1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * VMA-specific functions.
7 #include "vma_internal.h"
10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
12 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
14 if (!mpol_equal(vmg->policy, vma_policy(vma)))
17 * VM_SOFTDIRTY should not prevent from VMA merging, if we
18 * match the flags but dirty bit -- the caller should mark
19 * merged VMA as dirty. If dirty bit won't be excluded from
20 * comparison, we increase pressure on the memory system forcing
21 * the kernel to generate new VMAs when old one could be
24 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
26 if (vma->vm_file != vmg->file)
28 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
30 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
35 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
36 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
39 * The list_is_singular() test is to avoid merging VMA cloned from
40 * parents. This can improve scalability caused by anon_vma lock.
42 if ((!anon_vma1 || !anon_vma2) && (!vma ||
43 list_is_singular(&vma->anon_vma_chain)))
45 return anon_vma1 == anon_vma2;
48 /* Are the anon_vma's belonging to each VMA compatible with one another? */
49 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
50 struct vm_area_struct *vma2)
52 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
56 * init_multi_vma_prep() - Initializer for struct vma_prepare
57 * @vp: The vma_prepare struct
58 * @vma: The vma that will be altered once locked
59 * @next: The next vma if it is to be adjusted
60 * @remove: The first vma to be removed
61 * @remove2: The second vma to be removed
63 static void init_multi_vma_prep(struct vma_prepare *vp,
64 struct vm_area_struct *vma,
65 struct vm_area_struct *next,
66 struct vm_area_struct *remove,
67 struct vm_area_struct *remove2)
69 memset(vp, 0, sizeof(struct vma_prepare));
71 vp->anon_vma = vma->anon_vma;
73 vp->remove2 = remove2;
75 if (!vp->anon_vma && next)
76 vp->anon_vma = next->anon_vma;
78 vp->file = vma->vm_file;
80 vp->mapping = vma->vm_file->f_mapping;
85 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
86 * in front of (at a lower virtual address and file offset than) the vma.
88 * We cannot merge two vmas if they have differently assigned (non-NULL)
89 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
91 * We don't check here for the merged mmap wrapping around the end of pagecache
92 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
93 * wrap, nor mmaps which cover the final page at index -1UL.
95 * We assume the vma may be removed as part of the merge.
97 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
99 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
101 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
102 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
103 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
111 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112 * beyond (at a higher virtual address and file offset than) the vma.
114 * We cannot merge two vmas if they have differently assigned (non-NULL)
115 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
117 * We assume that vma is not removed as part of the merge.
119 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
121 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
122 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
123 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
129 static void __vma_link_file(struct vm_area_struct *vma,
130 struct address_space *mapping)
132 if (vma_is_shared_maywrite(vma))
133 mapping_allow_writable(mapping);
135 flush_dcache_mmap_lock(mapping);
136 vma_interval_tree_insert(vma, &mapping->i_mmap);
137 flush_dcache_mmap_unlock(mapping);
141 * Requires inode->i_mapping->i_mmap_rwsem
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct address_space *mapping)
146 if (vma_is_shared_maywrite(vma))
147 mapping_unmap_writable(mapping);
149 flush_dcache_mmap_lock(mapping);
150 vma_interval_tree_remove(vma, &mapping->i_mmap);
151 flush_dcache_mmap_unlock(mapping);
155 * vma_prepare() - Helper function for handling locking VMAs prior to altering
156 * @vp: The initialized vma_prepare struct
158 static void vma_prepare(struct vma_prepare *vp)
161 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
164 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
165 vp->adj_next->vm_end);
167 i_mmap_lock_write(vp->mapping);
168 if (vp->insert && vp->insert->vm_file) {
170 * Put into interval tree now, so instantiated pages
171 * are visible to arm/parisc __flush_dcache_page
172 * throughout; but we cannot insert into address
173 * space until vma start or end is updated.
175 __vma_link_file(vp->insert,
176 vp->insert->vm_file->f_mapping);
181 anon_vma_lock_write(vp->anon_vma);
182 anon_vma_interval_tree_pre_update_vma(vp->vma);
184 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
188 flush_dcache_mmap_lock(vp->mapping);
189 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
191 vma_interval_tree_remove(vp->adj_next,
192 &vp->mapping->i_mmap);
198 * vma_complete- Helper function for handling the unlocking after altering VMAs,
199 * or for inserting a VMA.
201 * @vp: The vma_prepare struct
202 * @vmi: The vma iterator
205 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
206 struct mm_struct *mm)
210 vma_interval_tree_insert(vp->adj_next,
211 &vp->mapping->i_mmap);
212 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
213 flush_dcache_mmap_unlock(vp->mapping);
216 if (vp->remove && vp->file) {
217 __remove_shared_vm_struct(vp->remove, vp->mapping);
219 __remove_shared_vm_struct(vp->remove2, vp->mapping);
220 } else if (vp->insert) {
222 * split_vma has split insert from vma, and needs
223 * us to insert it before dropping the locks
224 * (it may either follow vma or precede it).
226 vma_iter_store(vmi, vp->insert);
231 anon_vma_interval_tree_post_update_vma(vp->vma);
233 anon_vma_interval_tree_post_update_vma(vp->adj_next);
234 anon_vma_unlock_write(vp->anon_vma);
238 i_mmap_unlock_write(vp->mapping);
239 uprobe_mmap(vp->vma);
242 uprobe_mmap(vp->adj_next);
247 vma_mark_detached(vp->remove, true);
249 uprobe_munmap(vp->remove, vp->remove->vm_start,
253 if (vp->remove->anon_vma)
254 anon_vma_merge(vp->vma, vp->remove);
256 mpol_put(vma_policy(vp->remove));
258 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
259 vm_area_free(vp->remove);
262 * In mprotect's case 6 (see comments on vma_merge),
263 * we are removing both mid and next vmas
266 vp->remove = vp->remove2;
271 if (vp->insert && vp->file)
272 uprobe_mmap(vp->insert);
276 * init_vma_prep() - Initializer wrapper for vma_prepare struct
277 * @vp: The vma_prepare struct
278 * @vma: The vma that will be altered once locked
280 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
282 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
286 * Can the proposed VMA be merged with the left (previous) VMA taking into
287 * account the start position of the proposed range.
