]> Git Repo - linux.git/blob - mm/mmap.c
net/mlx5: Unregister notifier on eswitch init failure
[linux.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <[email protected]>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
80 void vma_set_page_prot(struct vm_area_struct *vma)
81 {
82         unsigned long vm_flags = vma->vm_flags;
83         pgprot_t vm_page_prot;
84
85         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86         if (vma_wants_writenotify(vma, vm_page_prot)) {
87                 vm_flags &= ~VM_SHARED;
88                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
89         }
90         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
92 }
93
94 /*
95  * check_brk_limits() - Use platform specific check of range & verify mlock
96  * limits.
97  * @addr: The address to check
98  * @len: The size of increase.
99  *
100  * Return: 0 on success.
101  */
102 static int check_brk_limits(unsigned long addr, unsigned long len)
103 {
104         unsigned long mapped_addr;
105
106         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107         if (IS_ERR_VALUE(mapped_addr))
108                 return mapped_addr;
109
110         return mlock_future_ok(current->mm, current->mm->def_flags, len)
111                 ? 0 : -EAGAIN;
112 }
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114                 unsigned long addr, unsigned long request, unsigned long flags);
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
116 {
117         unsigned long newbrk, oldbrk, origbrk;
118         struct mm_struct *mm = current->mm;
119         struct vm_area_struct *brkvma, *next = NULL;
120         unsigned long min_brk;
121         bool populate = false;
122         LIST_HEAD(uf);
123         struct vma_iterator vmi;
124
125         if (mmap_write_lock_killable(mm))
126                 return -EINTR;
127
128         origbrk = mm->brk;
129
130 #ifdef CONFIG_COMPAT_BRK
131         /*
132          * CONFIG_COMPAT_BRK can still be overridden by setting
133          * randomize_va_space to 2, which will still cause mm->start_brk
134          * to be arbitrarily shifted
135          */
136         if (current->brk_randomized)
137                 min_brk = mm->start_brk;
138         else
139                 min_brk = mm->end_data;
140 #else
141         min_brk = mm->start_brk;
142 #endif
143         if (brk < min_brk)
144                 goto out;
145
146         /*
147          * Check against rlimit here. If this check is done later after the test
148          * of oldbrk with newbrk then it can escape the test and let the data
149          * segment grow beyond its set limit the in case where the limit is
150          * not page aligned -Ram Gupta
151          */
152         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153                               mm->end_data, mm->start_data))
154                 goto out;
155
156         newbrk = PAGE_ALIGN(brk);
157         oldbrk = PAGE_ALIGN(mm->brk);
158         if (oldbrk == newbrk) {
159                 mm->brk = brk;
160                 goto success;
161         }
162
163         /* Always allow shrinking brk. */
164         if (brk <= mm->brk) {
165                 /* Search one past newbrk */
166                 vma_iter_init(&vmi, mm, newbrk);
167                 brkvma = vma_find(&vmi, oldbrk);
168                 if (!brkvma || brkvma->vm_start >= oldbrk)
169                         goto out; /* mapping intersects with an existing non-brk vma. */
170                 /*
171                  * mm->brk must be protected by write mmap_lock.
172                  * do_vmi_align_munmap() will drop the lock on success,  so
173                  * update it before calling do_vma_munmap().
174                  */
175                 mm->brk = brk;
176                 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177                                         /* unlock = */ true))
178                         goto out;
179
180                 goto success_unlocked;
181         }
182
183         if (check_brk_limits(oldbrk, newbrk - oldbrk))
184                 goto out;
185
186         /*
187          * Only check if the next VMA is within the stack_guard_gap of the
188          * expansion area
189          */
190         vma_iter_init(&vmi, mm, oldbrk);
191         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
193                 goto out;
194
195         brkvma = vma_prev_limit(&vmi, mm->start_brk);
196         /* Ok, looks good - let it rip. */
197         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
198                 goto out;
199
200         mm->brk = brk;
201         if (mm->def_flags & VM_LOCKED)
202                 populate = true;
203
204 success:
205         mmap_write_unlock(mm);
206 success_unlocked:
207         userfaultfd_unmap_complete(mm, &uf);
208         if (populate)
209                 mm_populate(oldbrk, newbrk - oldbrk);
210         return brk;
211
212 out:
213         mm->brk = origbrk;
214         mmap_write_unlock(mm);
215         return origbrk;
216 }
217
218 /*
219  * If a hint addr is less than mmap_min_addr change hint to be as
220  * low as possible but still greater than mmap_min_addr
221  */
222 static inline unsigned long round_hint_to_min(unsigned long hint)
223 {
224         hint &= PAGE_MASK;
225         if (((void *)hint != NULL) &&
226             (hint < mmap_min_addr))
227                 return PAGE_ALIGN(mmap_min_addr);
228         return hint;
229 }
230
231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
232                         unsigned long bytes)
233 {
234         unsigned long locked_pages, limit_pages;
235
236         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
237                 return true;
238
239         locked_pages = bytes >> PAGE_SHIFT;
240         locked_pages += mm->locked_vm;
241
242         limit_pages = rlimit(RLIMIT_MEMLOCK);
243         limit_pages >>= PAGE_SHIFT;
244
245         return locked_pages <= limit_pages;
246 }
247
248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
249 {
250         if (S_ISREG(inode->i_mode))
251                 return MAX_LFS_FILESIZE;
252
253         if (S_ISBLK(inode->i_mode))
254                 return MAX_LFS_FILESIZE;
255
256         if (S_ISSOCK(inode->i_mode))
257                 return MAX_LFS_FILESIZE;
258
259         /* Special "we do even unsigned file positions" case */
260         if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
261                 return 0;
262
263         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
264         return ULONG_MAX;
265 }
266
267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268                                 unsigned long pgoff, unsigned long len)
269 {
270         u64 maxsize = file_mmap_size_max(file, inode);
271
272         if (maxsize && len > maxsize)
273                 return false;
274         maxsize -= len;
275         if (pgoff > maxsize >> PAGE_SHIFT)
276                 return false;
277         return true;
278 }
279
280 /*
281  * The caller must write-lock current->mm->mmap_lock.
282  */
283 unsigned long do_mmap(struct file *file, unsigned long addr,
284                         unsigned long len, unsigned long prot,
285                         unsigned long flags, vm_flags_t vm_flags,
286                         unsigned long pgoff, unsigned long *populate,
287                         struct list_head *uf)
288 {
289         struct mm_struct *mm = current->mm;
290         int pkey = 0;
291
292         *populate = 0;
293
294         if (!len)
295                 return -EINVAL;
296
297         /*
298          * Does the application expect PROT_READ to imply PROT_EXEC?
299          *
300          * (the exception is when the underlying filesystem is noexec
301          *  mounted, in which case we don't add PROT_EXEC.)
302          */
303         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304                 if (!(file && path_noexec(&file->f_path)))
305                         prot |= PROT_EXEC;
306
307         /* force arch specific MAP_FIXED handling in get_unmapped_area */
308         if (flags & MAP_FIXED_NOREPLACE)
309                 flags |= MAP_FIXED;
310
311         if (!(flags & MAP_FIXED))
312                 addr = round_hint_to_min(addr);
313
314         /* Careful about overflows.. */
315         len = PAGE_ALIGN(len);
316         if (!len)
317                 return -ENOMEM;
318
319         /* offset overflow? */
320         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
321                 return -EOVERFLOW;
322
323         /* Too many mappings? */
324         if (mm->map_count > sysctl_max_map_count)
325                 return -ENOMEM;
326
327         /*
328          * addr is returned from get_unmapped_area,
329          * There are two cases:
330          * 1> MAP_FIXED == false
331          *      unallocated memory, no need to check sealing.
332          * 1> MAP_FIXED == true
333          *      sealing is checked inside mmap_region when
334          *      do_vmi_munmap is called.
335          */
336
337         if (prot == PROT_EXEC) {
338                 pkey = execute_only_pkey(mm);
339                 if (pkey < 0)
340                         pkey = 0;
341         }
342
343         /* Do simple checking here so the lower-level routines won't have
344          * to. we assume access permissions have been handled by the open
345          * of the memory object, so we don't do any here.
346          */
347         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
348                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
349
350         /* Obtain the address to map to. we verify (or select) it and ensure
351          * that it represents a valid section of the address space.
