]> Git Repo - linux.git/blob - mm/vma.c
net/mlx5: Unregister notifier on eswitch init failure
[linux.git] / mm / vma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4  * VMA-specific functions.
5  */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
11 {
12         struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
13
14         if (!mpol_equal(vmg->policy, vma_policy(vma)))
15                 return false;
16         /*
17          * VM_SOFTDIRTY should not prevent from VMA merging, if we
18          * match the flags but dirty bit -- the caller should mark
19          * merged VMA as dirty. If dirty bit won't be excluded from
20          * comparison, we increase pressure on the memory system forcing
21          * the kernel to generate new VMAs when old one could be
22          * extended instead.
23          */
24         if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
25                 return false;
26         if (vma->vm_file != vmg->file)
27                 return false;
28         if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
29                 return false;
30         if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
31                 return false;
32         return true;
33 }
34
35 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
36                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
37 {
38         /*
39          * The list_is_singular() test is to avoid merging VMA cloned from
40          * parents. This can improve scalability caused by anon_vma lock.
41          */
42         if ((!anon_vma1 || !anon_vma2) && (!vma ||
43                 list_is_singular(&vma->anon_vma_chain)))
44                 return true;
45         return anon_vma1 == anon_vma2;
46 }
47
48 /* Are the anon_vma's belonging to each VMA compatible with one another? */
49 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
50                                             struct vm_area_struct *vma2)
51 {
52         return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
53 }
54
55 /*
56  * init_multi_vma_prep() - Initializer for struct vma_prepare
57  * @vp: The vma_prepare struct
58  * @vma: The vma that will be altered once locked
59  * @next: The next vma if it is to be adjusted
60  * @remove: The first vma to be removed
61  * @remove2: The second vma to be removed
62  */
63 static void init_multi_vma_prep(struct vma_prepare *vp,
64                                 struct vm_area_struct *vma,
65                                 struct vm_area_struct *next,
66                                 struct vm_area_struct *remove,
67                                 struct vm_area_struct *remove2)
68 {
69         memset(vp, 0, sizeof(struct vma_prepare));
70         vp->vma = vma;
71         vp->anon_vma = vma->anon_vma;
72         vp->remove = remove;
73         vp->remove2 = remove2;
74         vp->adj_next = next;
75         if (!vp->anon_vma && next)
76                 vp->anon_vma = next->anon_vma;
77
78         vp->file = vma->vm_file;
79         if (vp->file)
80                 vp->mapping = vma->vm_file->f_mapping;
81
82 }
83
84 /*
85  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
86  * in front of (at a lower virtual address and file offset than) the vma.
87  *
88  * We cannot merge two vmas if they have differently assigned (non-NULL)
89  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
90  *
91  * We don't check here for the merged mmap wrapping around the end of pagecache
92  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
93  * wrap, nor mmaps which cover the final page at index -1UL.
94  *
95  * We assume the vma may be removed as part of the merge.
96  */
97 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
98 {
99         pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
100
101         if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
102             is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
103                 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
104                         return true;
105         }
106
107         return false;
108 }
109
110 /*
111  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112  * beyond (at a higher virtual address and file offset than) the vma.
113  *
114  * We cannot merge two vmas if they have differently assigned (non-NULL)
115  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
116  *
117  * We assume that vma is not removed as part of the merge.
118  */
119 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
120 {
121         if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
122             is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
123                 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
124                         return true;
125         }
126         return false;
127 }
128
129 static void __vma_link_file(struct vm_area_struct *vma,
130                             struct address_space *mapping)
131 {
132         if (vma_is_shared_maywrite(vma))
133                 mapping_allow_writable(mapping);
134
135         flush_dcache_mmap_lock(mapping);
136         vma_interval_tree_insert(vma, &mapping->i_mmap);
137         flush_dcache_mmap_unlock(mapping);
138 }
139
140 /*
141  * Requires inode->i_mapping->i_mmap_rwsem
142  */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144                                       struct address_space *mapping)
145 {
146         if (vma_is_shared_maywrite(vma))
147                 mapping_unmap_writable(mapping);
148
149         flush_dcache_mmap_lock(mapping);
150         vma_interval_tree_remove(vma, &mapping->i_mmap);
151         flush_dcache_mmap_unlock(mapping);
152 }
153
154 /*
155  * vma_prepare() - Helper function for handling locking VMAs prior to altering
156  * @vp: The initialized vma_prepare struct
157  */
158 static void vma_prepare(struct vma_prepare *vp)
159 {
160         if (vp->file) {
161                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
162
163                 if (vp->adj_next)
164                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
165                                       vp->adj_next->vm_end);
166
167                 i_mmap_lock_write(vp->mapping);
168                 if (vp->insert && vp->insert->vm_file) {
169                         /*
170                          * Put into interval tree now, so instantiated pages
171                          * are visible to arm/parisc __flush_dcache_page
172                          * throughout; but we cannot insert into address
173                          * space until vma start or end is updated.
174                          */
175                         __vma_link_file(vp->insert,
176                                         vp->insert->vm_file->f_mapping);
177                 }
178         }
179
180         if (vp->anon_vma) {
181                 anon_vma_lock_write(vp->anon_vma);
182                 anon_vma_interval_tree_pre_update_vma(vp->vma);
183                 if (vp->adj_next)
184                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
185         }
186
187         if (vp->file) {
188                 flush_dcache_mmap_lock(vp->mapping);
189                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
190                 if (vp->adj_next)
191                         vma_interval_tree_remove(vp->adj_next,
192                                                  &vp->mapping->i_mmap);
193         }
194
195 }
196
197 /*
198  * vma_complete- Helper function for handling the unlocking after altering VMAs,
199  * or for inserting a VMA.
200  *
201  * @vp: The vma_prepare struct
202  * @vmi: The vma iterator
203  * @mm: The mm_struct
204  */
205 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
206                          struct mm_struct *mm)
207 {
208         if (vp->file) {
209                 if (vp->adj_next)
210                         vma_interval_tree_insert(vp->adj_next,
211                                                  &vp->mapping->i_mmap);
212                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
213                 flush_dcache_mmap_unlock(vp->mapping);
214         }
215
216         if (vp->remove && vp->file) {
217                 __remove_shared_vm_struct(vp->remove, vp->mapping);
218                 if (vp->remove2)
219                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
220         } else if (vp->insert) {
221                 /*
222                  * split_vma has split insert from vma, and needs
223                  * us to insert it before dropping the locks
224                  * (it may either follow vma or precede it).
225                  */
226                 vma_iter_store(vmi, vp->insert);
227                 mm->map_count++;
228         }
229
230         if (vp->anon_vma) {
231                 anon_vma_interval_tree_post_update_vma(vp->vma);
232                 if (vp->adj_next)
233                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
234                 anon_vma_unlock_write(vp->anon_vma);
235         }
236
237         if (vp->file) {
238                 i_mmap_unlock_write(vp->mapping);
239                 uprobe_mmap(vp->vma);
240
241                 if (vp->adj_next)
242                         uprobe_mmap(vp->adj_next);
243         }
244
245         if (vp->remove) {
246 again:
247                 vma_mark_detached(vp->remove, true);
248                 if (vp->file) {
249                         uprobe_munmap(vp->remove, vp->remove->vm_start,
250                                       vp->remove->vm_end);
251                         fput(vp->file);
252                 }
253                 if (vp->remove->anon_vma)
254                         anon_vma_merge(vp->vma, vp->remove);
255                 mm->map_count--;
256                 mpol_put(vma_policy(vp->remove));
257                 if (!vp->remove2)
258                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
259                 vm_area_free(vp->remove);
260
261                 /*
262                  * In mprotect's case 6 (see comments on vma_merge),
263                  * we are removing both mid and next vmas
264                  */
265                 if (vp->remove2) {
266                         vp->remove = vp->remove2;
267                         vp->remove2 = NULL;
268                         goto again;
269                 }
270         }
271         if (vp->insert && vp->file)
272                 uprobe_mmap(vp->insert);
273 }
274
275 /*
276  * init_vma_prep() - Initializer wrapper for vma_prepare struct
277  * @vp: The vma_prepare struct
278  * @vma: The vma that will be altered once locked
279  */
280 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
281 {
282         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
283 }
284
285 /*
286  * Can the proposed VMA be merged with the left (previous) VMA taking into
287  * account the start position of the proposed range.
