1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
47 #include <linux/mm_inline.h>
48 #include <linux/memblock.h>
49 #include <linux/nsproxy.h>
50 #include <linux/capability.h>
51 #include <linux/cpu.h>
52 #include <linux/cgroup.h>
53 #include <linux/security.h>
54 #include <linux/hugetlb.h>
55 #include <linux/seccomp.h>
56 #include <linux/swap.h>
57 #include <linux/syscalls.h>
58 #include <linux/syscall_user_dispatch.h>
59 #include <linux/jiffies.h>
60 #include <linux/futex.h>
61 #include <linux/compat.h>
62 #include <linux/kthread.h>
63 #include <linux/task_io_accounting_ops.h>
64 #include <linux/rcupdate.h>
65 #include <linux/ptrace.h>
66 #include <linux/mount.h>
67 #include <linux/audit.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/proc_fs.h>
71 #include <linux/profile.h>
72 #include <linux/rmap.h>
73 #include <linux/ksm.h>
74 #include <linux/acct.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/tsacct_kern.h>
77 #include <linux/cn_proc.h>
78 #include <linux/freezer.h>
79 #include <linux/delayacct.h>
80 #include <linux/taskstats_kern.h>
81 #include <linux/tty.h>
82 #include <linux/fs_struct.h>
83 #include <linux/magic.h>
84 #include <linux/perf_event.h>
85 #include <linux/posix-timers.h>
86 #include <linux/user-return-notifier.h>
87 #include <linux/oom.h>
88 #include <linux/khugepaged.h>
89 #include <linux/signalfd.h>
90 #include <linux/uprobes.h>
91 #include <linux/aio.h>
92 #include <linux/compiler.h>
93 #include <linux/sysctl.h>
94 #include <linux/kcov.h>
95 #include <linux/livepatch.h>
96 #include <linux/thread_info.h>
97 #include <linux/stackleak.h>
98 #include <linux/kasan.h>
99 #include <linux/scs.h>
100 #include <linux/io_uring.h>
101 #include <linux/bpf.h>
102 #include <linux/stackprotector.h>
103 #include <linux/user_events.h>
104 #include <linux/iommu.h>
105 #include <linux/rseq.h>
106 #include <uapi/linux/pidfd.h>
107 #include <linux/pidfs.h>
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
115 #include <trace/events/sched.h>
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
120 #include <kunit/visibility.h>
123 * Minimum number of threads to boot the kernel
125 #define MIN_THREADS 20
128 * Maximum number of threads
130 #define MAX_THREADS FUTEX_TID_MASK
133 * Protected counters by write_lock_irq(&tasklist_lock)
135 unsigned long total_forks; /* Handle normal Linux uptimes. */
136 int nr_threads; /* The idle threads do not count.. */
138 static int max_threads; /* tunable limit on nr_threads */
140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
142 static const char * const resident_page_types[] = {
143 NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
156 return lockdep_is_held(&tasklist_lock);
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
161 int nr_processes(void)
166 for_each_possible_cpu(cpu)
167 total += per_cpu(process_counts, cpu);
172 void __weak arch_release_task_struct(struct task_struct *tsk)
176 static struct kmem_cache *task_struct_cachep;
178 static inline struct task_struct *alloc_task_struct_node(int node)
180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
183 static inline void free_task_struct(struct task_struct *tsk)
185 kmem_cache_free(task_struct_cachep, tsk);
189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190 * kmemcache based allocator.
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194 # ifdef CONFIG_VMAP_STACK
196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197 * flush. Try to minimize the number of calls by caching stacks.
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
204 struct vm_struct *stack_vm_area;
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *tmp = NULL;
214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
220 static void thread_stack_free_rcu(struct rcu_head *rh)
222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 static void thread_stack_delayed_free(struct task_struct *tsk)
232 struct vm_stack *vm_stack = tsk->stack;
234 vm_stack->stack_vm_area = tsk->stack_vm_area;
235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
238 static int free_vm_stack_cache(unsigned int cpu)
240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
243 for (i = 0; i < NR_CACHED_STACKS; i++) {
244 struct vm_struct *vm_stack = cached_vm_stacks[i];
249 vfree(vm_stack->addr);
250 cached_vm_stacks[i] = NULL;
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
272 for (i = 0; i < nr_charged; i++)
273 memcg_kmem_uncharge_page(vm->pages[i], 0);
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
279 struct vm_struct *vm;
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
286 s = this_cpu_xchg(cached_stacks[i], NULL);
291 /* Reset stack metadata. */
292 kasan_unpoison_range(s->addr, THREAD_SIZE);
294 stack = kasan_reset_tag(s->addr);
296 /* Clear stale pointers from reused stack. */
297 memset(stack, 0, THREAD_SIZE);
299 if (memcg_charge_kernel_stack(s)) {
304 tsk->stack_vm_area = s;
310 * Allocated stacks are cached and later reused by new threads,
311 * so memcg accounting is performed manually on assigning/releasing
312 * stacks to tasks. Drop __GFP_ACCOUNT.
