1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * zswap.c - zswap driver file
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
42 /*********************************
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
75 /*********************************
77 **********************************/
79 #define ZSWAP_PARAM_UNSET ""
81 static int zswap_setup(void);
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
130 bool zswap_is_enabled(void)
132 return zswap_enabled;
135 bool zswap_never_enabled(void)
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
140 /*********************************
142 **********************************/
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
181 * This structure contains the metadata for tracking a single compressed
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
197 swp_entry_t swpentry;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
216 enum zswap_init_type {
222 static enum zswap_init_type zswap_init_state;
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
244 /*********************************
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
275 pr_err("%s zpool not available\n", type);
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
288 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
293 /* being the current pool takes 1 ref; this func expects the
294 * caller to always add the new pool as the current pool
296 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
300 INIT_LIST_HEAD(&pool->list);
302 zswap_pool_debug("created", pool);
307 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
310 free_percpu(pool->acomp_ctx);
312 zpool_destroy_pool(pool->zpool);
317 static struct zswap_pool *__zswap_pool_create_fallback(void)
319 bool has_comp, has_zpool;
321 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 if (!has_comp && strcmp(zswap_compressor,
323 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 pr_err("compressor %s not available, using default %s\n",
325 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 param_free_charp(&zswap_compressor);
327 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
331 pr_err("default compressor %s not available\n",
333 param_free_charp(&zswap_compressor);
334 zswap_compressor = ZSWAP_PARAM_UNSET;
337 has_zpool = zpool_has_pool(zswap_zpool_type);
338 if (!has_zpool && strcmp(zswap_zpool_type,
339 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 pr_err("zpool %s not available, using default %s\n",
341 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 param_free_charp(&zswap_zpool_type);
343 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 has_zpool = zpool_has_pool(zswap_zpool_type);
347 pr_err("default zpool %s not available\n",
349 param_free_charp(&zswap_zpool_type);
350 zswap_zpool_type = ZSWAP_PARAM_UNSET;
353 if (!has_comp || !has_zpool)
356 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
359 static void zswap_pool_destroy(struct zswap_pool *pool)
361 zswap_pool_debug("destroying", pool);
363 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 free_percpu(pool->acomp_ctx);
366 zpool_destroy_pool(pool->zpool);
370 static void __zswap_pool_release(struct work_struct *work)
372 struct zswap_pool *pool = container_of(work, typeof(*pool),
377 /* nobody should have been able to get a ref... */
378 WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 percpu_ref_exit(&pool->ref);
381 /* pool is now off zswap_pools list and has no references. */
382 zswap_pool_destroy(pool);
385 static struct zswap_pool *zswap_pool_current(void);
387 static void __zswap_pool_empty(struct percpu_ref *ref)
389 struct zswap_pool *pool;
391 pool = container_of(ref, typeof(*pool), ref);
393 spin_lock_bh(&zswap_pools_lock);
395 WARN_ON(pool == zswap_pool_current());
397 list_del_rcu(&pool->list);
399 INIT_WORK(&pool->release_work, __zswap_pool_release);
400 schedule_work(&pool->release_work);
402 spin_unlock_bh(&zswap_pools_lock);
405 static int __must_check zswap_pool_get(struct zswap_pool *pool)
410 return percpu_ref_tryget(&pool->ref);
413 static void zswap_pool_put(struct zswap_pool *pool)
415 percpu_ref_put(&pool->ref);
418 static struct zswap_pool *__zswap_pool_current(void)
420 struct zswap_pool *pool;
422 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
423 WARN_ONCE(!pool && zswap_has_pool,
424 "%s: no page storage pool!\n", __func__);
429 static struct zswap_pool *zswap_pool_current(void)
431 assert_spin_locked(&zswap_pools_lock);
433 return __zswap_pool_current();
436 static struct zswap_pool *zswap_pool_current_get(void)
438 struct zswap_pool *pool;
442 pool = __zswap_pool_current();
443 if (!zswap_pool_get(pool))
451 /* type and compressor must be null-terminated */
452 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
454 struct zswap_pool *pool;
456 assert_spin_locked(&zswap_pools_lock);
458 list_for_each_entry_rcu(pool, &zswap_pools, list) {
459 if (strcmp(pool->tfm_name, compressor))
461 if (strcmp(zpool_get_type(pool->zpool), type))
463 /* if we can't get it, it's about to be destroyed */
464 if (!zswap_pool_get(pool))
472 static unsigned long zswap_max_pages(void)
474 return totalram_pages() * zswap_max_pool_percent / 100;
477 static unsigned long zswap_accept_thr_pages(void)
479 return zswap_max_pages() * zswap_accept_thr_percent / 100;
482 unsigned long zswap_total_pages(void)
484 struct zswap_pool *pool;
485 unsigned long total = 0;
488 list_for_each_entry_rcu(pool, &zswap_pools, list)
489 total += zpool_get_total_pages(pool->zpool);
495 static bool zswap_check_limits(void)
497 unsigned long cur_pages = zswap_total_pages();
498 unsigned long max_pages = zswap_max_pages();
500 if (cur_pages >= max_pages) {
501 zswap_pool_limit_hit++;
502 zswap_pool_reached_full = true;
503 } else if (zswap_pool_reached_full &&
504 cur_pages <= zswap_accept_thr_pages()) {
505 zswap_pool_reached_full = false;
507 return zswap_pool_reached_full;
510 /*********************************
512 **********************************/
514 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
516 /* no change required */
517 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
522 /* val must be a null-terminated string */
523 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
524 char *type, char *compressor)
526 struct zswap_pool *pool, *put_pool = NULL;
527 char *s = strstrip((char *)val);
529 bool new_pool = false;
531 mutex_lock(&zswap_init_lock);
532 switch (zswap_init_state) {
534 /* if this is load-time (pre-init) param setting,
535 * don't create a pool; that's done during init.