288  */
289 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
290
291 {
292         return vmg->prev && vmg->prev->vm_end == vmg->start &&
293                 can_vma_merge_after(vmg);
294 }
295
296 /*
297  * Can the proposed VMA be merged with the right (next) VMA taking into
298  * account the end position of the proposed range.
299  *
300  * In addition, if we can merge with the left VMA, ensure that left and right
301  * anon_vma's are also compatible.
302  */
303 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
304                                 bool can_merge_left)
305 {
306         if (!vmg->next || vmg->end != vmg->next->vm_start ||
307             !can_vma_merge_before(vmg))
308                 return false;
309
310         if (!can_merge_left)
311                 return true;
312
313         /*
314          * If we can merge with prev (left) and next (right), indicating that
315          * each VMA's anon_vma is compatible with the proposed anon_vma, this
316          * does not mean prev and next are compatible with EACH OTHER.
317          *
318          * We therefore check this in addition to mergeability to either side.
319          */
320         return are_anon_vmas_compatible(vmg->prev, vmg->next);
321 }
322
323 /*
324  * Close a vm structure and free it.
325  */
326 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed)
327 {
328         might_sleep();
329         if (!closed && vma->vm_ops && vma->vm_ops->close)
330                 vma->vm_ops->close(vma);
331         if (vma->vm_file)
332                 fput(vma->vm_file);
333         mpol_put(vma_policy(vma));
334         if (unreachable)
335                 __vm_area_free(vma);
336         else
337                 vm_area_free(vma);
338 }
339
340 /*
341  * Get rid of page table information in the indicated region.
342  *
343  * Called with the mm semaphore held.
344  */
345 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
346                 struct vm_area_struct *prev, struct vm_area_struct *next)
347 {
348         struct mm_struct *mm = vma->vm_mm;
349         struct mmu_gather tlb;
350
351         lru_add_drain();
352         tlb_gather_mmu(&tlb, mm);
353         update_hiwater_rss(mm);
354         unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
355                    /* mm_wr_locked = */ true);
356         mas_set(mas, vma->vm_end);
357         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
358                       next ? next->vm_start : USER_PGTABLES_CEILING,
359                       /* mm_wr_locked = */ true);
360         tlb_finish_mmu(&tlb);
361 }
362
363 /*
364  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
365  * has already been checked or doesn't make sense to fail.
366  * VMA Iterator will point to the original VMA.
367  */
368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
369                        unsigned long addr, int new_below)
370 {
371         struct vma_prepare vp;
372         struct vm_area_struct *new;
373         int err;
374
375         WARN_ON(vma->vm_start >= addr);
376         WARN_ON(vma->vm_end <= addr);
377
378         if (vma->vm_ops && vma->vm_ops->may_split) {
379                 err = vma->vm_ops->may_split(vma, addr);
380                 if (err)
381                         return err;
382         }
383
384         new = vm_area_dup(vma);
385         if (!new)
386                 return -ENOMEM;
387
388         if (new_below) {
389                 new->vm_end = addr;
390         } else {
391                 new->vm_start = addr;
392                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
393         }
394
395         err = -ENOMEM;
396         vma_iter_config(vmi, new->vm_start, new->vm_end);
397         if (vma_iter_prealloc(vmi, new))
398                 goto out_free_vma;
399
400         err = vma_dup_policy(vma, new);
401         if (err)
402                 goto out_free_vmi;
403
404         err = anon_vma_clone(new, vma);
405         if (err)
406                 goto out_free_mpol;
407
408         if (new->vm_file)
409                 get_file(new->vm_file);
410
411         if (new->vm_ops && new->vm_ops->open)
412                 new->vm_ops->open(new);
413
414         vma_start_write(vma);
415         vma_start_write(new);
416
417         init_vma_prep(&vp, vma);
418         vp.insert = new;
419         vma_prepare(&vp);
420         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
421
422         if (new_below) {
423                 vma->vm_start = addr;
424                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
425         } else {
426                 vma->vm_end = addr;
427         }
428
429         /* vma_complete stores the new vma */
430         vma_complete(&vp, vmi, vma->vm_mm);
431         validate_mm(vma->vm_mm);
432
433         /* Success. */
434         if (new_below)
435                 vma_next(vmi);
436         else
437                 vma_prev(vmi);
438
439         return 0;
440
441 out_free_mpol:
442         mpol_put(vma_policy(new));
443 out_free_vmi:
444         vma_iter_free(vmi);
445 out_free_vma:
446         vm_area_free(new);
447         return err;
448 }
449
450 /*
451  * Split a vma into two pieces at address 'addr', a new vma is allocated
452  * either for the first part or the tail.
453  */
454 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
455                      unsigned long addr, int new_below)
456 {
457         if (vma->vm_mm->map_count >= sysctl_max_map_count)
458                 return -ENOMEM;
459
460         return __split_vma(vmi, vma, addr, new_below);
461 }
462
463 /*
464  * vma has some anon_vma assigned, and is already inserted on that
465  * anon_vma's interval trees.
466  *
467  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
468  * vma must be removed from the anon_vma's interval trees using
469  * anon_vma_interval_tree_pre_update_vma().
470  *
471  * After the update, the vma will be reinserted using
472  * anon_vma_interval_tree_post_update_vma().
473  *
474  * The entire update must be protected by exclusive mmap_lock and by
475  * the root anon_vma's mutex.
476  */
477 void
478 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
479 {
480         struct anon_vma_chain *avc;
481
482         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
483                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
484 }
485
486 void
487 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
488 {
489         struct anon_vma_chain *avc;
490
491         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
492                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
493 }
494
495 /*
496  * dup_anon_vma() - Helper function to duplicate anon_vma
497  * @dst: The destination VMA
498  * @src: The source VMA
499  * @dup: Pointer to the destination VMA when successful.
500  *
501  * Returns: 0 on success.
502  */
503 static int dup_anon_vma(struct vm_area_struct *dst,
504                         struct vm_area_struct *src, struct vm_area_struct **dup)
505 {
506         /*
507          * Easily overlooked: when mprotect shifts the boundary, make sure the
508          * expanding vma has anon_vma set if the shrinking vma had, to cover any
509          * anon pages imported.
510          */
511         if (src->anon_vma && !dst->anon_vma) {
512                 int ret;
513
514                 vma_assert_write_locked(dst);
515                 dst->anon_vma = src->anon_vma;
516                 ret = anon_vma_clone(dst, src);
517                 if (ret)
518                         return ret;
519
520                 *dup = dst;
521         }
522
523         return 0;
524 }
525
526 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
527 void validate_mm(struct mm_struct *mm)
528 {
529         int bug = 0;
530         int i = 0;
531         struct vm_area_struct *vma;
532         VMA_ITERATOR(vmi, mm, 0);
533
534         mt_validate(&mm->mm_mt);
535         for_each_vma(vmi, vma) {
536 #ifdef CONFIG_DEBUG_VM_RB
537                 struct anon_vma *anon_vma = vma->anon_vma;
538                 struct anon_vma_chain *avc;
539 #endif
540                 unsigned long vmi_start, vmi_end;
541                 bool warn = 0;
542
543                 vmi_start = vma_iter_addr(&vmi);
544                 vmi_end = vma_iter_end(&vmi);
545                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
546                         warn = 1;
547
548                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
549                         warn = 1;
550
551                 if (warn) {
552                         pr_emerg("issue in %s\n", current->comm);
553                         dump_stack();
554                         dump_vma(vma);
555                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
556                                  vmi_start, vmi_end - 1);
557                         vma_iter_dump_tree(&vmi);
558                 }
559
560 #ifdef CONFIG_DEBUG_VM_RB
561                 if (anon_vma) {
562                         anon_vma_lock_read(anon_vma);
563                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
564                                 anon_vma_interval_tree_verify(avc);
565                         anon_vma_unlock_read(anon_vma);
566                 }
567 #endif
568                 i++;
569         }
570         if (i != mm->map_count) {
571                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
572                 bug = 1;
573         }
574         VM_BUG_ON_MM(bug, mm);
575 }
576 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
577
578 /* Actually perform the VMA merge operation. */
579 static int commit_merge(struct vma_merge_struct *vmg,
580                         struct vm_area_struct *adjust,
581                         struct vm_area_struct *remove,
582                         struct vm_area_struct *remove2,
583                         long adj_start,
584                         bool expanded)
585 {
586         struct vma_prepare vp;
587
588         init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
589
590         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
591                    vp.anon_vma != adjust->anon_vma);
592
593         if (expanded) {
594                 /* Note: vma iterator must be pointing to 'start'. */
595                 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
596         } else {
597                 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
598                                 adjust->vm_end);
599         }
600
601         if (vma_iter_prealloc(vmg->vmi, vmg->vma))
602                 return -ENOMEM;
603
604         vma_prepare(&vp);
605         vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
606         vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
607
608         if (expanded)
609                 vma_iter_store(vmg->vmi, vmg->vma);
610
611         if (adj_start) {
612                 adjust->vm_start += adj_start;
613                 adjust->vm_pgoff += PHYS_PFN(adj_start);
614                 if (adj_start < 0) {
615                         WARN_ON(expanded);
616                         vma_iter_store(vmg->vmi, adjust);
617                 }
618         }
619
620         vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
621
622         return 0;
623 }
624
625 /* We can only remove VMAs when merging if they do not have a close hook. */
626 static bool can_merge_remove_vma(struct vm_area_struct *vma)
627 {
628         return !vma->vm_ops || !vma->vm_ops->close;
629 }
630
631 /*
632  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
633  * attributes modified.
