1 // SPDX-License-Identifier: GPL-2.0-only
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
80 void vma_set_page_prot(struct vm_area_struct *vma)
82 unsigned long vm_flags = vma->vm_flags;
83 pgprot_t vm_page_prot;
85 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
86 if (vma_wants_writenotify(vma, vm_page_prot)) {
87 vm_flags &= ~VM_SHARED;
88 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
90 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
91 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
95 * check_brk_limits() - Use platform specific check of range & verify mlock
97 * @addr: The address to check
98 * @len: The size of increase.
100 * Return: 0 on success.
102 static int check_brk_limits(unsigned long addr, unsigned long len)
104 unsigned long mapped_addr;
106 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
107 if (IS_ERR_VALUE(mapped_addr))
110 return mlock_future_ok(current->mm, current->mm->def_flags, len)
113 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
114 unsigned long addr, unsigned long request, unsigned long flags);
115 SYSCALL_DEFINE1(brk, unsigned long, brk)
117 unsigned long newbrk, oldbrk, origbrk;
118 struct mm_struct *mm = current->mm;
119 struct vm_area_struct *brkvma, *next = NULL;
120 unsigned long min_brk;
121 bool populate = false;
123 struct vma_iterator vmi;
125 if (mmap_write_lock_killable(mm))
130 #ifdef CONFIG_COMPAT_BRK
132 * CONFIG_COMPAT_BRK can still be overridden by setting
133 * randomize_va_space to 2, which will still cause mm->start_brk
134 * to be arbitrarily shifted
136 if (current->brk_randomized)
137 min_brk = mm->start_brk;
139 min_brk = mm->end_data;
141 min_brk = mm->start_brk;
147 * Check against rlimit here. If this check is done later after the test
148 * of oldbrk with newbrk then it can escape the test and let the data
149 * segment grow beyond its set limit the in case where the limit is
150 * not page aligned -Ram Gupta
152 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
153 mm->end_data, mm->start_data))
156 newbrk = PAGE_ALIGN(brk);
157 oldbrk = PAGE_ALIGN(mm->brk);
158 if (oldbrk == newbrk) {
163 /* Always allow shrinking brk. */
164 if (brk <= mm->brk) {
165 /* Search one past newbrk */
166 vma_iter_init(&vmi, mm, newbrk);
167 brkvma = vma_find(&vmi, oldbrk);
168 if (!brkvma || brkvma->vm_start >= oldbrk)
169 goto out; /* mapping intersects with an existing non-brk vma. */
171 * mm->brk must be protected by write mmap_lock.
172 * do_vmi_align_munmap() will drop the lock on success, so
173 * update it before calling do_vma_munmap().
176 if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
177 /* unlock = */ true))
180 goto success_unlocked;
183 if (check_brk_limits(oldbrk, newbrk - oldbrk))
187 * Only check if the next VMA is within the stack_guard_gap of the
190 vma_iter_init(&vmi, mm, oldbrk);
191 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
192 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
195 brkvma = vma_prev_limit(&vmi, mm->start_brk);
196 /* Ok, looks good - let it rip. */
197 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
201 if (mm->def_flags & VM_LOCKED)
205 mmap_write_unlock(mm);
207 userfaultfd_unmap_complete(mm, &uf);
209 mm_populate(oldbrk, newbrk - oldbrk);
214 mmap_write_unlock(mm);
219 * If a hint addr is less than mmap_min_addr change hint to be as
220 * low as possible but still greater than mmap_min_addr
222 static inline unsigned long round_hint_to_min(unsigned long hint)
225 if (((void *)hint != NULL) &&
226 (hint < mmap_min_addr))
227 return PAGE_ALIGN(mmap_min_addr);
231 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
234 unsigned long locked_pages, limit_pages;
236 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
239 locked_pages = bytes >> PAGE_SHIFT;
240 locked_pages += mm->locked_vm;
242 limit_pages = rlimit(RLIMIT_MEMLOCK);
243 limit_pages >>= PAGE_SHIFT;
245 return locked_pages <= limit_pages;
248 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
250 if (S_ISREG(inode->i_mode))
251 return MAX_LFS_FILESIZE;
253 if (S_ISBLK(inode->i_mode))
254 return MAX_LFS_FILESIZE;
256 if (S_ISSOCK(inode->i_mode))
257 return MAX_LFS_FILESIZE;
259 /* Special "we do even unsigned file positions" case */
260 if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
263 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
267 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
268 unsigned long pgoff, unsigned long len)
270 u64 maxsize = file_mmap_size_max(file, inode);
272 if (maxsize && len > maxsize)
275 if (pgoff > maxsize >> PAGE_SHIFT)
281 * The caller must write-lock current->mm->mmap_lock.
283 unsigned long do_mmap(struct file *file, unsigned long addr,
284 unsigned long len, unsigned long prot,
285 unsigned long flags, vm_flags_t vm_flags,
286 unsigned long pgoff, unsigned long *populate,
287 struct list_head *uf)
289 struct mm_struct *mm = current->mm;
298 * Does the application expect PROT_READ to imply PROT_EXEC?
300 * (the exception is when the underlying filesystem is noexec
301 * mounted, in which case we don't add PROT_EXEC.)
303 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
304 if (!(file && path_noexec(&file->f_path)))
307 /* force arch specific MAP_FIXED handling in get_unmapped_area */
308 if (flags & MAP_FIXED_NOREPLACE)
311 if (!(flags & MAP_FIXED))
312 addr = round_hint_to_min(addr);
314 /* Careful about overflows.. */
315 len = PAGE_ALIGN(len);
319 /* offset overflow? */
320 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
323 /* Too many mappings? */
324 if (mm->map_count > sysctl_max_map_count)
328 * addr is returned from get_unmapped_area,
329 * There are two cases:
330 * 1> MAP_FIXED == false
331 * unallocated memory, no need to check sealing.
332 * 1> MAP_FIXED == true
333 * sealing is checked inside mmap_region when
334 * do_vmi_munmap is called.
337 if (prot == PROT_EXEC) {
338 pkey = execute_only_pkey(mm);
343 /* Do simple checking here so the lower-level routines won't have
344 * to. we assume access permissions have been handled by the open
345 * of the memory object, so we don't do any here.
347 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
348 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
350 /* Obtain the address to map to. we verify (or select) it and ensure
351 * that it represents a valid section of the address space.