537 ret = param_set_charp(s, kp);
539 case ZSWAP_INIT_SUCCEED:
540 new_pool = zswap_pool_changed(s, kp);
542 case ZSWAP_INIT_FAILED:
543 pr_err("can't set param, initialization failed\n");
546 mutex_unlock(&zswap_init_lock);
548 /* no need to create a new pool, return directly */
553 if (!zpool_has_pool(s)) {
554 pr_err("zpool %s not available\n", s);
558 } else if (!compressor) {
559 if (!crypto_has_acomp(s, 0, 0)) {
560 pr_err("compressor %s not available\n", s);
569 spin_lock_bh(&zswap_pools_lock);
571 pool = zswap_pool_find_get(type, compressor);
573 zswap_pool_debug("using existing", pool);
574 WARN_ON(pool == zswap_pool_current());
575 list_del_rcu(&pool->list);
578 spin_unlock_bh(&zswap_pools_lock);
581 pool = zswap_pool_create(type, compressor);
584 * Restore the initial ref dropped by percpu_ref_kill()
585 * when the pool was decommissioned and switch it again
588 percpu_ref_resurrect(&pool->ref);
590 /* Drop the ref from zswap_pool_find_get(). */
591 zswap_pool_put(pool);
595 ret = param_set_charp(s, kp);
599 spin_lock_bh(&zswap_pools_lock);
602 put_pool = zswap_pool_current();
603 list_add_rcu(&pool->list, &zswap_pools);
604 zswap_has_pool = true;
606 /* add the possibly pre-existing pool to the end of the pools
607 * list; if it's new (and empty) then it'll be removed and
608 * destroyed by the put after we drop the lock
610 list_add_tail_rcu(&pool->list, &zswap_pools);
614 spin_unlock_bh(&zswap_pools_lock);
616 if (!zswap_has_pool && !pool) {
617 /* if initial pool creation failed, and this pool creation also
618 * failed, maybe both compressor and zpool params were bad.
619 * Allow changing this param, so pool creation will succeed
620 * when the other param is changed. We already verified this
621 * param is ok in the zpool_has_pool() or crypto_has_acomp()
624 ret = param_set_charp(s, kp);
627 /* drop the ref from either the old current pool,
628 * or the new pool we failed to add
631 percpu_ref_kill(&put_pool->ref);
636 static int zswap_compressor_param_set(const char *val,
637 const struct kernel_param *kp)
639 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
642 static int zswap_zpool_param_set(const char *val,
643 const struct kernel_param *kp)
645 return __zswap_param_set(val, kp, NULL, zswap_compressor);
648 static int zswap_enabled_param_set(const char *val,
649 const struct kernel_param *kp)
653 /* if this is load-time (pre-init) param setting, only set param. */
654 if (system_state != SYSTEM_RUNNING)
655 return param_set_bool(val, kp);
657 mutex_lock(&zswap_init_lock);
658 switch (zswap_init_state) {
663 case ZSWAP_INIT_SUCCEED:
665 pr_err("can't enable, no pool configured\n");
667 ret = param_set_bool(val, kp);
669 case ZSWAP_INIT_FAILED:
670 pr_err("can't enable, initialization failed\n");
672 mutex_unlock(&zswap_init_lock);
677 /*********************************
679 **********************************/
681 /* should be called under RCU */
683 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
685 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
688 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
694 static inline int entry_to_nid(struct zswap_entry *entry)
696 return page_to_nid(virt_to_page(entry));
699 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
701 int nid = entry_to_nid(entry);
702 struct mem_cgroup *memcg;
705 * Note that it is safe to use rcu_read_lock() here, even in the face of
706 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
707 * used in list_lru lookup, only two scenarios are possible:
709 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
710 * new entry will be reparented to memcg's parent's list_lru.