634  *
635  * @vmg: Describes the modifications being made to a VMA and associated
636  *       metadata.
637  *
638  * When the attributes of a range within a VMA change, then it might be possible
639  * for immediately adjacent VMAs to be merged into that VMA due to having
640  * identical properties.
641  *
642  * This function checks for the existence of any such mergeable VMAs and updates
643  * the maple tree describing the @vmg->vma->vm_mm address space to account for
644  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
645  *
646  * As part of this operation, if a merge occurs, the @vmg object will have its
647  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
648  * calls to this function should reset these fields.
649  *
650  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
651  *
652  * ASSUMPTIONS:
653  * - The caller must assign the VMA to be modifed to @vmg->vma.
654  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
655  * - The caller must not set @vmg->next, as we determine this.
656  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
657  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
658  */
659 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
660 {
661         struct vm_area_struct *vma = vmg->vma;
662         struct vm_area_struct *prev = vmg->prev;
663         struct vm_area_struct *next, *res;
664         struct vm_area_struct *anon_dup = NULL;
665         struct vm_area_struct *adjust = NULL;
666         unsigned long start = vmg->start;
667         unsigned long end = vmg->end;
668         bool left_side = vma && start == vma->vm_start;
669         bool right_side = vma && end == vma->vm_end;
670         int err = 0;
671         long adj_start = 0;
672         bool merge_will_delete_vma, merge_will_delete_next;
673         bool merge_left, merge_right, merge_both;
674         bool expanded;
675
676         mmap_assert_write_locked(vmg->mm);
677         VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
678         VM_WARN_ON(vmg->next); /* We set this. */
679         VM_WARN_ON(prev && start <= prev->vm_start);
680         VM_WARN_ON(start >= end);
681         /*
682          * If vma == prev, then we are offset into a VMA. Otherwise, if we are
683          * not, we must span a portion of the VMA.
684          */
685         VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
686                            vmg->end > vma->vm_end));
687         /* The vmi must be positioned within vmg->vma. */
688         VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
689                             vma_iter_addr(vmg->vmi) < vma->vm_end));
690
691         vmg->state = VMA_MERGE_NOMERGE;
692
693         /*
694          * If a special mapping or if the range being modified is neither at the
695          * furthermost left or right side of the VMA, then we have no chance of
696          * merging and should abort.
697          */
698         if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
699                 return NULL;
700
701         if (left_side)
702                 merge_left = can_vma_merge_left(vmg);
703         else
704                 merge_left = false;
705
706         if (right_side) {
707                 next = vmg->next = vma_iter_next_range(vmg->vmi);
708                 vma_iter_prev_range(vmg->vmi);
709
710                 merge_right = can_vma_merge_right(vmg, merge_left);
711         } else {
712                 merge_right = false;
713                 next = NULL;
714         }
715
716         if (merge_left)         /* If merging prev, position iterator there. */
717                 vma_prev(vmg->vmi);
718         else if (!merge_right)  /* If we have nothing to merge, abort. */
719                 return NULL;
720
721         merge_both = merge_left && merge_right;
722         /* If we span the entire VMA, a merge implies it will be deleted. */
723         merge_will_delete_vma = left_side && right_side;
724
725         /*
726          * If we need to remove vma in its entirety but are unable to do so,
727          * we have no sensible recourse but to abort the merge.
728          */
729         if (merge_will_delete_vma && !can_merge_remove_vma(vma))
730                 return NULL;
731
732         /*
733          * If we merge both VMAs, then next is also deleted. This implies
734          * merge_will_delete_vma also.
735          */
736         merge_will_delete_next = merge_both;
737
738         /*
739          * If we cannot delete next, then we can reduce the operation to merging
740          * prev and vma (thereby deleting vma).
741          */
742         if (merge_will_delete_next && !can_merge_remove_vma(next)) {
743                 merge_will_delete_next = false;
744                 merge_right = false;
745                 merge_both = false;
746         }
747
748         /* No matter what happens, we will be adjusting vma. */
749         vma_start_write(vma);
750
751         if (merge_left)
752                 vma_start_write(prev);
753
754         if (merge_right)
755                 vma_start_write(next);
756
757         if (merge_both) {
758                 /*
759                  *         |<----->|
760                  * |-------*********-------|
761                  *   prev     vma     next
762                  *  extend   delete  delete
763                  */
764
765                 vmg->vma = prev;
766                 vmg->start = prev->vm_start;
767                 vmg->end = next->vm_end;
768                 vmg->pgoff = prev->vm_pgoff;
769
770                 /*
771                  * We already ensured anon_vma compatibility above, so now it's
772                  * simply a case of, if prev has no anon_vma object, which of
773                  * next or vma contains the anon_vma we must duplicate.
774                  */
775                 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
776         } else if (merge_left) {
777                 /*
778                  *         |<----->| OR
779                  *         |<--------->|
780                  * |-------*************
781                  *   prev       vma
782                  *  extend shrink/delete
783                  */
784
785                 vmg->vma = prev;
786                 vmg->start = prev->vm_start;
787                 vmg->pgoff = prev->vm_pgoff;
788
789                 if (!merge_will_delete_vma) {
790                         adjust = vma;
791                         adj_start = vmg->end - vma->vm_start;
792                 }
793
794                 err = dup_anon_vma(prev, vma, &anon_dup);
795         } else { /* merge_right */
796                 /*
797                  *     |<----->| OR
798                  * |<--------->|
799                  * *************-------|
800                  *      vma       next
801                  * shrink/delete extend
802                  */
803
804                 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
805
806                 VM_WARN_ON(!merge_right);
807                 /* If we are offset into a VMA, then prev must be vma. */
808                 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
809
810                 if (merge_will_delete_vma) {
811                         vmg->vma = next;
812                         vmg->end = next->vm_end;
813                         vmg->pgoff = next->vm_pgoff - pglen;
814                 } else {
815                         /*
816                          * We shrink vma and expand next.
817                          *
818                          * IMPORTANT: This is the ONLY case where the final
819                          * merged VMA is NOT vmg->vma, but rather vmg->next.
820                          */
821
822                         vmg->start = vma->vm_start;
823                         vmg->end = start;
824                         vmg->pgoff = vma->vm_pgoff;
825
826                         adjust = next;
827                         adj_start = -(vma->vm_end - start);
828                 }
829
830                 err = dup_anon_vma(next, vma, &anon_dup);
831         }
832
833         if (err)
834                 goto abort;
835
836         /*
837          * In nearly all cases, we expand vmg->vma. There is one exception -
838          * merge_right where we partially span the VMA. In this case we shrink
839          * the end of vmg->vma and adjust the start of vmg->next accordingly.