314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 VMALLOC_START, VMALLOC_END,
316 THREADINFO_GFP & ~__GFP_ACCOUNT,
318 0, node, __builtin_return_address(0));
322 vm = find_vm_area(stack);
323 if (memcg_charge_kernel_stack(vm)) {
328 * We can't call find_vm_area() in interrupt context, and
329 * free_thread_stack() can be called in interrupt context,
330 * so cache the vm_struct.
332 tsk->stack_vm_area = vm;
333 stack = kasan_reset_tag(stack);
338 static void free_thread_stack(struct task_struct *tsk)
340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 thread_stack_delayed_free(tsk);
344 tsk->stack_vm_area = NULL;
347 # else /* !CONFIG_VMAP_STACK */
349 static void thread_stack_free_rcu(struct rcu_head *rh)
351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
354 static void thread_stack_delayed_free(struct task_struct *tsk)
356 struct rcu_head *rh = tsk->stack;
358 call_rcu(rh, thread_stack_free_rcu);
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
367 tsk->stack = kasan_reset_tag(page_address(page));
373 static void free_thread_stack(struct task_struct *tsk)
375 thread_stack_delayed_free(tsk);
379 # endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
382 static struct kmem_cache *thread_stack_cache;
384 static void thread_stack_free_rcu(struct rcu_head *rh)
386 kmem_cache_free(thread_stack_cache, rh);
389 static void thread_stack_delayed_free(struct task_struct *tsk)
391 struct rcu_head *rh = tsk->stack;
393 call_rcu(rh, thread_stack_free_rcu);
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
402 return stack ? 0 : -ENOMEM;
405 static void free_thread_stack(struct task_struct *tsk)
407 thread_stack_delayed_free(tsk);
411 void thread_stack_cache_init(void)
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
416 BUG_ON(thread_stack_cache == NULL);
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
439 #ifdef CONFIG_PER_VMA_LOCK
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
450 init_rwsem(&vma->vm_lock->lock);
451 vma->vm_lock_seq = -1;
456 static inline void vma_lock_free(struct vm_area_struct *vma)
458 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
461 #else /* CONFIG_PER_VMA_LOCK */
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
466 #endif /* CONFIG_PER_VMA_LOCK */
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
470 struct vm_area_struct *vma;
472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
477 if (!vma_lock_alloc(vma)) {
478 kmem_cache_free(vm_area_cachep, vma);
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495 * orig->shared.rb may be modified concurrently, but the clone
496 * will be reinitialized.
498 data_race(memcpy(new, orig, sizeof(*new)));
499 if (!vma_lock_alloc(new)) {
500 kmem_cache_free(vm_area_cachep, new);
503 INIT_LIST_HEAD(&new->anon_vma_chain);
504 vma_numab_state_init(new);
505 dup_anon_vma_name(orig, new);
510 void __vm_area_free(struct vm_area_struct *vma)
512 vma_numab_state_free(vma);
513 free_anon_vma_name(vma);
515 kmem_cache_free(vm_area_cachep, vma);
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
524 /* The vma should not be locked while being destroyed. */
525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
530 void vm_area_free(struct vm_area_struct *vma)
532 #ifdef CONFIG_PER_VMA_LOCK
533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
539 static void account_kernel_stack(struct task_struct *tsk, int account)
541 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 struct vm_struct *vm = task_stack_vm_area(tsk);
545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 account * (PAGE_SIZE / 1024));
549 void *stack = task_stack_page(tsk);
551 /* All stack pages are in the same node. */
