed = true;
840 if (end != vma->vm_end) {
844 vma->vm_pgoff = pgoff;
846 next->vm_start += adjust_next << PAGE_SHIFT;
847 next->vm_pgoff += adjust_next;
852 vma_interval_tree_insert(next, root);
853 vma_interval_tree_insert(vma, root);
854 flush_dcache_mmap_unlock(mapping);
859 * vma_merge has merged next into vma, and needs
860 * us to remove next before dropping the locks.
862 __vma_unlink(mm, next, vma);
864 __remove_shared_vm_struct(next, file, mapping);
867 * split_vma has split insert from vma, and needs
868 * us to insert it before dropping the locks
869 * (it may either follow vma or precede it).
871 __insert_vm_struct(mm, insert);
877 mm->highest_vm_end = end;
878 else if (!adjust_next)
879 vma_gap_update(next);
884 anon_vma_interval_tree_post_update_vma(vma);
886 anon_vma_interval_tree_post_update_vma(next);
887 anon_vma_unlock_write(anon_vma);
890 i_mmap_unlock_write(mapping);
901 uprobe_munmap(next, next->vm_start, next->vm_end);
905 anon_vma_merge(vma, next);
907 mpol_put(vma_policy(next));
908 kmem_cache_free(vm_area_cachep, next);
910 * In mprotect's case 6 (see comments on vma_merge),
911 * we must remove another next too. It would clutter
912 * up the code too much to do both in one go.
915 if (remove_next == 2)
918 vma_gap_update(next);
920 mm->highest_vm_end = end;
931 * If the vma has a ->close operation then the driver probably needs to release
932 * per-vma resources, so we don't attempt to merge those.
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935 struct file *file, unsigned long vm_flags,
936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
939 * VM_SOFTDIRTY should not prevent from VMA merging, if we
940 * match the flags but dirty bit -- the caller should mark
941 * merged VMA as dirty. If dirty bit won't be excluded from
942 * comparison, we increase pressue on the memory system forcing
943 * the kernel to generate new VMAs when old one could be
946 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
948 if (vma->vm_file != file)
950 if (vma->vm_ops && vma->vm_ops->close)
952 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958 struct anon_vma *anon_vma2,
959 struct vm_area_struct *vma)
962 * The list_is_singular() test is to avoid merging VMA cloned from
963 * parents. This can improve scalability caused by anon_vma lock.
965 if ((!anon_vma1 || !anon_vma2) && (!vma ||
966 list_is_singular(&vma->anon_vma_chain)))
968 return anon_vma1 == anon_vma2;
972 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973 * in front of (at a lower virtual address and file offset than) the vma.
975 * We cannot merge two vmas if they have differently assigned (non-NULL)
976 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
978 * We don't check here for the merged mmap wrapping around the end of pagecache
979 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980 * wrap, nor mmaps which cover the final page at index -1UL.
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984 struct anon_vma *anon_vma, struct file *file,
986 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
988 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990 if (vma->vm_pgoff == vm_pgoff)
997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998 * beyond (at a higher virtual address and file offset than) the vma.
1000 * We cannot merge two vmas if they have differently assigned (non-NULL)
1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005 struct anon_vma *anon_vma, struct file *file,
1007 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1009 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1012 vm_pglen = vma_pages(vma);
1013 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1020 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021 * whether that can be merged with its predecessor or its successor.
1022 * Or both (it neatly fills a hole).
1024 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025 * certain not to be mapped by the time vma_merge is called; but when
1026 * called for mprotect, it is certain to be already mapped (either at
1027 * an offset within prev, or at the start of next), and the flags of
1028 * this area are about to be changed to vm_flags - and the no-change
1029 * case has already been eliminated.
1031 * The following mprotect cases have to be considered, where AAAA is
1032 * the area passed down from mprotect_fixup, never extending beyond one
1033 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1035 * AAAA AAAA AAAA AAAA
1036 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1037 * cannot merge might become might become might become
1038 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1039 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1040 * mremap move: PPPPNNNNNNNN 8
1042 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1043 * might become case 1 below case 2 below case 3 below
1045 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1046 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1048 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1049 struct vm_area_struct *prev, unsigned long addr,
1050 unsigned long end, unsigned long vm_flags,
1051 struct anon_vma *anon_vma, struct file *file,
1052 pgoff_t pgoff, struct mempolicy *policy,
1053 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1055 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1056 struct vm_area_struct *area, *next;
1060 * We later require that vma->vm_flags == vm_flags,
1061 * so this tests vma->vm_flags & VM_SPECIAL, too.
1063 if (vm_flags & VM_SPECIAL)
1067 next = prev->vm_next;
1071 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1072 next = next->vm_next;
1075 * Can it merge with the predecessor?
1077 if (prev && prev->vm_end == addr &&
1078 mpol_equal(vma_policy(prev), policy) &&
1079 can_vma_merge_after(prev, vm_flags,
1080 anon_vma, file, pgoff,
1081 vm_userfaultfd_ctx)) {
1083 * OK, it can. Can we now merge in the successor as well?
1085 if (next && end == next->vm_start &&
1086 mpol_equal(policy, vma_policy(next)) &&
1087 can_vma_merge_before(next, vm_flags,
1090 vm_userfaultfd_ctx) &&
1091 is_mergeable_anon_vma(prev->anon_vma,
1092 next->anon_vma, NULL)) {
1094 err = vma_adjust(prev, prev->vm_start,
1095 next->vm_end, prev->vm_pgoff, NULL);
1096 } else /* cases 2, 5, 7 */
1097 err = vma_adjust(prev, prev->vm_start,
1098 end, prev->vm_pgoff, NULL);
1101 khugepaged_enter_vma_merge(prev, vm_flags);
1106 * Can this new request be merged in front of next?
1108 if (next && end == next->vm_start &&
1109 mpol_equal(policy, vma_policy(next)) &&
1110 can_vma_merge_before(next, vm_flags,
1111 anon_vma, file, pgoff+pglen,
1112 vm_userfaultfd_ctx)) {
1113 if (prev && addr < prev->vm_end) /* case 4 */
1114 err = vma_adjust(prev, prev->vm_start,
1115 addr, prev->vm_pgoff, NULL);
1116 else /* cases 3, 8 */
1117 err = vma_adjust(area, addr, next->vm_end,
1118 next->vm_pgoff - pglen, NULL);
1121 khugepaged_enter_vma_merge(area, vm_flags);
1129 * Rough compatbility check to quickly see if it's even worth looking
1130 * at sharing an anon_vma.
1132 * They need to have the same vm_file, and the flags can only differ
1133 * in things that mprotect may change.
1135 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1136 * we can merge the two vma's. For example, we refuse to merge a vma if
1137 * there is a vm_ops->close() function, because that indicates that the
1138 * driver is doing some kind of reference counting. But that doesn't
1139 * really matter for the anon_vma sharing case.
1141 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1143 return a->vm_end == b->vm_start &&
1144 mpol_equal(vma_policy(a), vma_policy(b)) &&
1145 a->vm_file == b->vm_file &&
1146 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1147 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1151 * Do some basic sanity checking to see if we can re-use the anon_vma
1152 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1153 * the same as 'old', the other will be the new one that is trying
1154 * to share the anon_vma.
1156 * NOTE! This runs with mm_sem held for reading, so it is possible that
1157 * the anon_vma of 'old' is concurrently in the process of being set up
1158 * by another page fault trying to merge _that_. But that's ok: if it
1159 * is being set up, that automatically means that it will be a singleton
1160 * acceptable for merging, so we can do all of this optimistically. But
1161 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1163 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1164 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1165 * is to return an anon_vma that is "complex" due to having gone through
1168 * We also make sure that the two vma's are compatible (adjacent,
1169 * and with the same memory policies). That's all stable, even with just
1170 * a read lock on the mm_sem.