711 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
712 * new entry will be added directly to memcg's parent's list_lru.
714 * Similar reasoning holds for list_lru_del().
717 memcg = mem_cgroup_from_entry(entry);
718 /* will always succeed */
719 list_lru_add(list_lru, &entry->lru, nid, memcg);
723 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
725 int nid = entry_to_nid(entry);
726 struct mem_cgroup *memcg;
729 memcg = mem_cgroup_from_entry(entry);
730 /* will always succeed */
731 list_lru_del(list_lru, &entry->lru, nid, memcg);
735 void zswap_lruvec_state_init(struct lruvec *lruvec)
737 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
740 void zswap_folio_swapin(struct folio *folio)
742 struct lruvec *lruvec;
745 lruvec = folio_lruvec(folio);
746 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
751 * This function should be called when a memcg is being offlined.
753 * Since the global shrinker shrink_worker() may hold a reference
754 * of the memcg, we must check and release the reference in
757 * shrink_worker() must handle the case where this function releases
758 * the reference of memcg being shrunk.
760 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
762 /* lock out zswap shrinker walking memcg tree */
763 spin_lock(&zswap_shrink_lock);
764 if (zswap_next_shrink == memcg) {
766 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
767 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
769 spin_unlock(&zswap_shrink_lock);
772 /*********************************
773 * zswap entry functions
774 **********************************/
775 static struct kmem_cache *zswap_entry_cache;
777 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
779 struct zswap_entry *entry;
780 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
786 static void zswap_entry_cache_free(struct zswap_entry *entry)
788 kmem_cache_free(zswap_entry_cache, entry);
792 * Carries out the common pattern of freeing and entry's zpool allocation,
793 * freeing the entry itself, and decrementing the number of stored pages.
795 static void zswap_entry_free(struct zswap_entry *entry)
797 zswap_lru_del(&zswap_list_lru, entry);
798 zpool_free(entry->pool->zpool, entry->handle);
799 zswap_pool_put(entry->pool);
801 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
802 obj_cgroup_put(entry->objcg);
804 zswap_entry_cache_free(entry);
805 atomic_dec(&zswap_stored_pages);
808 /*********************************
809 * compressed storage functions
810 **********************************/
811 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
813 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
814 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
815 struct crypto_acomp *acomp;
816 struct acomp_req *req;
819 mutex_init(&acomp_ctx->mutex);
821 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
822 if (!acomp_ctx->buffer)
825 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
827 pr_err("could not alloc crypto acomp %s : %ld\n",
828 pool->tfm_name, PTR_ERR(acomp));
829 ret = PTR_ERR(acomp);
832 acomp_ctx->acomp = acomp;
833 acomp_ctx->is_sleepable = acomp_is_async(acomp);
835 req = acomp_request_alloc(acomp_ctx->acomp);
837 pr_err("could not alloc crypto acomp_request %s\n",
842 acomp_ctx->req = req;
844 crypto_init_wait(&acomp_ctx->wait);
846 * if the backend of acomp is async zip, crypto_req_done() will wakeup
847 * crypto_wait_req(); if the backend of acomp is scomp, the callback
848 * won't be called, crypto_wait_req() will return without blocking.
850 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
851 crypto_req_done, &acomp_ctx->wait);
856 crypto_free_acomp(acomp_ctx->acomp);
858 kfree(acomp_ctx->buffer);
862 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
864 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
865 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
867 if (!IS_ERR_OR_NULL(acomp_ctx)) {
868 if (!IS_ERR_OR_NULL(acomp_ctx->req))
869 acomp_request_free(acomp_ctx->req);
870 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
871 crypto_free_acomp(acomp_ctx->acomp);
872 kfree(acomp_ctx->buffer);
878 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
880 struct crypto_acomp_ctx *acomp_ctx;
881 struct scatterlist input, output;
882 int comp_ret = 0, alloc_ret = 0;
883 unsigned int dlen = PAGE_SIZE;
884 unsigned long handle;
890 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
892 mutex_lock(&acomp_ctx->mutex);
894 dst = acomp_ctx->buffer;
895 sg_init_table(&input, 1);
896 sg_set_folio(&input, folio, PAGE_SIZE, 0);
899 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
900 * and hardware-accelerators may won't check the dst buffer size, so
901 * giving the dst buffer with enough length to avoid buffer overflow.