552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 account * (THREAD_SIZE / 1024));
557 void exit_task_stack_account(struct task_struct *tsk)
559 account_kernel_stack(tsk, -1);
561 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 struct vm_struct *vm;
565 vm = task_stack_vm_area(tsk);
566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 memcg_kmem_uncharge_page(vm->pages[i], 0);
571 static void release_task_stack(struct task_struct *tsk)
573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 return; /* Better to leak the stack than to free prematurely */
576 free_thread_stack(tsk);
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
582 if (refcount_dec_and_test(&tsk->stack_refcount))
583 release_task_stack(tsk);
587 void free_task(struct task_struct *tsk)
589 #ifdef CONFIG_SECCOMP
590 WARN_ON_ONCE(tsk->seccomp.filter);
592 release_user_cpus_ptr(tsk);
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
597 * The task is finally done with both the stack and thread_info,
600 release_task_stack(tsk);
603 * If the task had a separate stack allocation, it should be gone
606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
608 rt_mutex_debug_task_free(tsk);
609 ftrace_graph_exit_task(tsk);
610 arch_release_task_struct(tsk);
611 if (tsk->flags & PF_KTHREAD)
612 free_kthread_struct(tsk);
613 bpf_task_storage_free(tsk);
614 free_task_struct(tsk);
616 EXPORT_SYMBOL(free_task);
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
620 struct file *exe_file;
622 exe_file = get_mm_exe_file(oldmm);
623 RCU_INIT_POINTER(mm->exe_file, exe_file);
627 static __latent_entropy int dup_mmap(struct mm_struct *mm,
628 struct mm_struct *oldmm)
630 struct vm_area_struct *mpnt, *tmp;
632 unsigned long charge = 0;
634 VMA_ITERATOR(vmi, mm, 0);
636 uprobe_start_dup_mmap();
637 if (mmap_write_lock_killable(oldmm)) {
639 goto fail_uprobe_end;
641 flush_cache_dup_mm(oldmm);
642 uprobe_dup_mmap(oldmm, mm);
644 * Not linked in yet - no deadlock potential:
646 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648 /* No ordering required: file already has been exposed. */
649 dup_mm_exe_file(mm, oldmm);
651 mm->total_vm = oldmm->total_vm;
652 mm->data_vm = oldmm->data_vm;
653 mm->exec_vm = oldmm->exec_vm;
654 mm->stack_vm = oldmm->stack_vm;
656 retval = ksm_fork(mm, oldmm);
659 khugepaged_fork(mm, oldmm);
661 /* Use __mt_dup() to efficiently build an identical maple tree. */
662 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
663 if (unlikely(retval))
666 mt_clear_in_rcu(vmi.mas.tree);
667 for_each_vma(vmi, mpnt) {
670 vma_start_write(mpnt);
671 if (mpnt->vm_flags & VM_DONTCOPY) {
672 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
673 mpnt->vm_end, GFP_KERNEL);
677 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
682 * Don't duplicate many vmas if we've been oom-killed (for
685 if (fatal_signal_pending(current)) {
689 if (mpnt->vm_flags & VM_ACCOUNT) {
690 unsigned long len = vma_pages(mpnt);
692 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
696 tmp = vm_area_dup(mpnt);
699 retval = vma_dup_policy(mpnt, tmp);
701 goto fail_nomem_policy;
703 retval = dup_userfaultfd(tmp, &uf);
705 goto fail_nomem_anon_vma_fork;
706 if (tmp->vm_flags & VM_WIPEONFORK) {
708 * VM_WIPEONFORK gets a clean slate in the child.
709 * Don't prepare anon_vma until fault since we don't
710 * copy page for current vma.
712 tmp->anon_vma = NULL;
713 } else if (anon_vma_fork(tmp, mpnt))
714 goto fail_nomem_anon_vma_fork;
715 vm_flags_clear(tmp, VM_LOCKED_MASK);
717 * Copy/update hugetlb private vma information.
719 if (is_vm_hugetlb_page(tmp))
720 hugetlb_dup_vma_private(tmp);
723 * Link the vma into the MT. After using __mt_dup(), memory
724 * allocation is not necessary here, so it cannot fail.