1172 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1174 if (anon_vma_compatible(a, b)) {
1175 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1177 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1184 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1185 * neighbouring vmas for a suitable anon_vma, before it goes off
1186 * to allocate a new anon_vma. It checks because a repetitive
1187 * sequence of mprotects and faults may otherwise lead to distinct
1188 * anon_vmas being allocated, preventing vma merge in subsequent
1191 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1193 struct anon_vma *anon_vma;
1194 struct vm_area_struct *near;
1196 near = vma->vm_next;
1200 anon_vma = reusable_anon_vma(near, vma, near);
1204 near = vma->vm_prev;
1208 anon_vma = reusable_anon_vma(near, near, vma);
1213 * There's no absolute need to look only at touching neighbours:
1214 * we could search further afield for "compatible" anon_vmas.
1215 * But it would probably just be a waste of time searching,
1216 * or lead to too many vmas hanging off the same anon_vma.
1217 * We're trying to allow mprotect remerging later on,
1218 * not trying to minimize memory used for anon_vmas.
1224 * If a hint addr is less than mmap_min_addr change hint to be as
1225 * low as possible but still greater than mmap_min_addr
1227 static inline unsigned long round_hint_to_min(unsigned long hint)
1230 if (((void *)hint != NULL) &&
1231 (hint < mmap_min_addr))
1232 return PAGE_ALIGN(mmap_min_addr);
1236 static inline int mlock_future_check(struct mm_struct *mm,
1237 unsigned long flags,
1240 unsigned long locked, lock_limit;
1242 /* mlock MCL_FUTURE? */
1243 if (flags & VM_LOCKED) {
1244 locked = len >> PAGE_SHIFT;
1245 locked += mm->locked_vm;
1246 lock_limit = rlimit(RLIMIT_MEMLOCK);
1247 lock_limit >>= PAGE_SHIFT;
1248 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1255 * The caller must hold down_write(¤t->mm->mmap_sem).
1257 unsigned long do_mmap(struct file *file, unsigned long addr,
1258 unsigned long len, unsigned long prot,
1259 unsigned long flags, vm_flags_t vm_flags,
1260 unsigned long pgoff, unsigned long *populate)
1262 struct mm_struct *mm = current->mm;
1270 * Does the application expect PROT_READ to imply PROT_EXEC?
1272 * (the exception is when the underlying filesystem is noexec
1273 * mounted, in which case we dont add PROT_EXEC.)
1275 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1276 if (!(file && path_noexec(&file->f_path)))
1279 if (!(flags & MAP_FIXED))
1280 addr = round_hint_to_min(addr);
1282 /* Careful about overflows.. */
1283 len = PAGE_ALIGN(len);
1287 /* offset overflow? */
1288 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1291 /* Too many mappings? */
1292 if (mm->map_count > sysctl_max_map_count)
1295 /* Obtain the address to map to. we verify (or select) it and ensure
1296 * that it represents a valid section of the address space.
1298 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1299 if (offset_in_page(addr))
1302 /* Do simple checking here so the lower-level routines won't have
1303 * to. we assume access permissions have been handled by the open
1304 * of the memory object, so we don't do any here.
1306 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1307 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1309 if (flags & MAP_LOCKED)
1310 if (!can_do_mlock())
1313 if (mlock_future_check(mm, vm_flags, len))
1317 struct inode *inode = file_inode(file);
1319 switch (flags & MAP_TYPE) {
1321 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1325 * Make sure we don't allow writing to an append-only
1328 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1332 * Make sure there are no mandatory locks on the file.
1334 if (locks_verify_locked(file))
1337 vm_flags |= VM_SHARED | VM_MAYSHARE;
1338 if (!(file->f_mode & FMODE_WRITE))
1339 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1343 if (!(file->f_mode & FMODE_READ))
1345 if (path_noexec(&file->f_path)) {
1346 if (vm_flags & VM_EXEC)
1348 vm_flags &= ~VM_MAYEXEC;
1351 if (!file->f_op->mmap)
1353 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1361 switch (flags & MAP_TYPE) {
1363 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1369 vm_flags |= VM_SHARED | VM_MAYSHARE;
1373 * Set pgoff according to addr for anon_vma.
1375 pgoff = addr >> PAGE_SHIFT;
1383 * Set 'VM_NORESERVE' if we should not account for the
1384 * memory use of this mapping.
1386 if (flags & MAP_NORESERVE) {
1387 /* We honor MAP_NORESERVE if allowed to overcommit */
1388 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1389 vm_flags |= VM_NORESERVE;
1391 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1392 if (file && is_file_hugepages(file))
1393 vm_flags |= VM_NORESERVE;
1396 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1397 if (!IS_ERR_VALUE(addr) &&
1398 ((vm_flags & VM_LOCKED) ||
1399 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1404 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1405 unsigned long, prot, unsigned long, flags,
1406 unsigned long, fd, unsigned long, pgoff)
1408 struct file *file = NULL;
1409 unsigned long retval;
1411 if (!(flags & MAP_ANONYMOUS)) {
1412 audit_mmap_fd(fd, flags);
1416 if (is_file_hugepages(file))
1417 len = ALIGN(len, huge_page_size(hstate_file(file)));
1419 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1421 } else if (flags & MAP_HUGETLB) {
1422 struct user_struct *user = NULL;
1425 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1429 len = ALIGN(len, huge_page_size(hs));
1431 * VM_NORESERVE is used because the reservations will be
1432 * taken when vm_ops->mmap() is called
1433 * A dummy user value is used because we are not locking
1434 * memory so no accounting is necessary
1436 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1438 &user, HUGETLB_ANONHUGE_INODE,
1439 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441 return PTR_ERR(file);
1444 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1446 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct {
1458 unsigned long flags;
1460 unsigned long offset;
1463 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 struct mmap_arg_struct a;
1467 if (copy_from_user(&a, arg, sizeof(a)))
1469 if (offset_in_page(a.offset))
1472 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1473 a.offset >> PAGE_SHIFT);
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1478 * Some shared mappigns will want the pages marked read-only
1479 * to track write events. If so, we'll downgrade vm_page_prot
1480 * to the private version (using protection_map[] without the
1483 int vma_wants_writenotify(struct vm_area_struct *vma)
1485 vm_flags_t vm_flags = vma->vm_flags;
1486 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1488 /* If it was private or non-writable, the write bit is already clear */
1489 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1492 /* The backer wishes to know when pages are first written to? */
1493 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1496 /* The open routine did something to the protections that pgprot_modify
1497 * won't preserve? */
1498 if (pgprot_val(vma->vm_page_prot) !=
1499 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1502 /* Do we need to track softdirty? */
1503 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1506 /* Specialty mapping? */
1507 if (vm_flags & VM_PFNMAP)
1510 /* Can the mapping track the dirty pages? */
1511 return vma->vm_file && vma->vm_file->f_mapping &&
1512 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1516 * We account for memory if it's a private writeable mapping,
1517 * not hugepages and VM_NORESERVE wasn't set.
1519 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1522 * hugetlb has its own accounting separate from the core VM
1523 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1525 if (file && is_file_hugepages(file))
1528 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1531 unsigned long mmap_region(struct file *file, unsigned long addr,
1532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1534 struct mm_struct *mm = current->mm;
1535 struct vm_area_struct *vma, *prev;
1537 struct rb_node **rb_link, *rb_parent;
1538 unsigned long charged = 0;
1540 /* Check against address space limit. */
1541 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1542 unsigned long nr_pages;
1545 * MAP_FIXED may remove pages of mappings that intersects with
1546 * requested mapping. Account for the pages it would unmap.