353 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
354 if (IS_ERR_VALUE(addr))
357 if (flags & MAP_FIXED_NOREPLACE) {
358 if (find_vma_intersection(mm, addr, addr + len))
362 if (flags & MAP_LOCKED)
366 if (!mlock_future_ok(mm, vm_flags, len))
370 struct inode *inode = file_inode(file);
371 unsigned long flags_mask;
373 if (!file_mmap_ok(file, inode, pgoff, len))
376 flags_mask = LEGACY_MAP_MASK;
377 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
378 flags_mask |= MAP_SYNC;
380 switch (flags & MAP_TYPE) {
383 * Force use of MAP_SHARED_VALIDATE with non-legacy
384 * flags. E.g. MAP_SYNC is dangerous to use with
385 * MAP_SHARED as you don't know which consistency model
386 * you will get. We silently ignore unsupported flags
387 * with MAP_SHARED to preserve backward compatibility.
389 flags &= LEGACY_MAP_MASK;
391 case MAP_SHARED_VALIDATE:
392 if (flags & ~flags_mask)
394 if (prot & PROT_WRITE) {
395 if (!(file->f_mode & FMODE_WRITE))
397 if (IS_SWAPFILE(file->f_mapping->host))
402 * Make sure we don't allow writing to an append-only
405 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
408 vm_flags |= VM_SHARED | VM_MAYSHARE;
409 if (!(file->f_mode & FMODE_WRITE))
410 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
413 if (!(file->f_mode & FMODE_READ))
415 if (path_noexec(&file->f_path)) {
416 if (vm_flags & VM_EXEC)
418 vm_flags &= ~VM_MAYEXEC;
421 if (!file->f_op->mmap)
423 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
431 switch (flags & MAP_TYPE) {
433 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
439 vm_flags |= VM_SHARED | VM_MAYSHARE;
442 if (VM_DROPPABLE == VM_NONE)
445 * A locked or stack area makes no sense to be droppable.
447 * Also, since droppable pages can just go away at any time
448 * it makes no sense to copy them on fork or dump them.
450 * And don't attempt to combine with hugetlb for now.
452 if (flags & (MAP_LOCKED | MAP_HUGETLB))
454 if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
457 vm_flags |= VM_DROPPABLE;
460 * If the pages can be dropped, then it doesn't make
461 * sense to reserve them.
463 vm_flags |= VM_NORESERVE;
466 * Likewise, they're volatile enough that they
467 * shouldn't survive forks or coredumps.
469 vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
473 * Set pgoff according to addr for anon_vma.
475 pgoff = addr >> PAGE_SHIFT;
483 * Set 'VM_NORESERVE' if we should not account for the
484 * memory use of this mapping.
486 if (flags & MAP_NORESERVE) {
487 /* We honor MAP_NORESERVE if allowed to overcommit */
488 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
489 vm_flags |= VM_NORESERVE;
491 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
492 if (file && is_file_hugepages(file))
493 vm_flags |= VM_NORESERVE;
496 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
497 if (!IS_ERR_VALUE(addr) &&
498 ((vm_flags & VM_LOCKED) ||
499 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
504 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
505 unsigned long prot, unsigned long flags,
506 unsigned long fd, unsigned long pgoff)
508 struct file *file = NULL;
509 unsigned long retval;
511 if (!(flags & MAP_ANONYMOUS)) {
512 audit_mmap_fd(fd, flags);
516 if (is_file_hugepages(file)) {
517 len = ALIGN(len, huge_page_size(hstate_file(file)));
518 } else if (unlikely(flags & MAP_HUGETLB)) {
522 } else if (flags & MAP_HUGETLB) {
525 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
529 len = ALIGN(len, huge_page_size(hs));
531 * VM_NORESERVE is used because the reservations will be
532 * taken when vm_ops->mmap() is called
534 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
536 HUGETLB_ANONHUGE_INODE,
537 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
539 return PTR_ERR(file);
542 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
549 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
550 unsigned long, prot, unsigned long, flags,
551 unsigned long, fd, unsigned long, pgoff)
553 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
557 struct mmap_arg_struct {
563 unsigned long offset;
566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
568 struct mmap_arg_struct a;
570 if (copy_from_user(&a, arg, sizeof(a)))
572 if (offset_in_page(a.offset))
575 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
576 a.offset >> PAGE_SHIFT);
578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
581 * We account for memory if it's a private writeable mapping,
582 * not hugepages and VM_NORESERVE wasn't set.
584 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
587 * hugetlb has its own accounting separate from the core VM
588 * VM_HUGETLB may not be set yet so we cannot check for that flag.
590 if (file && is_file_hugepages(file))
593 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
597 * unmapped_area() - Find an area between the low_limit and the high_limit with
598 * the correct alignment and offset, all from @info. Note: current->mm is used
601 * @info: The unmapped area information including the range [low_limit -
602 * high_limit), the alignment offset and mask.
604 * Return: A memory address or -ENOMEM.
606 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
608 unsigned long length, gap;
609 unsigned long low_limit, high_limit;
610 struct vm_area_struct *tmp;
611 VMA_ITERATOR(vmi, current->mm, 0);
613 /* Adjust search length to account for worst case alignment overhead */
614 length = info->length + info->align_mask + info->start_gap;
615 if (length < info->length)
618 low_limit = info->low_limit;
619 if (low_limit < mmap_min_addr)
620 low_limit = mmap_min_addr;
621 high_limit = info->high_limit;
623 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
627 * Adjust for the gap first so it doesn't interfere with the
628 * later alignment. The first step is the minimum needed to
629 * fulill the start gap, the next steps is the minimum to align
630 * that. It is the minimum needed to fulill both.
632 gap = vma_iter_addr(&vmi) + info->start_gap;
633 gap += (info->align_offset - gap) & info->align_mask;
634 tmp = vma_next(&vmi);
635 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
636 if (vm_start_gap(tmp) < gap + length - 1) {
637 low_limit = tmp->vm_end;
638 vma_iter_reset(&vmi);
642 tmp = vma_prev(&vmi);
643 if (tmp && vm_end_gap(tmp) > gap) {
644 low_limit = vm_end_gap(tmp);
645 vma_iter_reset(&vmi);
654 * unmapped_area_topdown() - Find an area between the low_limit and the
655 * high_limit with the correct alignment and offset at the highest available
656 * address, all from @info. Note: current->mm is used for the search.
658 * @info: The unmapped area information including the range [low_limit -
659 * high_limit), the alignment offset and mask.
661 * Return: A memory address or -ENOMEM.