903 sg_init_one(&output, dst, PAGE_SIZE * 2);
904 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
907 * it maybe looks a little bit silly that we send an asynchronous request,
908 * then wait for its completion synchronously. This makes the process look
909 * synchronous in fact.
910 * Theoretically, acomp supports users send multiple acomp requests in one
911 * acomp instance, then get those requests done simultaneously. but in this
912 * case, zswap actually does store and load page by page, there is no
913 * existing method to send the second page before the first page is done
914 * in one thread doing zwap.
915 * but in different threads running on different cpu, we have different
916 * acomp instance, so multiple threads can do (de)compression in parallel.
918 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
919 dlen = acomp_ctx->req->dlen;
923 zpool = entry->pool->zpool;
924 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
925 if (zpool_malloc_support_movable(zpool))
926 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
927 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
931 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
932 memcpy(buf, dst, dlen);
933 zpool_unmap_handle(zpool, handle);
935 entry->handle = handle;
936 entry->length = dlen;
939 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
940 zswap_reject_compress_poor++;
942 zswap_reject_compress_fail++;
944 zswap_reject_alloc_fail++;
946 mutex_unlock(&acomp_ctx->mutex);
947 return comp_ret == 0 && alloc_ret == 0;
950 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
952 struct zpool *zpool = entry->pool->zpool;
953 struct scatterlist input, output;
954 struct crypto_acomp_ctx *acomp_ctx;
957 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
958 mutex_lock(&acomp_ctx->mutex);
960 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
962 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
963 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
964 * resort to copying the buffer to a temporary one.
965 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
966 * such as a kmap address of high memory or even ever a vmap address.
967 * However, sg_init_one is only equipped to handle linearly mapped low memory.
968 * In such cases, we also must copy the buffer to a temporary and lowmem one.
970 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
971 !virt_addr_valid(src)) {
972 memcpy(acomp_ctx->buffer, src, entry->length);
973 src = acomp_ctx->buffer;
974 zpool_unmap_handle(zpool, entry->handle);
977 sg_init_one(&input, src, entry->length);
978 sg_init_table(&output, 1);
979 sg_set_folio(&output, folio, PAGE_SIZE, 0);
980 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
981 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
982 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
983 mutex_unlock(&acomp_ctx->mutex);
985 if (src != acomp_ctx->buffer)
986 zpool_unmap_handle(zpool, entry->handle);
989 /*********************************
991 **********************************/
993 * Attempts to free an entry by adding a folio to the swap cache,
994 * decompressing the entry data into the folio, and issuing a
995 * bio write to write the folio back to the swap device.
997 * This can be thought of as a "resumed writeback" of the folio
998 * to the swap device. We are basically resuming the same swap
999 * writeback path that was intercepted with the zswap_store()
1000 * in the first place. After the folio has been decompressed into
1001 * the swap cache, the compressed version stored by zswap can be
1004 static int zswap_writeback_entry(struct zswap_entry *entry,
1005 swp_entry_t swpentry)
1007 struct xarray *tree;
1008 pgoff_t offset = swp_offset(swpentry);
1009 struct folio *folio;
1010 struct mempolicy *mpol;
1011 bool folio_was_allocated;
1012 struct writeback_control wbc = {
1013 .sync_mode = WB_SYNC_NONE,
1016 /* try to allocate swap cache folio */
1017 mpol = get_task_policy(current);
1018 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1019 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1024 * Found an existing folio, we raced with swapin or concurrent
1025 * shrinker. We generally writeback cold folios from zswap, and
1026 * swapin means the folio just became hot, so skip this folio.
1027 * For unlikely concurrent shrinker case, it will be unlinked
1028 * and freed when invalidated by the concurrent shrinker anyway.
1030 if (!folio_was_allocated) {
1036 * folio is locked, and the swapcache is now secured against
1037 * concurrent swapping to and from the slot, and concurrent
1038 * swapoff so we can safely dereference the zswap tree here.