289 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
292 return vmg->prev && vmg->prev->vm_end == vmg->start &&
293 can_vma_merge_after(vmg);
297 * Can the proposed VMA be merged with the right (next) VMA taking into
298 * account the end position of the proposed range.
300 * In addition, if we can merge with the left VMA, ensure that left and right
301 * anon_vma's are also compatible.
303 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
306 if (!vmg->next || vmg->end != vmg->next->vm_start ||
307 !can_vma_merge_before(vmg))
314 * If we can merge with prev (left) and next (right), indicating that
315 * each VMA's anon_vma is compatible with the proposed anon_vma, this
316 * does not mean prev and next are compatible with EACH OTHER.
318 * We therefore check this in addition to mergeability to either side.
320 return are_anon_vmas_compatible(vmg->prev, vmg->next);
324 * Close a vm structure and free it.
326 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed)
329 if (!closed && vma->vm_ops && vma->vm_ops->close)
330 vma->vm_ops->close(vma);
333 mpol_put(vma_policy(vma));
341 * Get rid of page table information in the indicated region.
343 * Called with the mm semaphore held.
345 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
346 struct vm_area_struct *prev, struct vm_area_struct *next)
348 struct mm_struct *mm = vma->vm_mm;
349 struct mmu_gather tlb;
352 tlb_gather_mmu(&tlb, mm);
353 update_hiwater_rss(mm);
354 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
355 /* mm_wr_locked = */ true);
356 mas_set(mas, vma->vm_end);
357 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
358 next ? next->vm_start : USER_PGTABLES_CEILING,
359 /* mm_wr_locked = */ true);
360 tlb_finish_mmu(&tlb);
364 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
365 * has already been checked or doesn't make sense to fail.
366 * VMA Iterator will point to the original VMA.
368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
369 unsigned long addr, int new_below)
371 struct vma_prepare vp;
372 struct vm_area_struct *new;
375 WARN_ON(vma->vm_start >= addr);
376 WARN_ON(vma->vm_end <= addr);
378 if (vma->vm_ops && vma->vm_ops->may_split) {
379 err = vma->vm_ops->may_split(vma, addr);
384 new = vm_area_dup(vma);
391 new->vm_start = addr;
392 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
396 vma_iter_config(vmi, new->vm_start, new->vm_end);
397 if (vma_iter_prealloc(vmi, new))
400 err = vma_dup_policy(vma, new);
404 err = anon_vma_clone(new, vma);
409 get_file(new->vm_file);
411 if (new->vm_ops && new->vm_ops->open)
412 new->vm_ops->open(new);
414 vma_start_write(vma);
415 vma_start_write(new);
417 init_vma_prep(&vp, vma);
420 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
423 vma->vm_start = addr;
424 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
429 /* vma_complete stores the new vma */
430 vma_complete(&vp, vmi, vma->vm_mm);
431 validate_mm(vma->vm_mm);
442 mpol_put(vma_policy(new));
451 * Split a vma into two pieces at address 'addr', a new vma is allocated
452 * either for the first part or the tail.
454 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
455 unsigned long addr, int new_below)
457 if (vma->vm_mm->map_count >= sysctl_max_map_count)
460 return __split_vma(vmi, vma, addr, new_below);
464 * vma has some anon_vma assigned, and is already inserted on that
465 * anon_vma's interval trees.
467 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
468 * vma must be removed from the anon_vma's interval trees using
469 * anon_vma_interval_tree_pre_update_vma().
471 * After the update, the vma will be reinserted using
472 * anon_vma_interval_tree_post_update_vma().
474 * The entire update must be protected by exclusive mmap_lock and by
475 * the root anon_vma's mutex.
478 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
480 struct anon_vma_chain *avc;
482 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
483 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
487 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
489 struct anon_vma_chain *avc;
491 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
492 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
496 * dup_anon_vma() - Helper function to duplicate anon_vma
497 * @dst: The destination VMA
498 * @src: The source VMA
499 * @dup: Pointer to the destination VMA when successful.
501 * Returns: 0 on success.
503 static int dup_anon_vma(struct vm_area_struct *dst,
504 struct vm_area_struct *src, struct vm_area_struct **dup)
507 * Easily overlooked: when mprotect shifts the boundary, make sure the
508 * expanding vma has anon_vma set if the shrinking vma had, to cover any
509 * anon pages imported.
511 if (src->anon_vma && !dst->anon_vma) {
514 vma_assert_write_locked(dst);
515 dst->anon_vma = src->anon_vma;
516 ret = anon_vma_clone(dst, src);
526 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
527 void validate_mm(struct mm_struct *mm)
531 struct vm_area_struct *vma;
532 VMA_ITERATOR(vmi, mm, 0);
534 mt_validate(&mm->mm_mt);
535 for_each_vma(vmi, vma) {
536 #ifdef CONFIG_DEBUG_VM_RB
537 struct anon_vma *anon_vma = vma->anon_vma;
538 struct anon_vma_chain *avc;
540 unsigned long vmi_start, vmi_end;
543 vmi_start = vma_iter_addr(&vmi);
544 vmi_end = vma_iter_end(&vmi);
545 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
548 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
552 pr_emerg("issue in %s\n", current->comm);
555 pr_emerg("tree range: %px start %lx end %lx\n", vma,
556 vmi_start, vmi_end - 1);
557 vma_iter_dump_tree(&vmi);
560 #ifdef CONFIG_DEBUG_VM_RB
562 anon_vma_lock_read(anon_vma);
563 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
564 anon_vma_interval_tree_verify(avc);
565 anon_vma_unlock_read(anon_vma);
570 if (i != mm->map_count) {
571 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
574 VM_BUG_ON_MM(bug, mm);
576 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
578 /* Actually perform the VMA merge operation. */
579 static int commit_merge(struct vma_merge_struct *vmg,
580 struct vm_area_struct *adjust,
581 struct vm_area_struct *remove,
582 struct vm_area_struct *remove2,
586 struct vma_prepare vp;
588 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
590 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
591 vp.anon_vma != adjust->anon_vma);
594 /* Note: vma iterator must be pointing to 'start'. */
595 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
597 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
601 if (vma_iter_prealloc(vmg->vmi, vmg->vma))
605 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
606 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
609 vma_iter_store(vmg->vmi, vmg->vma);
612 adjust->vm_start += adj_start;
613 adjust->vm_pgoff += PHYS_PFN(adj_start);
616 vma_iter_store(vmg->vmi, adjust);
620 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
625 /* We can only remove VMAs when merging if they do not have a close hook. */
626 static bool can_merge_remove_vma(struct vm_area_struct *vma)
628 return !vma->vm_ops || !vma->vm_ops->close;
632 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
633 * attributes modified.