1548 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1550 if (!may_expand_vm(mm, vm_flags,
1551 (len >> PAGE_SHIFT) - nr_pages))
1555 /* Clear old maps */
1556 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1558 if (do_munmap(mm, addr, len))
1563 * Private writable mapping: check memory availability
1565 if (accountable_mapping(file, vm_flags)) {
1566 charged = len >> PAGE_SHIFT;
1567 if (security_vm_enough_memory_mm(mm, charged))
1569 vm_flags |= VM_ACCOUNT;
1573 * Can we just expand an old mapping?
1575 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1576 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1581 * Determine the object being mapped and call the appropriate
1582 * specific mapper. the address has already been validated, but
1583 * not unmapped, but the maps are removed from the list.
1585 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1592 vma->vm_start = addr;
1593 vma->vm_end = addr + len;
1594 vma->vm_flags = vm_flags;
1595 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1596 vma->vm_pgoff = pgoff;
1597 INIT_LIST_HEAD(&vma->anon_vma_chain);
1600 if (vm_flags & VM_DENYWRITE) {
1601 error = deny_write_access(file);
1605 if (vm_flags & VM_SHARED) {
1606 error = mapping_map_writable(file->f_mapping);
1608 goto allow_write_and_free_vma;
1611 /* ->mmap() can change vma->vm_file, but must guarantee that
1612 * vma_link() below can deny write-access if VM_DENYWRITE is set
1613 * and map writably if VM_SHARED is set. This usually means the
1614 * new file must not have been exposed to user-space, yet.
1616 vma->vm_file = get_file(file);
1617 error = file->f_op->mmap(file, vma);
1619 goto unmap_and_free_vma;
1621 /* Can addr have changed??
1623 * Answer: Yes, several device drivers can do it in their
1624 * f_op->mmap method. -DaveM
1625 * Bug: If addr is changed, prev, rb_link, rb_parent should
1626 * be updated for vma_link()
1628 WARN_ON_ONCE(addr != vma->vm_start);
1630 addr = vma->vm_start;
1631 vm_flags = vma->vm_flags;
1632 } else if (vm_flags & VM_SHARED) {
1633 error = shmem_zero_setup(vma);
1638 vma_link(mm, vma, prev, rb_link, rb_parent);
1639 /* Once vma denies write, undo our temporary denial count */
1641 if (vm_flags & VM_SHARED)
1642 mapping_unmap_writable(file->f_mapping);
1643 if (vm_flags & VM_DENYWRITE)
1644 allow_write_access(file);
1646 file = vma->vm_file;
1648 perf_event_mmap(vma);
1650 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1651 if (vm_flags & VM_LOCKED) {
1652 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1653 vma == get_gate_vma(current->mm)))
1654 mm->locked_vm += (len >> PAGE_SHIFT);
1656 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1663 * New (or expanded) vma always get soft dirty status.
1664 * Otherwise user-space soft-dirty page tracker won't
1665 * be able to distinguish situation when vma area unmapped,
1666 * then new mapped in-place (which must be aimed as
1667 * a completely new data area).
1669 vma->vm_flags |= VM_SOFTDIRTY;
1671 vma_set_page_prot(vma);
1676 vma->vm_file = NULL;
1679 /* Undo any partial mapping done by a device driver. */
1680 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1682 if (vm_flags & VM_SHARED)
1683 mapping_unmap_writable(file->f_mapping);
1684 allow_write_and_free_vma:
1685 if (vm_flags & VM_DENYWRITE)
1686 allow_write_access(file);
1688 kmem_cache_free(vm_area_cachep, vma);
1691 vm_unacct_memory(charged);
1695 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1698 * We implement the search by looking for an rbtree node that
1699 * immediately follows a suitable gap. That is,
1700 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701 * - gap_end = vma->vm_start >= info->low_limit + length;
1702 * - gap_end - gap_start >= length
1705 struct mm_struct *mm = current->mm;
1706 struct vm_area_struct *vma;
1707 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1709 /* Adjust search length to account for worst case alignment overhead */
1710 length = info->length + info->align_mask;
1711 if (length < info->length)
1714 /* Adjust search limits by the desired length */
1715 if (info->high_limit < length)
1717 high_limit = info->high_limit - length;
1719 if (info->low_limit > high_limit)
1721 low_limit = info->low_limit + length;
1723 /* Check if rbtree root looks promising */
1724 if (RB_EMPTY_ROOT(&mm->mm_rb))
1726 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1727 if (vma->rb_subtree_gap < length)
1731 /* Visit left subtree if it looks promising */
1732 gap_end = vma->vm_start;
1733 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1734 struct vm_area_struct *left =
1735 rb_entry(vma->vm_rb.rb_left,
1736 struct vm_area_struct, vm_rb);
1737 if (left->rb_subtree_gap >= length) {
1743 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1745 /* Check if current node has a suitable gap */
1746 if (gap_start > high_limit)
1748 if (gap_end >= low_limit && gap_end - gap_start >= length)
1751 /* Visit right subtree if it looks promising */
1752 if (vma->vm_rb.rb_right) {
1753 struct vm_area_struct *right =
1754 rb_entry(vma->vm_rb.rb_right,
1755 struct vm_area_struct, vm_rb);
1756 if (right->rb_subtree_gap >= length) {
1762 /* Go back up the rbtree to find next candidate node */
1764 struct rb_node *prev = &vma->vm_rb;
1765 if (!rb_parent(prev))
1767 vma = rb_entry(rb_parent(prev),
1768 struct vm_area_struct, vm_rb);
1769 if (prev == vma->vm_rb.rb_left) {
1770 gap_start = vma->vm_prev->vm_end;
1771 gap_end = vma->vm_start;
1778 /* Check highest gap, which does not precede any rbtree node */
1779 gap_start = mm->highest_vm_end;
1780 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1781 if (gap_start > high_limit)
1785 /* We found a suitable gap. Clip it with the original low_limit. */
1786 if (gap_start < info->low_limit)
1787 gap_start = info->low_limit;
1789 /* Adjust gap address to the desired alignment */
1790 gap_start += (info->align_offset - gap_start) & info->align_mask;
1792 VM_BUG_ON(gap_start + info->length > info->high_limit);
1793 VM_BUG_ON(gap_start + info->length > gap_end);
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1799 struct mm_struct *mm = current->mm;
1800 struct vm_area_struct *vma;
1801 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1803 /* Adjust search length to account for worst case alignment overhead */
1804 length = info->length + info->align_mask;
1805 if (length < info->length)
1809 * Adjust search limits by the desired length.
1810 * See implementation comment at top of unmapped_area().