352          */
353         addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354         if (IS_ERR_VALUE(addr))
355                 return addr;
356
357         if (flags & MAP_FIXED_NOREPLACE) {
358                 if (find_vma_intersection(mm, addr, addr + len))
359                         return -EEXIST;
360         }
361
362         if (flags & MAP_LOCKED)
363                 if (!can_do_mlock())
364                         return -EPERM;
365
366         if (!mlock_future_ok(mm, vm_flags, len))
367                 return -EAGAIN;
368
369         if (file) {
370                 struct inode *inode = file_inode(file);
371                 unsigned long flags_mask;
372
373                 if (!file_mmap_ok(file, inode, pgoff, len))
374                         return -EOVERFLOW;
375
376                 flags_mask = LEGACY_MAP_MASK;
377                 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378                         flags_mask |= MAP_SYNC;
379
380                 switch (flags & MAP_TYPE) {
381                 case MAP_SHARED:
382                         /*
383                          * Force use of MAP_SHARED_VALIDATE with non-legacy
384                          * flags. E.g. MAP_SYNC is dangerous to use with
385                          * MAP_SHARED as you don't know which consistency model
386                          * you will get. We silently ignore unsupported flags
387                          * with MAP_SHARED to preserve backward compatibility.
388                          */
389                         flags &= LEGACY_MAP_MASK;
390                         fallthrough;
391                 case MAP_SHARED_VALIDATE:
392                         if (flags & ~flags_mask)
393                                 return -EOPNOTSUPP;
394                         if (prot & PROT_WRITE) {
395                                 if (!(file->f_mode & FMODE_WRITE))
396                                         return -EACCES;
397                                 if (IS_SWAPFILE(file->f_mapping->host))
398                                         return -ETXTBSY;
399                         }
400
401                         /*
402                          * Make sure we don't allow writing to an append-only
403                          * file..
404                          */
405                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
406                                 return -EACCES;
407
408                         vm_flags |= VM_SHARED | VM_MAYSHARE;
409                         if (!(file->f_mode & FMODE_WRITE))
410                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
411                         fallthrough;
412                 case MAP_PRIVATE:
413                         if (!(file->f_mode & FMODE_READ))
414                                 return -EACCES;
415                         if (path_noexec(&file->f_path)) {
416                                 if (vm_flags & VM_EXEC)
417                                         return -EPERM;
418                                 vm_flags &= ~VM_MAYEXEC;
419                         }
420
421                         if (!file->f_op->mmap)
422                                 return -ENODEV;
423                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
424                                 return -EINVAL;
425                         break;
426
427                 default:
428                         return -EINVAL;
429                 }
430         } else {
431                 switch (flags & MAP_TYPE) {
432                 case MAP_SHARED:
433                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
434                                 return -EINVAL;
435                         /*
436                          * Ignore pgoff.
437                          */
438                         pgoff = 0;
439                         vm_flags |= VM_SHARED | VM_MAYSHARE;
440                         break;
441                 case MAP_DROPPABLE:
442                         if (VM_DROPPABLE == VM_NONE)
443                                 return -ENOTSUPP;
444                         /*
445                          * A locked or stack area makes no sense to be droppable.
446                          *
447                          * Also, since droppable pages can just go away at any time
448                          * it makes no sense to copy them on fork or dump them.
449                          *
450                          * And don't attempt to combine with hugetlb for now.
451                          */
452                         if (flags & (MAP_LOCKED | MAP_HUGETLB))
453                                 return -EINVAL;
454                         if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
455                                 return -EINVAL;
456
457                         vm_flags |= VM_DROPPABLE;
458
459                         /*
460                          * If the pages can be dropped, then it doesn't make
461                          * sense to reserve them.
462                          */
463                         vm_flags |= VM_NORESERVE;
464
465                         /*
466                          * Likewise, they're volatile enough that they
467                          * shouldn't survive forks or coredumps.
468                          */
469                         vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
470                         fallthrough;
471                 case MAP_PRIVATE:
472                         /*
473                          * Set pgoff according to addr for anon_vma.
474                          */
475                         pgoff = addr >> PAGE_SHIFT;
476                         break;
477                 default:
478                         return -EINVAL;
479                 }
480         }
481
482         /*
483          * Set 'VM_NORESERVE' if we should not account for the
484          * memory use of this mapping.
485          */
486         if (flags & MAP_NORESERVE) {
487                 /* We honor MAP_NORESERVE if allowed to overcommit */
488                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489                         vm_flags |= VM_NORESERVE;
490
491                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
492                 if (file && is_file_hugepages(file))
493                         vm_flags |= VM_NORESERVE;
494         }
495
496         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497         if (!IS_ERR_VALUE(addr) &&
498             ((vm_flags & VM_LOCKED) ||
499              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
500                 *populate = len;
501         return addr;
502 }
503
504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505                               unsigned long prot, unsigned long flags,
506                               unsigned long fd, unsigned long pgoff)
507 {
508         struct file *file = NULL;
509         unsigned long retval;
510
511         if (!(flags & MAP_ANONYMOUS)) {
512                 audit_mmap_fd(fd, flags);
513                 file = fget(fd);
514                 if (!file)
515                         return -EBADF;
516                 if (is_file_hugepages(file)) {
517                         len = ALIGN(len, huge_page_size(hstate_file(file)));
518                 } else if (unlikely(flags & MAP_HUGETLB)) {
519                         retval = -EINVAL;
520                         goto out_fput;
521                 }
522         } else if (flags & MAP_HUGETLB) {
523                 struct hstate *hs;
524
525                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
526                 if (!hs)
527                         return -EINVAL;
528
529                 len = ALIGN(len, huge_page_size(hs));
530                 /*
531                  * VM_NORESERVE is used because the reservations will be
532                  * taken when vm_ops->mmap() is called
533                  */
534                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
535                                 VM_NORESERVE,
536                                 HUGETLB_ANONHUGE_INODE,
537                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
538                 if (IS_ERR(file))
539                         return PTR_ERR(file);
540         }
541
542         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
543 out_fput:
544         if (file)
545                 fput(file);
546         return retval;
547 }
548
549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550                 unsigned long, prot, unsigned long, flags,
551                 unsigned long, fd, unsigned long, pgoff)
552 {
553         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
554 }
555
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
558         unsigned long addr;
559         unsigned long len;
560         unsigned long prot;
561         unsigned long flags;
562         unsigned long fd;
563         unsigned long offset;
564 };
565
566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
567 {
568         struct mmap_arg_struct a;
569
570         if (copy_from_user(&a, arg, sizeof(a)))
571                 return -EFAULT;
572         if (offset_in_page(a.offset))
573                 return -EINVAL;
574
575         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576                                a.offset >> PAGE_SHIFT);
577 }
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
579
580 /*
581  * We account for memory if it's a private writeable mapping,
582  * not hugepages and VM_NORESERVE wasn't set.
583  */
584 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
585 {
586         /*
587          * hugetlb has its own accounting separate from the core VM
588          * VM_HUGETLB may not be set yet so we cannot check for that flag.
589          */
590         if (file && is_file_hugepages(file))
591                 return false;
592
593         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
594 }
595
596 /**
597  * unmapped_area() - Find an area between the low_limit and the high_limit with
598  * the correct alignment and offset, all from @info. Note: current->mm is used
599  * for the search.
600  *
601  * @info: The unmapped area information including the range [low_limit -
602  * high_limit), the alignment offset and mask.
603  *
604  * Return: A memory address or -ENOMEM.
605  */
606 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
607 {
608         unsigned long length, gap;
609         unsigned long low_limit, high_limit;
610         struct vm_area_struct *tmp;
611         VMA_ITERATOR(vmi, current->mm, 0);
612
613         /* Adjust search length to account for worst case alignment overhead */
614         length = info->length + info->align_mask + info->start_gap;
615         if (length < info->length)
616                 return -ENOMEM;
617
618         low_limit = info->low_limit;
619         if (low_limit < mmap_min_addr)
620                 low_limit = mmap_min_addr;
621         high_limit = info->high_limit;
622 retry:
623         if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
624                 return -ENOMEM;
625
626         /*
627          * Adjust for the gap first so it doesn't interfere with the
628          * later alignment. The first step is the minimum needed to
629          * fulill the start gap, the next steps is the minimum to align
630          * that. It is the minimum needed to fulill both.
631          */
632         gap = vma_iter_addr(&vmi) + info->start_gap;
633         gap += (info->align_offset - gap) & info->align_mask;
634         tmp = vma_next(&vmi);
635         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
636                 if (vm_start_gap(tmp) < gap + length - 1) {
637                         low_limit = tmp->vm_end;
638                         vma_iter_reset(&vmi);
639                         goto retry;
640                 }
641         } else {
642                 tmp = vma_prev(&vmi);
643                 if (tmp && vm_end_gap(tmp) > gap) {
644                         low_limit = vm_end_gap(tmp);
645                         vma_iter_reset(&vmi);
646                         goto retry;
647                 }
648         }
649
650         return gap;
651 }
652
653 /**
654  * unmapped_area_topdown() - Find an area between the low_limit and the
655  * high_limit with the correct alignment and offset at the highest available
656  * address, all from @info. Note: current->mm is used for the search.
657  *
658  * @info: The unmapped area information including the range [low_limit -
659  * high_limit), the alignment offset and mask.
660  *
661  * Return: A memory address or -ENOMEM.