840          */
841         expanded = !merge_right || merge_will_delete_vma;
842
843         if (commit_merge(vmg, adjust,
844                          merge_will_delete_vma ? vma : NULL,
845                          merge_will_delete_next ? next : NULL,
846                          adj_start, expanded)) {
847                 if (anon_dup)
848                         unlink_anon_vmas(anon_dup);
849
850                 vmg->state = VMA_MERGE_ERROR_NOMEM;
851                 return NULL;
852         }
853
854         res = merge_left ? prev : next;
855         khugepaged_enter_vma(res, vmg->flags);
856
857         vmg->state = VMA_MERGE_SUCCESS;
858         return res;
859
860 abort:
861         vma_iter_set(vmg->vmi, start);
862         vma_iter_load(vmg->vmi);
863         vmg->state = VMA_MERGE_ERROR_NOMEM;
864         return NULL;
865 }
866
867 /*
868  * vma_merge_new_range - Attempt to merge a new VMA into address space
869  *
870  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
871  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
872  *
873  * We are about to add a VMA to the address space starting at @vmg->start and
874  * ending at @vmg->end. There are three different possible scenarios:
875  *
876  * 1. There is a VMA with identical properties immediately adjacent to the
877  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
878  *    EXPAND that VMA:
879  *
880  * Proposed:       |-----|  or  |-----|
881  * Existing:  |----|                  |----|
882  *
883  * 2. There are VMAs with identical properties immediately adjacent to the
884  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
885  *    EXPAND the former and REMOVE the latter:
886  *
887  * Proposed:       |-----|
888  * Existing:  |----|     |----|
889  *
890  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
891  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
892  *
893  * In instances where we can merge, this function returns the expanded VMA which
894  * will have its range adjusted accordingly and the underlying maple tree also
895  * adjusted.
896  *
897  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
898  *          to the VMA we expanded.
899  *
900  * This function adjusts @vmg to provide @vmg->next if not already specified,
901  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
902  *
903  * ASSUMPTIONS:
904  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
905  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
906      other than VMAs that will be unmapped should the operation succeed.
907  * - The caller must have specified the previous vma in @vmg->prev.
908  * - The caller must have specified the next vma in @vmg->next.
909  * - The caller must have positioned the vmi at or before the gap.
910  */
911 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
912 {
913         struct vm_area_struct *prev = vmg->prev;
914         struct vm_area_struct *next = vmg->next;
915         unsigned long start = vmg->start;
916         unsigned long end = vmg->end;
917         pgoff_t pgoff = vmg->pgoff;
918         pgoff_t pglen = PHYS_PFN(end - start);
919         bool can_merge_left, can_merge_right;
920
921         mmap_assert_write_locked(vmg->mm);
922         VM_WARN_ON(vmg->vma);
923         /* vmi must point at or before the gap. */
924         VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
925
926         vmg->state = VMA_MERGE_NOMERGE;
927
928         /* Special VMAs are unmergeable, also if no prev/next. */
929         if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
930                 return NULL;
931
932         can_merge_left = can_vma_merge_left(vmg);
933         can_merge_right = can_vma_merge_right(vmg, can_merge_left);
934
935         /* If we can merge with the next VMA, adjust vmg accordingly. */
936         if (can_merge_right) {
937                 vmg->end = next->vm_end;
938                 vmg->vma = next;
939                 vmg->pgoff = next->vm_pgoff - pglen;
940         }
941
942         /* If we can merge with the previous VMA, adjust vmg accordingly. */
943         if (can_merge_left) {
944                 vmg->start = prev->vm_start;
945                 vmg->vma = prev;
946                 vmg->pgoff = prev->vm_pgoff;
947
948                 /*
949                  * If this merge would result in removal of the next VMA but we
950                  * are not permitted to do so, reduce the operation to merging
951                  * prev and vma.
952                  */
953                 if (can_merge_right && !can_merge_remove_vma(next))
954                         vmg->end = end;
955
956                 vma_prev(vmg->vmi); /* Equivalent to going to the previous range */
957         }
958
959         /*
960          * Now try to expand adjacent VMA(s). This takes care of removing the
961          * following VMA if we have VMAs on both sides.
962          */
963         if (vmg->vma && !vma_expand(vmg)) {
964                 khugepaged_enter_vma(vmg->vma, vmg->flags);
965                 vmg->state = VMA_MERGE_SUCCESS;
966                 return vmg->vma;
967         }
968
969         /* If expansion failed, reset state. Allows us to retry merge later. */
970         vmg->vma = NULL;
971         vmg->start = start;
972         vmg->end = end;
973         vmg->pgoff = pgoff;
974         if (vmg->vma == prev)
975                 vma_iter_set(vmg->vmi, start);
976
977         return NULL;
978 }
979
980 /*
981  * vma_expand - Expand an existing VMA
982  *
983  * @vmg: Describes a VMA expansion operation.
984  *
985  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
986  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
987  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
988  * vmg->next needs to be handled by the caller.
989  *
990  * Returns: 0 on success.
991  *
992  * ASSUMPTIONS:
993  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
994  * - The caller must have set @vmg->vma and @vmg->next.
995  */
996 int vma_expand(struct vma_merge_struct *vmg)
997 {
998         struct vm_area_struct *anon_dup = NULL;
999         bool remove_next = false;
1000         struct vm_area_struct *vma = vmg->vma;
1001         struct vm_area_struct *next = vmg->next;
1002
1003         mmap_assert_write_locked(vmg->mm);
1004
1005         vma_start_write(vma);
1006         if (next && (vma != next) && (vmg->end == next->vm_end)) {
1007                 int ret;
1008
1009                 remove_next = true;
1010                 /* This should already have been checked by this point. */
1011                 VM_WARN_ON(!can_merge_remove_vma(next));
1012                 vma_start_write(next);
1013                 ret = dup_anon_vma(vma, next, &anon_dup);
1014                 if (ret)
1015                         return ret;
1016         }
1017
1018         /* Not merging but overwriting any part of next is not handled. */
1019         VM_WARN_ON(next && !remove_next &&
1020                   next != vma && vmg->end > next->vm_start);
1021         /* Only handles expanding */
1022         VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1023
1024         if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1025                 goto nomem;
1026
1027         return 0;
1028
1029 nomem:
1030         vmg->state = VMA_MERGE_ERROR_NOMEM;
1031         if (anon_dup)
1032                 unlink_anon_vmas(anon_dup);
1033         return -ENOMEM;
1034 }
1035
1036 /*
1037  * vma_shrink() - Reduce an existing VMAs memory area
1038  * @vmi: The vma iterator
1039  * @vma: The VMA to modify
1040  * @start: The new start
1041  * @end: The new end
1042  *
1043  * Returns: 0 on success, -ENOMEM otherwise
1044  */
1045 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1046                unsigned long start, unsigned long end, pgoff_t pgoff)
1047 {
1048         struct vma_prepare vp;
1049
1050         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1051
1052         if (vma->vm_start < start)
1053                 vma_iter_config(vmi, vma->vm_start, start);
1054         else
1055                 vma_iter_config(vmi, end, vma->vm_end);
1056
1057         if (vma_iter_prealloc(vmi, NULL))
1058                 return -ENOMEM;
1059
1060         vma_start_write(vma);
1061
1062         init_vma_prep(&vp, vma);
1063         vma_prepare(&vp);
1064         vma_adjust_trans_huge(vma, start, end, 0);
1065
1066         vma_iter_clear(vmi);
1067         vma_set_range(vma, start, end, pgoff);
1068         vma_complete(&vp, vmi, vma->vm_mm);
1069         validate_mm(vma->vm_mm);
1070         return 0;
1071 }
1072
1073 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1074                     struct ma_state *mas_detach, bool mm_wr_locked)
1075 {
1076         struct mmu_gather tlb;
1077
1078         if (!vms->clear_ptes) /* Nothing to do */
1079                 return;
1080
1081         /*
1082          * We can free page tables without write-locking mmap_lock because VMAs
1083          * were isolated before we downgraded mmap_lock.