663 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
665 unsigned long length, gap, gap_end;
666 unsigned long low_limit, high_limit;
667 struct vm_area_struct *tmp;
668 VMA_ITERATOR(vmi, current->mm, 0);
670 /* Adjust search length to account for worst case alignment overhead */
671 length = info->length + info->align_mask + info->start_gap;
672 if (length < info->length)
675 low_limit = info->low_limit;
676 if (low_limit < mmap_min_addr)
677 low_limit = mmap_min_addr;
678 high_limit = info->high_limit;
680 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
683 gap = vma_iter_end(&vmi) - info->length;
684 gap -= (gap - info->align_offset) & info->align_mask;
685 gap_end = vma_iter_end(&vmi);
686 tmp = vma_next(&vmi);
687 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
688 if (vm_start_gap(tmp) < gap_end) {
689 high_limit = vm_start_gap(tmp);
690 vma_iter_reset(&vmi);
694 tmp = vma_prev(&vmi);
695 if (tmp && vm_end_gap(tmp) > gap) {
696 high_limit = tmp->vm_start;
697 vma_iter_reset(&vmi);
706 * Determine if the allocation needs to ensure that there is no
707 * existing mapping within it's guard gaps, for use as start_gap.
709 static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
711 if (vm_flags & VM_SHADOW_STACK)
718 * Search for an unmapped address range.
720 * We are looking for a range that:
721 * - does not intersect with any VMA;
722 * - is contained within the [low_limit, high_limit) interval;
723 * - is at least the desired size.
724 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
726 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
730 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
731 addr = unmapped_area_topdown(info);
733 addr = unmapped_area(info);
735 trace_vm_unmapped_area(addr, info);
739 /* Get an address range which is currently unmapped.
740 * For shmat() with addr=0.
742 * Ugly calling convention alert:
743 * Return value with the low bits set means error value,
745 * if (ret & ~PAGE_MASK)
748 * This function "knows" that -ENOMEM has the bits set.
751 generic_get_unmapped_area(struct file *filp, unsigned long addr,
752 unsigned long len, unsigned long pgoff,
753 unsigned long flags, vm_flags_t vm_flags)
755 struct mm_struct *mm = current->mm;
756 struct vm_area_struct *vma, *prev;
757 struct vm_unmapped_area_info info = {};
758 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
760 if (len > mmap_end - mmap_min_addr)
763 if (flags & MAP_FIXED)
767 addr = PAGE_ALIGN(addr);
768 vma = find_vma_prev(mm, addr, &prev);
769 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
770 (!vma || addr + len <= vm_start_gap(vma)) &&
771 (!prev || addr >= vm_end_gap(prev)))
776 info.low_limit = mm->mmap_base;
777 info.high_limit = mmap_end;
778 info.start_gap = stack_guard_placement(vm_flags);
779 return vm_unmapped_area(&info);
782 #ifndef HAVE_ARCH_UNMAPPED_AREA
784 arch_get_unmapped_area(struct file *filp, unsigned long addr,
785 unsigned long len, unsigned long pgoff,
786 unsigned long flags, vm_flags_t vm_flags)
788 return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
794 * This mmap-allocator allocates new areas top-down from below the
795 * stack's low limit (the base):
798 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
799 unsigned long len, unsigned long pgoff,
800 unsigned long flags, vm_flags_t vm_flags)
802 struct vm_area_struct *vma, *prev;
803 struct mm_struct *mm = current->mm;
804 struct vm_unmapped_area_info info = {};
805 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
807 /* requested length too big for entire address space */
808 if (len > mmap_end - mmap_min_addr)
811 if (flags & MAP_FIXED)
814 /* requesting a specific address */
816 addr = PAGE_ALIGN(addr);
817 vma = find_vma_prev(mm, addr, &prev);
818 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
819 (!vma || addr + len <= vm_start_gap(vma)) &&
820 (!prev || addr >= vm_end_gap(prev)))
824 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
826 info.low_limit = PAGE_SIZE;
827 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
828 info.start_gap = stack_guard_placement(vm_flags);
829 addr = vm_unmapped_area(&info);
832 * A failed mmap() very likely causes application failure,
833 * so fall back to the bottom-up function here. This scenario
834 * can happen with large stack limits and large mmap()
837 if (offset_in_page(addr)) {
838 VM_BUG_ON(addr != -ENOMEM);
840 info.low_limit = TASK_UNMAPPED_BASE;
841 info.high_limit = mmap_end;
842 addr = vm_unmapped_area(&info);
848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
850 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
851 unsigned long len, unsigned long pgoff,
852 unsigned long flags, vm_flags_t vm_flags)
854 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
859 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
860 unsigned long addr, unsigned long len,
861 unsigned long pgoff, unsigned long flags,
864 if (test_bit(MMF_TOPDOWN, &mm->flags))
865 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
867 return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
871 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
872 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
874 unsigned long (*get_area)(struct file *, unsigned long,
875 unsigned long, unsigned long, unsigned long)
878 unsigned long error = arch_mmap_check(addr, len, flags);
882 /* Careful about overflows.. */
887 if (file->f_op->get_unmapped_area)
888 get_area = file->f_op->get_unmapped_area;
889 } else if (flags & MAP_SHARED) {
891 * mmap_region() will call shmem_zero_setup() to create a file,
892 * so use shmem's get_unmapped_area in case it can be huge.
894 get_area = shmem_get_unmapped_area;
897 /* Always treat pgoff as zero for anonymous memory. */
902 addr = get_area(file, addr, len, pgoff, flags);
903 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
904 /* Ensures that larger anonymous mappings are THP aligned. */
905 addr = thp_get_unmapped_area_vmflags(file, addr, len,
906 pgoff, flags, vm_flags);
908 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
909 pgoff, flags, vm_flags);
911 if (IS_ERR_VALUE(addr))
914 if (addr > TASK_SIZE - len)
916 if (offset_in_page(addr))
919 error = security_mmap_addr(addr);
920 return error ? error : addr;
924 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
925 unsigned long addr, unsigned long len,
926 unsigned long pgoff, unsigned long flags)
928 if (test_bit(MMF_TOPDOWN, &mm->flags))
929 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
930 return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
932 EXPORT_SYMBOL(mm_get_unmapped_area);
935 * find_vma_intersection() - Look up the first VMA which intersects the interval
936 * @mm: The process address space.
937 * @start_addr: The inclusive start user address.
938 * @end_addr: The exclusive end user address.
940 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
941 * start_addr < end_addr.
943 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
944 unsigned long start_addr,
945 unsigned long end_addr)
947 unsigned long index = start_addr;
949 mmap_assert_locked(mm);
950 return mt_find(&mm->mm_mt, &index, end_addr - 1);
952 EXPORT_SYMBOL(find_vma_intersection);
955 * find_vma() - Find the VMA for a given address, or the next VMA.
956 * @mm: The mm_struct to check
959 * Returns: The VMA associated with addr, or the next VMA.
960 * May return %NULL in the case of no VMA at addr or above.
962 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
964 unsigned long index = addr;
966 mmap_assert_locked(mm);
967 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
969 EXPORT_SYMBOL(find_vma);
972 * find_vma_prev() - Find the VMA for a given address, or the next vma and
973 * set %pprev to the previous VMA, if any.