662  */
663 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
664 {
665         unsigned long length, gap, gap_end;
666         unsigned long low_limit, high_limit;
667         struct vm_area_struct *tmp;
668         VMA_ITERATOR(vmi, current->mm, 0);
669
670         /* Adjust search length to account for worst case alignment overhead */
671         length = info->length + info->align_mask + info->start_gap;
672         if (length < info->length)
673                 return -ENOMEM;
674
675         low_limit = info->low_limit;
676         if (low_limit < mmap_min_addr)
677                 low_limit = mmap_min_addr;
678         high_limit = info->high_limit;
679 retry:
680         if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
681                 return -ENOMEM;
682
683         gap = vma_iter_end(&vmi) - info->length;
684         gap -= (gap - info->align_offset) & info->align_mask;
685         gap_end = vma_iter_end(&vmi);
686         tmp = vma_next(&vmi);
687         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
688                 if (vm_start_gap(tmp) < gap_end) {
689                         high_limit = vm_start_gap(tmp);
690                         vma_iter_reset(&vmi);
691                         goto retry;
692                 }
693         } else {
694                 tmp = vma_prev(&vmi);
695                 if (tmp && vm_end_gap(tmp) > gap) {
696                         high_limit = tmp->vm_start;
697                         vma_iter_reset(&vmi);
698                         goto retry;
699                 }
700         }
701
702         return gap;
703 }
704
705 /*
706  * Determine if the allocation needs to ensure that there is no
707  * existing mapping within it's guard gaps, for use as start_gap.
708  */
709 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
710 {
711         if (vm_flags & VM_SHADOW_STACK)
712                 return PAGE_SIZE;
713
714         return 0;
715 }
716
717 /*
718  * Search for an unmapped address range.
719  *
720  * We are looking for a range that:
721  * - does not intersect with any VMA;
722  * - is contained within the [low_limit, high_limit) interval;
723  * - is at least the desired size.
724  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
725  */
726 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
727 {
728         unsigned long addr;
729
730         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
731                 addr = unmapped_area_topdown(info);
732         else
733                 addr = unmapped_area(info);
734
735         trace_vm_unmapped_area(addr, info);
736         return addr;
737 }
738
739 /* Get an address range which is currently unmapped.
740  * For shmat() with addr=0.
741  *
742  * Ugly calling convention alert:
743  * Return value with the low bits set means error value,
744  * ie
745  *      if (ret & ~PAGE_MASK)
746  *              error = ret;
747  *
748  * This function "knows" that -ENOMEM has the bits set.
749  */
750 unsigned long
751 generic_get_unmapped_area(struct file *filp, unsigned long addr,
752                           unsigned long len, unsigned long pgoff,
753                           unsigned long flags, vm_flags_t vm_flags)
754 {
755         struct mm_struct *mm = current->mm;
756         struct vm_area_struct *vma, *prev;
757         struct vm_unmapped_area_info info = {};
758         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
759
760         if (len > mmap_end - mmap_min_addr)
761                 return -ENOMEM;
762
763         if (flags & MAP_FIXED)
764                 return addr;
765
766         if (addr) {
767                 addr = PAGE_ALIGN(addr);
768                 vma = find_vma_prev(mm, addr, &prev);
769                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
770                     (!vma || addr + len <= vm_start_gap(vma)) &&
771                     (!prev || addr >= vm_end_gap(prev)))
772                         return addr;
773         }
774
775         info.length = len;
776         info.low_limit = mm->mmap_base;
777         info.high_limit = mmap_end;
778         info.start_gap = stack_guard_placement(vm_flags);
779         return vm_unmapped_area(&info);
780 }
781
782 #ifndef HAVE_ARCH_UNMAPPED_AREA
783 unsigned long
784 arch_get_unmapped_area(struct file *filp, unsigned long addr,
785                        unsigned long len, unsigned long pgoff,
786                        unsigned long flags, vm_flags_t vm_flags)
787 {
788         return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
789                                          vm_flags);
790 }
791 #endif
792
793 /*
794  * This mmap-allocator allocates new areas top-down from below the
795  * stack's low limit (the base):
796  */
797 unsigned long
798 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
799                                   unsigned long len, unsigned long pgoff,
800                                   unsigned long flags, vm_flags_t vm_flags)
801 {
802         struct vm_area_struct *vma, *prev;
803         struct mm_struct *mm = current->mm;
804         struct vm_unmapped_area_info info = {};
805         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
806
807         /* requested length too big for entire address space */
808         if (len > mmap_end - mmap_min_addr)
809                 return -ENOMEM;
810
811         if (flags & MAP_FIXED)
812                 return addr;
813
814         /* requesting a specific address */
815         if (addr) {
816                 addr = PAGE_ALIGN(addr);
817                 vma = find_vma_prev(mm, addr, &prev);
818                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
819                                 (!vma || addr + len <= vm_start_gap(vma)) &&
820                                 (!prev || addr >= vm_end_gap(prev)))
821                         return addr;
822         }
823
824         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
825         info.length = len;
826         info.low_limit = PAGE_SIZE;
827         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
828         info.start_gap = stack_guard_placement(vm_flags);
829         addr = vm_unmapped_area(&info);
830
831         /*
832          * A failed mmap() very likely causes application failure,
833          * so fall back to the bottom-up function here. This scenario
834          * can happen with large stack limits and large mmap()
835          * allocations.
836          */
837         if (offset_in_page(addr)) {
838                 VM_BUG_ON(addr != -ENOMEM);
839                 info.flags = 0;
840                 info.low_limit = TASK_UNMAPPED_BASE;
841                 info.high_limit = mmap_end;
842                 addr = vm_unmapped_area(&info);
843         }
844
845         return addr;
846 }
847
848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
849 unsigned long
850 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
851                                unsigned long len, unsigned long pgoff,
852                                unsigned long flags, vm_flags_t vm_flags)
853 {
854         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
855                                                  vm_flags);
856 }
857 #endif
858
859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
860                                            unsigned long addr, unsigned long len,
861                                            unsigned long pgoff, unsigned long flags,
862                                            vm_flags_t vm_flags)
863 {
864         if (test_bit(MMF_TOPDOWN, &mm->flags))
865                 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
866                                                       flags, vm_flags);
867         return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
868 }
869
870 unsigned long
871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
872                 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
873 {
874         unsigned long (*get_area)(struct file *, unsigned long,
875                                   unsigned long, unsigned long, unsigned long)
876                                   = NULL;
877
878         unsigned long error = arch_mmap_check(addr, len, flags);
879         if (error)
880                 return error;
881
882         /* Careful about overflows.. */
883         if (len > TASK_SIZE)
884                 return -ENOMEM;
885
886         if (file) {
887                 if (file->f_op->get_unmapped_area)
888                         get_area = file->f_op->get_unmapped_area;
889         } else if (flags & MAP_SHARED) {
890                 /*
891                  * mmap_region() will call shmem_zero_setup() to create a file,
892                  * so use shmem's get_unmapped_area in case it can be huge.
893                  */
894                 get_area = shmem_get_unmapped_area;
895         }
896
897         /* Always treat pgoff as zero for anonymous memory. */
898         if (!file)
899                 pgoff = 0;
900
901         if (get_area) {
902                 addr = get_area(file, addr, len, pgoff, flags);
903         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
904                 /* Ensures that larger anonymous mappings are THP aligned. */
905                 addr = thp_get_unmapped_area_vmflags(file, addr, len,
906                                                      pgoff, flags, vm_flags);
907         } else {
908                 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
909                                                     pgoff, flags, vm_flags);
910         }
911         if (IS_ERR_VALUE(addr))
912                 return addr;
913
914         if (addr > TASK_SIZE - len)
915                 return -ENOMEM;
916         if (offset_in_page(addr))
917                 return -EINVAL;
918
919         error = security_mmap_addr(addr);
920         return error ? error : addr;
921 }
922
923 unsigned long
924 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
925                      unsigned long addr, unsigned long len,
926                      unsigned long pgoff, unsigned long flags)
927 {
928         if (test_bit(MMF_TOPDOWN, &mm->flags))
929                 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
930         return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
931 }
932 EXPORT_SYMBOL(mm_get_unmapped_area);
933
934 /**
935  * find_vma_intersection() - Look up the first VMA which intersects the interval
936  * @mm: The process address space.
937  * @start_addr: The inclusive start user address.
938  * @end_addr: The exclusive end user address.
939  *
940  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
941  * start_addr < end_addr.
942  */
943 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
944                                              unsigned long start_addr,
945                                              unsigned long end_addr)
946 {
947         unsigned long index = start_addr;
948
949         mmap_assert_locked(mm);
950         return mt_find(&mm->mm_mt, &index, end_addr - 1);
951 }
952 EXPORT_SYMBOL(find_vma_intersection);
953
954 /**
955  * find_vma() - Find the VMA for a given address, or the next VMA.
956  * @mm: The mm_struct to check
957  * @addr: The address
958  *
959  * Returns: The VMA associated with addr, or the next VMA.