1084          */
1085         mas_set(mas_detach, 1);
1086         lru_add_drain();
1087         tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1088         update_hiwater_rss(vms->vma->vm_mm);
1089         unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1090                    vms->vma_count, mm_wr_locked);
1091
1092         mas_set(mas_detach, 1);
1093         /* start and end may be different if there is no prev or next vma. */
1094         free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1095                       vms->unmap_end, mm_wr_locked);
1096         tlb_finish_mmu(&tlb);
1097         vms->clear_ptes = false;
1098 }
1099
1100 void vms_clean_up_area(struct vma_munmap_struct *vms,
1101                 struct ma_state *mas_detach)
1102 {
1103         struct vm_area_struct *vma;
1104
1105         if (!vms->nr_pages)
1106                 return;
1107
1108         vms_clear_ptes(vms, mas_detach, true);
1109         mas_set(mas_detach, 0);
1110         mas_for_each(mas_detach, vma, ULONG_MAX)
1111                 if (vma->vm_ops && vma->vm_ops->close)
1112                         vma->vm_ops->close(vma);
1113         vms->closed_vm_ops = true;
1114 }
1115
1116 /*
1117  * vms_complete_munmap_vmas() - Finish the munmap() operation
1118  * @vms: The vma munmap struct
1119  * @mas_detach: The maple state of the detached vmas
1120  *
1121  * This updates the mm_struct, unmaps the region, frees the resources
1122  * used for the munmap() and may downgrade the lock - if requested.  Everything
1123  * needed to be done once the vma maple tree is updated.
1124  */
1125 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1126                 struct ma_state *mas_detach)
1127 {
1128         struct vm_area_struct *vma;
1129         struct mm_struct *mm;
1130
1131         mm = current->mm;
1132         mm->map_count -= vms->vma_count;
1133         mm->locked_vm -= vms->locked_vm;
1134         if (vms->unlock)
1135                 mmap_write_downgrade(mm);
1136
1137         if (!vms->nr_pages)
1138                 return;
1139
1140         vms_clear_ptes(vms, mas_detach, !vms->unlock);
1141         /* Update high watermark before we lower total_vm */
1142         update_hiwater_vm(mm);
1143         /* Stat accounting */
1144         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1145         /* Paranoid bookkeeping */
1146         VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1147         VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1148         VM_WARN_ON(vms->data_vm > mm->data_vm);
1149         mm->exec_vm -= vms->exec_vm;
1150         mm->stack_vm -= vms->stack_vm;
1151         mm->data_vm -= vms->data_vm;
1152
1153         /* Remove and clean up vmas */
1154         mas_set(mas_detach, 0);
1155         mas_for_each(mas_detach, vma, ULONG_MAX)
1156                 remove_vma(vma, /* = */ false, vms->closed_vm_ops);
1157
1158         vm_unacct_memory(vms->nr_accounted);
1159         validate_mm(mm);
1160         if (vms->unlock)
1161                 mmap_read_unlock(mm);
1162
1163         __mt_destroy(mas_detach->tree);
1164 }
1165
1166 /*
1167  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1168  * for removal at a later date.  Handles splitting first and last if necessary
1169  * and marking the vmas as isolated.
1170  *
1171  * @vms: The vma munmap struct
1172  * @mas_detach: The maple state tracking the detached tree
1173  *
1174  * Return: 0 on success, error otherwise
1175  */
1176 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1177                 struct ma_state *mas_detach)
1178 {
1179         struct vm_area_struct *next = NULL;
1180         int error;
1181
1182         /*
1183          * If we need to split any vma, do it now to save pain later.
1184          * Does it split the first one?
1185          */
1186         if (vms->start > vms->vma->vm_start) {
1187
1188                 /*
1189                  * Make sure that map_count on return from munmap() will
1190                  * not exceed its limit; but let map_count go just above
1191                  * its limit temporarily, to help free resources as expected.
1192                  */
1193                 if (vms->end < vms->vma->vm_end &&
1194                     vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1195                         error = -ENOMEM;
1196                         goto map_count_exceeded;
1197                 }
1198
1199                 /* Don't bother splitting the VMA if we can't unmap it anyway */
1200                 if (!can_modify_vma(vms->vma)) {
1201                         error = -EPERM;
1202                         goto start_split_failed;
1203                 }
1204
1205                 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1206                 if (error)
1207                         goto start_split_failed;
1208         }
1209         vms->prev = vma_prev(vms->vmi);
1210         if (vms->prev)
1211                 vms->unmap_start = vms->prev->vm_end;
1212
1213         /*
1214          * Detach a range of VMAs from the mm. Using next as a temp variable as
1215          * it is always overwritten.
1216          */
1217         for_each_vma_range(*(vms->vmi), next, vms->end) {
1218                 long nrpages;
1219
1220                 if (!can_modify_vma(next)) {
1221                         error = -EPERM;
1222                         goto modify_vma_failed;
1223                 }
1224                 /* Does it split the end? */
1225                 if (next->vm_end > vms->end) {
1226                         error = __split_vma(vms->vmi, next, vms->end, 0);
1227                         if (error)
1228                                 goto end_split_failed;
1229                 }
1230                 vma_start_write(next);
1231                 mas_set(mas_detach, vms->vma_count++);
1232                 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1233                 if (error)
1234                         goto munmap_gather_failed;
1235
1236                 vma_mark_detached(next, true);
1237                 nrpages = vma_pages(next);
1238
1239                 vms->nr_pages += nrpages;
1240                 if (next->vm_flags & VM_LOCKED)
1241                         vms->locked_vm += nrpages;
1242
1243                 if (next->vm_flags & VM_ACCOUNT)
1244                         vms->nr_accounted += nrpages;
1245
1246                 if (is_exec_mapping(next->vm_flags))
1247                         vms->exec_vm += nrpages;
1248                 else if (is_stack_mapping(next->vm_flags))
1249                         vms->stack_vm += nrpages;
1250                 else if (is_data_mapping(next->vm_flags))
1251                         vms->data_vm += nrpages;
1252
1253                 if (unlikely(vms->uf)) {
1254                         /*
1255                          * If userfaultfd_unmap_prep returns an error the vmas
1256                          * will remain split, but userland will get a
1257                          * highly unexpected error anyway. This is no
1258                          * different than the case where the first of the two
1259                          * __split_vma fails, but we don't undo the first
1260                          * split, despite we could. This is unlikely enough
1261                          * failure that it's not worth optimizing it for.
1262                          */
1263                         error = userfaultfd_unmap_prep(next, vms->start,
1264                                                        vms->end, vms->uf);
1265                         if (error)
1266                                 goto userfaultfd_error;
1267                 }
1268 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1269                 BUG_ON(next->vm_start < vms->start);
1270                 BUG_ON(next->vm_start > vms->end);
1271 #endif
1272         }
1273
1274         vms->next = vma_next(vms->vmi);
1275         if (vms->next)
1276                 vms->unmap_end = vms->next->vm_start;
1277
1278 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1279         /* Make sure no VMAs are about to be lost. */
1280         {
1281                 MA_STATE(test, mas_detach->tree, 0, 0);
1282                 struct vm_area_struct *vma_mas, *vma_test;
1283                 int test_count = 0;
1284
1285                 vma_iter_set(vms->vmi, vms->start);
1286                 rcu_read_lock();
1287                 vma_test = mas_find(&test, vms->vma_count - 1);
1288                 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1289                         BUG_ON(vma_mas != vma_test);
1290                         test_count++;
1291                         vma_test = mas_next(&test, vms->vma_count - 1);
1292                 }
1293                 rcu_read_unlock();
1294                 BUG_ON(vms->vma_count != test_count);
1295         }
1296 #endif
1297
1298         while (vma_iter_addr(vms->vmi) > vms->start)
1299                 vma_iter_prev_range(vms->vmi);
1300
1301         vms->clear_ptes = true;
1302         return 0;
1303
1304 userfaultfd_error:
1305 munmap_gather_failed:
1306 end_split_failed:
1307 modify_vma_failed:
1308         reattach_vmas(mas_detach);
1309 start_split_failed:
1310 map_count_exceeded:
1311         return error;
1312 }
1313
1314 /*
1315  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1316  * @vmi: The vma iterator
1317  * @vma: The starting vm_area_struct
1318  * @mm: The mm_struct
1319  * @start: The aligned start address to munmap.