726 vma_iter_bulk_store(&vmi, tmp);
730 if (tmp->vm_ops && tmp->vm_ops->open)
731 tmp->vm_ops->open(tmp);
735 struct address_space *mapping = file->f_mapping;
738 i_mmap_lock_write(mapping);
739 if (vma_is_shared_maywrite(tmp))
740 mapping_allow_writable(mapping);
741 flush_dcache_mmap_lock(mapping);
742 /* insert tmp into the share list, just after mpnt */
743 vma_interval_tree_insert_after(tmp, mpnt,
745 flush_dcache_mmap_unlock(mapping);
746 i_mmap_unlock_write(mapping);
749 if (!(tmp->vm_flags & VM_WIPEONFORK))
750 retval = copy_page_range(tmp, mpnt);
753 mpnt = vma_next(&vmi);
757 /* a new mm has just been created */
758 retval = arch_dup_mmap(oldmm, mm);
762 mt_set_in_rcu(vmi.mas.tree);
765 * The entire maple tree has already been duplicated. If the
766 * mmap duplication fails, mark the failure point with
767 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768 * stop releasing VMAs that have not been duplicated after this
771 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772 mas_store(&vmi.mas, XA_ZERO_ENTRY);
775 mmap_write_unlock(mm);
777 mmap_write_unlock(oldmm);
778 dup_userfaultfd_complete(&uf);
780 uprobe_end_dup_mmap();
783 fail_nomem_anon_vma_fork:
784 mpol_put(vma_policy(tmp));
789 vm_unacct_memory(charge);
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 mm->pgd = pgd_alloc(mm);
796 if (unlikely(!mm->pgd))
801 static inline void mm_free_pgd(struct mm_struct *mm)
803 pgd_free(mm, mm->pgd);
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 mmap_write_lock(oldmm);
809 dup_mm_exe_file(mm, oldmm);
810 mmap_write_unlock(oldmm);
813 #define mm_alloc_pgd(mm) (0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
817 static void check_mm(struct mm_struct *mm)
821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 "Please make sure 'struct resident_page_types[]' is updated as well");
824 for (i = 0; i < NR_MM_COUNTERS; i++) {
825 long x = percpu_counter_sum(&mm->rss_stat[i]);
828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 mm, resident_page_types[i], x);
832 if (mm_pgtables_bytes(mm))
833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 mm_pgtables_bytes(mm));
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
844 static void do_check_lazy_tlb(void *arg)
846 struct mm_struct *mm = arg;
848 WARN_ON_ONCE(current->active_mm == mm);
851 static void do_shoot_lazy_tlb(void *arg)
853 struct mm_struct *mm = arg;
855 if (current->active_mm == mm) {
856 WARN_ON_ONCE(current->mm);
857 current->active_mm = &init_mm;
858 switch_mm(mm, &init_mm, current);
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 * In this case, lazy tlb mms are refounted and would not reach
867 * __mmdrop until all CPUs have switched away and mmdrop()ed.
873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 * requires lazy mm users to switch to another mm when the refcount
875 * drops to zero, before the mm is freed. This requires IPIs here to
876 * switch kernel threads to init_mm.
878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 * switch with the final userspace teardown TLB flush which leaves the
880 * mm lazy on this CPU but no others, reducing the need for additional
881 * IPIs here. There are cases where a final IPI is still required here,
882 * such as the final mmdrop being performed on a different CPU than the
883 * one exiting, or kernel threads using the mm when userspace exits.
885 * IPI overheads have not found to be expensive, but they could be
886 * reduced in a number of possible ways, for example (roughly
887 * increasing order of complexity):
888 * - The last lazy reference created by exit_mm() could instead switch
889 * to init_mm, however it's probable this will run on the same CPU
890 * immediately afterwards, so this may not reduce IPIs much.
891 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 * - CPUs store active_mm where it can be remotely checked without a
893 * lock, to filter out false-positives in the cpumask.
894 * - After mm_users or mm_count reaches zero, switching away from the
895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 * with some batching or delaying of the final IPIs.
897 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 * switching to avoid IPIs completely.
900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
906 * Called when the last reference to the mm
907 * is dropped: either by a lazy thread or by
908 * mmput. Free the page directory and the mm.
910 void __mmdrop(struct mm_struct *mm)
912 BUG_ON(mm == &init_mm);
913 WARN_ON_ONCE(mm == current->mm);
915 /* Ensure no CPUs are using this as their lazy tlb mm */
916 cleanup_lazy_tlbs(mm);
918 WARN_ON_ONCE(mm == current->active_mm);
921 mmu_notifier_subscriptions_destroy(mm);
923 put_user_ns(mm->user_ns);
926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
930 EXPORT_SYMBOL_GPL(__mmdrop);
932 static void mmdrop_async_fn(struct work_struct *work)
934 struct mm_struct *mm;
936 mm = container_of(work, struct mm_struct, async_put_work);
940 static void mmdrop_async(struct mm_struct *mm)
942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 schedule_work(&mm->async_put_work);
948 static inline void free_signal_struct(struct signal_struct *sig)
950 taskstats_tgid_free(sig);
951 sched_autogroup_exit(sig);
953 * __mmdrop is not safe to call from softirq context on x86 due to
954 * pgd_dtor so postpone it to the async context
957 mmdrop_async(sig->oom_mm);
958 kmem_cache_free(signal_cachep, sig);
961 static inline void put_signal_struct(struct signal_struct *sig)
963 if (refcount_dec_and_test(&sig->sigcnt))
964 free_signal_struct(sig);
967 void __put_task_struct(struct task_struct *tsk)
969 WARN_ON(!tsk->exit_state);
970 WARN_ON(refcount_read(&tsk->usage));
971 WARN_ON(tsk == current);
976 task_numa_free(tsk, true);
977 security_task_free(tsk);
979 delayacct_tsk_free(tsk);
980 put_signal_struct(tsk->signal);
981 sched_core_free(tsk);
984 EXPORT_SYMBOL_GPL(__put_task_struct);
986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990 __put_task_struct(task);
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994 void __init __weak arch_task_cache_init(void) { }
999 static void __init set_max_threads(unsigned int max_threads_suggested)
1002 unsigned long nr_pages = memblock_estimated_nr_free_pages();
1005 * The number of threads shall be limited such that the thread
1006 * structures may only consume a small part of the available memory.