1039 * Verify that the swap entry hasn't been invalidated and recycled
1040 * behind our backs, to avoid overwriting a new swap folio with
1041 * old compressed data. Only when this is successful can the entry
1044 tree = swap_zswap_tree(swpentry);
1045 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1046 delete_from_swap_cache(folio);
1047 folio_unlock(folio);
1052 zswap_decompress(entry, folio);
1054 count_vm_event(ZSWPWB);
1056 count_objcg_event(entry->objcg, ZSWPWB);
1058 zswap_entry_free(entry);
1060 /* folio is up to date */
1061 folio_mark_uptodate(folio);
1063 /* move it to the tail of the inactive list after end_writeback */
1064 folio_set_reclaim(folio);
1066 /* start writeback */
1067 __swap_writepage(folio, &wbc);
1073 /*********************************
1074 * shrinker functions
1075 **********************************/
1077 * The dynamic shrinker is modulated by the following factors:
1079 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1080 * the entry a second chance) before rotating it in the LRU list. If the
1081 * entry is considered again by the shrinker, with its referenced bit unset,
1082 * it is written back. The writeback rate as a result is dynamically
1083 * adjusted by the pool activities - if the pool is dominated by new entries
1084 * (i.e lots of recent zswapouts), these entries will be protected and
1085 * the writeback rate will slow down. On the other hand, if the pool has a
1086 * lot of stagnant entries, these entries will be reclaimed immediately,
1087 * effectively increasing the writeback rate.
1089 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1090 * overshrinking and should slow down. We maintain a swapins counter, which
1091 * is consumed and subtract from the number of eligible objects on the LRU
1092 * in zswap_shrinker_count().
1094 * 3. Compression ratio. The better the workload compresses, the less gains we
1095 * can expect from writeback. We scale down the number of objects available
1096 * for reclaim by this ratio.
1098 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1099 spinlock_t *lock, void *arg)
1101 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1102 bool *encountered_page_in_swapcache = (bool *)arg;
1103 swp_entry_t swpentry;
1104 enum lru_status ret = LRU_REMOVED_RETRY;
1105 int writeback_result;
1108 * Second chance algorithm: if the entry has its referenced bit set, give it
1109 * a second chance. Only clear the referenced bit and rotate it in the
1112 if (entry->referenced) {
1113 entry->referenced = false;
1118 * As soon as we drop the LRU lock, the entry can be freed by
1119 * a concurrent invalidation. This means the following:
1121 * 1. We extract the swp_entry_t to the stack, allowing
1122 * zswap_writeback_entry() to pin the swap entry and
1123 * then validate the zwap entry against that swap entry's
1124 * tree using pointer value comparison. Only when that
1125 * is successful can the entry be dereferenced.
1127 * 2. Usually, objects are taken off the LRU for reclaim. In
1128 * this case this isn't possible, because if reclaim fails
1129 * for whatever reason, we have no means of knowing if the
1130 * entry is alive to put it back on the LRU.
1132 * So rotate it before dropping the lock. If the entry is
1133 * written back or invalidated, the free path will unlink
1134 * it. For failures, rotation is the right thing as well.
1136 * Temporary failures, where the same entry should be tried
1137 * again immediately, almost never happen for this shrinker.
1138 * We don't do any trylocking; -ENOMEM comes closest,
1139 * but that's extremely rare and doesn't happen spuriously
1140 * either. Don't bother distinguishing this case.
1142 list_move_tail(item, &l->list);
1145 * Once the lru lock is dropped, the entry might get freed. The
1146 * swpentry is copied to the stack, and entry isn't deref'd again
1147 * until the entry is verified to still be alive in the tree.
1149 swpentry = entry->swpentry;
1152 * It's safe to drop the lock here because we return either
1153 * LRU_REMOVED_RETRY or LRU_RETRY.
1157 writeback_result = zswap_writeback_entry(entry, swpentry);
1159 if (writeback_result) {
1160 zswap_reject_reclaim_fail++;
1164 * Encountering a page already in swap cache is a sign that we are shrinking
1165 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1166 * shrinker context).
1168 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1170 *encountered_page_in_swapcache = true;
1173 zswap_written_back_pages++;
1180 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1181 struct shrink_control *sc)
1183 unsigned long shrink_ret;
1184 bool encountered_page_in_swapcache = false;
1186 if (!zswap_shrinker_enabled ||
1187 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1192 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1193 &encountered_page_in_swapcache);
1195 if (encountered_page_in_swapcache)
1198 return shrink_ret ? shrink_ret : SHRINK_STOP;
1201 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1202 struct shrink_control *sc)
1204 struct mem_cgroup *memcg = sc->memcg;
1205 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1206 atomic_long_t *nr_disk_swapins =
1207 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1208 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1211 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1215 * The shrinker resumes swap writeback, which will enter block
1216 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1217 * rules (may_enter_fs()), which apply on a per-folio basis.
1219 if (!gfp_has_io_fs(sc->gfp_mask))
1223 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1224 * have them per-node and thus per-lruvec. Careful if memcg is
1225 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1226 * for the lruvec, but not for memcg_page_state().