960  * May return %NULL in the case of no VMA at addr or above.
961  */
962 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
963 {
964         unsigned long index = addr;
965
966         mmap_assert_locked(mm);
967         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
968 }
969 EXPORT_SYMBOL(find_vma);
970
971 /**
972  * find_vma_prev() - Find the VMA for a given address, or the next vma and
973  * set %pprev to the previous VMA, if any.
974  * @mm: The mm_struct to check
975  * @addr: The address
976  * @pprev: The pointer to set to the previous VMA
977  *
978  * Note that RCU lock is missing here since the external mmap_lock() is used
979  * instead.
980  *
981  * Returns: The VMA associated with @addr, or the next vma.
982  * May return %NULL in the case of no vma at addr or above.
983  */
984 struct vm_area_struct *
985 find_vma_prev(struct mm_struct *mm, unsigned long addr,
986                         struct vm_area_struct **pprev)
987 {
988         struct vm_area_struct *vma;
989         VMA_ITERATOR(vmi, mm, addr);
990
991         vma = vma_iter_load(&vmi);
992         *pprev = vma_prev(&vmi);
993         if (!vma)
994                 vma = vma_next(&vmi);
995         return vma;
996 }
997
998 /*
999  * Verify that the stack growth is acceptable and
1000  * update accounting. This is shared with both the
1001  * grow-up and grow-down cases.
1002  */
1003 static int acct_stack_growth(struct vm_area_struct *vma,
1004                              unsigned long size, unsigned long grow)
1005 {
1006         struct mm_struct *mm = vma->vm_mm;
1007         unsigned long new_start;
1008
1009         /* address space limit tests */
1010         if (!may_expand_vm(mm, vma->vm_flags, grow))
1011                 return -ENOMEM;
1012
1013         /* Stack limit test */
1014         if (size > rlimit(RLIMIT_STACK))
1015                 return -ENOMEM;
1016
1017         /* mlock limit tests */
1018         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1019                 return -ENOMEM;
1020
1021         /* Check to ensure the stack will not grow into a hugetlb-only region */
1022         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1023                         vma->vm_end - size;
1024         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1025                 return -EFAULT;
1026
1027         /*
1028          * Overcommit..  This must be the final test, as it will
1029          * update security statistics.
1030          */
1031         if (security_vm_enough_memory_mm(mm, grow))
1032                 return -ENOMEM;
1033
1034         return 0;
1035 }
1036
1037 #if defined(CONFIG_STACK_GROWSUP)
1038 /*
1039  * PA-RISC uses this for its stack.
1040  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1041  */
1042 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1043 {
1044         struct mm_struct *mm = vma->vm_mm;
1045         struct vm_area_struct *next;
1046         unsigned long gap_addr;
1047         int error = 0;
1048         VMA_ITERATOR(vmi, mm, vma->vm_start);
1049
1050         if (!(vma->vm_flags & VM_GROWSUP))
1051                 return -EFAULT;
1052
1053         /* Guard against exceeding limits of the address space. */
1054         address &= PAGE_MASK;
1055         if (address >= (TASK_SIZE & PAGE_MASK))
1056                 return -ENOMEM;
1057         address += PAGE_SIZE;
1058
1059         /* Enforce stack_guard_gap */
1060         gap_addr = address + stack_guard_gap;
1061
1062         /* Guard against overflow */
1063         if (gap_addr < address || gap_addr > TASK_SIZE)
1064                 gap_addr = TASK_SIZE;
1065
1066         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1067         if (next && vma_is_accessible(next)) {
1068                 if (!(next->vm_flags & VM_GROWSUP))
1069                         return -ENOMEM;
1070                 /* Check that both stack segments have the same anon_vma? */
1071         }
1072
1073         if (next)
1074                 vma_iter_prev_range_limit(&vmi, address);
1075
1076         vma_iter_config(&vmi, vma->vm_start, address);
1077         if (vma_iter_prealloc(&vmi, vma))
1078                 return -ENOMEM;
1079
1080         /* We must make sure the anon_vma is allocated. */
1081         if (unlikely(anon_vma_prepare(vma))) {
1082                 vma_iter_free(&vmi);
1083                 return -ENOMEM;
1084         }
1085
1086         /* Lock the VMA before expanding to prevent concurrent page faults */
1087         vma_start_write(vma);
1088         /*
1089          * vma->vm_start/vm_end cannot change under us because the caller
1090          * is required to hold the mmap_lock in read mode.  We need the
1091          * anon_vma lock to serialize against concurrent expand_stacks.
1092          */
1093         anon_vma_lock_write(vma->anon_vma);
1094
1095         /* Somebody else might have raced and expanded it already */
1096         if (address > vma->vm_end) {
1097                 unsigned long size, grow;
1098
1099                 size = address - vma->vm_start;
1100                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1101
1102                 error = -ENOMEM;
1103                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1104                         error = acct_stack_growth(vma, size, grow);
1105                         if (!error) {
1106                                 /*
1107                                  * We only hold a shared mmap_lock lock here, so
1108                                  * we need to protect against concurrent vma
1109                                  * expansions.  anon_vma_lock_write() doesn't
1110                                  * help here, as we don't guarantee that all
1111                                  * growable vmas in a mm share the same root
1112                                  * anon vma.  So, we reuse mm->page_table_lock
1113                                  * to guard against concurrent vma expansions.
1114                                  */
1115                                 spin_lock(&mm->page_table_lock);
1116                                 if (vma->vm_flags & VM_LOCKED)
1117                                         mm->locked_vm += grow;
1118                                 vm_stat_account(mm, vma->vm_flags, grow);
1119                                 anon_vma_interval_tree_pre_update_vma(vma);
1120                                 vma->vm_end = address;
1121                                 /* Overwrite old entry in mtree. */
1122                                 vma_iter_store(&vmi, vma);
1123                                 anon_vma_interval_tree_post_update_vma(vma);
1124                                 spin_unlock(&mm->page_table_lock);
1125
1126                                 perf_event_mmap(vma);
1127                         }
1128                 }
1129         }
1130         anon_vma_unlock_write(vma->anon_vma);
1131         vma_iter_free(&vmi);
1132         validate_mm(mm);
1133         return error;
1134 }
1135 #endif /* CONFIG_STACK_GROWSUP */
1136
1137 /*
1138  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1139  * mmap_lock held for writing.
1140  */
1141 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1142 {
1143         struct mm_struct *mm = vma->vm_mm;
1144         struct vm_area_struct *prev;
1145         int error = 0;
1146         VMA_ITERATOR(vmi, mm, vma->vm_start);
1147
1148         if (!(vma->vm_flags & VM_GROWSDOWN))
1149                 return -EFAULT;
1150
1151         address &= PAGE_MASK;
1152         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1153                 return -EPERM;
1154
1155         /* Enforce stack_guard_gap */
1156         prev = vma_prev(&vmi);
1157         /* Check that both stack segments have the same anon_vma? */
1158         if (prev) {
1159                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
1160                     vma_is_accessible(prev) &&
1161                     (address - prev->vm_end < stack_guard_gap))
1162                         return -ENOMEM;
1163         }
1164
1165         if (prev)
1166                 vma_iter_next_range_limit(&vmi, vma->vm_start);
1167
1168         vma_iter_config(&vmi, address, vma->vm_end);
1169         if (vma_iter_prealloc(&vmi, vma))
1170                 return -ENOMEM;
1171
1172         /* We must make sure the anon_vma is allocated. */
1173         if (unlikely(anon_vma_prepare(vma))) {
1174                 vma_iter_free(&vmi);
1175                 return -ENOMEM;
1176         }
1177
1178         /* Lock the VMA before expanding to prevent concurrent page faults */
1179         vma_start_write(vma);
1180         /*
1181          * vma->vm_start/vm_end cannot change under us because the caller
1182          * is required to hold the mmap_lock in read mode.  We need the
1183          * anon_vma lock to serialize against concurrent expand_stacks.
1184          */
1185         anon_vma_lock_write(vma->anon_vma);
1186
1187         /* Somebody else might have raced and expanded it already */
1188         if (address < vma->vm_start) {
1189                 unsigned long size, grow;
1190
1191                 size = vma->vm_end - address;
1192                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1193
1194                 error = -ENOMEM;
1195                 if (grow <= vma->vm_pgoff) {
1196                         error = acct_stack_growth(vma, size, grow);
1197                         if (!error) {
1198                                 /*
1199                                  * We only hold a shared mmap_lock lock here, so
1200                                  * we need to protect against concurrent vma
1201                                  * expansions.  anon_vma_lock_write() doesn't
1202                                  * help here, as we don't guarantee that all
1203                                  * growable vmas in a mm share the same root
1204                                  * anon vma.  So, we reuse mm->page_table_lock
1205                                  * to guard against concurrent vma expansions.