1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009 threads = MAX_THREADS;
1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012 (u64) THREAD_SIZE * 8UL);
1014 if (threads > max_threads_suggested)
1015 threads = max_threads_suggested;
1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1025 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 /* Fetch thread_struct whitelist for the architecture. */
1028 arch_thread_struct_whitelist(offset, size);
1031 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 * adjust offset to position of thread_struct in task_struct.
1034 if (unlikely(*size == 0))
1037 *offset += offsetof(struct task_struct, thread);
1040 void __init fork_init(void)
1043 #ifndef ARCH_MIN_TASKALIGN
1044 #define ARCH_MIN_TASKALIGN 0
1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047 unsigned long useroffset, usersize;
1049 /* create a slab on which task_structs can be allocated */
1050 task_struct_whitelist(&useroffset, &usersize);
1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052 arch_task_struct_size, align,
1053 SLAB_PANIC|SLAB_ACCOUNT,
1054 useroffset, usersize, NULL);
1056 /* do the arch specific task caches init */
1057 arch_task_cache_init();
1059 set_max_threads(MAX_THREADS);
1061 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064 init_task.signal->rlim[RLIMIT_NPROC];
1066 for (i = 0; i < UCOUNT_COUNTS; i++)
1067 init_user_ns.ucount_max[i] = max_threads/2;
1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1074 #ifdef CONFIG_VMAP_STACK
1075 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076 NULL, free_vm_stack_cache);
1081 lockdep_init_task(&init_task);
1085 int __weak arch_dup_task_struct(struct task_struct *dst,
1086 struct task_struct *src)
1092 void set_task_stack_end_magic(struct task_struct *tsk)
1094 unsigned long *stackend;
1096 stackend = end_of_stack(tsk);
1097 *stackend = STACK_END_MAGIC; /* for overflow detection */
1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102 struct task_struct *tsk;
1105 if (node == NUMA_NO_NODE)
1106 node = tsk_fork_get_node(orig);
1107 tsk = alloc_task_struct_node(node);
1111 err = arch_dup_task_struct(tsk, orig);
1115 err = alloc_thread_stack_node(tsk, node);
1119 #ifdef CONFIG_THREAD_INFO_IN_TASK
1120 refcount_set(&tsk->stack_refcount, 1);
1122 account_kernel_stack(tsk, 1);
1124 err = scs_prepare(tsk, node);
1128 #ifdef CONFIG_SECCOMP
1130 * We must handle setting up seccomp filters once we're under
1131 * the sighand lock in case orig has changed between now and
1132 * then. Until then, filter must be NULL to avoid messing up
1133 * the usage counts on the error path calling free_task.
1135 tsk->seccomp.filter = NULL;
1138 setup_thread_stack(tsk, orig);
1139 clear_user_return_notifier(tsk);
1140 clear_tsk_need_resched(tsk);
1141 set_task_stack_end_magic(tsk);
1142 clear_syscall_work_syscall_user_dispatch(tsk);
1144 #ifdef CONFIG_STACKPROTECTOR
1145 tsk->stack_canary = get_random_canary();
1147 if (orig->cpus_ptr == &orig->cpus_mask)
1148 tsk->cpus_ptr = &tsk->cpus_mask;
1149 dup_user_cpus_ptr(tsk, orig, node);
1152 * One for the user space visible state that goes away when reaped.
1153 * One for the scheduler.