1228 * Without memcg, use the zswap pool-wide metrics.
1230 if (!mem_cgroup_disabled()) {
1231 mem_cgroup_flush_stats(memcg);
1232 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1233 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1235 nr_backing = zswap_total_pages();
1236 nr_stored = atomic_read(&zswap_stored_pages);
1242 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1247 * Subtract from the lru size the number of pages that are recently swapped
1248 * in from disk. The idea is that had we protect the zswap's LRU by this
1249 * amount of pages, these disk swapins would not have happened.
1251 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1253 if (nr_freeable >= nr_disk_swapins_cur)
1256 nr_remain = nr_disk_swapins_cur - nr_freeable;
1257 } while (!atomic_long_try_cmpxchg(
1258 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1260 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1265 * Scale the number of freeable pages by the memory saving factor.
1266 * This ensures that the better zswap compresses memory, the fewer
1267 * pages we will evict to swap (as it will otherwise incur IO for
1268 * relatively small memory saving).
1270 return mult_frac(nr_freeable, nr_backing, nr_stored);
1273 static struct shrinker *zswap_alloc_shrinker(void)
1275 struct shrinker *shrinker;
1278 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1282 shrinker->scan_objects = zswap_shrinker_scan;
1283 shrinker->count_objects = zswap_shrinker_count;
1284 shrinker->batch = 0;
1285 shrinker->seeks = DEFAULT_SEEKS;
1289 static int shrink_memcg(struct mem_cgroup *memcg)
1291 int nid, shrunk = 0, scanned = 0;
1293 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1297 * Skip zombies because their LRUs are reparented and we would be
1298 * reclaiming from the parent instead of the dead memcg.
1300 if (memcg && !mem_cgroup_online(memcg))
1303 for_each_node_state(nid, N_NORMAL_MEMORY) {
1304 unsigned long nr_to_walk = 1;
1306 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1307 &shrink_memcg_cb, NULL, &nr_to_walk);
1308 scanned += 1 - nr_to_walk;
1314 return shrunk ? 0 : -EAGAIN;
1317 static void shrink_worker(struct work_struct *w)
1319 struct mem_cgroup *memcg;
1320 int ret, failures = 0, attempts = 0;
1323 /* Reclaim down to the accept threshold */
1324 thr = zswap_accept_thr_pages();
1327 * Global reclaim will select cgroup in a round-robin fashion from all
1328 * online memcgs, but memcgs that have no pages in zswap and
1329 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1330 * candidates for shrinking.
1332 * Shrinking will be aborted if we encounter the following
1333 * MAX_RECLAIM_RETRIES times:
1334 * - No writeback-candidate memcgs found in a memcg tree walk.
1335 * - Shrinking a writeback-candidate memcg failed.
1337 * We save iteration cursor memcg into zswap_next_shrink,
1338 * which can be modified by the offline memcg cleaner
1339 * zswap_memcg_offline_cleanup().
1341 * Since the offline cleaner is called only once, we cannot leave an
1342 * offline memcg reference in zswap_next_shrink.
1343 * We can rely on the cleaner only if we get online memcg under lock.
1345 * If we get an offline memcg, we cannot determine if the cleaner has
1346 * already been called or will be called later. We must put back the
1347 * reference before returning from this function. Otherwise, the
1348 * offline memcg left in zswap_next_shrink will hold the reference
1349 * until the next run of shrink_worker().
1353 * Start shrinking from the next memcg after zswap_next_shrink.
1354 * When the offline cleaner has already advanced the cursor,
1355 * advancing the cursor here overlooks one memcg, but this
1356 * should be negligibly rare.
1358 * If we get an online memcg, keep the extra reference in case
1359 * the original one obtained by mem_cgroup_iter() is dropped by
1360 * zswap_memcg_offline_cleanup() while we are shrinking the
1363 spin_lock(&zswap_shrink_lock);
1365 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1366 zswap_next_shrink = memcg;
1367 } while (memcg && !mem_cgroup_tryget_online(memcg));
1368 spin_unlock(&zswap_shrink_lock);
1372 * Continue shrinking without incrementing failures if
1373 * we found candidate memcgs in the last tree walk.
1375 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1382 ret = shrink_memcg(memcg);
1383 /* drop the extra reference */
1384 mem_cgroup_put(memcg);
1387 * There are no writeback-candidate pages in the memcg.