1206                                  */
1207                                 spin_lock(&mm->page_table_lock);
1208                                 if (vma->vm_flags & VM_LOCKED)
1209                                         mm->locked_vm += grow;
1210                                 vm_stat_account(mm, vma->vm_flags, grow);
1211                                 anon_vma_interval_tree_pre_update_vma(vma);
1212                                 vma->vm_start = address;
1213                                 vma->vm_pgoff -= grow;
1214                                 /* Overwrite old entry in mtree. */
1215                                 vma_iter_store(&vmi, vma);
1216                                 anon_vma_interval_tree_post_update_vma(vma);
1217                                 spin_unlock(&mm->page_table_lock);
1218
1219                                 perf_event_mmap(vma);
1220                         }
1221                 }
1222         }
1223         anon_vma_unlock_write(vma->anon_vma);
1224         vma_iter_free(&vmi);
1225         validate_mm(mm);
1226         return error;
1227 }
1228
1229 /* enforced gap between the expanding stack and other mappings. */
1230 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1231
1232 static int __init cmdline_parse_stack_guard_gap(char *p)
1233 {
1234         unsigned long val;
1235         char *endptr;
1236
1237         val = simple_strtoul(p, &endptr, 10);
1238         if (!*endptr)
1239                 stack_guard_gap = val << PAGE_SHIFT;
1240
1241         return 1;
1242 }
1243 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1244
1245 #ifdef CONFIG_STACK_GROWSUP
1246 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1247 {
1248         return expand_upwards(vma, address);
1249 }
1250
1251 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1252 {
1253         struct vm_area_struct *vma, *prev;
1254
1255         addr &= PAGE_MASK;
1256         vma = find_vma_prev(mm, addr, &prev);
1257         if (vma && (vma->vm_start <= addr))
1258                 return vma;
1259         if (!prev)
1260                 return NULL;
1261         if (expand_stack_locked(prev, addr))
1262                 return NULL;
1263         if (prev->vm_flags & VM_LOCKED)
1264                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1265         return prev;
1266 }
1267 #else
1268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1269 {
1270         return expand_downwards(vma, address);
1271 }
1272
1273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1274 {
1275         struct vm_area_struct *vma;
1276         unsigned long start;
1277
1278         addr &= PAGE_MASK;
1279         vma = find_vma(mm, addr);
1280         if (!vma)
1281                 return NULL;
1282         if (vma->vm_start <= addr)
1283                 return vma;
1284         start = vma->vm_start;
1285         if (expand_stack_locked(vma, addr))
1286                 return NULL;
1287         if (vma->vm_flags & VM_LOCKED)
1288                 populate_vma_page_range(vma, addr, start, NULL);
1289         return vma;
1290 }
1291 #endif
1292
1293 #if defined(CONFIG_STACK_GROWSUP)
1294
1295 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1296 #define vma_expand_down(vma, addr) (-EFAULT)
1297
1298 #else
1299
1300 #define vma_expand_up(vma,addr) (-EFAULT)
1301 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1302
1303 #endif
1304
1305 /*
1306  * expand_stack(): legacy interface for page faulting. Don't use unless
1307  * you have to.
1308  *
1309  * This is called with the mm locked for reading, drops the lock, takes
1310  * the lock for writing, tries to look up a vma again, expands it if
1311  * necessary, and downgrades the lock to reading again.
1312  *
1313  * If no vma is found or it can't be expanded, it returns NULL and has
1314  * dropped the lock.
1315  */
1316 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1317 {
1318         struct vm_area_struct *vma, *prev;
1319
1320         mmap_read_unlock(mm);
1321         if (mmap_write_lock_killable(mm))
1322                 return NULL;
1323
1324         vma = find_vma_prev(mm, addr, &prev);
1325         if (vma && vma->vm_start <= addr)
1326                 goto success;
1327
1328         if (prev && !vma_expand_up(prev, addr)) {
1329                 vma = prev;
1330                 goto success;
1331         }
1332
1333         if (vma && !vma_expand_down(vma, addr))
1334                 goto success;
1335
1336         mmap_write_unlock(mm);
1337         return NULL;
1338
1339 success:
1340         mmap_write_downgrade(mm);
1341         return vma;
1342 }
1343
1344 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1345  * @mm: The mm_struct
1346  * @start: The start address to munmap
1347  * @len: The length to be munmapped.
1348  * @uf: The userfaultfd list_head
1349  *
1350  * Return: 0 on success, error otherwise.
1351  */
1352 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1353               struct list_head *uf)
1354 {
1355         VMA_ITERATOR(vmi, mm, start);
1356
1357         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1358 }
1359
1360 unsigned long mmap_region(struct file *file, unsigned long addr,
1361                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1362                 struct list_head *uf)
1363 {
1364         struct mm_struct *mm = current->mm;
1365         struct vm_area_struct *vma = NULL;
1366         pgoff_t pglen = PHYS_PFN(len);
1367         struct vm_area_struct *merge;
1368         unsigned long charged = 0;
1369         struct vma_munmap_struct vms;
1370         struct ma_state mas_detach;
1371         struct maple_tree mt_detach;
1372         unsigned long end = addr + len;
1373         bool writable_file_mapping = false;
1374         int error = -ENOMEM;
1375         VMA_ITERATOR(vmi, mm, addr);
1376         VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff);
1377
1378         vmg.file = file;
1379         /* Find the first overlapping VMA */
1380         vma = vma_find(&vmi, end);
1381         init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false);
1382         if (vma) {
1383                 mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1384                 mt_on_stack(mt_detach);
1385                 mas_init(&mas_detach, &mt_detach, /* addr = */ 0);
1386                 /* Prepare to unmap any existing mapping in the area */
1387                 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1388                 if (error)
1389                         goto gather_failed;
1390
1391                 vmg.next = vms.next;
1392                 vmg.prev = vms.prev;
1393                 vma = NULL;
1394         } else {
1395                 vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev);
1396         }
1397
1398         /* Check against address space limit. */
1399         if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages))
1400                 goto abort_munmap;
1401
1402         /*
1403          * Private writable mapping: check memory availability
1404          */
1405         if (accountable_mapping(file, vm_flags)) {
1406                 charged = pglen;
1407                 charged -= vms.nr_accounted;
1408                 if (charged && security_vm_enough_memory_mm(mm, charged))
1409                         goto abort_munmap;
1410
1411                 vms.nr_accounted = 0;
1412                 vm_flags |= VM_ACCOUNT;
1413                 vmg.flags = vm_flags;
1414         }
1415
1416         vma = vma_merge_new_range(&vmg);
1417         if (vma)
1418                 goto expanded;
1419         /*
1420          * Determine the object being mapped and call the appropriate
1421          * specific mapper. the address has already been validated, but
1422          * not unmapped, but the maps are removed from the list.
1423          */
1424         vma = vm_area_alloc(mm);
1425         if (!vma)
1426                 goto unacct_error;
1427
1428         vma_iter_config(&vmi, addr, end);
1429         vma_set_range(vma, addr, end, pgoff);
1430         vm_flags_init(vma, vm_flags);
1431         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1432
1433         if (file) {
1434                 vma->vm_file = get_file(file);
1435                 /*
1436                  * call_mmap() may map PTE, so ensure there are no existing PTEs
1437                  * and call the vm_ops close function if one exists.
1438                  */
1439                 vms_clean_up_area(&vms, &mas_detach);
1440                 error = call_mmap(file, vma);
1441                 if (error)
1442                         goto unmap_and_free_vma;
1443
1444                 if (vma_is_shared_maywrite(vma)) {
1445                         error = mapping_map_writable(file->f_mapping);
1446                         if (error)
1447                                 goto close_and_free_vma;
1448
1449                         writable_file_mapping = true;
1450                 }
1451
1452                 /*
1453                  * Expansion is handled above, merging is handled below.
1454                  * Drivers should not alter the address of the VMA.
1455                  */
1456                 error = -EINVAL;
1457                 if (WARN_ON((addr != vma->vm_start)))
1458                         goto close_and_free_vma;
1459
1460                 vma_iter_config(&vmi, addr, end);
1461                 /*
1462                  * If vm_flags changed after call_mmap(), we should try merge
1463                  * vma again as we may succeed this time.
1464                  */
1465                 if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) {
1466                         vmg.flags = vma->vm_flags;
1467                         /* If this fails, state is reset ready for a reattempt. */
1468                         merge = vma_merge_new_range(&vmg);
1469
1470                         if (merge) {
1471                                 /*
1472                                  * ->mmap() can change vma->vm_file and fput
1473                                  * the original file. So fput the vma->vm_file
1474                                  * here or we would add an extra fput for file
1475                                  * and cause general protection fault
1476                                  * ultimately.