974 * @mm: The mm_struct to check
976 * @pprev: The pointer to set to the previous VMA
978 * Note that RCU lock is missing here since the external mmap_lock() is used
981 * Returns: The VMA associated with @addr, or the next vma.
982 * May return %NULL in the case of no vma at addr or above.
984 struct vm_area_struct *
985 find_vma_prev(struct mm_struct *mm, unsigned long addr,
986 struct vm_area_struct **pprev)
988 struct vm_area_struct *vma;
989 VMA_ITERATOR(vmi, mm, addr);
991 vma = vma_iter_load(&vmi);
992 *pprev = vma_prev(&vmi);
994 vma = vma_next(&vmi);
999 * Verify that the stack growth is acceptable and
1000 * update accounting. This is shared with both the
1001 * grow-up and grow-down cases.
1003 static int acct_stack_growth(struct vm_area_struct *vma,
1004 unsigned long size, unsigned long grow)
1006 struct mm_struct *mm = vma->vm_mm;
1007 unsigned long new_start;
1009 /* address space limit tests */
1010 if (!may_expand_vm(mm, vma->vm_flags, grow))
1013 /* Stack limit test */
1014 if (size > rlimit(RLIMIT_STACK))
1017 /* mlock limit tests */
1018 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1021 /* Check to ensure the stack will not grow into a hugetlb-only region */
1022 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1024 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1028 * Overcommit.. This must be the final test, as it will
1029 * update security statistics.
1031 if (security_vm_enough_memory_mm(mm, grow))
1037 #if defined(CONFIG_STACK_GROWSUP)
1039 * PA-RISC uses this for its stack.
1040 * vma is the last one with address > vma->vm_end. Have to extend vma.
1042 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1044 struct mm_struct *mm = vma->vm_mm;
1045 struct vm_area_struct *next;
1046 unsigned long gap_addr;
1048 VMA_ITERATOR(vmi, mm, vma->vm_start);
1050 if (!(vma->vm_flags & VM_GROWSUP))
1053 /* Guard against exceeding limits of the address space. */
1054 address &= PAGE_MASK;
1055 if (address >= (TASK_SIZE & PAGE_MASK))
1057 address += PAGE_SIZE;
1059 /* Enforce stack_guard_gap */
1060 gap_addr = address + stack_guard_gap;
1062 /* Guard against overflow */
1063 if (gap_addr < address || gap_addr > TASK_SIZE)
1064 gap_addr = TASK_SIZE;
1066 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1067 if (next && vma_is_accessible(next)) {
1068 if (!(next->vm_flags & VM_GROWSUP))
1070 /* Check that both stack segments have the same anon_vma? */
1074 vma_iter_prev_range_limit(&vmi, address);
1076 vma_iter_config(&vmi, vma->vm_start, address);
1077 if (vma_iter_prealloc(&vmi, vma))
1080 /* We must make sure the anon_vma is allocated. */
1081 if (unlikely(anon_vma_prepare(vma))) {
1082 vma_iter_free(&vmi);
1086 /* Lock the VMA before expanding to prevent concurrent page faults */
1087 vma_start_write(vma);
1089 * vma->vm_start/vm_end cannot change under us because the caller
1090 * is required to hold the mmap_lock in read mode. We need the
1091 * anon_vma lock to serialize against concurrent expand_stacks.
1093 anon_vma_lock_write(vma->anon_vma);
1095 /* Somebody else might have raced and expanded it already */
1096 if (address > vma->vm_end) {
1097 unsigned long size, grow;
1099 size = address - vma->vm_start;
1100 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1103 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1104 error = acct_stack_growth(vma, size, grow);
1107 * We only hold a shared mmap_lock lock here, so
1108 * we need to protect against concurrent vma
1109 * expansions. anon_vma_lock_write() doesn't
1110 * help here, as we don't guarantee that all
1111 * growable vmas in a mm share the same root
1112 * anon vma. So, we reuse mm->page_table_lock
1113 * to guard against concurrent vma expansions.
1115 spin_lock(&mm->page_table_lock);
1116 if (vma->vm_flags & VM_LOCKED)
1117 mm->locked_vm += grow;
1118 vm_stat_account(mm, vma->vm_flags, grow);
1119 anon_vma_interval_tree_pre_update_vma(vma);
1120 vma->vm_end = address;
1121 /* Overwrite old entry in mtree. */
1122 vma_iter_store(&vmi, vma);
1123 anon_vma_interval_tree_post_update_vma(vma);
1124 spin_unlock(&mm->page_table_lock);
1126 perf_event_mmap(vma);
1130 anon_vma_unlock_write(vma->anon_vma);
1131 vma_iter_free(&vmi);
1135 #endif /* CONFIG_STACK_GROWSUP */
1138 * vma is the first one with address < vma->vm_start. Have to extend vma.
1139 * mmap_lock held for writing.
1141 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1143 struct mm_struct *mm = vma->vm_mm;
1144 struct vm_area_struct *prev;
1146 VMA_ITERATOR(vmi, mm, vma->vm_start);
1148 if (!(vma->vm_flags & VM_GROWSDOWN))
1151 address &= PAGE_MASK;
1152 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1155 /* Enforce stack_guard_gap */
1156 prev = vma_prev(&vmi);
1157 /* Check that both stack segments have the same anon_vma? */
1159 if (!(prev->vm_flags & VM_GROWSDOWN) &&
1160 vma_is_accessible(prev) &&
1161 (address - prev->vm_end < stack_guard_gap))
1166 vma_iter_next_range_limit(&vmi, vma->vm_start);
1168 vma_iter_config(&vmi, address, vma->vm_end);
1169 if (vma_iter_prealloc(&vmi, vma))
1172 /* We must make sure the anon_vma is allocated. */
1173 if (unlikely(anon_vma_prepare(vma))) {
1174 vma_iter_free(&vmi);
1178 /* Lock the VMA before expanding to prevent concurrent page faults */
1179 vma_start_write(vma);
1181 * vma->vm_start/vm_end cannot change under us because the caller
1182 * is required to hold the mmap_lock in read mode. We need the
1183 * anon_vma lock to serialize against concurrent expand_stacks.
1185 anon_vma_lock_write(vma->anon_vma);
1187 /* Somebody else might have raced and expanded it already */
1188 if (address < vma->vm_start) {
1189 unsigned long size, grow;
1191 size = vma->vm_end - address;
1192 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1195 if (grow <= vma->vm_pgoff) {
1196 error = acct_stack_growth(vma, size, grow);
1199 * We only hold a shared mmap_lock lock here, so
1200 * we need to protect against concurrent vma
1201 * expansions. anon_vma_lock_write() doesn't
1202 * help here, as we don't guarantee that all
1203 * growable vmas in a mm share the same root
1204 * anon vma. So, we reuse mm->page_table_lock
1205 * to guard against concurrent vma expansions.