635 * @vmg: Describes the modifications being made to a VMA and associated
638 * When the attributes of a range within a VMA change, then it might be possible
639 * for immediately adjacent VMAs to be merged into that VMA due to having
640 * identical properties.
642 * This function checks for the existence of any such mergeable VMAs and updates
643 * the maple tree describing the @vmg->vma->vm_mm address space to account for
644 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
646 * As part of this operation, if a merge occurs, the @vmg object will have its
647 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
648 * calls to this function should reset these fields.
650 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
653 * - The caller must assign the VMA to be modifed to @vmg->vma.
654 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
655 * - The caller must not set @vmg->next, as we determine this.
656 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
657 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
659 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
661 struct vm_area_struct *vma = vmg->vma;
662 struct vm_area_struct *prev = vmg->prev;
663 struct vm_area_struct *next, *res;
664 struct vm_area_struct *anon_dup = NULL;
665 struct vm_area_struct *adjust = NULL;
666 unsigned long start = vmg->start;
667 unsigned long end = vmg->end;
668 bool left_side = vma && start == vma->vm_start;
669 bool right_side = vma && end == vma->vm_end;
672 bool merge_will_delete_vma, merge_will_delete_next;
673 bool merge_left, merge_right, merge_both;
676 mmap_assert_write_locked(vmg->mm);
677 VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
678 VM_WARN_ON(vmg->next); /* We set this. */
679 VM_WARN_ON(prev && start <= prev->vm_start);
680 VM_WARN_ON(start >= end);
682 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
683 * not, we must span a portion of the VMA.
685 VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
686 vmg->end > vma->vm_end));
687 /* The vmi must be positioned within vmg->vma. */
688 VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
689 vma_iter_addr(vmg->vmi) < vma->vm_end));
691 vmg->state = VMA_MERGE_NOMERGE;
694 * If a special mapping or if the range being modified is neither at the
695 * furthermost left or right side of the VMA, then we have no chance of
696 * merging and should abort.
698 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
702 merge_left = can_vma_merge_left(vmg);
707 next = vmg->next = vma_iter_next_range(vmg->vmi);
708 vma_iter_prev_range(vmg->vmi);
710 merge_right = can_vma_merge_right(vmg, merge_left);
716 if (merge_left) /* If merging prev, position iterator there. */
718 else if (!merge_right) /* If we have nothing to merge, abort. */
721 merge_both = merge_left && merge_right;
722 /* If we span the entire VMA, a merge implies it will be deleted. */
723 merge_will_delete_vma = left_side && right_side;
726 * If we need to remove vma in its entirety but are unable to do so,
727 * we have no sensible recourse but to abort the merge.
729 if (merge_will_delete_vma && !can_merge_remove_vma(vma))
733 * If we merge both VMAs, then next is also deleted. This implies
734 * merge_will_delete_vma also.
736 merge_will_delete_next = merge_both;
739 * If we cannot delete next, then we can reduce the operation to merging
740 * prev and vma (thereby deleting vma).
742 if (merge_will_delete_next && !can_merge_remove_vma(next)) {
743 merge_will_delete_next = false;
748 /* No matter what happens, we will be adjusting vma. */
749 vma_start_write(vma);
752 vma_start_write(prev);
755 vma_start_write(next);
760 * |-------*********-------|
762 * extend delete delete
766 vmg->start = prev->vm_start;
767 vmg->end = next->vm_end;
768 vmg->pgoff = prev->vm_pgoff;
771 * We already ensured anon_vma compatibility above, so now it's
772 * simply a case of, if prev has no anon_vma object, which of
773 * next or vma contains the anon_vma we must duplicate.
775 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
776 } else if (merge_left) {
780 * |-------*************
782 * extend shrink/delete
786 vmg->start = prev->vm_start;
787 vmg->pgoff = prev->vm_pgoff;
789 if (!merge_will_delete_vma) {
791 adj_start = vmg->end - vma->vm_start;
794 err = dup_anon_vma(prev, vma, &anon_dup);
795 } else { /* merge_right */
799 * *************-------|
801 * shrink/delete extend
804 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
806 VM_WARN_ON(!merge_right);
807 /* If we are offset into a VMA, then prev must be vma. */
808 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
810 if (merge_will_delete_vma) {
812 vmg->end = next->vm_end;
813 vmg->pgoff = next->vm_pgoff - pglen;
816 * We shrink vma and expand next.
818 * IMPORTANT: This is the ONLY case where the final
819 * merged VMA is NOT vmg->vma, but rather vmg->next.
822 vmg->start = vma->vm_start;
824 vmg->pgoff = vma->vm_pgoff;
827 adj_start = -(vma->vm_end - start);
830 err = dup_anon_vma(next, vma, &anon_dup);
837 * In nearly all cases, we expand vmg->vma. There is one exception -
838 * merge_right where we partially span the VMA. In this case we shrink
839 * the end of vmg->vma and adjust the start of vmg->next accordingly.
841 expanded = !merge_right || merge_will_delete_vma;
843 if (commit_merge(vmg, adjust,
844 merge_will_delete_vma ? vma : NULL,
845 merge_will_delete_next ? next : NULL,
846 adj_start, expanded)) {
848 unlink_anon_vmas(anon_dup);
850 vmg->state = VMA_MERGE_ERROR_NOMEM;
854 res = merge_left ? prev : next;
855 khugepaged_enter_vma(res, vmg->flags);
857 vmg->state = VMA_MERGE_SUCCESS;
861 vma_iter_set(vmg->vmi, start);
862 vma_iter_load(vmg->vmi);
863 vmg->state = VMA_MERGE_ERROR_NOMEM;
868 * vma_merge_new_range - Attempt to merge a new VMA into address space
870 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
871 * (exclusive), which we try to merge with any adjacent VMAs if possible.