1477                                  */
1478                                 fput(vma->vm_file);
1479                                 vm_area_free(vma);
1480                                 vma = merge;
1481                                 /* Update vm_flags to pick up the change. */
1482                                 vm_flags = vma->vm_flags;
1483                                 goto unmap_writable;
1484                         }
1485                         vma_iter_config(&vmi, addr, end);
1486                 }
1487
1488                 vm_flags = vma->vm_flags;
1489         } else if (vm_flags & VM_SHARED) {
1490                 error = shmem_zero_setup(vma);
1491                 if (error)
1492                         goto free_vma;
1493         } else {
1494                 vma_set_anonymous(vma);
1495         }
1496
1497         if (map_deny_write_exec(vma, vma->vm_flags)) {
1498                 error = -EACCES;
1499                 goto close_and_free_vma;
1500         }
1501
1502         /* Allow architectures to sanity-check the vm_flags */
1503         error = -EINVAL;
1504         if (!arch_validate_flags(vma->vm_flags))
1505                 goto close_and_free_vma;
1506
1507         error = -ENOMEM;
1508         if (vma_iter_prealloc(&vmi, vma))
1509                 goto close_and_free_vma;
1510
1511         /* Lock the VMA since it is modified after insertion into VMA tree */
1512         vma_start_write(vma);
1513         vma_iter_store(&vmi, vma);
1514         mm->map_count++;
1515         vma_link_file(vma);
1516
1517         /*
1518          * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
1519          * call covers the non-merge case.
1520          */
1521         khugepaged_enter_vma(vma, vma->vm_flags);
1522
1523         /* Once vma denies write, undo our temporary denial count */
1524 unmap_writable:
1525         if (writable_file_mapping)
1526                 mapping_unmap_writable(file->f_mapping);
1527         file = vma->vm_file;
1528         ksm_add_vma(vma);
1529 expanded:
1530         perf_event_mmap(vma);
1531
1532         /* Unmap any existing mapping in the area */
1533         vms_complete_munmap_vmas(&vms, &mas_detach);
1534
1535         vm_stat_account(mm, vm_flags, pglen);
1536         if (vm_flags & VM_LOCKED) {
1537                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1538                                         is_vm_hugetlb_page(vma) ||
1539                                         vma == get_gate_vma(current->mm))
1540                         vm_flags_clear(vma, VM_LOCKED_MASK);
1541                 else
1542                         mm->locked_vm += pglen;
1543         }
1544
1545         if (file)
1546                 uprobe_mmap(vma);
1547
1548         /*
1549          * New (or expanded) vma always get soft dirty status.
1550          * Otherwise user-space soft-dirty page tracker won't
1551          * be able to distinguish situation when vma area unmapped,
1552          * then new mapped in-place (which must be aimed as
1553          * a completely new data area).
1554          */
1555         vm_flags_set(vma, VM_SOFTDIRTY);
1556
1557         vma_set_page_prot(vma);
1558
1559         validate_mm(mm);
1560         return addr;
1561
1562 close_and_free_vma:
1563         if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close)
1564                 vma->vm_ops->close(vma);
1565
1566         if (file || vma->vm_file) {
1567 unmap_and_free_vma:
1568                 fput(vma->vm_file);
1569                 vma->vm_file = NULL;
1570
1571                 vma_iter_set(&vmi, vma->vm_end);
1572                 /* Undo any partial mapping done by a device driver. */
1573                 unmap_region(&vmi.mas, vma, vmg.prev, vmg.next);
1574         }
1575         if (writable_file_mapping)
1576                 mapping_unmap_writable(file->f_mapping);
1577 free_vma:
1578         vm_area_free(vma);
1579 unacct_error:
1580         if (charged)
1581                 vm_unacct_memory(charged);
1582
1583 abort_munmap:
1584         vms_abort_munmap_vmas(&vms, &mas_detach);
1585 gather_failed:
1586         validate_mm(mm);
1587         return error;
1588 }
1589
1590 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1591 {
1592         int ret;
1593         struct mm_struct *mm = current->mm;
1594         LIST_HEAD(uf);
1595         VMA_ITERATOR(vmi, mm, start);
1596
1597         if (mmap_write_lock_killable(mm))
1598                 return -EINTR;
1599
1600         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1601         if (ret || !unlock)
1602                 mmap_write_unlock(mm);
1603
1604         userfaultfd_unmap_complete(mm, &uf);
1605         return ret;
1606 }
1607
1608 int vm_munmap(unsigned long start, size_t len)
1609 {
1610         return __vm_munmap(start, len, false);
1611 }
1612 EXPORT_SYMBOL(vm_munmap);
1613
1614 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1615 {
1616         addr = untagged_addr(addr);
1617         return __vm_munmap(addr, len, true);
1618 }
1619
1620
1621 /*
1622  * Emulation of deprecated remap_file_pages() syscall.
1623  */
1624 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1625                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1626 {
1627
1628         struct mm_struct *mm = current->mm;
1629         struct vm_area_struct *vma;
1630         unsigned long populate = 0;
1631         unsigned long ret = -EINVAL;
1632         struct file *file;
1633
1634         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1635                      current->comm, current->pid);
1636
1637         if (prot)
1638                 return ret;
1639         start = start & PAGE_MASK;
1640         size = size & PAGE_MASK;
1641
1642         if (start + size <= start)
1643                 return ret;
1644
1645         /* Does pgoff wrap? */
1646         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1647                 return ret;
1648
1649         if (mmap_write_lock_killable(mm))
1650                 return -EINTR;
1651
1652         vma = vma_lookup(mm, start);
1653
1654         if (!vma || !(vma->vm_flags & VM_SHARED))
1655                 goto out;
1656
1657         if (start + size > vma->vm_end) {
1658                 VMA_ITERATOR(vmi, mm, vma->vm_end);
1659                 struct vm_area_struct *next, *prev = vma;
1660
1661                 for_each_vma_range(vmi, next, start + size) {
1662                         /* hole between vmas ? */
1663                         if (next->vm_start != prev->vm_end)
1664                                 goto out;
1665
1666                         if (next->vm_file != vma->vm_file)
1667                                 goto out;
1668
1669                         if (next->vm_flags != vma->vm_flags)
1670                                 goto out;
1671
1672                         if (start + size <= next->vm_end)
1673                                 break;
1674
1675                         prev = next;
1676                 }
1677
1678                 if (!next)
1679                         goto out;
1680         }
1681
1682         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1683         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1684         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1685
1686         flags &= MAP_NONBLOCK;
1687         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1688         if (vma->vm_flags & VM_LOCKED)
1689                 flags |= MAP_LOCKED;
1690
1691         file = get_file(vma->vm_file);
1692         ret = security_mmap_file(vma->vm_file, prot, flags);
1693         if (ret)
1694                 goto out_fput;
1695         ret = do_mmap(vma->vm_file, start, size,
1696                         prot, flags, 0, pgoff, &populate, NULL);
1697 out_fput:
1698         fput(file);
1699 out:
1700         mmap_write_unlock(mm);
1701         if (populate)
1702                 mm_populate(ret, populate);
1703         if (!IS_ERR_VALUE(ret))
1704                 ret = 0;
1705         return ret;
1706 }
1707
1708 /*
1709  * do_brk_flags() - Increase the brk vma if the flags match.
1710  * @vmi: The vma iterator
1711  * @addr: The start address
1712  * @len: The length of the increase
1713  * @vma: The vma,
1714  * @flags: The VMA Flags
1715  *
1716  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1717  * do not match then create a new anonymous VMA.  Eventually we may be able to
1718  * do some brk-specific accounting here.
1719  */
1720 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1721                 unsigned long addr, unsigned long len, unsigned long flags)
1722 {
1723         struct mm_struct *mm = current->mm;
1724
1725         /*
1726          * Check against address space limits by the changed size
1727          * Note: This happens *after* clearing old mappings in some code paths.
1728          */
1729         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1730         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1731                 return -ENOMEM;
1732
1733         if (mm->map_count > sysctl_max_map_count)
1734                 return -ENOMEM;
1735
1736         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1737                 return -ENOMEM;
1738
1739         /*
1740          * Expand the existing vma if possible; Note that singular lists do not
1741          * occur after forking, so the expand will only happen on new VMAs.