1812 gap_end = info->high_limit;
1813 if (gap_end < length)
1815 high_limit = gap_end - length;
1817 if (info->low_limit > high_limit)
1819 low_limit = info->low_limit + length;
1821 /* Check highest gap, which does not precede any rbtree node */
1822 gap_start = mm->highest_vm_end;
1823 if (gap_start <= high_limit)
1826 /* Check if rbtree root looks promising */
1827 if (RB_EMPTY_ROOT(&mm->mm_rb))
1829 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830 if (vma->rb_subtree_gap < length)
1834 /* Visit right subtree if it looks promising */
1835 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1836 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1837 struct vm_area_struct *right =
1838 rb_entry(vma->vm_rb.rb_right,
1839 struct vm_area_struct, vm_rb);
1840 if (right->rb_subtree_gap >= length) {
1847 /* Check if current node has a suitable gap */
1848 gap_end = vma->vm_start;
1849 if (gap_end < low_limit)
1851 if (gap_start <= high_limit && gap_end - gap_start >= length)
1854 /* Visit left subtree if it looks promising */
1855 if (vma->vm_rb.rb_left) {
1856 struct vm_area_struct *left =
1857 rb_entry(vma->vm_rb.rb_left,
1858 struct vm_area_struct, vm_rb);
1859 if (left->rb_subtree_gap >= length) {
1865 /* Go back up the rbtree to find next candidate node */
1867 struct rb_node *prev = &vma->vm_rb;
1868 if (!rb_parent(prev))
1870 vma = rb_entry(rb_parent(prev),
1871 struct vm_area_struct, vm_rb);
1872 if (prev == vma->vm_rb.rb_right) {
1873 gap_start = vma->vm_prev ?
1874 vma->vm_prev->vm_end : 0;
1881 /* We found a suitable gap. Clip it with the original high_limit. */
1882 if (gap_end > info->high_limit)
1883 gap_end = info->high_limit;
1886 /* Compute highest gap address at the desired alignment */
1887 gap_end -= info->length;
1888 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1890 VM_BUG_ON(gap_end < info->low_limit);
1891 VM_BUG_ON(gap_end < gap_start);
1895 /* Get an address range which is currently unmapped.
1896 * For shmat() with addr=0.
1898 * Ugly calling convention alert:
1899 * Return value with the low bits set means error value,
1901 * if (ret & ~PAGE_MASK)
1904 * This function "knows" that -ENOMEM has the bits set.
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1908 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1909 unsigned long len, unsigned long pgoff, unsigned long flags)
1911 struct mm_struct *mm = current->mm;
1912 struct vm_area_struct *vma;
1913 struct vm_unmapped_area_info info;
1915 if (len > TASK_SIZE - mmap_min_addr)
1918 if (flags & MAP_FIXED)
1922 addr = PAGE_ALIGN(addr);
1923 vma = find_vma(mm, addr);
1924 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1925 (!vma || addr + len <= vma->vm_start))
1931 info.low_limit = mm->mmap_base;
1932 info.high_limit = TASK_SIZE;
1933 info.align_mask = 0;
1934 return vm_unmapped_area(&info);
1939 * This mmap-allocator allocates new areas top-down from below the
1940 * stack's low limit (the base):
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1944 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1945 const unsigned long len, const unsigned long pgoff,
1946 const unsigned long flags)
1948 struct vm_area_struct *vma;
1949 struct mm_struct *mm = current->mm;
1950 unsigned long addr = addr0;
1951 struct vm_unmapped_area_info info;
1953 /* requested length too big for entire address space */
1954 if (len > TASK_SIZE - mmap_min_addr)
1957 if (flags & MAP_FIXED)
1960 /* requesting a specific address */
1962 addr = PAGE_ALIGN(addr);
1963 vma = find_vma(mm, addr);
1964 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1965 (!vma || addr + len <= vma->vm_start))
1969 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1971 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1972 info.high_limit = mm->mmap_base;
1973 info.align_mask = 0;
1974 addr = vm_unmapped_area(&info);
1977 * A failed mmap() very likely causes application failure,
1978 * so fall back to the bottom-up function here. This scenario
1979 * can happen with large stack limits and large mmap()
1982 if (offset_in_page(addr)) {
1983 VM_BUG_ON(addr != -ENOMEM);
1985 info.low_limit = TASK_UNMAPPED_BASE;
1986 info.high_limit = TASK_SIZE;
1987 addr = vm_unmapped_area(&info);
1995 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1996 unsigned long pgoff, unsigned long flags)
1998 unsigned long (*get_area)(struct file *, unsigned long,
1999 unsigned long, unsigned long, unsigned long);
2001 unsigned long error = arch_mmap_check(addr, len, flags);
2005 /* Careful about overflows.. */
2006 if (len > TASK_SIZE)
2009 get_area = current->mm->get_unmapped_area;
2010 if (file && file->f_op->get_unmapped_area)
2011 get_area = file->f_op->get_unmapped_area;
2012 addr = get_area(file, addr, len, pgoff, flags);
2013 if (IS_ERR_VALUE(addr))
2016 if (addr > TASK_SIZE - len)
2018 if (offset_in_page(addr))
2021 addr = arch_rebalance_pgtables(addr, len);
2022 error = security_mmap_addr(addr);
2023 return error ? error : addr;
2026 EXPORT_SYMBOL(get_unmapped_area);
2028 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2029 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2031 struct rb_node *rb_node;
2032 struct vm_area_struct *vma;
2034 /* Check the cache first. */
2035 vma = vmacache_find(mm, addr);
2039 rb_node = mm->mm_rb.rb_node;
2042 struct vm_area_struct *tmp;
2044 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2046 if (tmp->vm_end > addr) {
2048 if (tmp->vm_start <= addr)
2050 rb_node = rb_node->rb_left;
2052 rb_node = rb_node->rb_right;
2056 vmacache_update(addr, vma);
2060 EXPORT_SYMBOL(find_vma);
2063 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2065 struct vm_area_struct *
2066 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2067 struct vm_area_struct **pprev)
2069 struct vm_area_struct *vma;
2071 vma = find_vma(mm, addr);
2073 *pprev = vma->vm_prev;
2075 struct rb_node *rb_node = mm->mm_rb.rb_node;
2078 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2079 rb_node = rb_node->rb_right;
2086 * Verify that the stack growth is acceptable and
2087 * update accounting. This is shared with both the
2088 * grow-up and grow-down cases.
2090 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2092 struct mm_struct *mm = vma->vm_mm;
2093 struct rlimit *rlim = current->signal->rlim;
2094 unsigned long new_start, actual_size;
2096 /* address space limit tests */
2097 if (!may_expand_vm(mm, vma->vm_flags, grow))
2100 /* Stack limit test */
2102 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2103 actual_size -= PAGE_SIZE;
2104 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2107 /* mlock limit tests */
2108 if (vma->vm_flags & VM_LOCKED) {
2109 unsigned long locked;
2110 unsigned long limit;
2111 locked = mm->locked_vm + grow;
2112 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2113 limit >>= PAGE_SHIFT;
2114 if (locked > limit && !capable(CAP_IPC_LOCK))
2118 /* Check to ensure the stack will not grow into a hugetlb-only region */
2119 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2121 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2125 * Overcommit.. This must be the final test, as it will
2126 * update security statistics.
2128 if (security_vm_enough_memory_mm(mm, grow))
2134 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2136 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2137 * vma is the last one with address > vma->vm_end. Have to extend vma.
2139 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2141 struct mm_struct *mm = vma->vm_mm;
2144 if (!(vma->vm_flags & VM_GROWSUP))
2148 * We must make sure the anon_vma is allocated
2149 * so that the anon_vma locking is not a noop.
2151 if (unlikely(anon_vma_prepare(vma)))
2153 vma_lock_anon_vma(vma);
2156 * vma->vm_start/vm_end cannot change under us because the caller
2157 * is required to hold the mmap_sem in read mode. We need the
2158 * anon_vma lock to serialize against concurrent expand_stacks.
2159 * Also guard against wrapping around to address 0.
2161 if (address < PAGE_ALIGN(address+4))
2162 address = PAGE_ALIGN(address+4);
2164 vma_unlock_anon_vma(vma);
2169 /* Somebody else might have raced and expanded it already */
2170 if (address > vma->vm_end) {
2171 unsigned long size, grow;
2173 size = address - vma->vm_start;
2174 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2177 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2178 error = acct_stack_growth(vma, size, grow);
2181 * vma_gap_update() doesn't support concurrent
2182 * updates, but we only hold a shared mmap_sem
2183 * lock here, so we need to protect against
2184 * concurrent vma expansions.