1207 spin_lock(&mm->page_table_lock);
1208 if (vma->vm_flags & VM_LOCKED)
1209 mm->locked_vm += grow;
1210 vm_stat_account(mm, vma->vm_flags, grow);
1211 anon_vma_interval_tree_pre_update_vma(vma);
1212 vma->vm_start = address;
1213 vma->vm_pgoff -= grow;
1214 /* Overwrite old entry in mtree. */
1215 vma_iter_store(&vmi, vma);
1216 anon_vma_interval_tree_post_update_vma(vma);
1217 spin_unlock(&mm->page_table_lock);
1219 perf_event_mmap(vma);
1223 anon_vma_unlock_write(vma->anon_vma);
1224 vma_iter_free(&vmi);
1229 /* enforced gap between the expanding stack and other mappings. */
1230 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1232 static int __init cmdline_parse_stack_guard_gap(char *p)
1237 val = simple_strtoul(p, &endptr, 10);
1239 stack_guard_gap = val << PAGE_SHIFT;
1243 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1245 #ifdef CONFIG_STACK_GROWSUP
1246 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1248 return expand_upwards(vma, address);
1251 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1253 struct vm_area_struct *vma, *prev;
1256 vma = find_vma_prev(mm, addr, &prev);
1257 if (vma && (vma->vm_start <= addr))
1261 if (expand_stack_locked(prev, addr))
1263 if (prev->vm_flags & VM_LOCKED)
1264 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1268 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1270 return expand_downwards(vma, address);
1273 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
1275 struct vm_area_struct *vma;
1276 unsigned long start;
1279 vma = find_vma(mm, addr);
1282 if (vma->vm_start <= addr)
1284 start = vma->vm_start;
1285 if (expand_stack_locked(vma, addr))
1287 if (vma->vm_flags & VM_LOCKED)
1288 populate_vma_page_range(vma, addr, start, NULL);
1293 #if defined(CONFIG_STACK_GROWSUP)
1295 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1296 #define vma_expand_down(vma, addr) (-EFAULT)
1300 #define vma_expand_up(vma,addr) (-EFAULT)
1301 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1306 * expand_stack(): legacy interface for page faulting. Don't use unless
1309 * This is called with the mm locked for reading, drops the lock, takes
1310 * the lock for writing, tries to look up a vma again, expands it if
1311 * necessary, and downgrades the lock to reading again.
1313 * If no vma is found or it can't be expanded, it returns NULL and has
1316 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1318 struct vm_area_struct *vma, *prev;
1320 mmap_read_unlock(mm);
1321 if (mmap_write_lock_killable(mm))
1324 vma = find_vma_prev(mm, addr, &prev);
1325 if (vma && vma->vm_start <= addr)
1328 if (prev && !vma_expand_up(prev, addr)) {
1333 if (vma && !vma_expand_down(vma, addr))
1336 mmap_write_unlock(mm);
1340 mmap_write_downgrade(mm);
1344 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1345 * @mm: The mm_struct
1346 * @start: The start address to munmap
1347 * @len: The length to be munmapped.
1348 * @uf: The userfaultfd list_head
1350 * Return: 0 on success, error otherwise.
1352 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1353 struct list_head *uf)
1355 VMA_ITERATOR(vmi, mm, start);
1357 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1360 unsigned long mmap_region(struct file *file, unsigned long addr,
1361 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1362 struct list_head *uf)
1364 struct mm_struct *mm = current->mm;
1365 struct vm_area_struct *vma = NULL;
1366 pgoff_t pglen = PHYS_PFN(len);
1367 struct vm_area_struct *merge;
1368 unsigned long charged = 0;
1369 struct vma_munmap_struct vms;
1370 struct ma_state mas_detach;
1371 struct maple_tree mt_detach;
1372 unsigned long end = addr + len;
1373 bool writable_file_mapping = false;
1374 int error = -ENOMEM;
1375 VMA_ITERATOR(vmi, mm, addr);
1376 VMG_STATE(vmg, mm, &vmi, addr, end, vm_flags, pgoff);
1379 /* Find the first overlapping VMA */
1380 vma = vma_find(&vmi, end);
1381 init_vma_munmap(&vms, &vmi, vma, addr, end, uf, /* unlock = */ false);
1383 mt_init_flags(&mt_detach, vmi.mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1384 mt_on_stack(mt_detach);
1385 mas_init(&mas_detach, &mt_detach, /* addr = */ 0);
1386 /* Prepare to unmap any existing mapping in the area */
1387 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1391 vmg.next = vms.next;
1392 vmg.prev = vms.prev;
1395 vmg.next = vma_iter_next_rewind(&vmi, &vmg.prev);
1398 /* Check against address space limit. */
1399 if (!may_expand_vm(mm, vm_flags, pglen - vms.nr_pages))
1403 * Private writable mapping: check memory availability
1405 if (accountable_mapping(file, vm_flags)) {
1407 charged -= vms.nr_accounted;
1408 if (charged && security_vm_enough_memory_mm(mm, charged))
1411 vms.nr_accounted = 0;
1412 vm_flags |= VM_ACCOUNT;
1413 vmg.flags = vm_flags;
1416 vma = vma_merge_new_range(&vmg);
1420 * Determine the object being mapped and call the appropriate
1421 * specific mapper. the address has already been validated, but
1422 * not unmapped, but the maps are removed from the list.
1424 vma = vm_area_alloc(mm);
1428 vma_iter_config(&vmi, addr, end);
1429 vma_set_range(vma, addr, end, pgoff);
1430 vm_flags_init(vma, vm_flags);
1431 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1434 vma->vm_file = get_file(file);
1436 * call_mmap() may map PTE, so ensure there are no existing PTEs
1437 * and call the vm_ops close function if one exists.
1439 vms_clean_up_area(&vms, &mas_detach);
1440 error = call_mmap(file, vma);
1442 goto unmap_and_free_vma;
1444 if (vma_is_shared_maywrite(vma)) {
1445 error = mapping_map_writable(file->f_mapping);
1447 goto close_and_free_vma;
1449 writable_file_mapping = true;
1453 * Expansion is handled above, merging is handled below.
1454 * Drivers should not alter the address of the VMA.
1457 if (WARN_ON((addr != vma->vm_start)))
1458 goto close_and_free_vma;
1460 vma_iter_config(&vmi, addr, end);
1462 * If vm_flags changed after call_mmap(), we should try merge
1463 * vma again as we may succeed this time.