1155 refcount_set(&tsk->rcu_users, 2);
1156 /* One for the rcu users */
1157 refcount_set(&tsk->usage, 1);
1158 #ifdef CONFIG_BLK_DEV_IO_TRACE
1159 tsk->btrace_seq = 0;
1161 tsk->splice_pipe = NULL;
1162 tsk->task_frag.page = NULL;
1163 tsk->wake_q.next = NULL;
1164 tsk->worker_private = NULL;
1166 kcov_task_init(tsk);
1167 kmsan_task_create(tsk);
1168 kmap_local_fork(tsk);
1170 #ifdef CONFIG_FAULT_INJECTION
1174 #ifdef CONFIG_BLK_CGROUP
1175 tsk->throttle_disk = NULL;
1176 tsk->use_memdelay = 0;
1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1180 tsk->pasid_activated = 0;
1184 tsk->active_memcg = NULL;
1187 #ifdef CONFIG_CPU_SUP_INTEL
1188 tsk->reported_split_lock = 0;
1191 #ifdef CONFIG_SCHED_MM_CID
1193 tsk->last_mm_cid = -1;
1194 tsk->mm_cid_active = 0;
1195 tsk->migrate_from_cpu = -1;
1200 exit_task_stack_account(tsk);
1201 free_thread_stack(tsk);
1203 free_task_struct(tsk);
1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211 static int __init coredump_filter_setup(char *s)
1213 default_dump_filter =
1214 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215 MMF_DUMP_FILTER_MASK;
1219 __setup("coredump_filter=", coredump_filter_setup);
1221 #include <linux/init_task.h>
1223 static void mm_init_aio(struct mm_struct *mm)
1226 spin_lock_init(&mm->ioctx_lock);
1227 mm->ioctx_table = NULL;
1231 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232 struct task_struct *p)
1236 WRITE_ONCE(mm->owner, NULL);
1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1247 static void mm_init_uprobes_state(struct mm_struct *mm)
1249 #ifdef CONFIG_UPROBES
1250 mm->uprobes_state.xol_area = NULL;
1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255 struct user_namespace *user_ns)
1257 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259 atomic_set(&mm->mm_users, 1);
1260 atomic_set(&mm->mm_count, 1);
1261 seqcount_init(&mm->write_protect_seq);
1263 INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265 mm->mm_lock_seq = 0;
1267 mm_pgtables_bytes_init(mm);
1270 atomic64_set(&mm->pinned_vm, 0);
1271 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272 spin_lock_init(&mm->page_table_lock);
1273 spin_lock_init(&mm->arg_lock);
1274 mm_init_cpumask(mm);
1276 mm_init_owner(mm, p);
1278 RCU_INIT_POINTER(mm->exe_file, NULL);
1279 mmu_notifier_subscriptions_init(mm);
1280 init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1282 mm->pmd_huge_pte = NULL;
1284 mm_init_uprobes_state(mm);
1285 hugetlb_count_init(mm);
1288 mm->flags = mmf_init_flags(current->mm->flags);
1289 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291 mm->flags = default_dump_filter;
1295 if (mm_alloc_pgd(mm))
1298 if (init_new_context(p, mm))
1299 goto fail_nocontext;
1301 if (mm_alloc_cid(mm))
1304 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1308 mm->user_ns = get_user_ns(user_ns);
1309 lru_gen_init_mm(mm);
1315 destroy_context(mm);
1324 * Allocate and initialize an mm_struct.
1326 struct mm_struct *mm_alloc(void)
1328 struct mm_struct *mm;
1334 memset(mm, 0, sizeof(*mm));
1335 return mm_init(mm, current, current_user_ns());
1337 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339 static inline void __mmput(struct mm_struct *mm)
1341 VM_BUG_ON(atomic_read(&mm->mm_users));
1343 uprobe_clear_state(mm);
1346 khugepaged_exit(mm); /* must run before exit_mmap */
1348 mm_put_huge_zero_folio(mm);
1349 set_mm_exe_file(mm, NULL);
1350 if (!list_empty(&mm->mmlist)) {
1351 spin_lock(&mmlist_lock);
1352 list_del(&mm->mmlist);
1353 spin_unlock(&mmlist_lock);
1356 module_put(mm->binfmt->module);
1362 * Decrement the use count and release all resources for an mm.
1364 void mmput(struct mm_struct *mm)
1368 if (atomic_dec_and_test(&mm->mm_users))
1371 EXPORT_SYMBOL_GPL(mmput);
1374 static void mmput_async_fn(struct work_struct *work)
1376 struct mm_struct *mm = container_of(work, struct mm_struct,
1382 void mmput_async(struct mm_struct *mm)
1384 if (atomic_dec_and_test(&mm->mm_users)) {
1385 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1386 schedule_work(&mm->async_put_work);
1389 EXPORT_SYMBOL_GPL(mmput_async);
1393 * set_mm_exe_file - change a reference to the mm's executable file
1394 * @mm: The mm to change.
1395 * @new_exe_file: The new file to use.
1397 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1400 * invocations: in mmput() nobody alive left, in execve it happens before
1401 * the new mm is made visible to anyone.
1403 * Can only fail if new_exe_file != NULL.
1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 struct file *old_exe_file;
1410 * It is safe to dereference the exe_file without RCU as
1411 * this function is only called if nobody else can access
1412 * this mm -- see comment above for justification.
1414 old_exe_file = rcu_dereference_raw(mm->exe_file);
1417 get_file(new_exe_file);
1418 rcu_assign_pointer(mm->exe_file, new_exe_file);
1425 * replace_mm_exe_file - replace a reference to the mm's executable file
1426 * @mm: The mm to change.