1320  * @end: The aligned end address to munmap.
1321  * @uf: The userfaultfd list_head
1322  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1323  * success.
1324  *
1325  * Return: 0 on success and drops the lock if so directed, error and leaves the
1326  * lock held otherwise.
1327  */
1328 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1329                 struct mm_struct *mm, unsigned long start, unsigned long end,
1330                 struct list_head *uf, bool unlock)
1331 {
1332         struct maple_tree mt_detach;
1333         MA_STATE(mas_detach, &mt_detach, 0, 0);
1334         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1335         mt_on_stack(mt_detach);
1336         struct vma_munmap_struct vms;
1337         int error;
1338
1339         init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1340         error = vms_gather_munmap_vmas(&vms, &mas_detach);
1341         if (error)
1342                 goto gather_failed;
1343
1344         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1345         if (error)
1346                 goto clear_tree_failed;
1347
1348         /* Point of no return */
1349         vms_complete_munmap_vmas(&vms, &mas_detach);
1350         return 0;
1351
1352 clear_tree_failed:
1353         reattach_vmas(&mas_detach);
1354 gather_failed:
1355         validate_mm(mm);
1356         return error;
1357 }
1358
1359 /*
1360  * do_vmi_munmap() - munmap a given range.
1361  * @vmi: The vma iterator
1362  * @mm: The mm_struct
1363  * @start: The start address to munmap
1364  * @len: The length of the range to munmap
1365  * @uf: The userfaultfd list_head
1366  * @unlock: set to true if the user wants to drop the mmap_lock on success
1367  *
1368  * This function takes a @mas that is either pointing to the previous VMA or set
1369  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1370  * aligned.
1371  *
1372  * Return: 0 on success and drops the lock if so directed, error and leaves the
1373  * lock held otherwise.
1374  */
1375 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1376                   unsigned long start, size_t len, struct list_head *uf,
1377                   bool unlock)
1378 {
1379         unsigned long end;
1380         struct vm_area_struct *vma;
1381
1382         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1383                 return -EINVAL;
1384
1385         end = start + PAGE_ALIGN(len);
1386         if (end == start)
1387                 return -EINVAL;
1388
1389         /* Find the first overlapping VMA */
1390         vma = vma_find(vmi, end);
1391         if (!vma) {
1392                 if (unlock)
1393                         mmap_write_unlock(mm);
1394                 return 0;
1395         }
1396
1397         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1398 }
1399
1400 /*
1401  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1402  * context and anonymous VMA name within the range [start, end).
1403  *
1404  * As a result, we might be able to merge the newly modified VMA range with an
1405  * adjacent VMA with identical properties.
1406  *
1407  * If no merge is possible and the range does not span the entirety of the VMA,
1408  * we then need to split the VMA to accommodate the change.
1409  *
1410  * The function returns either the merged VMA, the original VMA if a split was
1411  * required instead, or an error if the split failed.
1412  */
1413 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1414 {
1415         struct vm_area_struct *vma = vmg->vma;
1416         struct vm_area_struct *merged;
1417
1418         /* First, try to merge. */
1419         merged = vma_merge_existing_range(vmg);
1420         if (merged)
1421                 return merged;
1422
1423         /* Split any preceding portion of the VMA. */
1424         if (vma->vm_start < vmg->start) {
1425                 int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1426
1427                 if (err)
1428                         return ERR_PTR(err);
1429         }
1430
1431         /* Split any trailing portion of the VMA. */
1432         if (vma->vm_end > vmg->end) {
1433                 int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1434
1435                 if (err)
1436                         return ERR_PTR(err);
1437         }
1438
1439         return vma;
1440 }
1441
1442 struct vm_area_struct *vma_modify_flags(
1443         struct vma_iterator *vmi, struct vm_area_struct *prev,
1444         struct vm_area_struct *vma, unsigned long start, unsigned long end,
1445         unsigned long new_flags)
1446 {
1447         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1448
1449         vmg.flags = new_flags;
1450
1451         return vma_modify(&vmg);
1452 }
1453
1454 struct vm_area_struct
1455 *vma_modify_flags_name(struct vma_iterator *vmi,
1456                        struct vm_area_struct *prev,
1457                        struct vm_area_struct *vma,
1458                        unsigned long start,
1459                        unsigned long end,
1460                        unsigned long new_flags,
1461                        struct anon_vma_name *new_name)
1462 {
1463         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1464
1465         vmg.flags = new_flags;
1466         vmg.anon_name = new_name;
1467
1468         return vma_modify(&vmg);
1469 }
1470
1471 struct vm_area_struct
1472 *vma_modify_policy(struct vma_iterator *vmi,
1473                    struct vm_area_struct *prev,
1474                    struct vm_area_struct *vma,
1475                    unsigned long start, unsigned long end,
1476                    struct mempolicy *new_pol)
1477 {
1478         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1479
1480         vmg.policy = new_pol;
1481
1482         return vma_modify(&vmg);
1483 }
1484
1485 struct vm_area_struct
1486 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1487                        struct vm_area_struct *prev,
1488                        struct vm_area_struct *vma,
1489                        unsigned long start, unsigned long end,
1490                        unsigned long new_flags,
1491                        struct vm_userfaultfd_ctx new_ctx)
1492 {
1493         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1494
1495         vmg.flags = new_flags;
1496         vmg.uffd_ctx = new_ctx;
1497
1498         return vma_modify(&vmg);
1499 }
1500
1501 /*
1502  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1503  * VMA with identical properties.
1504  */
1505 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1506                                         struct vm_area_struct *vma,
1507                                         unsigned long delta)
1508 {
1509         VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1510
1511         vmg.next = vma_iter_next_rewind(vmi, NULL);
1512         vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1513
1514         return vma_merge_new_range(&vmg);
1515 }
1516
1517 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1518 {
1519         vb->count = 0;
1520 }
1521
1522 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1523 {
1524         struct address_space *mapping;
1525         int i;
1526
1527         mapping = vb->vmas[0]->vm_file->f_mapping;
1528         i_mmap_lock_write(mapping);
1529         for (i = 0; i < vb->count; i++) {
1530                 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1531                 __remove_shared_vm_struct(vb->vmas[i], mapping);
1532         }
1533         i_mmap_unlock_write(mapping);
1534
1535         unlink_file_vma_batch_init(vb);
1536 }
1537
1538 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1539                                struct vm_area_struct *vma)
1540 {
1541         if (vma->vm_file == NULL)
1542                 return;
1543
1544         if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1545             vb->count == ARRAY_SIZE(vb->vmas))
1546                 unlink_file_vma_batch_process(vb);
1547
1548         vb->vmas[vb->count] = vma;
1549         vb->count++;
1550 }
1551
1552 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1553 {
1554         if (vb->count > 0)
1555                 unlink_file_vma_batch_process(vb);
1556 }
1557
1558 /*
1559  * Unlink a file-based vm structure from its interval tree, to hide
1560  * vma from rmap and vmtruncate before freeing its page tables.
1561  */
1562 void unlink_file_vma(struct vm_area_struct *vma)
1563 {
1564         struct file *file = vma->vm_file;
1565
1566         if (file) {
1567                 struct address_space *mapping = file->f_mapping;
1568
1569                 i_mmap_lock_write(mapping);
1570                 __remove_shared_vm_struct(vma, mapping);
1571                 i_mmap_unlock_write(mapping);
1572         }
1573 }
1574
1575 void vma_link_file(struct vm_area_struct *vma)
1576 {
1577         struct file *file = vma->vm_file;
1578         struct address_space *mapping;
1579
1580         if (file) {
1581                 mapping = file->f_mapping;
1582                 i_mmap_lock_write(mapping);
1583                 __vma_link_file(vma, mapping);
1584                 i_mmap_unlock_write(mapping);
1585         }
1586 }
1587
1588 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1589 {
1590         VMA_ITERATOR(vmi, mm, 0);
1591
1592         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1593         if (vma_iter_prealloc(&vmi, vma))
1594                 return -ENOMEM;
1595
1596         vma_start_write(vma);
1597         vma_iter_store(&vmi, vma);
1598         vma_link_file(vma);
1599         mm->map_count++;
1600         validate_mm(mm);
1601         return 0;
1602 }
1603
1604 /*
1605  * Copy the vma structure to a new location in the same mm,
1606  * prior to moving page table entries, to effect an mremap move.