1465 if (unlikely(vm_flags != vma->vm_flags && vmg.prev)) {
1466 vmg.flags = vma->vm_flags;
1467 /* If this fails, state is reset ready for a reattempt. */
1468 merge = vma_merge_new_range(&vmg);
1472 * ->mmap() can change vma->vm_file and fput
1473 * the original file. So fput the vma->vm_file
1474 * here or we would add an extra fput for file
1475 * and cause general protection fault
1481 /* Update vm_flags to pick up the change. */
1482 vm_flags = vma->vm_flags;
1483 goto unmap_writable;
1485 vma_iter_config(&vmi, addr, end);
1488 vm_flags = vma->vm_flags;
1489 } else if (vm_flags & VM_SHARED) {
1490 error = shmem_zero_setup(vma);
1494 vma_set_anonymous(vma);
1497 if (map_deny_write_exec(vma, vma->vm_flags)) {
1499 goto close_and_free_vma;
1502 /* Allow architectures to sanity-check the vm_flags */
1504 if (!arch_validate_flags(vma->vm_flags))
1505 goto close_and_free_vma;
1508 if (vma_iter_prealloc(&vmi, vma))
1509 goto close_and_free_vma;
1511 /* Lock the VMA since it is modified after insertion into VMA tree */
1512 vma_start_write(vma);
1513 vma_iter_store(&vmi, vma);
1518 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
1519 * call covers the non-merge case.
1521 khugepaged_enter_vma(vma, vma->vm_flags);
1523 /* Once vma denies write, undo our temporary denial count */
1525 if (writable_file_mapping)
1526 mapping_unmap_writable(file->f_mapping);
1527 file = vma->vm_file;
1530 perf_event_mmap(vma);
1532 /* Unmap any existing mapping in the area */
1533 vms_complete_munmap_vmas(&vms, &mas_detach);
1535 vm_stat_account(mm, vm_flags, pglen);
1536 if (vm_flags & VM_LOCKED) {
1537 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1538 is_vm_hugetlb_page(vma) ||
1539 vma == get_gate_vma(current->mm))
1540 vm_flags_clear(vma, VM_LOCKED_MASK);
1542 mm->locked_vm += pglen;
1549 * New (or expanded) vma always get soft dirty status.
1550 * Otherwise user-space soft-dirty page tracker won't
1551 * be able to distinguish situation when vma area unmapped,
1552 * then new mapped in-place (which must be aimed as
1553 * a completely new data area).
1555 vm_flags_set(vma, VM_SOFTDIRTY);
1557 vma_set_page_prot(vma);
1563 if (file && !vms.closed_vm_ops && vma->vm_ops && vma->vm_ops->close)
1564 vma->vm_ops->close(vma);
1566 if (file || vma->vm_file) {
1569 vma->vm_file = NULL;
1571 vma_iter_set(&vmi, vma->vm_end);
1572 /* Undo any partial mapping done by a device driver. */
1573 unmap_region(&vmi.mas, vma, vmg.prev, vmg.next);
1575 if (writable_file_mapping)
1576 mapping_unmap_writable(file->f_mapping);
1581 vm_unacct_memory(charged);
1584 vms_abort_munmap_vmas(&vms, &mas_detach);
1590 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1593 struct mm_struct *mm = current->mm;
1595 VMA_ITERATOR(vmi, mm, start);
1597 if (mmap_write_lock_killable(mm))
1600 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1602 mmap_write_unlock(mm);
1604 userfaultfd_unmap_complete(mm, &uf);
1608 int vm_munmap(unsigned long start, size_t len)
1610 return __vm_munmap(start, len, false);
1612 EXPORT_SYMBOL(vm_munmap);
1614 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1616 addr = untagged_addr(addr);
1617 return __vm_munmap(addr, len, true);
1622 * Emulation of deprecated remap_file_pages() syscall.
1624 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1625 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1628 struct mm_struct *mm = current->mm;
1629 struct vm_area_struct *vma;
1630 unsigned long populate = 0;
1631 unsigned long ret = -EINVAL;
1634 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1635 current->comm, current->pid);
1639 start = start & PAGE_MASK;
1640 size = size & PAGE_MASK;
1642 if (start + size <= start)
1645 /* Does pgoff wrap? */
1646 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1649 if (mmap_write_lock_killable(mm))
1652 vma = vma_lookup(mm, start);
1654 if (!vma || !(vma->vm_flags & VM_SHARED))
1657 if (start + size > vma->vm_end) {
1658 VMA_ITERATOR(vmi, mm, vma->vm_end);
1659 struct vm_area_struct *next, *prev = vma;
1661 for_each_vma_range(vmi, next, start + size) {
1662 /* hole between vmas ? */
1663 if (next->vm_start != prev->vm_end)
1666 if (next->vm_file != vma->vm_file)
1669 if (next->vm_flags != vma->vm_flags)
1672 if (start + size <= next->vm_end)
1682 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1683 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1684 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1686 flags &= MAP_NONBLOCK;
1687 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1688 if (vma->vm_flags & VM_LOCKED)
1689 flags |= MAP_LOCKED;
1691 file = get_file(vma->vm_file);
1692 ret = security_mmap_file(vma->vm_file, prot, flags);
1695 ret = do_mmap(vma->vm_file, start, size,
1696 prot, flags, 0, pgoff, &populate, NULL);
1700 mmap_write_unlock(mm);
1702 mm_populate(ret, populate);
1703 if (!IS_ERR_VALUE(ret))
1709 * do_brk_flags() - Increase the brk vma if the flags match.
1710 * @vmi: The vma iterator
1711 * @addr: The start address
1712 * @len: The length of the increase
1714 * @flags: The VMA Flags
1716 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
1717 * do not match then create a new anonymous VMA. Eventually we may be able to
1718 * do some brk-specific accounting here.
1720 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1721 unsigned long addr, unsigned long len, unsigned long flags)
1723 struct mm_struct *mm = current->mm;
1726 * Check against address space limits by the changed size
1727 * Note: This happens *after* clearing old mappings in some code paths.
1729 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1730 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1733 if (mm->map_count > sysctl_max_map_count)
1736 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1740 * Expand the existing vma if possible; Note that singular lists do not
1741 * occur after forking, so the expand will only happen on new VMAs.