873 * We are about to add a VMA to the address space starting at @vmg->start and
874 * ending at @vmg->end. There are three different possible scenarios:
876 * 1. There is a VMA with identical properties immediately adjacent to the
877 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
880 * Proposed: |-----| or |-----|
881 * Existing: |----| |----|
883 * 2. There are VMAs with identical properties immediately adjacent to the
884 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
885 * EXPAND the former and REMOVE the latter:
888 * Existing: |----| |----|
890 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
891 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
893 * In instances where we can merge, this function returns the expanded VMA which
894 * will have its range adjusted accordingly and the underlying maple tree also
897 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
898 * to the VMA we expanded.
900 * This function adjusts @vmg to provide @vmg->next if not already specified,
901 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
904 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
905 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
906 other than VMAs that will be unmapped should the operation succeed.
907 * - The caller must have specified the previous vma in @vmg->prev.
908 * - The caller must have specified the next vma in @vmg->next.
909 * - The caller must have positioned the vmi at or before the gap.
911 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
913 struct vm_area_struct *prev = vmg->prev;
914 struct vm_area_struct *next = vmg->next;
915 unsigned long start = vmg->start;
916 unsigned long end = vmg->end;
917 pgoff_t pgoff = vmg->pgoff;
918 pgoff_t pglen = PHYS_PFN(end - start);
919 bool can_merge_left, can_merge_right;
921 mmap_assert_write_locked(vmg->mm);
922 VM_WARN_ON(vmg->vma);
923 /* vmi must point at or before the gap. */
924 VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
926 vmg->state = VMA_MERGE_NOMERGE;
928 /* Special VMAs are unmergeable, also if no prev/next. */
929 if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
932 can_merge_left = can_vma_merge_left(vmg);
933 can_merge_right = can_vma_merge_right(vmg, can_merge_left);
935 /* If we can merge with the next VMA, adjust vmg accordingly. */
936 if (can_merge_right) {
937 vmg->end = next->vm_end;
939 vmg->pgoff = next->vm_pgoff - pglen;
942 /* If we can merge with the previous VMA, adjust vmg accordingly. */
943 if (can_merge_left) {
944 vmg->start = prev->vm_start;
946 vmg->pgoff = prev->vm_pgoff;
949 * If this merge would result in removal of the next VMA but we
950 * are not permitted to do so, reduce the operation to merging
953 if (can_merge_right && !can_merge_remove_vma(next))
956 vma_prev(vmg->vmi); /* Equivalent to going to the previous range */
960 * Now try to expand adjacent VMA(s). This takes care of removing the
961 * following VMA if we have VMAs on both sides.
963 if (vmg->vma && !vma_expand(vmg)) {
964 khugepaged_enter_vma(vmg->vma, vmg->flags);
965 vmg->state = VMA_MERGE_SUCCESS;
969 /* If expansion failed, reset state. Allows us to retry merge later. */
974 if (vmg->vma == prev)
975 vma_iter_set(vmg->vmi, start);
981 * vma_expand - Expand an existing VMA
983 * @vmg: Describes a VMA expansion operation.
985 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
986 * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
987 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with
988 * vmg->next needs to be handled by the caller.
990 * Returns: 0 on success.
993 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
994 * - The caller must have set @vmg->vma and @vmg->next.
996 int vma_expand(struct vma_merge_struct *vmg)
998 struct vm_area_struct *anon_dup = NULL;
999 bool remove_next = false;
1000 struct vm_area_struct *vma = vmg->vma;
1001 struct vm_area_struct *next = vmg->next;
1003 mmap_assert_write_locked(vmg->mm);
1005 vma_start_write(vma);
1006 if (next && (vma != next) && (vmg->end == next->vm_end)) {
1010 /* This should already have been checked by this point. */
1011 VM_WARN_ON(!can_merge_remove_vma(next));
1012 vma_start_write(next);
1013 ret = dup_anon_vma(vma, next, &anon_dup);
1018 /* Not merging but overwriting any part of next is not handled. */
1019 VM_WARN_ON(next && !remove_next &&
1020 next != vma && vmg->end > next->vm_start);
1021 /* Only handles expanding */
1022 VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1024 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1030 vmg->state = VMA_MERGE_ERROR_NOMEM;
1032 unlink_anon_vmas(anon_dup);
1037 * vma_shrink() - Reduce an existing VMAs memory area
1038 * @vmi: The vma iterator
1039 * @vma: The VMA to modify
1040 * @start: The new start
1043 * Returns: 0 on success, -ENOMEM otherwise
1045 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1046 unsigned long start, unsigned long end, pgoff_t pgoff)
1048 struct vma_prepare vp;
1050 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1052 if (vma->vm_start < start)
1053 vma_iter_config(vmi, vma->vm_start, start);
1055 vma_iter_config(vmi, end, vma->vm_end);
1057 if (vma_iter_prealloc(vmi, NULL))
1060 vma_start_write(vma);
1062 init_vma_prep(&vp, vma);
1064 vma_adjust_trans_huge(vma, start, end, 0);
1066 vma_iter_clear(vmi);
1067 vma_set_range(vma, start, end, pgoff);
1068 vma_complete(&vp, vmi, vma->vm_mm);
1069 validate_mm(vma->vm_mm);
1073 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1074 struct ma_state *mas_detach, bool mm_wr_locked)
1076 struct mmu_gather tlb;
1078 if (!vms->clear_ptes) /* Nothing to do */
1082 * We can free page tables without write-locking mmap_lock because VMAs
1083 * were isolated before we downgraded mmap_lock.