1388 * This is not an issue as long as we can find another memcg
1389 * with pages in zswap. Skip this without incrementing attempts
1396 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1400 } while (zswap_total_pages() > thr);
1403 /*********************************
1405 **********************************/
1406 bool zswap_store(struct folio *folio)
1408 swp_entry_t swp = folio->swap;
1409 pgoff_t offset = swp_offset(swp);
1410 struct xarray *tree = swap_zswap_tree(swp);
1411 struct zswap_entry *entry, *old;
1412 struct obj_cgroup *objcg = NULL;
1413 struct mem_cgroup *memcg = NULL;
1415 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1416 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1418 /* Large folios aren't supported */
1419 if (folio_test_large(folio))
1425 /* Check cgroup limits */
1426 objcg = get_obj_cgroup_from_folio(folio);
1427 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1428 memcg = get_mem_cgroup_from_objcg(objcg);
1429 if (shrink_memcg(memcg)) {
1430 mem_cgroup_put(memcg);
1433 mem_cgroup_put(memcg);
1436 if (zswap_check_limits())
1439 /* allocate entry */
1440 entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1442 zswap_reject_kmemcache_fail++;
1446 /* if entry is successfully added, it keeps the reference */
1447 entry->pool = zswap_pool_current_get();
1452 memcg = get_mem_cgroup_from_objcg(objcg);
1453 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1454 mem_cgroup_put(memcg);
1457 mem_cgroup_put(memcg);
1460 if (!zswap_compress(folio, entry))
1463 entry->swpentry = swp;
1464 entry->objcg = objcg;
1465 entry->referenced = true;
1467 old = xa_store(tree, offset, entry, GFP_KERNEL);
1468 if (xa_is_err(old)) {
1469 int err = xa_err(old);
1471 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1472 zswap_reject_alloc_fail++;
1477 * We may have had an existing entry that became stale when
1478 * the folio was redirtied and now the new version is being
1479 * swapped out. Get rid of the old.
1482 zswap_entry_free(old);
1485 obj_cgroup_charge_zswap(objcg, entry->length);
1486 count_objcg_event(objcg, ZSWPOUT);
1490 * We finish initializing the entry while it's already in xarray.
1491 * This is safe because:
1493 * 1. Concurrent stores and invalidations are excluded by folio lock.
1495 * 2. Writeback is excluded by the entry not being on the LRU yet.
1496 * The publishing order matters to prevent writeback from seeing
1497 * an incoherent entry.
1499 if (entry->length) {
1500 INIT_LIST_HEAD(&entry->lru);
1501 zswap_lru_add(&zswap_list_lru, entry);
1505 atomic_inc(&zswap_stored_pages);
1506 count_vm_event(ZSWPOUT);
1511 zpool_free(entry->pool->zpool, entry->handle);
1513 zswap_pool_put(entry->pool);
1515 zswap_entry_cache_free(entry);
1517 obj_cgroup_put(objcg);
1518 if (zswap_pool_reached_full)
1519 queue_work(shrink_wq, &zswap_shrink_work);
1522 * If the zswap store fails or zswap is disabled, we must invalidate the
1523 * possibly stale entry which was previously stored at this offset.
1524 * Otherwise, writeback could overwrite the new data in the swapfile.
1526 entry = xa_erase(tree, offset);
1528 zswap_entry_free(entry);
1532 bool zswap_load(struct folio *folio)
1534 swp_entry_t swp = folio->swap;
1535 pgoff_t offset = swp_offset(swp);
1536 bool swapcache = folio_test_swapcache(folio);
1537 struct xarray *tree = swap_zswap_tree(swp);
1538 struct zswap_entry *entry;
1540 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1542 if (zswap_never_enabled())
1546 * Large folios should not be swapped in while zswap is being used, as
1547 * they are not properly handled. Zswap does not properly load large
1548 * folios, and a large folio may only be partially in zswap.
1550 * Return true without marking the folio uptodate so that an IO error is
1551 * emitted (e.g. do_swap_page() will sigbus).
1553 if (WARN_ON_ONCE(folio_test_large(folio)))
1557 * When reading into the swapcache, invalidate our entry. The
1558 * swapcache can be the authoritative owner of the page and
1559 * its mappings, and the pressure that results from having two
1560 * in-memory copies outweighs any benefits of caching the
1563 * (Most swapins go through the swapcache. The notable
1564 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1565 * files, which reads into a private page and may free it if
1566 * the fault fails. We remain the primary owner of the entry.)