1743 if (vma && vma->vm_end == addr) {
1744 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1747 vma_iter_next_range(vmi);
1749 if (vma_merge_new_range(&vmg))
1751 else if (vmg_nomem(&vmg))
1756 vma_iter_next_range(vmi);
1757 /* create a vma struct for an anonymous mapping */
1758 vma = vm_area_alloc(mm);
1762 vma_set_anonymous(vma);
1763 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1764 vm_flags_init(vma, flags);
1765 vma->vm_page_prot = vm_get_page_prot(flags);
1766 vma_start_write(vma);
1767 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1768 goto mas_store_fail;
1774 perf_event_mmap(vma);
1775 mm->total_vm += len >> PAGE_SHIFT;
1776 mm->data_vm += len >> PAGE_SHIFT;
1777 if (flags & VM_LOCKED)
1778 mm->locked_vm += (len >> PAGE_SHIFT);
1779 vm_flags_set(vma, VM_SOFTDIRTY);
1785 vm_unacct_memory(len >> PAGE_SHIFT);
1789 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1791 struct mm_struct *mm = current->mm;
1792 struct vm_area_struct *vma = NULL;
1797 VMA_ITERATOR(vmi, mm, addr);
1799 len = PAGE_ALIGN(request);
1805 /* Until we need other flags, refuse anything except VM_EXEC. */
1806 if ((flags & (~VM_EXEC)) != 0)
1809 if (mmap_write_lock_killable(mm))
1812 ret = check_brk_limits(addr, len);
1816 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1820 vma = vma_prev(&vmi);
1821 ret = do_brk_flags(&vmi, vma, addr, len, flags);
1822 populate = ((mm->def_flags & VM_LOCKED) != 0);
1823 mmap_write_unlock(mm);
1824 userfaultfd_unmap_complete(mm, &uf);
1825 if (populate && !ret)
1826 mm_populate(addr, len);
1831 mmap_write_unlock(mm);
1834 EXPORT_SYMBOL(vm_brk_flags);
1836 /* Release all mmaps. */
1837 void exit_mmap(struct mm_struct *mm)
1839 struct mmu_gather tlb;
1840 struct vm_area_struct *vma;
1841 unsigned long nr_accounted = 0;
1842 VMA_ITERATOR(vmi, mm, 0);
1845 /* mm's last user has gone, and its about to be pulled down */
1846 mmu_notifier_release(mm);
1851 vma = vma_next(&vmi);
1852 if (!vma || unlikely(xa_is_zero(vma))) {
1853 /* Can happen if dup_mmap() received an OOM */
1854 mmap_read_unlock(mm);
1855 mmap_write_lock(mm);
1861 tlb_gather_mmu_fullmm(&tlb, mm);
1862 /* update_hiwater_rss(mm) here? but nobody should be looking */
1863 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1864 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1865 mmap_read_unlock(mm);
1868 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1869 * because the memory has been already freed.
1871 set_bit(MMF_OOM_SKIP, &mm->flags);
1872 mmap_write_lock(mm);
1873 mt_clear_in_rcu(&mm->mm_mt);
1874 vma_iter_set(&vmi, vma->vm_end);
1875 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1876 USER_PGTABLES_CEILING, true);
1877 tlb_finish_mmu(&tlb);
1880 * Walk the list again, actually closing and freeing it, with preemption
1881 * enabled, without holding any MM locks besides the unreachable
1884 vma_iter_set(&vmi, vma->vm_end);
1886 if (vma->vm_flags & VM_ACCOUNT)
1887 nr_accounted += vma_pages(vma);
1888 remove_vma(vma, /* unreachable = */ true, /* closed = */ false);
1891 vma = vma_next(&vmi);
1892 } while (vma && likely(!xa_is_zero(vma)));
1894 BUG_ON(count != mm->map_count);
1896 trace_exit_mmap(mm);
1898 __mt_destroy(&mm->mm_mt);
1899 mmap_write_unlock(mm);
1900 vm_unacct_memory(nr_accounted);
1903 /* Insert vm structure into process list sorted by address
1904 * and into the inode's i_mmap tree. If vm_file is non-NULL
1905 * then i_mmap_rwsem is taken here.
1907 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1909 unsigned long charged = vma_pages(vma);
1912 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1915 if ((vma->vm_flags & VM_ACCOUNT) &&
1916 security_vm_enough_memory_mm(mm, charged))
1920 * The vm_pgoff of a purely anonymous vma should be irrelevant
1921 * until its first write fault, when page's anon_vma and index
1922 * are set. But now set the vm_pgoff it will almost certainly
1923 * end up with (unless mremap moves it elsewhere before that
1924 * first wfault), so /proc/pid/maps tells a consistent story.
1926 * By setting it to reflect the virtual start address of the
1927 * vma, merges and splits can happen in a seamless way, just
1928 * using the existing file pgoff checks and manipulations.
1929 * Similarly in do_mmap and in do_brk_flags.
1931 if (vma_is_anonymous(vma)) {
1932 BUG_ON(vma->anon_vma);
1933 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1936 if (vma_link(mm, vma)) {
1937 if (vma->vm_flags & VM_ACCOUNT)
1938 vm_unacct_memory(charged);
1946 * Return true if the calling process may expand its vm space by the passed
1949 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1951 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1954 if (is_data_mapping(flags) &&
1955 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1956 /* Workaround for Valgrind */
1957 if (rlimit(RLIMIT_DATA) == 0 &&
1958 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1961 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1962 current->comm, current->pid,
1963 (mm->data_vm + npages) << PAGE_SHIFT,
1964 rlimit(RLIMIT_DATA),
1965 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1967 if (!ignore_rlimit_data)
1974 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1976 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1978 if (is_exec_mapping(flags))
1979 mm->exec_vm += npages;
1980 else if (is_stack_mapping(flags))
1981 mm->stack_vm += npages;
1982 else if (is_data_mapping(flags))
1983 mm->data_vm += npages;
1986 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1989 * Close hook, called for unmap() and on the old vma for mremap().
1991 * Having a close hook prevents vma merging regardless of flags.
1993 static void special_mapping_close(struct vm_area_struct *vma)
1995 const struct vm_special_mapping *sm = vma->vm_private_data;
2001 static const char *special_mapping_name(struct vm_area_struct *vma)
2003 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2006 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2008 struct vm_special_mapping *sm = new_vma->vm_private_data;
2010 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
2014 return sm->mremap(sm, new_vma);
2019 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
2022 * Forbid splitting special mappings - kernel has expectations over
2023 * the number of pages in mapping. Together with VM_DONTEXPAND
2024 * the size of vma should stay the same over the special mapping's
2030 static const struct vm_operations_struct special_mapping_vmops = {
2031 .close = special_mapping_close,
2032 .fault = special_mapping_fault,
2033 .mremap = special_mapping_mremap,
2034 .name = special_mapping_name,
2035 /* vDSO code relies that VVAR can't be accessed remotely */
2037 .may_split = special_mapping_split,
2040 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
2042 struct vm_area_struct *vma = vmf->vma;
2044 struct page **pages;
2045 struct vm_special_mapping *sm = vma->vm_private_data;
2048 return sm->fault(sm, vmf->vma, vmf);
2052 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2056 struct page *page = *pages;
2062 return VM_FAULT_SIGBUS;
2065 static struct vm_area_struct *__install_special_mapping(
2066 struct mm_struct *mm,
2067 unsigned long addr, unsigned long len,
2068 unsigned long vm_flags, void *priv,
2069 const struct vm_operations_struct *ops)
2072 struct vm_area_struct *vma;
2074 vma = vm_area_alloc(mm);
2075 if (unlikely(vma == NULL))
2076 return ERR_PTR(-ENOMEM);
2078 vma_set_range(vma, addr, addr + len, 0);
2079 vm_flags_init(vma, (vm_flags | mm->def_flags |
2080 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
2081 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2084 vma->vm_private_data = priv;
2086 ret = insert_vm_struct(mm, vma);
2090 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
2092 perf_event_mmap(vma);
2098 return ERR_PTR(ret);
2101 bool vma_is_special_mapping(const struct vm_area_struct *vma,
2102 const struct vm_special_mapping *sm)
2104 return vma->vm_private_data == sm &&
2105 vma->vm_ops == &special_mapping_vmops;
2109 * Called with mm->mmap_lock held for writing.