1085 mas_set(mas_detach, 1);
1087 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1088 update_hiwater_rss(vms->vma->vm_mm);
1089 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1090 vms->vma_count, mm_wr_locked);
1092 mas_set(mas_detach, 1);
1093 /* start and end may be different if there is no prev or next vma. */
1094 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1095 vms->unmap_end, mm_wr_locked);
1096 tlb_finish_mmu(&tlb);
1097 vms->clear_ptes = false;
1100 void vms_clean_up_area(struct vma_munmap_struct *vms,
1101 struct ma_state *mas_detach)
1103 struct vm_area_struct *vma;
1108 vms_clear_ptes(vms, mas_detach, true);
1109 mas_set(mas_detach, 0);
1110 mas_for_each(mas_detach, vma, ULONG_MAX)
1111 if (vma->vm_ops && vma->vm_ops->close)
1112 vma->vm_ops->close(vma);
1113 vms->closed_vm_ops = true;
1117 * vms_complete_munmap_vmas() - Finish the munmap() operation
1118 * @vms: The vma munmap struct
1119 * @mas_detach: The maple state of the detached vmas
1121 * This updates the mm_struct, unmaps the region, frees the resources
1122 * used for the munmap() and may downgrade the lock - if requested. Everything
1123 * needed to be done once the vma maple tree is updated.
1125 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1126 struct ma_state *mas_detach)
1128 struct vm_area_struct *vma;
1129 struct mm_struct *mm;
1132 mm->map_count -= vms->vma_count;
1133 mm->locked_vm -= vms->locked_vm;
1135 mmap_write_downgrade(mm);
1140 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1141 /* Update high watermark before we lower total_vm */
1142 update_hiwater_vm(mm);
1143 /* Stat accounting */
1144 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1145 /* Paranoid bookkeeping */
1146 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1147 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1148 VM_WARN_ON(vms->data_vm > mm->data_vm);
1149 mm->exec_vm -= vms->exec_vm;
1150 mm->stack_vm -= vms->stack_vm;
1151 mm->data_vm -= vms->data_vm;
1153 /* Remove and clean up vmas */
1154 mas_set(mas_detach, 0);
1155 mas_for_each(mas_detach, vma, ULONG_MAX)
1156 remove_vma(vma, /* = */ false, vms->closed_vm_ops);
1158 vm_unacct_memory(vms->nr_accounted);
1161 mmap_read_unlock(mm);
1163 __mt_destroy(mas_detach->tree);
1167 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1168 * for removal at a later date. Handles splitting first and last if necessary
1169 * and marking the vmas as isolated.
1171 * @vms: The vma munmap struct
1172 * @mas_detach: The maple state tracking the detached tree
1174 * Return: 0 on success, error otherwise
1176 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1177 struct ma_state *mas_detach)
1179 struct vm_area_struct *next = NULL;
1183 * If we need to split any vma, do it now to save pain later.
1184 * Does it split the first one?
1186 if (vms->start > vms->vma->vm_start) {
1189 * Make sure that map_count on return from munmap() will
1190 * not exceed its limit; but let map_count go just above
1191 * its limit temporarily, to help free resources as expected.
1193 if (vms->end < vms->vma->vm_end &&
1194 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1196 goto map_count_exceeded;
1199 /* Don't bother splitting the VMA if we can't unmap it anyway */
1200 if (!can_modify_vma(vms->vma)) {
1202 goto start_split_failed;
1205 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1207 goto start_split_failed;
1209 vms->prev = vma_prev(vms->vmi);
1211 vms->unmap_start = vms->prev->vm_end;
1214 * Detach a range of VMAs from the mm. Using next as a temp variable as
1215 * it is always overwritten.
1217 for_each_vma_range(*(vms->vmi), next, vms->end) {
1220 if (!can_modify_vma(next)) {
1222 goto modify_vma_failed;
1224 /* Does it split the end? */
1225 if (next->vm_end > vms->end) {
1226 error = __split_vma(vms->vmi, next, vms->end, 0);
1228 goto end_split_failed;
1230 vma_start_write(next);
1231 mas_set(mas_detach, vms->vma_count++);
1232 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1234 goto munmap_gather_failed;
1236 vma_mark_detached(next, true);
1237 nrpages = vma_pages(next);
1239 vms->nr_pages += nrpages;
1240 if (next->vm_flags & VM_LOCKED)
1241 vms->locked_vm += nrpages;
1243 if (next->vm_flags & VM_ACCOUNT)
1244 vms->nr_accounted += nrpages;
1246 if (is_exec_mapping(next->vm_flags))
1247 vms->exec_vm += nrpages;
1248 else if (is_stack_mapping(next->vm_flags))
1249 vms->stack_vm += nrpages;
1250 else if (is_data_mapping(next->vm_flags))
1251 vms->data_vm += nrpages;
1253 if (unlikely(vms->uf)) {
1255 * If userfaultfd_unmap_prep returns an error the vmas
1256 * will remain split, but userland will get a
1257 * highly unexpected error anyway. This is no
1258 * different than the case where the first of the two
1259 * __split_vma fails, but we don't undo the first
1260 * split, despite we could. This is unlikely enough
1261 * failure that it's not worth optimizing it for.
1263 error = userfaultfd_unmap_prep(next, vms->start,
1266 goto userfaultfd_error;
1268 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1269 BUG_ON(next->vm_start < vms->start);
1270 BUG_ON(next->vm_start > vms->end);
1274 vms->next = vma_next(vms->vmi);
1276 vms->unmap_end = vms->next->vm_start;
1278 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1279 /* Make sure no VMAs are about to be lost. */
1281 MA_STATE(test, mas_detach->tree, 0, 0);
1282 struct vm_area_struct *vma_mas, *vma_test;
1285 vma_iter_set(vms->vmi, vms->start);
1287 vma_test = mas_find(&test, vms->vma_count - 1);
1288 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1289 BUG_ON(vma_mas != vma_test);
1291 vma_test = mas_next(&test, vms->vma_count - 1);
1294 BUG_ON(vms->vma_count != test_count);
1298 while (vma_iter_addr(vms->vmi) > vms->start)
1299 vma_iter_prev_range(vms->vmi);
1301 vms->clear_ptes = true;
1305 munmap_gather_failed:
1308 reattach_vmas(mas_detach);
1315 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1316 * @vmi: The vma iterator
1317 * @vma: The starting vm_area_struct
1318 * @mm: The mm_struct
1319 * @start: The aligned start address to munmap.
1320 * @end: The aligned end address to munmap.
1321 * @uf: The userfaultfd list_head
1322 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1325 * Return: 0 on success and drops the lock if so directed, error and leaves the
1326 * lock held otherwise.