2185 * vma_lock_anon_vma() doesn't help here, as
2186 * we don't guarantee that all growable vmas
2187 * in a mm share the same root anon vma.
2188 * So, we reuse mm->page_table_lock to guard
2189 * against concurrent vma expansions.
2191 spin_lock(&mm->page_table_lock);
2192 if (vma->vm_flags & VM_LOCKED)
2193 mm->locked_vm += grow;
2194 vm_stat_account(mm, vma->vm_flags, grow);
2195 anon_vma_interval_tree_pre_update_vma(vma);
2196 vma->vm_end = address;
2197 anon_vma_interval_tree_post_update_vma(vma);
2199 vma_gap_update(vma->vm_next);
2201 mm->highest_vm_end = address;
2202 spin_unlock(&mm->page_table_lock);
2204 perf_event_mmap(vma);
2208 vma_unlock_anon_vma(vma);
2209 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2213 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2216 * vma is the first one with address < vma->vm_start. Have to extend vma.
2218 int expand_downwards(struct vm_area_struct *vma,
2219 unsigned long address)
2221 struct mm_struct *mm = vma->vm_mm;
2225 * We must make sure the anon_vma is allocated
2226 * so that the anon_vma locking is not a noop.
2228 if (unlikely(anon_vma_prepare(vma)))
2231 address &= PAGE_MASK;
2232 error = security_mmap_addr(address);
2236 vma_lock_anon_vma(vma);
2239 * vma->vm_start/vm_end cannot change under us because the caller
2240 * is required to hold the mmap_sem in read mode. We need the
2241 * anon_vma lock to serialize against concurrent expand_stacks.
2244 /* Somebody else might have raced and expanded it already */
2245 if (address < vma->vm_start) {
2246 unsigned long size, grow;
2248 size = vma->vm_end - address;
2249 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2252 if (grow <= vma->vm_pgoff) {
2253 error = acct_stack_growth(vma, size, grow);
2256 * vma_gap_update() doesn't support concurrent
2257 * updates, but we only hold a shared mmap_sem
2258 * lock here, so we need to protect against
2259 * concurrent vma expansions.
2260 * vma_lock_anon_vma() doesn't help here, as
2261 * we don't guarantee that all growable vmas
2262 * in a mm share the same root anon vma.
2263 * So, we reuse mm->page_table_lock to guard
2264 * against concurrent vma expansions.
2266 spin_lock(&mm->page_table_lock);
2267 if (vma->vm_flags & VM_LOCKED)
2268 mm->locked_vm += grow;
2269 vm_stat_account(mm, vma->vm_flags, grow);
2270 anon_vma_interval_tree_pre_update_vma(vma);
2271 vma->vm_start = address;
2272 vma->vm_pgoff -= grow;
2273 anon_vma_interval_tree_post_update_vma(vma);
2274 vma_gap_update(vma);
2275 spin_unlock(&mm->page_table_lock);
2277 perf_event_mmap(vma);
2281 vma_unlock_anon_vma(vma);
2282 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2288 * Note how expand_stack() refuses to expand the stack all the way to
2289 * abut the next virtual mapping, *unless* that mapping itself is also
2290 * a stack mapping. We want to leave room for a guard page, after all
2291 * (the guard page itself is not added here, that is done by the
2292 * actual page faulting logic)
2294 * This matches the behavior of the guard page logic (see mm/memory.c:
2295 * check_stack_guard_page()), which only allows the guard page to be
2296 * removed under these circumstances.
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2301 struct vm_area_struct *next;
2303 address &= PAGE_MASK;
2304 next = vma->vm_next;
2305 if (next && next->vm_start == address + PAGE_SIZE) {
2306 if (!(next->vm_flags & VM_GROWSUP))
2309 return expand_upwards(vma, address);
2312 struct vm_area_struct *
2313 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 struct vm_area_struct *vma, *prev;
2318 vma = find_vma_prev(mm, addr, &prev);
2319 if (vma && (vma->vm_start <= addr))
2321 if (!prev || expand_stack(prev, addr))
2323 if (prev->vm_flags & VM_LOCKED)
2324 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2328 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 struct vm_area_struct *prev;
2332 address &= PAGE_MASK;
2333 prev = vma->vm_prev;
2334 if (prev && prev->vm_end == address) {
2335 if (!(prev->vm_flags & VM_GROWSDOWN))
2338 return expand_downwards(vma, address);
2341 struct vm_area_struct *
2342 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2344 struct vm_area_struct *vma;
2345 unsigned long start;
2348 vma = find_vma(mm, addr);
2351 if (vma->vm_start <= addr)
2353 if (!(vma->vm_flags & VM_GROWSDOWN))
2355 start = vma->vm_start;
2356 if (expand_stack(vma, addr))
2358 if (vma->vm_flags & VM_LOCKED)
2359 populate_vma_page_range(vma, addr, start, NULL);
2364 EXPORT_SYMBOL_GPL(find_extend_vma);
2367 * Ok - we have the memory areas we should free on the vma list,
2368 * so release them, and do the vma updates.
2370 * Called with the mm semaphore held.
2372 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2374 unsigned long nr_accounted = 0;
2376 /* Update high watermark before we lower total_vm */
2377 update_hiwater_vm(mm);
2379 long nrpages = vma_pages(vma);
2381 if (vma->vm_flags & VM_ACCOUNT)
2382 nr_accounted += nrpages;
2383 vm_stat_account(mm, vma->vm_flags, -nrpages);
2384 vma = remove_vma(vma);
2386 vm_unacct_memory(nr_accounted);
2391 * Get rid of page table information in the indicated region.
2393 * Called with the mm semaphore held.
2395 static void unmap_region(struct mm_struct *mm,
2396 struct vm_area_struct *vma, struct vm_area_struct *prev,
2397 unsigned long start, unsigned long end)
2399 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2400 struct mmu_gather tlb;
2403 tlb_gather_mmu(&tlb, mm, start, end);
2404 update_hiwater_rss(mm);
2405 unmap_vmas(&tlb, vma, start, end);
2406 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2407 next ? next->vm_start : USER_PGTABLES_CEILING);
2408 tlb_finish_mmu(&tlb, start, end);
2412 * Create a list of vma's touched by the unmap, removing them from the mm's
2413 * vma list as we go..
2416 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2417 struct vm_area_struct *prev, unsigned long end)
2419 struct vm_area_struct **insertion_point;
2420 struct vm_area_struct *tail_vma = NULL;
2422 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2423 vma->vm_prev = NULL;
2425 vma_rb_erase(vma, &mm->mm_rb);
2429 } while (vma && vma->vm_start < end);
2430 *insertion_point = vma;
2432 vma->vm_prev = prev;
2433 vma_gap_update(vma);
2435 mm->highest_vm_end = prev ? prev->vm_end : 0;
2436 tail_vma->vm_next = NULL;
2438 /* Kill the cache */
2439 vmacache_invalidate(mm);
2443 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2444 * munmap path where it doesn't make sense to fail.