1742          */
1743         if (vma && vma->vm_end == addr) {
1744                 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1745
1746                 vmg.prev = vma;
1747                 vma_iter_next_range(vmi);
1748
1749                 if (vma_merge_new_range(&vmg))
1750                         goto out;
1751                 else if (vmg_nomem(&vmg))
1752                         goto unacct_fail;
1753         }
1754
1755         if (vma)
1756                 vma_iter_next_range(vmi);
1757         /* create a vma struct for an anonymous mapping */
1758         vma = vm_area_alloc(mm);
1759         if (!vma)
1760                 goto unacct_fail;
1761
1762         vma_set_anonymous(vma);
1763         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1764         vm_flags_init(vma, flags);
1765         vma->vm_page_prot = vm_get_page_prot(flags);
1766         vma_start_write(vma);
1767         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1768                 goto mas_store_fail;
1769
1770         mm->map_count++;
1771         validate_mm(mm);
1772         ksm_add_vma(vma);
1773 out:
1774         perf_event_mmap(vma);
1775         mm->total_vm += len >> PAGE_SHIFT;
1776         mm->data_vm += len >> PAGE_SHIFT;
1777         if (flags & VM_LOCKED)
1778                 mm->locked_vm += (len >> PAGE_SHIFT);
1779         vm_flags_set(vma, VM_SOFTDIRTY);
1780         return 0;
1781
1782 mas_store_fail:
1783         vm_area_free(vma);
1784 unacct_fail:
1785         vm_unacct_memory(len >> PAGE_SHIFT);
1786         return -ENOMEM;
1787 }
1788
1789 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1790 {
1791         struct mm_struct *mm = current->mm;
1792         struct vm_area_struct *vma = NULL;
1793         unsigned long len;
1794         int ret;
1795         bool populate;
1796         LIST_HEAD(uf);
1797         VMA_ITERATOR(vmi, mm, addr);
1798
1799         len = PAGE_ALIGN(request);
1800         if (len < request)
1801                 return -ENOMEM;
1802         if (!len)
1803                 return 0;
1804
1805         /* Until we need other flags, refuse anything except VM_EXEC. */
1806         if ((flags & (~VM_EXEC)) != 0)
1807                 return -EINVAL;
1808
1809         if (mmap_write_lock_killable(mm))
1810                 return -EINTR;
1811
1812         ret = check_brk_limits(addr, len);
1813         if (ret)
1814                 goto limits_failed;
1815
1816         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1817         if (ret)
1818                 goto munmap_failed;
1819
1820         vma = vma_prev(&vmi);
1821         ret = do_brk_flags(&vmi, vma, addr, len, flags);
1822         populate = ((mm->def_flags & VM_LOCKED) != 0);
1823         mmap_write_unlock(mm);
1824         userfaultfd_unmap_complete(mm, &uf);
1825         if (populate && !ret)
1826                 mm_populate(addr, len);
1827         return ret;
1828
1829 munmap_failed:
1830 limits_failed:
1831         mmap_write_unlock(mm);
1832         return ret;
1833 }
1834 EXPORT_SYMBOL(vm_brk_flags);
1835
1836 /* Release all mmaps. */
1837 void exit_mmap(struct mm_struct *mm)
1838 {
1839         struct mmu_gather tlb;
1840         struct vm_area_struct *vma;
1841         unsigned long nr_accounted = 0;
1842         VMA_ITERATOR(vmi, mm, 0);
1843         int count = 0;
1844
1845         /* mm's last user has gone, and its about to be pulled down */
1846         mmu_notifier_release(mm);
1847
1848         mmap_read_lock(mm);
1849         arch_exit_mmap(mm);
1850
1851         vma = vma_next(&vmi);
1852         if (!vma || unlikely(xa_is_zero(vma))) {
1853                 /* Can happen if dup_mmap() received an OOM */
1854                 mmap_read_unlock(mm);
1855                 mmap_write_lock(mm);
1856                 goto destroy;
1857         }
1858
1859         lru_add_drain();
1860         flush_cache_mm(mm);
1861         tlb_gather_mmu_fullmm(&tlb, mm);
1862         /* update_hiwater_rss(mm) here? but nobody should be looking */
1863         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1864         unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1865         mmap_read_unlock(mm);
1866
1867         /*
1868          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1869          * because the memory has been already freed.
1870          */
1871         set_bit(MMF_OOM_SKIP, &mm->flags);
1872         mmap_write_lock(mm);
1873         mt_clear_in_rcu(&mm->mm_mt);
1874         vma_iter_set(&vmi, vma->vm_end);
1875         free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1876                       USER_PGTABLES_CEILING, true);
1877         tlb_finish_mmu(&tlb);
1878
1879         /*
1880          * Walk the list again, actually closing and freeing it, with preemption
1881          * enabled, without holding any MM locks besides the unreachable
1882          * mmap_write_lock.
1883          */
1884         vma_iter_set(&vmi, vma->vm_end);
1885         do {
1886                 if (vma->vm_flags & VM_ACCOUNT)
1887                         nr_accounted += vma_pages(vma);
1888                 remove_vma(vma, /* unreachable = */ true, /* closed = */ false);
1889                 count++;
1890                 cond_resched();
1891                 vma = vma_next(&vmi);
1892         } while (vma && likely(!xa_is_zero(vma)));
1893
1894         BUG_ON(count != mm->map_count);
1895
1896         trace_exit_mmap(mm);
1897 destroy:
1898         __mt_destroy(&mm->mm_mt);
1899         mmap_write_unlock(mm);
1900         vm_unacct_memory(nr_accounted);
1901 }
1902
1903 /* Insert vm structure into process list sorted by address
1904  * and into the inode's i_mmap tree.  If vm_file is non-NULL
1905  * then i_mmap_rwsem is taken here.
1906  */
1907 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1908 {
1909         unsigned long charged = vma_pages(vma);
1910
1911
1912         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1913                 return -ENOMEM;
1914
1915         if ((vma->vm_flags & VM_ACCOUNT) &&
1916              security_vm_enough_memory_mm(mm, charged))
1917                 return -ENOMEM;
1918
1919         /*
1920          * The vm_pgoff of a purely anonymous vma should be irrelevant
1921          * until its first write fault, when page's anon_vma and index
1922          * are set.  But now set the vm_pgoff it will almost certainly
1923          * end up with (unless mremap moves it elsewhere before that
1924          * first wfault), so /proc/pid/maps tells a consistent story.
1925          *
1926          * By setting it to reflect the virtual start address of the
1927          * vma, merges and splits can happen in a seamless way, just
1928          * using the existing file pgoff checks and manipulations.
1929          * Similarly in do_mmap and in do_brk_flags.
1930          */
1931         if (vma_is_anonymous(vma)) {
1932                 BUG_ON(vma->anon_vma);
1933                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1934         }
1935
1936         if (vma_link(mm, vma)) {
1937                 if (vma->vm_flags & VM_ACCOUNT)
1938                         vm_unacct_memory(charged);
1939                 return -ENOMEM;
1940         }
1941
1942         return 0;
1943 }
1944
1945 /*
1946  * Return true if the calling process may expand its vm space by the passed
1947  * number of pages
1948  */
1949 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1950 {
1951         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1952                 return false;
1953
1954         if (is_data_mapping(flags) &&
1955             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1956                 /* Workaround for Valgrind */
1957                 if (rlimit(RLIMIT_DATA) == 0 &&
1958                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1959                         return true;
1960
1961                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1962                              current->comm, current->pid,
1963                              (mm->data_vm + npages) << PAGE_SHIFT,
1964                              rlimit(RLIMIT_DATA),
1965                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1966
1967                 if (!ignore_rlimit_data)
1968                         return false;
1969         }
1970
1971         return true;
1972 }
1973
1974 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1975 {
1976         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1977
1978         if (is_exec_mapping(flags))
1979                 mm->exec_vm += npages;
1980         else if (is_stack_mapping(flags))
1981                 mm->stack_vm += npages;
1982         else if (is_data_mapping(flags))
1983                 mm->data_vm += npages;
1984 }
1985
1986 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1987
1988 /*
1989  * Close hook, called for unmap() and on the old vma for mremap().
1990  *
1991  * Having a close hook prevents vma merging regardless of flags.
1992  */
1993 static void special_mapping_close(struct vm_area_struct *vma)
1994 {
1995         const struct vm_special_mapping *sm = vma->vm_private_data;
1996
1997         if (sm->close)
1998                 sm->close(sm, vma);
1999 }
2000
2001 static const char *special_mapping_name(struct vm_area_struct *vma)
2002 {
2003         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2004 }
2005
2006 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2007 {
2008         struct vm_special_mapping *sm = new_vma->vm_private_data;
2009
2010         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
2011                 return -EFAULT;
2012
2013         if (sm->mremap)
2014                 return sm->mremap(sm, new_vma);
2015
2016         return 0;
2017 }
2018
2019 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
2020 {
2021         /*
2022          * Forbid splitting special mappings - kernel has expectations over
2023          * the number of pages in mapping. Together with VM_DONTEXPAND
2024          * the size of vma should stay the same over the special mapping's
2025          * lifetime.