2110 * Insert a new vma covering the given region, with the given flags.
2111 * Its pages are supplied by the given array of struct page *.
2112 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2113 * The region past the last page supplied will always produce SIGBUS.
2114 * The array pointer and the pages it points to are assumed to stay alive
2115 * for as long as this mapping might exist.
2117 struct vm_area_struct *_install_special_mapping(
2118 struct mm_struct *mm,
2119 unsigned long addr, unsigned long len,
2120 unsigned long vm_flags, const struct vm_special_mapping *spec)
2122 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
2123 &special_mapping_vmops);
2127 * initialise the percpu counter for VM
2129 void __init mmap_init(void)
2133 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
2138 * Initialise sysctl_user_reserve_kbytes.
2140 * This is intended to prevent a user from starting a single memory hogging
2141 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2144 * The default value is min(3% of free memory, 128MB)
2145 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2147 static int init_user_reserve(void)
2149 unsigned long free_kbytes;
2151 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2153 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
2156 subsys_initcall(init_user_reserve);
2159 * Initialise sysctl_admin_reserve_kbytes.
2161 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2162 * to log in and kill a memory hogging process.
2164 * Systems with more than 256MB will reserve 8MB, enough to recover
2165 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2166 * only reserve 3% of free pages by default.
2168 static int init_admin_reserve(void)
2170 unsigned long free_kbytes;
2172 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2174 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
2177 subsys_initcall(init_admin_reserve);
2180 * Reinititalise user and admin reserves if memory is added or removed.
2182 * The default user reserve max is 128MB, and the default max for the
2183 * admin reserve is 8MB. These are usually, but not always, enough to
2184 * enable recovery from a memory hogging process using login/sshd, a shell,
2185 * and tools like top. It may make sense to increase or even disable the
2186 * reserve depending on the existence of swap or variations in the recovery
2187 * tools. So, the admin may have changed them.
2189 * If memory is added and the reserves have been eliminated or increased above
2190 * the default max, then we'll trust the admin.
2192 * If memory is removed and there isn't enough free memory, then we
2193 * need to reset the reserves.
2195 * Otherwise keep the reserve set by the admin.
2197 static int reserve_mem_notifier(struct notifier_block *nb,
2198 unsigned long action, void *data)
2200 unsigned long tmp, free_kbytes;
2204 /* Default max is 128MB. Leave alone if modified by operator. */
2205 tmp = sysctl_user_reserve_kbytes;
2206 if (tmp > 0 && tmp < SZ_128K)
2207 init_user_reserve();
2209 /* Default max is 8MB. Leave alone if modified by operator. */
2210 tmp = sysctl_admin_reserve_kbytes;
2211 if (tmp > 0 && tmp < SZ_8K)
2212 init_admin_reserve();
2216 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2218 if (sysctl_user_reserve_kbytes > free_kbytes) {
2219 init_user_reserve();
2220 pr_info("vm.user_reserve_kbytes reset to %lu\n",
2221 sysctl_user_reserve_kbytes);
2224 if (sysctl_admin_reserve_kbytes > free_kbytes) {
2225 init_admin_reserve();
2226 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2227 sysctl_admin_reserve_kbytes);
2236 static int __meminit init_reserve_notifier(void)
2238 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2239 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2243 subsys_initcall(init_reserve_notifier);
2246 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2247 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2248 * shift, vma->vm_end - shift).
2250 * This function is almost certainly NOT what you want for anything other than
2251 * early executable temporary stack relocation.
2253 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2256 * The process proceeds as follows:
2258 * 1) Use shift to calculate the new vma endpoints.
2259 * 2) Extend vma to cover both the old and new ranges. This ensures the
2260 * arguments passed to subsequent functions are consistent.
2261 * 3) Move vma's page tables to the new range.
2262 * 4) Free up any cleared pgd range.
2263 * 5) Shrink the vma to cover only the new range.
2266 struct mm_struct *mm = vma->vm_mm;
2267 unsigned long old_start = vma->vm_start;
2268 unsigned long old_end = vma->vm_end;
2269 unsigned long length = old_end - old_start;
2270 unsigned long new_start = old_start - shift;
2271 unsigned long new_end = old_end - shift;
2272 VMA_ITERATOR(vmi, mm, new_start);
2273 VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2274 struct vm_area_struct *next;
2275 struct mmu_gather tlb;
2277 BUG_ON(new_start > new_end);
2280 * ensure there are no vmas between where we want to go
2283 if (vma != vma_next(&vmi))
2286 vma_iter_prev_range(&vmi);
2288 * cover the whole range: [new_start, old_end)
2291 if (vma_expand(&vmg))
2295 * move the page tables downwards, on failure we rely on
2296 * process cleanup to remove whatever mess we made.
2298 if (length != move_page_tables(vma, old_start,
2299 vma, new_start, length, false, true))
2303 tlb_gather_mmu(&tlb, mm);
2304 next = vma_next(&vmi);
2305 if (new_end > old_start) {
2307 * when the old and new regions overlap clear from new_end.
2309 free_pgd_range(&tlb, new_end, old_end, new_end,
2310 next ? next->vm_start : USER_PGTABLES_CEILING);
2313 * otherwise, clean from old_start; this is done to not touch
2314 * the address space in [new_end, old_start) some architectures
2315 * have constraints on va-space that make this illegal (IA64) -
2316 * for the others its just a little faster.
2318 free_pgd_range(&tlb, old_start, old_end, new_end,
2319 next ? next->vm_start : USER_PGTABLES_CEILING);
2321 tlb_finish_mmu(&tlb);
2324 /* Shrink the vma to just the new range */
2325 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);