2446 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447 unsigned long addr, int new_below)
2449 struct vm_area_struct *new;
2452 if (is_vm_hugetlb_page(vma) && (addr &
2453 ~(huge_page_mask(hstate_vma(vma)))))
2456 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2460 /* most fields are the same, copy all, and then fixup */
2463 INIT_LIST_HEAD(&new->anon_vma_chain);
2468 new->vm_start = addr;
2469 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2472 err = vma_dup_policy(vma, new);
2476 err = anon_vma_clone(new, vma);
2481 get_file(new->vm_file);
2483 if (new->vm_ops && new->vm_ops->open)
2484 new->vm_ops->open(new);
2487 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2488 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2490 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2496 /* Clean everything up if vma_adjust failed. */
2497 if (new->vm_ops && new->vm_ops->close)
2498 new->vm_ops->close(new);
2501 unlink_anon_vmas(new);
2503 mpol_put(vma_policy(new));
2505 kmem_cache_free(vm_area_cachep, new);
2510 * Split a vma into two pieces at address 'addr', a new vma is allocated
2511 * either for the first part or the tail.
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514 unsigned long addr, int new_below)
2516 if (mm->map_count >= sysctl_max_map_count)
2519 return __split_vma(mm, vma, addr, new_below);
2522 /* Munmap is split into 2 main parts -- this part which finds
2523 * what needs doing, and the areas themselves, which do the
2524 * work. This now handles partial unmappings.
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2530 struct vm_area_struct *vma, *prev, *last;
2532 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2535 len = PAGE_ALIGN(len);
2539 /* Find the first overlapping VMA */
2540 vma = find_vma(mm, start);
2543 prev = vma->vm_prev;
2544 /* we have start < vma->vm_end */
2546 /* if it doesn't overlap, we have nothing.. */
2548 if (vma->vm_start >= end)
2552 * If we need to split any vma, do it now to save pain later.
2554 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 * places tmp vma above, and higher split_vma places tmp vma below.
2558 if (start > vma->vm_start) {
2562 * Make sure that map_count on return from munmap() will
2563 * not exceed its limit; but let map_count go just above
2564 * its limit temporarily, to help free resources as expected.
2566 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2569 error = __split_vma(mm, vma, start, 0);
2575 /* Does it split the last one? */
2576 last = find_vma(mm, end);
2577 if (last && end > last->vm_start) {
2578 int error = __split_vma(mm, last, end, 1);
2582 vma = prev ? prev->vm_next : mm->mmap;
2585 * unlock any mlock()ed ranges before detaching vmas
2587 if (mm->locked_vm) {
2588 struct vm_area_struct *tmp = vma;
2589 while (tmp && tmp->vm_start < end) {
2590 if (tmp->vm_flags & VM_LOCKED) {
2591 mm->locked_vm -= vma_pages(tmp);
2592 munlock_vma_pages_all(tmp);
2599 * Remove the vma's, and unmap the actual pages
2601 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 unmap_region(mm, vma, prev, start, end);
2604 arch_unmap(mm, vma, start, end);
2606 /* Fix up all other VM information */
2607 remove_vma_list(mm, vma);
2612 int vm_munmap(unsigned long start, size_t len)
2615 struct mm_struct *mm = current->mm;
2617 down_write(&mm->mmap_sem);
2618 ret = do_munmap(mm, start, len);
2619 up_write(&mm->mmap_sem);
2622 EXPORT_SYMBOL(vm_munmap);
2624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2626 profile_munmap(addr);
2627 return vm_munmap(addr, len);
2632 * Emulation of deprecated remap_file_pages() syscall.
2634 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2635 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2638 struct mm_struct *mm = current->mm;
2639 struct vm_area_struct *vma;
2640 unsigned long populate = 0;
2641 unsigned long ret = -EINVAL;
2644 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645 "See Documentation/vm/remap_file_pages.txt.\n",
2646 current->comm, current->pid);
2650 start = start & PAGE_MASK;
2651 size = size & PAGE_MASK;
2653 if (start + size <= start)
2656 /* Does pgoff wrap? */
2657 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2660 down_write(&mm->mmap_sem);
2661 vma = find_vma(mm, start);
2663 if (!vma || !(vma->vm_flags & VM_SHARED))
2666 if (start < vma->vm_start || start + size > vma->vm_end)
2669 if (pgoff == linear_page_index(vma, start)) {
2674 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2675 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2676 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2678 flags &= MAP_NONBLOCK;
2679 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2680 if (vma->vm_flags & VM_LOCKED) {
2681 flags |= MAP_LOCKED;
2682 /* drop PG_Mlocked flag for over-mapped range */
2683 munlock_vma_pages_range(vma, start, start + size);
2686 file = get_file(vma->vm_file);
2687 ret = do_mmap_pgoff(vma->vm_file, start, size,
2688 prot, flags, pgoff, &populate);
2691 up_write(&mm->mmap_sem);
2693 mm_populate(ret, populate);
2694 if (!IS_ERR_VALUE(ret))
2699 static inline void verify_mm_writelocked(struct mm_struct *mm)
2701 #ifdef CONFIG_DEBUG_VM
2702 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2704 up_read(&mm->mmap_sem);
2710 * this is really a simplified "do_mmap". it only handles
2711 * anonymous maps. eventually we may be able to do some
2712 * brk-specific accounting here.
2714 static unsigned long do_brk(unsigned long addr, unsigned long len)
2716 struct mm_struct *mm = current->mm;
2717 struct vm_area_struct *vma, *prev;
2718 unsigned long flags;
2719 struct rb_node **rb_link, *rb_parent;
2720 pgoff_t pgoff = addr >> PAGE_SHIFT;
2723 len = PAGE_ALIGN(len);
2727 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2729 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2730 if (offset_in_page(error))
2733 error = mlock_future_check(mm, mm->def_flags, len);
2738 * mm->mmap_sem is required to protect against another thread
2739 * changing the mappings in case we sleep.
2741 verify_mm_writelocked(mm);
2744 * Clear old maps. this also does some error checking for us
2746 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2748 if (do_munmap(mm, addr, len))
2752 /* Check against address space limits *after* clearing old maps... */
2753 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2756 if (mm->map_count > sysctl_max_map_count)
2759 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2762 /* Can we just expand an old private anonymous mapping? */
2763 vma = vma_merge(mm, prev, addr, addr + len, flags,
2764 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2769 * create a vma struct for an anonymous mapping
2771 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2773 vm_unacct_memory(len >> PAGE_SHIFT);
2777 INIT_LIST_HEAD(&vma->anon_vma_chain);
2779 vma->vm_start = addr;
2780 vma->vm_end = addr + len;
2781 vma->vm_pgoff = pgoff;
2782 vma->vm_flags = flags;
2783 vma->vm_page_prot = vm_get_page_prot(flags);
2784 vma_link(mm, vma, prev, rb_link, rb_parent);
2786 perf_event_mmap(vma);
2787 mm->total_vm += len >> PAGE_SHIFT;
2788 mm->data_vm += len >> PAGE_SHIFT;
2789 if (flags & VM_LOCKED)
2790 mm->locked_vm += (len >> PAGE_SHIFT);
2791 vma->vm_flags |= VM_SOFTDIRTY;
2795 unsigned long vm_brk(unsigned long addr, unsigned long len)
2797 struct mm_struct *mm = current->mm;
2801 down_write(&mm->mmap_sem);
2802 ret = do_brk(addr, len);
2803 populate = ((mm->def_flags & VM_LOCKED) != 0);
2804 up_write(&mm->mmap_sem);
2806 mm_populate(addr, len);
2809 EXPORT_SYMBOL(vm_brk);
2811 /* Release all mmaps. */
2812 void exit_mmap(struct mm_struct *mm)
2814 struct mmu_gather tlb;
2815 struct vm_area_struct *vma;
2816 unsigned long nr_accounted = 0;
2818 /* mm's last user has gone, and its about to be pulled down */
2819 mmu_notifier_release(mm);
2821 if (mm->locked_vm) {
2824 if (vma->vm_flags & VM_LOCKED)
2825 munlock_vma_pages_all(vma);
2833 if (!vma) /* Can happen if dup_mmap() received an OOM */
2838 tlb_gather_mmu(&tlb, mm, 0, -1);
2839 /* update_hiwater_rss(mm) here? but nobody should be looking */
2840 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2841 unmap_vmas(&tlb, vma, 0, -1);
2843 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2844 tlb_finish_mmu(&tlb, 0, -1);
2847 * Walk the list again, actually closing and freeing it,
2848 * with preemption enabled, without holding any MM locks.