1607  */
1608 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1609         unsigned long addr, unsigned long len, pgoff_t pgoff,
1610         bool *need_rmap_locks)
1611 {
1612         struct vm_area_struct *vma = *vmap;
1613         unsigned long vma_start = vma->vm_start;
1614         struct mm_struct *mm = vma->vm_mm;
1615         struct vm_area_struct *new_vma;
1616         bool faulted_in_anon_vma = true;
1617         VMA_ITERATOR(vmi, mm, addr);
1618         VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1619
1620         /*
1621          * If anonymous vma has not yet been faulted, update new pgoff
1622          * to match new location, to increase its chance of merging.
1623          */
1624         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1625                 pgoff = addr >> PAGE_SHIFT;
1626                 faulted_in_anon_vma = false;
1627         }
1628
1629         new_vma = find_vma_prev(mm, addr, &vmg.prev);
1630         if (new_vma && new_vma->vm_start < addr + len)
1631                 return NULL;    /* should never get here */
1632
1633         vmg.vma = NULL; /* New VMA range. */
1634         vmg.pgoff = pgoff;
1635         vmg.next = vma_iter_next_rewind(&vmi, NULL);
1636         new_vma = vma_merge_new_range(&vmg);
1637
1638         if (new_vma) {
1639                 /*
1640                  * Source vma may have been merged into new_vma
1641                  */
1642                 if (unlikely(vma_start >= new_vma->vm_start &&
1643                              vma_start < new_vma->vm_end)) {
1644                         /*
1645                          * The only way we can get a vma_merge with
1646                          * self during an mremap is if the vma hasn't
1647                          * been faulted in yet and we were allowed to
1648                          * reset the dst vma->vm_pgoff to the
1649                          * destination address of the mremap to allow
1650                          * the merge to happen. mremap must change the
1651                          * vm_pgoff linearity between src and dst vmas
1652                          * (in turn preventing a vma_merge) to be
1653                          * safe. It is only safe to keep the vm_pgoff
1654                          * linear if there are no pages mapped yet.
1655                          */
1656                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1657                         *vmap = vma = new_vma;
1658                 }
1659                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1660         } else {
1661                 new_vma = vm_area_dup(vma);
1662                 if (!new_vma)
1663                         goto out;
1664                 vma_set_range(new_vma, addr, addr + len, pgoff);
1665                 if (vma_dup_policy(vma, new_vma))
1666                         goto out_free_vma;
1667                 if (anon_vma_clone(new_vma, vma))
1668                         goto out_free_mempol;
1669                 if (new_vma->vm_file)
1670                         get_file(new_vma->vm_file);
1671                 if (new_vma->vm_ops && new_vma->vm_ops->open)
1672                         new_vma->vm_ops->open(new_vma);
1673                 if (vma_link(mm, new_vma))
1674                         goto out_vma_link;
1675                 *need_rmap_locks = false;
1676         }
1677         return new_vma;
1678
1679 out_vma_link:
1680         if (new_vma->vm_ops && new_vma->vm_ops->close)
1681                 new_vma->vm_ops->close(new_vma);
1682
1683         if (new_vma->vm_file)
1684                 fput(new_vma->vm_file);
1685
1686         unlink_anon_vmas(new_vma);
1687 out_free_mempol:
1688         mpol_put(vma_policy(new_vma));
1689 out_free_vma:
1690         vm_area_free(new_vma);
1691 out:
1692         return NULL;
1693 }
1694
1695 /*
1696  * Rough compatibility check to quickly see if it's even worth looking
1697  * at sharing an anon_vma.
1698  *
1699  * They need to have the same vm_file, and the flags can only differ
1700  * in things that mprotect may change.
1701  *
1702  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1703  * we can merge the two vma's. For example, we refuse to merge a vma if
1704  * there is a vm_ops->close() function, because that indicates that the
1705  * driver is doing some kind of reference counting. But that doesn't
1706  * really matter for the anon_vma sharing case.
1707  */
1708 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1709 {
1710         return a->vm_end == b->vm_start &&
1711                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1712                 a->vm_file == b->vm_file &&
1713                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1714                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1715 }
1716
1717 /*
1718  * Do some basic sanity checking to see if we can re-use the anon_vma
1719  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1720  * the same as 'old', the other will be the new one that is trying
1721  * to share the anon_vma.
1722  *
1723  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1724  * the anon_vma of 'old' is concurrently in the process of being set up
1725  * by another page fault trying to merge _that_. But that's ok: if it
1726  * is being set up, that automatically means that it will be a singleton
1727  * acceptable for merging, so we can do all of this optimistically. But
1728  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1729  *
1730  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1731  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1732  * is to return an anon_vma that is "complex" due to having gone through
1733  * a fork).
1734  *
1735  * We also make sure that the two vma's are compatible (adjacent,
1736  * and with the same memory policies). That's all stable, even with just
1737  * a read lock on the mmap_lock.
1738  */
1739 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1740                                           struct vm_area_struct *a,
1741                                           struct vm_area_struct *b)
1742 {
1743         if (anon_vma_compatible(a, b)) {
1744                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1745
1746                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1747                         return anon_vma;
1748         }
1749         return NULL;
1750 }
1751
1752 /*
1753  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1754  * neighbouring vmas for a suitable anon_vma, before it goes off
1755  * to allocate a new anon_vma.  It checks because a repetitive
1756  * sequence of mprotects and faults may otherwise lead to distinct
1757  * anon_vmas being allocated, preventing vma merge in subsequent
1758  * mprotect.
1759  */
1760 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1761 {
1762         struct anon_vma *anon_vma = NULL;
1763         struct vm_area_struct *prev, *next;
1764         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1765
1766         /* Try next first. */
1767         next = vma_iter_load(&vmi);
1768         if (next) {
1769                 anon_vma = reusable_anon_vma(next, vma, next);
1770                 if (anon_vma)
1771                         return anon_vma;
1772         }
1773
1774         prev = vma_prev(&vmi);
1775         VM_BUG_ON_VMA(prev != vma, vma);
1776         prev = vma_prev(&vmi);
1777         /* Try prev next. */
1778         if (prev)
1779                 anon_vma = reusable_anon_vma(prev, prev, vma);
1780
1781         /*
1782          * We might reach here with anon_vma == NULL if we can't find
1783          * any reusable anon_vma.
1784          * There's no absolute need to look only at touching neighbours:
1785          * we could search further afield for "compatible" anon_vmas.
1786          * But it would probably just be a waste of time searching,
1787          * or lead to too many vmas hanging off the same anon_vma.
1788          * We're trying to allow mprotect remerging later on,
1789          * not trying to minimize memory used for anon_vmas.
1790          */
1791         return anon_vma;
1792 }
1793
1794 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1795 {
1796         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1797 }
1798
1799 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1800 {
1801         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1802                 (VM_WRITE | VM_SHARED);
1803 }
1804
1805 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1806 {
1807         /* No managed pages to writeback. */
1808         if (vma->vm_flags & VM_PFNMAP)
1809                 return false;
1810
1811         return vma->vm_file && vma->vm_file->f_mapping &&
1812                 mapping_can_writeback(vma->vm_file->f_mapping);
1813 }
1814
1815 /*
1816  * Does this VMA require the underlying folios to have their dirty state
1817  * tracked?
1818  */
1819 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1820 {
1821         /* Only shared, writable VMAs require dirty tracking. */
1822         if (!vma_is_shared_writable(vma))
1823                 return false;
1824
1825         /* Does the filesystem need to be notified? */
1826         if (vm_ops_needs_writenotify(vma->vm_ops))
1827                 return true;
1828
1829         /*
1830          * Even if the filesystem doesn't indicate a need for writenotify, if it
1831          * can writeback, dirty tracking is still required.