1427 * @new_exe_file: The new file to use.
1429 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1431 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1433 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1435 struct vm_area_struct *vma;
1436 struct file *old_exe_file;
1439 /* Forbid mm->exe_file change if old file still mapped. */
1440 old_exe_file = get_mm_exe_file(mm);
1442 VMA_ITERATOR(vmi, mm, 0);
1444 for_each_vma(vmi, vma) {
1447 if (path_equal(&vma->vm_file->f_path,
1448 &old_exe_file->f_path)) {
1453 mmap_read_unlock(mm);
1459 get_file(new_exe_file);
1461 /* set the new file */
1462 mmap_write_lock(mm);
1463 old_exe_file = rcu_dereference_raw(mm->exe_file);
1464 rcu_assign_pointer(mm->exe_file, new_exe_file);
1465 mmap_write_unlock(mm);
1473 * get_mm_exe_file - acquire a reference to the mm's executable file
1474 * @mm: The mm of interest.
1476 * Returns %NULL if mm has no associated executable file.
1477 * User must release file via fput().
1479 struct file *get_mm_exe_file(struct mm_struct *mm)
1481 struct file *exe_file;
1484 exe_file = get_file_rcu(&mm->exe_file);
1490 * get_task_exe_file - acquire a reference to the task's executable file
1493 * Returns %NULL if task's mm (if any) has no associated executable file or
1494 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1495 * User must release file via fput().
1497 struct file *get_task_exe_file(struct task_struct *task)
1499 struct file *exe_file = NULL;
1500 struct mm_struct *mm;
1505 if (!(task->flags & PF_KTHREAD))
1506 exe_file = get_mm_exe_file(mm);
1513 * get_task_mm - acquire a reference to the task's mm
1516 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1517 * this kernel workthread has transiently adopted a user mm with use_mm,
1518 * to do its AIO) is not set and if so returns a reference to it, after
1519 * bumping up the use count. User must release the mm via mmput()
1520 * after use. Typically used by /proc and ptrace.
1522 struct mm_struct *get_task_mm(struct task_struct *task)
1524 struct mm_struct *mm;
1526 if (task->flags & PF_KTHREAD)
1536 EXPORT_SYMBOL_GPL(get_task_mm);
1538 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1540 struct mm_struct *mm;
1543 err = down_read_killable(&task->signal->exec_update_lock);
1545 return ERR_PTR(err);
1547 mm = get_task_mm(task);
1548 if (mm && mm != current->mm &&
1549 !ptrace_may_access(task, mode)) {
1551 mm = ERR_PTR(-EACCES);
1553 up_read(&task->signal->exec_update_lock);
1558 static void complete_vfork_done(struct task_struct *tsk)
1560 struct completion *vfork;
1563 vfork = tsk->vfork_done;
1564 if (likely(vfork)) {
1565 tsk->vfork_done = NULL;
1571 static int wait_for_vfork_done(struct task_struct *child,
1572 struct completion *vfork)
1574 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1577 cgroup_enter_frozen();
1578 killed = wait_for_completion_state(vfork, state);
1579 cgroup_leave_frozen(false);
1583 child->vfork_done = NULL;
1587 put_task_struct(child);
1591 /* Please note the differences between mmput and mm_release.
1592 * mmput is called whenever we stop holding onto a mm_struct,
1593 * error success whatever.
1595 * mm_release is called after a mm_struct has been removed
1596 * from the current process.
1598 * This difference is important for error handling, when we
1599 * only half set up a mm_struct for a new process and need to restore
1600 * the old one. Because we mmput the new mm_struct before
1601 * restoring the old one. . .
1602 * Eric Biederman 10 January 1998
1604 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1606 uprobe_free_utask(tsk);
1608 /* Get rid of any cached register state */
1609 deactivate_mm(tsk, mm);
1612 * Signal userspace if we're not exiting with a core dump
1613 * because we want to leave the value intact for debugging
1616 if (tsk->clear_child_tid) {
1617 if (atomic_read(&mm->mm_users) > 1) {
1619 * We don't check the error code - if userspace has
1620 * not set up a proper pointer then tough luck.
1622 put_user(0, tsk->clear_child_tid);
1623 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1624 1, NULL, NULL, 0, 0);
1626 tsk->clear_child_tid = NULL;
1630 * All done, finally we can wake up parent and return this mm to him.
1631 * Also kthread_stop() uses this completion for synchronization.
1633 if (tsk->vfork_done)
1634 complete_vfork_done(tsk);
1637 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1639 futex_exit_release(tsk);
1640 mm_release(tsk, mm);
1643 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1645 futex_exec_release(tsk);
1646 mm_release(tsk, mm);
1650 * dup_mm() - duplicates an existing mm structure
1651 * @tsk: the task_struct with which the new mm will be associated.