2851 if (vma->vm_flags & VM_ACCOUNT)
2852 nr_accounted += vma_pages(vma);
2853 vma = remove_vma(vma);
2855 vm_unacct_memory(nr_accounted);
2858 /* Insert vm structure into process list sorted by address
2859 * and into the inode's i_mmap tree. If vm_file is non-NULL
2860 * then i_mmap_rwsem is taken here.
2862 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2864 struct vm_area_struct *prev;
2865 struct rb_node **rb_link, *rb_parent;
2867 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2868 &prev, &rb_link, &rb_parent))
2870 if ((vma->vm_flags & VM_ACCOUNT) &&
2871 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2875 * The vm_pgoff of a purely anonymous vma should be irrelevant
2876 * until its first write fault, when page's anon_vma and index
2877 * are set. But now set the vm_pgoff it will almost certainly
2878 * end up with (unless mremap moves it elsewhere before that
2879 * first wfault), so /proc/pid/maps tells a consistent story.
2881 * By setting it to reflect the virtual start address of the
2882 * vma, merges and splits can happen in a seamless way, just
2883 * using the existing file pgoff checks and manipulations.
2884 * Similarly in do_mmap_pgoff and in do_brk.
2886 if (vma_is_anonymous(vma)) {
2887 BUG_ON(vma->anon_vma);
2888 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2891 vma_link(mm, vma, prev, rb_link, rb_parent);
2896 * Copy the vma structure to a new location in the same mm,
2897 * prior to moving page table entries, to effect an mremap move.
2899 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2900 unsigned long addr, unsigned long len, pgoff_t pgoff,
2901 bool *need_rmap_locks)
2903 struct vm_area_struct *vma = *vmap;
2904 unsigned long vma_start = vma->vm_start;
2905 struct mm_struct *mm = vma->vm_mm;
2906 struct vm_area_struct *new_vma, *prev;
2907 struct rb_node **rb_link, *rb_parent;
2908 bool faulted_in_anon_vma = true;
2911 * If anonymous vma has not yet been faulted, update new pgoff
2912 * to match new location, to increase its chance of merging.
2914 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2915 pgoff = addr >> PAGE_SHIFT;
2916 faulted_in_anon_vma = false;
2919 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2920 return NULL; /* should never get here */
2921 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2922 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2923 vma->vm_userfaultfd_ctx);
2926 * Source vma may have been merged into new_vma
2928 if (unlikely(vma_start >= new_vma->vm_start &&
2929 vma_start < new_vma->vm_end)) {
2931 * The only way we can get a vma_merge with
2932 * self during an mremap is if the vma hasn't
2933 * been faulted in yet and we were allowed to
2934 * reset the dst vma->vm_pgoff to the
2935 * destination address of the mremap to allow
2936 * the merge to happen. mremap must change the
2937 * vm_pgoff linearity between src and dst vmas
2938 * (in turn preventing a vma_merge) to be
2939 * safe. It is only safe to keep the vm_pgoff
2940 * linear if there are no pages mapped yet.
2942 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2943 *vmap = vma = new_vma;
2945 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2947 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2951 new_vma->vm_start = addr;
2952 new_vma->vm_end = addr + len;
2953 new_vma->vm_pgoff = pgoff;
2954 if (vma_dup_policy(vma, new_vma))
2956 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2957 if (anon_vma_clone(new_vma, vma))
2958 goto out_free_mempol;
2959 if (new_vma->vm_file)
2960 get_file(new_vma->vm_file);
2961 if (new_vma->vm_ops && new_vma->vm_ops->open)
2962 new_vma->vm_ops->open(new_vma);
2963 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2964 *need_rmap_locks = false;
2969 mpol_put(vma_policy(new_vma));
2971 kmem_cache_free(vm_area_cachep, new_vma);
2977 * Return true if the calling process may expand its vm space by the passed
2980 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2982 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2985 if ((flags & (VM_WRITE | VM_SHARED | (VM_STACK_FLAGS &
2986 (VM_GROWSUP | VM_GROWSDOWN)))) == VM_WRITE)
2987 return mm->data_vm + npages <= rlimit(RLIMIT_DATA);
2992 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2994 mm->total_vm += npages;
2996 if ((flags & (VM_EXEC | VM_WRITE)) == VM_EXEC)
2997 mm->exec_vm += npages;
2998 else if (flags & (VM_STACK_FLAGS & (VM_GROWSUP | VM_GROWSDOWN)))
2999 mm->stack_vm += npages;
3000 else if ((flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
3001 mm->data_vm += npages;
3004 static int special_mapping_fault(struct vm_area_struct *vma,
3005 struct vm_fault *vmf);
3008 * Having a close hook prevents vma merging regardless of flags.
3010 static void special_mapping_close(struct vm_area_struct *vma)
3014 static const char *special_mapping_name(struct vm_area_struct *vma)
3016 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3019 static const struct vm_operations_struct special_mapping_vmops = {
3020 .close = special_mapping_close,
3021 .fault = special_mapping_fault,
3022 .name = special_mapping_name,
3025 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3026 .close = special_mapping_close,
3027 .fault = special_mapping_fault,
3030 static int special_mapping_fault(struct vm_area_struct *vma,
3031 struct vm_fault *vmf)
3034 struct page **pages;
3036 if (vma->vm_ops == &legacy_special_mapping_vmops)
3037 pages = vma->vm_private_data;
3039 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3042 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3046 struct page *page = *pages;
3052 return VM_FAULT_SIGBUS;
3055 static struct vm_area_struct *__install_special_mapping(
3056 struct mm_struct *mm,
3057 unsigned long addr, unsigned long len,
3058 unsigned long vm_flags, void *priv,
3059 const struct vm_operations_struct *ops)
3062 struct vm_area_struct *vma;
3064 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3065 if (unlikely(vma == NULL))
3066 return ERR_PTR(-ENOMEM);
3068 INIT_LIST_HEAD(&vma->anon_vma_chain);
3070 vma->vm_start = addr;
3071 vma->vm_end = addr + len;
3073 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3074 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3077 vma->vm_private_data = priv;
3079 ret = insert_vm_struct(mm, vma);
3083 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3085 perf_event_mmap(vma);
3090 kmem_cache_free(vm_area_cachep, vma);
3091 return ERR_PTR(ret);
3095 * Called with mm->mmap_sem held for writing.
3096 * Insert a new vma covering the given region, with the given flags.
3097 * Its pages are supplied by the given array of struct page *.
3098 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3099 * The region past the last page supplied will always produce SIGBUS.
3100 * The array pointer and the pages it points to are assumed to stay alive
3101 * for as long as this mapping might exist.