1832          */
1833         return vma_fs_can_writeback(vma);
1834 }
1835
1836 /*
1837  * Some shared mappings will want the pages marked read-only
1838  * to track write events. If so, we'll downgrade vm_page_prot
1839  * to the private version (using protection_map[] without the
1840  * VM_SHARED bit).
1841  */
1842 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1843 {
1844         /* If it was private or non-writable, the write bit is already clear */
1845         if (!vma_is_shared_writable(vma))
1846                 return false;
1847
1848         /* The backer wishes to know when pages are first written to? */
1849         if (vm_ops_needs_writenotify(vma->vm_ops))
1850                 return true;
1851
1852         /* The open routine did something to the protections that pgprot_modify
1853          * won't preserve? */
1854         if (pgprot_val(vm_page_prot) !=
1855             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1856                 return false;
1857
1858         /*
1859          * Do we need to track softdirty? hugetlb does not support softdirty
1860          * tracking yet.
1861          */
1862         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1863                 return true;
1864
1865         /* Do we need write faults for uffd-wp tracking? */
1866         if (userfaultfd_wp(vma))
1867                 return true;
1868
1869         /* Can the mapping track the dirty pages? */
1870         return vma_fs_can_writeback(vma);
1871 }
1872
1873 static DEFINE_MUTEX(mm_all_locks_mutex);
1874
1875 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1876 {
1877         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1878                 /*
1879                  * The LSB of head.next can't change from under us
1880                  * because we hold the mm_all_locks_mutex.
1881                  */
1882                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1883                 /*
1884                  * We can safely modify head.next after taking the
1885                  * anon_vma->root->rwsem. If some other vma in this mm shares
1886                  * the same anon_vma we won't take it again.
1887                  *
1888                  * No need of atomic instructions here, head.next
1889                  * can't change from under us thanks to the
1890                  * anon_vma->root->rwsem.
1891                  */
1892                 if (__test_and_set_bit(0, (unsigned long *)
1893                                        &anon_vma->root->rb_root.rb_root.rb_node))
1894                         BUG();
1895         }
1896 }
1897
1898 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1899 {
1900         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1901                 /*
1902                  * AS_MM_ALL_LOCKS can't change from under us because
1903                  * we hold the mm_all_locks_mutex.
1904                  *
1905                  * Operations on ->flags have to be atomic because
1906                  * even if AS_MM_ALL_LOCKS is stable thanks to the
1907                  * mm_all_locks_mutex, there may be other cpus
1908                  * changing other bitflags in parallel to us.
1909                  */
1910                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1911                         BUG();
1912                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1913         }
1914 }
1915
1916 /*
1917  * This operation locks against the VM for all pte/vma/mm related
1918  * operations that could ever happen on a certain mm. This includes
1919  * vmtruncate, try_to_unmap, and all page faults.
1920  *
1921  * The caller must take the mmap_lock in write mode before calling
1922  * mm_take_all_locks(). The caller isn't allowed to release the
1923  * mmap_lock until mm_drop_all_locks() returns.
1924  *
1925  * mmap_lock in write mode is required in order to block all operations
1926  * that could modify pagetables and free pages without need of
1927  * altering the vma layout. It's also needed in write mode to avoid new
1928  * anon_vmas to be associated with existing vmas.
1929  *
1930  * A single task can't take more than one mm_take_all_locks() in a row
1931  * or it would deadlock.
1932  *
1933  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1934  * mapping->flags avoid to take the same lock twice, if more than one
1935  * vma in this mm is backed by the same anon_vma or address_space.
1936  *
1937  * We take locks in following order, accordingly to comment at beginning
1938  * of mm/rmap.c:
1939  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1940  *     hugetlb mapping);
1941  *   - all vmas marked locked
1942  *   - all i_mmap_rwsem locks;
1943  *   - all anon_vma->rwseml
1944  *
1945  * We can take all locks within these types randomly because the VM code
1946  * doesn't nest them and we protected from parallel mm_take_all_locks() by
1947  * mm_all_locks_mutex.
1948  *
1949  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1950  * that may have to take thousand of locks.
1951  *
1952  * mm_take_all_locks() can fail if it's interrupted by signals.
1953  */
1954 int mm_take_all_locks(struct mm_struct *mm)
1955 {
1956         struct vm_area_struct *vma;
1957         struct anon_vma_chain *avc;
1958         VMA_ITERATOR(vmi, mm, 0);
1959
1960         mmap_assert_write_locked(mm);
1961
1962         mutex_lock(&mm_all_locks_mutex);
1963
1964         /*
1965          * vma_start_write() does not have a complement in mm_drop_all_locks()
1966          * because vma_start_write() is always asymmetrical; it marks a VMA as
1967          * being written to until mmap_write_unlock() or mmap_write_downgrade()
1968          * is reached.
1969          */
1970         for_each_vma(vmi, vma) {
1971                 if (signal_pending(current))
1972                         goto out_unlock;
1973                 vma_start_write(vma);
1974         }
1975
1976         vma_iter_init(&vmi, mm, 0);
1977         for_each_vma(vmi, vma) {
1978                 if (signal_pending(current))
1979                         goto out_unlock;
1980                 if (vma->vm_file && vma->vm_file->f_mapping &&
1981                                 is_vm_hugetlb_page(vma))
1982                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1983         }
1984
1985         vma_iter_init(&vmi, mm, 0);
1986         for_each_vma(vmi, vma) {
1987                 if (signal_pending(current))
1988                         goto out_unlock;
1989                 if (vma->vm_file && vma->vm_file->f_mapping &&
1990                                 !is_vm_hugetlb_page(vma))
1991                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1992         }
1993
1994         vma_iter_init(&vmi, mm, 0);
1995         for_each_vma(vmi, vma) {
1996                 if (signal_pending(current))
1997                         goto out_unlock;
1998                 if (vma->anon_vma)
1999                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2000                                 vm_lock_anon_vma(mm, avc->anon_vma);
2001         }
2002
2003         return 0;
2004
2005 out_unlock:
2006         mm_drop_all_locks(mm);
2007         return -EINTR;
2008 }
2009
2010 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2011 {
2012         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2013                 /*
2014                  * The LSB of head.next can't change to 0 from under
2015                  * us because we hold the mm_all_locks_mutex.
2016                  *
2017                  * We must however clear the bitflag before unlocking
2018                  * the vma so the users using the anon_vma->rb_root will
2019                  * never see our bitflag.
2020                  *
2021                  * No need of atomic instructions here, head.next
2022                  * can't change from under us until we release the
2023                  * anon_vma->root->rwsem.
2024                  */
2025                 if (!__test_and_clear_bit(0, (unsigned long *)
2026                                           &anon_vma->root->rb_root.rb_root.rb_node))
2027                         BUG();
2028                 anon_vma_unlock_write(anon_vma);
2029         }
2030 }
2031
2032 static void vm_unlock_mapping(struct address_space *mapping)
2033 {
2034         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2035                 /*
2036                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2037                  * because we hold the mm_all_locks_mutex.
2038                  */
2039                 i_mmap_unlock_write(mapping);
2040                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2041                                         &mapping->flags))
2042                         BUG();
2043         }
2044 }
2045
2046 /*
2047  * The mmap_lock cannot be released by the caller until
2048  * mm_drop_all_locks() returns.
2049  */
2050 void mm_drop_all_locks(struct mm_struct *mm)
2051 {
2052         struct vm_area_struct *vma;
2053         struct anon_vma_chain *avc;
2054         VMA_ITERATOR(vmi, mm, 0);
2055
2056         mmap_assert_write_locked(mm);
2057         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2058
2059         for_each_vma(vmi, vma) {
2060                 if (vma->anon_vma)
2061                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2062                                 vm_unlock_anon_vma(avc->anon_vma);
2063                 if (vma->vm_file && vma->vm_file->f_mapping)
2064                         vm_unlock_mapping(vma->vm_file->f_mapping);
2065         }
2066
2067         mutex_unlock(&mm_all_locks_mutex);
2068 }
This page took 0.147824 seconds and 4 git commands to generate.