1328 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1329 struct mm_struct *mm, unsigned long start, unsigned long end,
1330 struct list_head *uf, bool unlock)
1332 struct maple_tree mt_detach;
1333 MA_STATE(mas_detach, &mt_detach, 0, 0);
1334 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1335 mt_on_stack(mt_detach);
1336 struct vma_munmap_struct vms;
1339 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1340 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1344 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1346 goto clear_tree_failed;
1348 /* Point of no return */
1349 vms_complete_munmap_vmas(&vms, &mas_detach);
1353 reattach_vmas(&mas_detach);
1360 * do_vmi_munmap() - munmap a given range.
1361 * @vmi: The vma iterator
1362 * @mm: The mm_struct
1363 * @start: The start address to munmap
1364 * @len: The length of the range to munmap
1365 * @uf: The userfaultfd list_head
1366 * @unlock: set to true if the user wants to drop the mmap_lock on success
1368 * This function takes a @mas that is either pointing to the previous VMA or set
1369 * to MA_START and sets it up to remove the mapping(s). The @len will be
1372 * Return: 0 on success and drops the lock if so directed, error and leaves the
1373 * lock held otherwise.
1375 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1376 unsigned long start, size_t len, struct list_head *uf,
1380 struct vm_area_struct *vma;
1382 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1385 end = start + PAGE_ALIGN(len);
1389 /* Find the first overlapping VMA */
1390 vma = vma_find(vmi, end);
1393 mmap_write_unlock(mm);
1397 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1401 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1402 * context and anonymous VMA name within the range [start, end).
1404 * As a result, we might be able to merge the newly modified VMA range with an
1405 * adjacent VMA with identical properties.
1407 * If no merge is possible and the range does not span the entirety of the VMA,
1408 * we then need to split the VMA to accommodate the change.
1410 * The function returns either the merged VMA, the original VMA if a split was
1411 * required instead, or an error if the split failed.
1413 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1415 struct vm_area_struct *vma = vmg->vma;
1416 struct vm_area_struct *merged;
1418 /* First, try to merge. */
1419 merged = vma_merge_existing_range(vmg);
1423 /* Split any preceding portion of the VMA. */
1424 if (vma->vm_start < vmg->start) {
1425 int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1428 return ERR_PTR(err);
1431 /* Split any trailing portion of the VMA. */
1432 if (vma->vm_end > vmg->end) {
1433 int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1436 return ERR_PTR(err);
1442 struct vm_area_struct *vma_modify_flags(
1443 struct vma_iterator *vmi, struct vm_area_struct *prev,
1444 struct vm_area_struct *vma, unsigned long start, unsigned long end,
1445 unsigned long new_flags)
1447 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1449 vmg.flags = new_flags;
1451 return vma_modify(&vmg);
1454 struct vm_area_struct
1455 *vma_modify_flags_name(struct vma_iterator *vmi,
1456 struct vm_area_struct *prev,
1457 struct vm_area_struct *vma,
1458 unsigned long start,
1460 unsigned long new_flags,
1461 struct anon_vma_name *new_name)
1463 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1465 vmg.flags = new_flags;
1466 vmg.anon_name = new_name;
1468 return vma_modify(&vmg);
1471 struct vm_area_struct
1472 *vma_modify_policy(struct vma_iterator *vmi,
1473 struct vm_area_struct *prev,
1474 struct vm_area_struct *vma,
1475 unsigned long start, unsigned long end,
1476 struct mempolicy *new_pol)
1478 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1480 vmg.policy = new_pol;
1482 return vma_modify(&vmg);
1485 struct vm_area_struct
1486 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1487 struct vm_area_struct *prev,
1488 struct vm_area_struct *vma,
1489 unsigned long start, unsigned long end,
1490 unsigned long new_flags,
1491 struct vm_userfaultfd_ctx new_ctx)
1493 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1495 vmg.flags = new_flags;
1496 vmg.uffd_ctx = new_ctx;
1498 return vma_modify(&vmg);
1502 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1503 * VMA with identical properties.
1505 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1506 struct vm_area_struct *vma,
1507 unsigned long delta)
1509 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1511 vmg.next = vma_iter_next_rewind(vmi, NULL);
1512 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1514 return vma_merge_new_range(&vmg);
1517 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1522 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1524 struct address_space *mapping;
1527 mapping = vb->vmas[0]->vm_file->f_mapping;
1528 i_mmap_lock_write(mapping);
1529 for (i = 0; i < vb->count; i++) {
1530 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1531 __remove_shared_vm_struct(vb->vmas[i], mapping);
1533 i_mmap_unlock_write(mapping);
1535 unlink_file_vma_batch_init(vb);
1538 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1539 struct vm_area_struct *vma)
1541 if (vma->vm_file == NULL)
1544 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1545 vb->count == ARRAY_SIZE(vb->vmas))
1546 unlink_file_vma_batch_process(vb);
1548 vb->vmas[vb->count] = vma;
1552 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1555 unlink_file_vma_batch_process(vb);
1559 * Unlink a file-based vm structure from its interval tree, to hide
1560 * vma from rmap and vmtruncate before freeing its page tables.
1562 void unlink_file_vma(struct vm_area_struct *vma)
1564 struct file *file = vma->vm_file;
1567 struct address_space *mapping = file->f_mapping;
1569 i_mmap_lock_write(mapping);
1570 __remove_shared_vm_struct(vma, mapping);
1571 i_mmap_unlock_write(mapping);
1575 void vma_link_file(struct vm_area_struct *vma)
1577 struct file *file = vma->vm_file;
1578 struct address_space *mapping;
1581 mapping = file->f_mapping;
1582 i_mmap_lock_write(mapping);
1583 __vma_link_file(vma, mapping);
1584 i_mmap_unlock_write(mapping);
1588 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1590 VMA_ITERATOR(vmi, mm, 0);
1592 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1593 if (vma_iter_prealloc(&vmi, vma))
1596 vma_start_write(vma);
1597 vma_iter_store(&vmi, vma);
1605 * Copy the vma structure to a new location in the same mm,
1606 * prior to moving page table entries, to effect an mremap move.