3103 struct vm_area_struct *_install_special_mapping(
3104 struct mm_struct *mm,
3105 unsigned long addr, unsigned long len,
3106 unsigned long vm_flags, const struct vm_special_mapping *spec)
3108 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3109 &special_mapping_vmops);
3112 int install_special_mapping(struct mm_struct *mm,
3113 unsigned long addr, unsigned long len,
3114 unsigned long vm_flags, struct page **pages)
3116 struct vm_area_struct *vma = __install_special_mapping(
3117 mm, addr, len, vm_flags, (void *)pages,
3118 &legacy_special_mapping_vmops);
3120 return PTR_ERR_OR_ZERO(vma);
3123 static DEFINE_MUTEX(mm_all_locks_mutex);
3125 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3127 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3129 * The LSB of head.next can't change from under us
3130 * because we hold the mm_all_locks_mutex.
3132 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3134 * We can safely modify head.next after taking the
3135 * anon_vma->root->rwsem. If some other vma in this mm shares
3136 * the same anon_vma we won't take it again.
3138 * No need of atomic instructions here, head.next
3139 * can't change from under us thanks to the
3140 * anon_vma->root->rwsem.
3142 if (__test_and_set_bit(0, (unsigned long *)
3143 &anon_vma->root->rb_root.rb_node))
3148 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3150 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3152 * AS_MM_ALL_LOCKS can't change from under us because
3153 * we hold the mm_all_locks_mutex.
3155 * Operations on ->flags have to be atomic because
3156 * even if AS_MM_ALL_LOCKS is stable thanks to the
3157 * mm_all_locks_mutex, there may be other cpus
3158 * changing other bitflags in parallel to us.
3160 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3162 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3167 * This operation locks against the VM for all pte/vma/mm related
3168 * operations that could ever happen on a certain mm. This includes
3169 * vmtruncate, try_to_unmap, and all page faults.
3171 * The caller must take the mmap_sem in write mode before calling
3172 * mm_take_all_locks(). The caller isn't allowed to release the
3173 * mmap_sem until mm_drop_all_locks() returns.
3175 * mmap_sem in write mode is required in order to block all operations
3176 * that could modify pagetables and free pages without need of
3177 * altering the vma layout. It's also needed in write mode to avoid new
3178 * anon_vmas to be associated with existing vmas.
3180 * A single task can't take more than one mm_take_all_locks() in a row
3181 * or it would deadlock.
3183 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3184 * mapping->flags avoid to take the same lock twice, if more than one
3185 * vma in this mm is backed by the same anon_vma or address_space.
3187 * We take locks in following order, accordingly to comment at beginning
3189 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3191 * - all i_mmap_rwsem locks;
3192 * - all anon_vma->rwseml
3194 * We can take all locks within these types randomly because the VM code
3195 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3196 * mm_all_locks_mutex.
3198 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3199 * that may have to take thousand of locks.
3201 * mm_take_all_locks() can fail if it's interrupted by signals.
3203 int mm_take_all_locks(struct mm_struct *mm)
3205 struct vm_area_struct *vma;
3206 struct anon_vma_chain *avc;
3208 BUG_ON(down_read_trylock(&mm->mmap_sem));
3210 mutex_lock(&mm_all_locks_mutex);
3212 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3213 if (signal_pending(current))
3215 if (vma->vm_file && vma->vm_file->f_mapping &&
3216 is_vm_hugetlb_page(vma))
3217 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3220 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3221 if (signal_pending(current))
3223 if (vma->vm_file && vma->vm_file->f_mapping &&
3224 !is_vm_hugetlb_page(vma))
3225 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3228 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3229 if (signal_pending(current))
3232 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3233 vm_lock_anon_vma(mm, avc->anon_vma);
3239 mm_drop_all_locks(mm);
3243 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3245 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3247 * The LSB of head.next can't change to 0 from under
3248 * us because we hold the mm_all_locks_mutex.
3250 * We must however clear the bitflag before unlocking
3251 * the vma so the users using the anon_vma->rb_root will
3252 * never see our bitflag.
3254 * No need of atomic instructions here, head.next
3255 * can't change from under us until we release the
3256 * anon_vma->root->rwsem.
3258 if (!__test_and_clear_bit(0, (unsigned long *)
3259 &anon_vma->root->rb_root.rb_node))
3261 anon_vma_unlock_write(anon_vma);
3265 static void vm_unlock_mapping(struct address_space *mapping)
3267 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3269 * AS_MM_ALL_LOCKS can't change to 0 from under us
3270 * because we hold the mm_all_locks_mutex.
3272 i_mmap_unlock_write(mapping);
3273 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3280 * The mmap_sem cannot be released by the caller until
3281 * mm_drop_all_locks() returns.
3283 void mm_drop_all_locks(struct mm_struct *mm)
3285 struct vm_area_struct *vma;
3286 struct anon_vma_chain *avc;
3288 BUG_ON(down_read_trylock(&mm->mmap_sem));
3289 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3291 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3293 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3294 vm_unlock_anon_vma(avc->anon_vma);
3295 if (vma->vm_file && vma->vm_file->f_mapping)
3296 vm_unlock_mapping(vma->vm_file->f_mapping);
3299 mutex_unlock(&mm_all_locks_mutex);
3303 * initialise the VMA slab
3305 void __init mmap_init(void)
3309 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3314 * Initialise sysctl_user_reserve_kbytes.
3316 * This is intended to prevent a user from starting a single memory hogging
3317 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3320 * The default value is min(3% of free memory, 128MB)
3321 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3323 static int init_user_reserve(void)
3325 unsigned long free_kbytes;
3327 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3329 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3332 subsys_initcall(init_user_reserve);
3335 * Initialise sysctl_admin_reserve_kbytes.
3337 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3338 * to log in and kill a memory hogging process.
3340 * Systems with more than 256MB will reserve 8MB, enough to recover
3341 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3342 * only reserve 3% of free pages by default.
3344 static int init_admin_reserve(void)
3346 unsigned long free_kbytes;
3348 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3350 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3353 subsys_initcall(init_admin_reserve);
3356 * Reinititalise user and admin reserves if memory is added or removed.
3358 * The default user reserve max is 128MB, and the default max for the
3359 * admin reserve is 8MB. These are usually, but not always, enough to
3360 * enable recovery from a memory hogging process using login/sshd, a shell,
3361 * and tools like top. It may make sense to increase or even disable the
3362 * reserve depending on the existence of swap or variations in the recovery
3363 * tools. So, the admin may have changed them.
3365 * If memory is added and the reserves have been eliminated or increased above
3366 * the default max, then we'll trust the admin.
3368 * If memory is removed and there isn't enough free memory, then we
3369 * need to reset the reserves.
3371 * Otherwise keep the reserve set by the admin.
3373 static int reserve_mem_notifier(struct notifier_block *nb,
3374 unsigned long action, void *data)
3376 unsigned long tmp, free_kbytes;
3380 /* Default max is 128MB. Leave alone if modified by operator. */
3381 tmp = sysctl_user_reserve_kbytes;
3382 if (0 < tmp && tmp < (1UL << 17))
3383 init_user_reserve();
3385 /* Default max is 8MB. Leave alone if modified by operator. */
3386 tmp = sysctl_admin_reserve_kbytes;
3387 if (0 < tmp && tmp < (1UL << 13))
3388 init_admin_reserve();
3392 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3394 if (sysctl_user_reserve_kbytes > free_kbytes) {
3395 init_user_reserve();
3396 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3397 sysctl_user_reserve_kbytes);
3400 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3401 init_admin_reserve();
3402 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3403 sysctl_admin_reserve_kbytes);
3412 static struct notifier_block reserve_mem_nb = {
3413 .notifier_call = reserve_mem_notifier,
3416 static int __meminit init_reserve_notifier(void)
3418 if (register_hotmemory_notifier(&reserve_mem_nb))
3419 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3423 subsys_initcall(init_reserve_notifier);