1569 entry = xa_erase(tree, offset);
1571 entry = xa_load(tree, offset);
1576 zswap_decompress(entry, folio);
1578 count_vm_event(ZSWPIN);
1580 count_objcg_event(entry->objcg, ZSWPIN);
1583 zswap_entry_free(entry);
1584 folio_mark_dirty(folio);
1587 folio_mark_uptodate(folio);
1591 void zswap_invalidate(swp_entry_t swp)
1593 pgoff_t offset = swp_offset(swp);
1594 struct xarray *tree = swap_zswap_tree(swp);
1595 struct zswap_entry *entry;
1597 entry = xa_erase(tree, offset);
1599 zswap_entry_free(entry);
1602 int zswap_swapon(int type, unsigned long nr_pages)
1604 struct xarray *trees, *tree;
1607 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1608 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1610 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1614 for (i = 0; i < nr; i++)
1617 nr_zswap_trees[type] = nr;
1618 zswap_trees[type] = trees;
1622 void zswap_swapoff(int type)
1624 struct xarray *trees = zswap_trees[type];
1630 /* try_to_unuse() invalidated all the entries already */
1631 for (i = 0; i < nr_zswap_trees[type]; i++)
1632 WARN_ON_ONCE(!xa_empty(trees + i));
1635 nr_zswap_trees[type] = 0;
1636 zswap_trees[type] = NULL;
1639 /*********************************
1641 **********************************/
1642 #ifdef CONFIG_DEBUG_FS
1643 #include <linux/debugfs.h>
1645 static struct dentry *zswap_debugfs_root;
1647 static int debugfs_get_total_size(void *data, u64 *val)
1649 *val = zswap_total_pages() * PAGE_SIZE;
1652 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1654 static int zswap_debugfs_init(void)
1656 if (!debugfs_initialized())
1659 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1661 debugfs_create_u64("pool_limit_hit", 0444,
1662 zswap_debugfs_root, &zswap_pool_limit_hit);
1663 debugfs_create_u64("reject_reclaim_fail", 0444,
1664 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1665 debugfs_create_u64("reject_alloc_fail", 0444,
1666 zswap_debugfs_root, &zswap_reject_alloc_fail);
1667 debugfs_create_u64("reject_kmemcache_fail", 0444,
1668 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1669 debugfs_create_u64("reject_compress_fail", 0444,
1670 zswap_debugfs_root, &zswap_reject_compress_fail);
1671 debugfs_create_u64("reject_compress_poor", 0444,
1672 zswap_debugfs_root, &zswap_reject_compress_poor);
1673 debugfs_create_u64("written_back_pages", 0444,
1674 zswap_debugfs_root, &zswap_written_back_pages);
1675 debugfs_create_file("pool_total_size", 0444,
1676 zswap_debugfs_root, NULL, &total_size_fops);
1677 debugfs_create_atomic_t("stored_pages", 0444,
1678 zswap_debugfs_root, &zswap_stored_pages);
1683 static int zswap_debugfs_init(void)
1689 /*********************************
1690 * module init and exit
1691 **********************************/
1692 static int zswap_setup(void)
1694 struct zswap_pool *pool;
1697 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1698 if (!zswap_entry_cache) {
1699 pr_err("entry cache creation failed\n");
1703 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1704 "mm/zswap_pool:prepare",
1705 zswap_cpu_comp_prepare,
1706 zswap_cpu_comp_dead);
1710 shrink_wq = alloc_workqueue("zswap-shrink",
1711 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1713 goto shrink_wq_fail;
1715 zswap_shrinker = zswap_alloc_shrinker();
1716 if (!zswap_shrinker)
1718 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1720 shrinker_register(zswap_shrinker);
1722 INIT_WORK(&zswap_shrink_work, shrink_worker);
1724 pool = __zswap_pool_create_fallback();
1726 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1727 zpool_get_type(pool->zpool));
1728 list_add(&pool->list, &zswap_pools);
1729 zswap_has_pool = true;
1730 static_branch_enable(&zswap_ever_enabled);
1732 pr_err("pool creation failed\n");
1733 zswap_enabled = false;
1736 if (zswap_debugfs_init())
1737 pr_warn("debugfs initialization failed\n");
1738 zswap_init_state = ZSWAP_INIT_SUCCEED;
1742 shrinker_free(zswap_shrinker);
1744 destroy_workqueue(shrink_wq);
1746 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1748 kmem_cache_destroy(zswap_entry_cache);
1750 /* if built-in, we aren't unloaded on failure; don't allow use */
1751 zswap_init_state = ZSWAP_INIT_FAILED;
1752 zswap_enabled = false;
1756 static int __init zswap_init(void)
1760 return zswap_setup();
1762 /* must be late so crypto has time to come up */
1763 late_initcall(zswap_init);
1766 MODULE_DESCRIPTION("Compressed cache for swap pages");