1608 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1609 unsigned long addr, unsigned long len, pgoff_t pgoff,
1610 bool *need_rmap_locks)
1612 struct vm_area_struct *vma = *vmap;
1613 unsigned long vma_start = vma->vm_start;
1614 struct mm_struct *mm = vma->vm_mm;
1615 struct vm_area_struct *new_vma;
1616 bool faulted_in_anon_vma = true;
1617 VMA_ITERATOR(vmi, mm, addr);
1618 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1621 * If anonymous vma has not yet been faulted, update new pgoff
1622 * to match new location, to increase its chance of merging.
1624 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1625 pgoff = addr >> PAGE_SHIFT;
1626 faulted_in_anon_vma = false;
1629 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1630 if (new_vma && new_vma->vm_start < addr + len)
1631 return NULL; /* should never get here */
1633 vmg.vma = NULL; /* New VMA range. */
1635 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1636 new_vma = vma_merge_new_range(&vmg);
1640 * Source vma may have been merged into new_vma
1642 if (unlikely(vma_start >= new_vma->vm_start &&
1643 vma_start < new_vma->vm_end)) {
1645 * The only way we can get a vma_merge with
1646 * self during an mremap is if the vma hasn't
1647 * been faulted in yet and we were allowed to
1648 * reset the dst vma->vm_pgoff to the
1649 * destination address of the mremap to allow
1650 * the merge to happen. mremap must change the
1651 * vm_pgoff linearity between src and dst vmas
1652 * (in turn preventing a vma_merge) to be
1653 * safe. It is only safe to keep the vm_pgoff
1654 * linear if there are no pages mapped yet.
1656 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1657 *vmap = vma = new_vma;
1659 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1661 new_vma = vm_area_dup(vma);
1664 vma_set_range(new_vma, addr, addr + len, pgoff);
1665 if (vma_dup_policy(vma, new_vma))
1667 if (anon_vma_clone(new_vma, vma))
1668 goto out_free_mempol;
1669 if (new_vma->vm_file)
1670 get_file(new_vma->vm_file);
1671 if (new_vma->vm_ops && new_vma->vm_ops->open)
1672 new_vma->vm_ops->open(new_vma);
1673 if (vma_link(mm, new_vma))
1675 *need_rmap_locks = false;
1680 if (new_vma->vm_ops && new_vma->vm_ops->close)
1681 new_vma->vm_ops->close(new_vma);
1683 if (new_vma->vm_file)
1684 fput(new_vma->vm_file);
1686 unlink_anon_vmas(new_vma);
1688 mpol_put(vma_policy(new_vma));
1690 vm_area_free(new_vma);
1696 * Rough compatibility check to quickly see if it's even worth looking
1697 * at sharing an anon_vma.
1699 * They need to have the same vm_file, and the flags can only differ
1700 * in things that mprotect may change.
1702 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1703 * we can merge the two vma's. For example, we refuse to merge a vma if
1704 * there is a vm_ops->close() function, because that indicates that the
1705 * driver is doing some kind of reference counting. But that doesn't
1706 * really matter for the anon_vma sharing case.
1708 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1710 return a->vm_end == b->vm_start &&
1711 mpol_equal(vma_policy(a), vma_policy(b)) &&
1712 a->vm_file == b->vm_file &&
1713 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1714 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1718 * Do some basic sanity checking to see if we can re-use the anon_vma
1719 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1720 * the same as 'old', the other will be the new one that is trying
1721 * to share the anon_vma.
1723 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1724 * the anon_vma of 'old' is concurrently in the process of being set up
1725 * by another page fault trying to merge _that_. But that's ok: if it
1726 * is being set up, that automatically means that it will be a singleton
1727 * acceptable for merging, so we can do all of this optimistically. But
1728 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1730 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1731 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1732 * is to return an anon_vma that is "complex" due to having gone through
1735 * We also make sure that the two vma's are compatible (adjacent,
1736 * and with the same memory policies). That's all stable, even with just
1737 * a read lock on the mmap_lock.
1739 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1740 struct vm_area_struct *a,
1741 struct vm_area_struct *b)
1743 if (anon_vma_compatible(a, b)) {
1744 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1746 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1753 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1754 * neighbouring vmas for a suitable anon_vma, before it goes off
1755 * to allocate a new anon_vma. It checks because a repetitive
1756 * sequence of mprotects and faults may otherwise lead to distinct
1757 * anon_vmas being allocated, preventing vma merge in subsequent
1760 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1762 struct anon_vma *anon_vma = NULL;
1763 struct vm_area_struct *prev, *next;
1764 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1766 /* Try next first. */
1767 next = vma_iter_load(&vmi);
1769 anon_vma = reusable_anon_vma(next, vma, next);
1774 prev = vma_prev(&vmi);
1775 VM_BUG_ON_VMA(prev != vma, vma);
1776 prev = vma_prev(&vmi);
1777 /* Try prev next. */
1779 anon_vma = reusable_anon_vma(prev, prev, vma);
1782 * We might reach here with anon_vma == NULL if we can't find
1783 * any reusable anon_vma.
1784 * There's no absolute need to look only at touching neighbours:
1785 * we could search further afield for "compatible" anon_vmas.
1786 * But it would probably just be a waste of time searching,
1787 * or lead to too many vmas hanging off the same anon_vma.
1788 * We're trying to allow mprotect remerging later on,
1789 * not trying to minimize memory used for anon_vmas.
1794 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1796 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1799 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1801 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1802 (VM_WRITE | VM_SHARED);
1805 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1807 /* No managed pages to writeback. */
1808 if (vma->vm_flags & VM_PFNMAP)
1811 return vma->vm_file && vma->vm_file->f_mapping &&
1812 mapping_can_writeback(vma->vm_file->f_mapping);
1816 * Does this VMA require the underlying folios to have their dirty state
1819 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1821 /* Only shared, writable VMAs require dirty tracking. */
1822 if (!vma_is_shared_writable(vma))
1825 /* Does the filesystem need to be notified? */
1826 if (vm_ops_needs_writenotify(vma->vm_ops))
1830 * Even if the filesystem doesn't indicate a need for writenotify, if it
1831 * can writeback, dirty tracking is still required.