2026          */
2027         return -EINVAL;
2028 }
2029
2030 static const struct vm_operations_struct special_mapping_vmops = {
2031         .close = special_mapping_close,
2032         .fault = special_mapping_fault,
2033         .mremap = special_mapping_mremap,
2034         .name = special_mapping_name,
2035         /* vDSO code relies that VVAR can't be accessed remotely */
2036         .access = NULL,
2037         .may_split = special_mapping_split,
2038 };
2039
2040 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
2041 {
2042         struct vm_area_struct *vma = vmf->vma;
2043         pgoff_t pgoff;
2044         struct page **pages;
2045         struct vm_special_mapping *sm = vma->vm_private_data;
2046
2047         if (sm->fault)
2048                 return sm->fault(sm, vmf->vma, vmf);
2049
2050         pages = sm->pages;
2051
2052         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2053                 pgoff--;
2054
2055         if (*pages) {
2056                 struct page *page = *pages;
2057                 get_page(page);
2058                 vmf->page = page;
2059                 return 0;
2060         }
2061
2062         return VM_FAULT_SIGBUS;
2063 }
2064
2065 static struct vm_area_struct *__install_special_mapping(
2066         struct mm_struct *mm,
2067         unsigned long addr, unsigned long len,
2068         unsigned long vm_flags, void *priv,
2069         const struct vm_operations_struct *ops)
2070 {
2071         int ret;
2072         struct vm_area_struct *vma;
2073
2074         vma = vm_area_alloc(mm);
2075         if (unlikely(vma == NULL))
2076                 return ERR_PTR(-ENOMEM);
2077
2078         vma_set_range(vma, addr, addr + len, 0);
2079         vm_flags_init(vma, (vm_flags | mm->def_flags |
2080                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
2081         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2082
2083         vma->vm_ops = ops;
2084         vma->vm_private_data = priv;
2085
2086         ret = insert_vm_struct(mm, vma);
2087         if (ret)
2088                 goto out;
2089
2090         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
2091
2092         perf_event_mmap(vma);
2093
2094         return vma;
2095
2096 out:
2097         vm_area_free(vma);
2098         return ERR_PTR(ret);
2099 }
2100
2101 bool vma_is_special_mapping(const struct vm_area_struct *vma,
2102         const struct vm_special_mapping *sm)
2103 {
2104         return vma->vm_private_data == sm &&
2105                 vma->vm_ops == &special_mapping_vmops;
2106 }
2107
2108 /*
2109  * Called with mm->mmap_lock held for writing.
2110  * Insert a new vma covering the given region, with the given flags.
2111  * Its pages are supplied by the given array of struct page *.
2112  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2113  * The region past the last page supplied will always produce SIGBUS.
2114  * The array pointer and the pages it points to are assumed to stay alive
2115  * for as long as this mapping might exist.
2116  */
2117 struct vm_area_struct *_install_special_mapping(
2118         struct mm_struct *mm,
2119         unsigned long addr, unsigned long len,
2120         unsigned long vm_flags, const struct vm_special_mapping *spec)
2121 {
2122         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
2123                                         &special_mapping_vmops);
2124 }
2125
2126 /*
2127  * initialise the percpu counter for VM
2128  */
2129 void __init mmap_init(void)
2130 {
2131         int ret;
2132
2133         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
2134         VM_BUG_ON(ret);
2135 }
2136
2137 /*
2138  * Initialise sysctl_user_reserve_kbytes.
2139  *
2140  * This is intended to prevent a user from starting a single memory hogging
2141  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2142  * mode.
2143  *
2144  * The default value is min(3% of free memory, 128MB)
2145  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2146  */
2147 static int init_user_reserve(void)
2148 {
2149         unsigned long free_kbytes;
2150
2151         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2152
2153         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
2154         return 0;
2155 }
2156 subsys_initcall(init_user_reserve);
2157
2158 /*
2159  * Initialise sysctl_admin_reserve_kbytes.
2160  *
2161  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2162  * to log in and kill a memory hogging process.
2163  *
2164  * Systems with more than 256MB will reserve 8MB, enough to recover
2165  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2166  * only reserve 3% of free pages by default.
2167  */
2168 static int init_admin_reserve(void)
2169 {
2170         unsigned long free_kbytes;
2171
2172         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2173
2174         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
2175         return 0;
2176 }
2177 subsys_initcall(init_admin_reserve);
2178
2179 /*
2180  * Reinititalise user and admin reserves if memory is added or removed.
2181  *
2182  * The default user reserve max is 128MB, and the default max for the
2183  * admin reserve is 8MB. These are usually, but not always, enough to
2184  * enable recovery from a memory hogging process using login/sshd, a shell,
2185  * and tools like top. It may make sense to increase or even disable the
2186  * reserve depending on the existence of swap or variations in the recovery
2187  * tools. So, the admin may have changed them.
2188  *
2189  * If memory is added and the reserves have been eliminated or increased above
2190  * the default max, then we'll trust the admin.
2191  *
2192  * If memory is removed and there isn't enough free memory, then we
2193  * need to reset the reserves.
2194  *
2195  * Otherwise keep the reserve set by the admin.
2196  */
2197 static int reserve_mem_notifier(struct notifier_block *nb,
2198                              unsigned long action, void *data)
2199 {
2200         unsigned long tmp, free_kbytes;
2201
2202         switch (action) {
2203         case MEM_ONLINE:
2204                 /* Default max is 128MB. Leave alone if modified by operator. */
2205                 tmp = sysctl_user_reserve_kbytes;
2206                 if (tmp > 0 && tmp < SZ_128K)
2207                         init_user_reserve();
2208
2209                 /* Default max is 8MB.  Leave alone if modified by operator. */
2210                 tmp = sysctl_admin_reserve_kbytes;
2211                 if (tmp > 0 && tmp < SZ_8K)
2212                         init_admin_reserve();
2213
2214                 break;
2215         case MEM_OFFLINE:
2216                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2217
2218                 if (sysctl_user_reserve_kbytes > free_kbytes) {
2219                         init_user_reserve();
2220                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
2221                                 sysctl_user_reserve_kbytes);
2222                 }
2223
2224                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
2225                         init_admin_reserve();
2226                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2227                                 sysctl_admin_reserve_kbytes);
2228                 }
2229                 break;
2230         default:
2231                 break;
2232         }
2233         return NOTIFY_OK;
2234 }
2235
2236 static int __meminit init_reserve_notifier(void)
2237 {
2238         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2239                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2240
2241         return 0;
2242 }
2243 subsys_initcall(init_reserve_notifier);
2244
2245 /*
2246  * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2247  * this VMA and its relocated range, which will now reside at [vma->vm_start -
2248  * shift, vma->vm_end - shift).
2249  *
2250  * This function is almost certainly NOT what you want for anything other than
2251  * early executable temporary stack relocation.
2252  */
2253 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2254 {
2255         /*
2256          * The process proceeds as follows:
2257          *
2258          * 1) Use shift to calculate the new vma endpoints.
2259          * 2) Extend vma to cover both the old and new ranges.  This ensures the
2260          *    arguments passed to subsequent functions are consistent.
2261          * 3) Move vma's page tables to the new range.
2262          * 4) Free up any cleared pgd range.
2263          * 5) Shrink the vma to cover only the new range.
2264          */
2265
2266         struct mm_struct *mm = vma->vm_mm;
2267         unsigned long old_start = vma->vm_start;
2268         unsigned long old_end = vma->vm_end;
2269         unsigned long length = old_end - old_start;
2270         unsigned long new_start = old_start - shift;
2271         unsigned long new_end = old_end - shift;
2272         VMA_ITERATOR(vmi, mm, new_start);
2273         VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2274         struct vm_area_struct *next;
2275         struct mmu_gather tlb;
2276
2277         BUG_ON(new_start > new_end);
2278
2279         /*
2280          * ensure there are no vmas between where we want to go
2281          * and where we are
2282          */
2283         if (vma != vma_next(&vmi))
2284                 return -EFAULT;
2285
2286         vma_iter_prev_range(&vmi);
2287         /*
2288          * cover the whole range: [new_start, old_end)
2289          */
2290         vmg.vma = vma;
2291         if (vma_expand(&vmg))
2292                 return -ENOMEM;
2293
2294         /*
2295          * move the page tables downwards, on failure we rely on
2296          * process cleanup to remove whatever mess we made.
2297          */
2298         if (length != move_page_tables(vma, old_start,
2299                                        vma, new_start, length, false, true))
2300                 return -ENOMEM;
2301
2302         lru_add_drain();
2303         tlb_gather_mmu(&tlb, mm);
2304         next = vma_next(&vmi);
2305         if (new_end > old_start) {
2306                 /*
2307                  * when the old and new regions overlap clear from new_end.
2308                  */
2309                 free_pgd_range(&tlb, new_end, old_end, new_end,
2310                         next ? next->vm_start : USER_PGTABLES_CEILING);
2311         } else {
2312                 /*
2313                  * otherwise, clean from old_start; this is done to not touch
2314                  * the address space in [new_end, old_start) some architectures
2315                  * have constraints on va-space that make this illegal (IA64) -
2316                  * for the others its just a little faster.
2317                  */
2318                 free_pgd_range(&tlb, old_start, old_end, new_end,
2319                         next ? next->vm_start : USER_PGTABLES_CEILING);
2320         }
2321         tlb_finish_mmu(&tlb);
2322
2323         vma_prev(&vmi);
2324         /* Shrink the vma to just the new range */
2325         return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2326 }
This page took 0.170355 seconds and 4 git commands to generate.