1833 return vma_fs_can_writeback(vma);
1837 * Some shared mappings will want the pages marked read-only
1838 * to track write events. If so, we'll downgrade vm_page_prot
1839 * to the private version (using protection_map[] without the
1842 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1844 /* If it was private or non-writable, the write bit is already clear */
1845 if (!vma_is_shared_writable(vma))
1848 /* The backer wishes to know when pages are first written to? */
1849 if (vm_ops_needs_writenotify(vma->vm_ops))
1852 /* The open routine did something to the protections that pgprot_modify
1853 * won't preserve? */
1854 if (pgprot_val(vm_page_prot) !=
1855 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1859 * Do we need to track softdirty? hugetlb does not support softdirty
1862 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1865 /* Do we need write faults for uffd-wp tracking? */
1866 if (userfaultfd_wp(vma))
1869 /* Can the mapping track the dirty pages? */
1870 return vma_fs_can_writeback(vma);
1873 static DEFINE_MUTEX(mm_all_locks_mutex);
1875 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1877 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1879 * The LSB of head.next can't change from under us
1880 * because we hold the mm_all_locks_mutex.
1882 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1884 * We can safely modify head.next after taking the
1885 * anon_vma->root->rwsem. If some other vma in this mm shares
1886 * the same anon_vma we won't take it again.
1888 * No need of atomic instructions here, head.next
1889 * can't change from under us thanks to the
1890 * anon_vma->root->rwsem.
1892 if (__test_and_set_bit(0, (unsigned long *)
1893 &anon_vma->root->rb_root.rb_root.rb_node))
1898 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1900 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1902 * AS_MM_ALL_LOCKS can't change from under us because
1903 * we hold the mm_all_locks_mutex.
1905 * Operations on ->flags have to be atomic because
1906 * even if AS_MM_ALL_LOCKS is stable thanks to the
1907 * mm_all_locks_mutex, there may be other cpus
1908 * changing other bitflags in parallel to us.
1910 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1912 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1917 * This operation locks against the VM for all pte/vma/mm related
1918 * operations that could ever happen on a certain mm. This includes
1919 * vmtruncate, try_to_unmap, and all page faults.
1921 * The caller must take the mmap_lock in write mode before calling
1922 * mm_take_all_locks(). The caller isn't allowed to release the
1923 * mmap_lock until mm_drop_all_locks() returns.
1925 * mmap_lock in write mode is required in order to block all operations
1926 * that could modify pagetables and free pages without need of
1927 * altering the vma layout. It's also needed in write mode to avoid new
1928 * anon_vmas to be associated with existing vmas.
1930 * A single task can't take more than one mm_take_all_locks() in a row
1931 * or it would deadlock.
1933 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1934 * mapping->flags avoid to take the same lock twice, if more than one
1935 * vma in this mm is backed by the same anon_vma or address_space.
1937 * We take locks in following order, accordingly to comment at beginning
1939 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1941 * - all vmas marked locked
1942 * - all i_mmap_rwsem locks;
1943 * - all anon_vma->rwseml
1945 * We can take all locks within these types randomly because the VM code
1946 * doesn't nest them and we protected from parallel mm_take_all_locks() by
1947 * mm_all_locks_mutex.
1949 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1950 * that may have to take thousand of locks.
1952 * mm_take_all_locks() can fail if it's interrupted by signals.
1954 int mm_take_all_locks(struct mm_struct *mm)
1956 struct vm_area_struct *vma;
1957 struct anon_vma_chain *avc;
1958 VMA_ITERATOR(vmi, mm, 0);
1960 mmap_assert_write_locked(mm);
1962 mutex_lock(&mm_all_locks_mutex);
1965 * vma_start_write() does not have a complement in mm_drop_all_locks()
1966 * because vma_start_write() is always asymmetrical; it marks a VMA as
1967 * being written to until mmap_write_unlock() or mmap_write_downgrade()
1970 for_each_vma(vmi, vma) {
1971 if (signal_pending(current))
1973 vma_start_write(vma);
1976 vma_iter_init(&vmi, mm, 0);
1977 for_each_vma(vmi, vma) {
1978 if (signal_pending(current))
1980 if (vma->vm_file && vma->vm_file->f_mapping &&
1981 is_vm_hugetlb_page(vma))
1982 vm_lock_mapping(mm, vma->vm_file->f_mapping);
1985 vma_iter_init(&vmi, mm, 0);
1986 for_each_vma(vmi, vma) {
1987 if (signal_pending(current))
1989 if (vma->vm_file && vma->vm_file->f_mapping &&
1990 !is_vm_hugetlb_page(vma))
1991 vm_lock_mapping(mm, vma->vm_file->f_mapping);
1994 vma_iter_init(&vmi, mm, 0);
1995 for_each_vma(vmi, vma) {
1996 if (signal_pending(current))
1999 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2000 vm_lock_anon_vma(mm, avc->anon_vma);
2006 mm_drop_all_locks(mm);
2010 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2012 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2014 * The LSB of head.next can't change to 0 from under
2015 * us because we hold the mm_all_locks_mutex.
2017 * We must however clear the bitflag before unlocking
2018 * the vma so the users using the anon_vma->rb_root will
2019 * never see our bitflag.
2021 * No need of atomic instructions here, head.next
2022 * can't change from under us until we release the
2023 * anon_vma->root->rwsem.
2025 if (!__test_and_clear_bit(0, (unsigned long *)
2026 &anon_vma->root->rb_root.rb_root.rb_node))
2028 anon_vma_unlock_write(anon_vma);
2032 static void vm_unlock_mapping(struct address_space *mapping)
2034 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2036 * AS_MM_ALL_LOCKS can't change to 0 from under us
2037 * because we hold the mm_all_locks_mutex.
2039 i_mmap_unlock_write(mapping);
2040 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2047 * The mmap_lock cannot be released by the caller until
2048 * mm_drop_all_locks() returns.
2050 void mm_drop_all_locks(struct mm_struct *mm)
2052 struct vm_area_struct *vma;
2053 struct anon_vma_chain *avc;
2054 VMA_ITERATOR(vmi, mm, 0);
2056 mmap_assert_write_locked(mm);
2057 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2059 for_each_vma(vmi, vma) {
2061 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2062 vm_unlock_anon_vma(avc->anon_vma);
2063 if (vma->vm_file && vma->vm_file->f_mapping)
2064 vm_unlock_mapping(vma->vm_file->f_mapping);
2067 mutex_unlock(&mm_all_locks_mutex);