1652 * @oldmm: the mm to duplicate.
1654 * Allocates a new mm structure and duplicates the provided @oldmm structure
1657 * Return: the duplicated mm or NULL on failure.
1659 static struct mm_struct *dup_mm(struct task_struct *tsk,
1660 struct mm_struct *oldmm)
1662 struct mm_struct *mm;
1669 memcpy(mm, oldmm, sizeof(*mm));
1671 if (!mm_init(mm, tsk, mm->user_ns))
1674 err = dup_mmap(mm, oldmm);
1678 mm->hiwater_rss = get_mm_rss(mm);
1679 mm->hiwater_vm = mm->total_vm;
1681 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1687 /* don't put binfmt in mmput, we haven't got module yet */
1689 mm_init_owner(mm, NULL);
1696 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1698 struct mm_struct *mm, *oldmm;
1700 tsk->min_flt = tsk->maj_flt = 0;
1701 tsk->nvcsw = tsk->nivcsw = 0;
1702 #ifdef CONFIG_DETECT_HUNG_TASK
1703 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1704 tsk->last_switch_time = 0;
1708 tsk->active_mm = NULL;
1711 * Are we cloning a kernel thread?
1713 * We need to steal a active VM for that..
1715 oldmm = current->mm;
1719 if (clone_flags & CLONE_VM) {
1723 mm = dup_mm(tsk, current->mm);
1729 tsk->active_mm = mm;
1730 sched_mm_cid_fork(tsk);
1734 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1736 struct fs_struct *fs = current->fs;
1737 if (clone_flags & CLONE_FS) {
1738 /* tsk->fs is already what we want */
1739 spin_lock(&fs->lock);
1740 /* "users" and "in_exec" locked for check_unsafe_exec() */
1742 spin_unlock(&fs->lock);
1746 spin_unlock(&fs->lock);
1749 tsk->fs = copy_fs_struct(fs);
1755 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1758 struct files_struct *oldf, *newf;
1761 * A background process may not have any files ...
1763 oldf = current->files;
1772 if (clone_flags & CLONE_FILES) {
1773 atomic_inc(&oldf->count);
1777 newf = dup_fd(oldf, NULL);
1779 return PTR_ERR(newf);
1785 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1787 struct sighand_struct *sig;
1789 if (clone_flags & CLONE_SIGHAND) {
1790 refcount_inc(¤t->sighand->count);
1793 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1794 RCU_INIT_POINTER(tsk->sighand, sig);
1798 refcount_set(&sig->count, 1);
1799 spin_lock_irq(¤t->sighand->siglock);
1800 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1801 spin_unlock_irq(¤t->sighand->siglock);
1803 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1804 if (clone_flags & CLONE_CLEAR_SIGHAND)
1805 flush_signal_handlers(tsk, 0);
1810 void __cleanup_sighand(struct sighand_struct *sighand)
1812 if (refcount_dec_and_test(&sighand->count)) {
1813 signalfd_cleanup(sighand);
1815 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1816 * without an RCU grace period, see __lock_task_sighand().
1818 kmem_cache_free(sighand_cachep, sighand);
1823 * Initialize POSIX timer handling for a thread group.
1825 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1827 struct posix_cputimers *pct = &sig->posix_cputimers;
1828 unsigned long cpu_limit;
1830 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1831 posix_cputimers_group_init(pct, cpu_limit);
1834 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1836 struct signal_struct *sig;
1838 if (clone_flags & CLONE_THREAD)
1841 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1846 sig->nr_threads = 1;
1847 sig->quick_threads = 1;
1848 atomic_set(&sig->live, 1);
1849 refcount_set(&sig->sigcnt, 1);
1851 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1852 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1853 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1855 init_waitqueue_head(&sig->wait_chldexit);
1856 sig->curr_target = tsk;
1857 init_sigpending(&sig->shared_pending);
1858 INIT_HLIST_HEAD(&sig->multiprocess);
1859 seqlock_init(&sig->stats_lock);
1860 prev_cputime_init(&sig->prev_cputime);
1862 #ifdef CONFIG_POSIX_TIMERS
1863 INIT_HLIST_HEAD(&sig->posix_timers);
1864 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1865 sig->real_timer.function = it_real_fn;
1868 task_lock(current->group_leader);
1869 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1870 task_unlock(current->group_leader);
1872 posix_cpu_timers_init_group(sig);
1874 tty_audit_fork(sig);
1875 sched_autogroup_fork(sig);
1877 sig->oom_score_adj = current->signal->oom_score_adj;
1878 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1880 mutex_init(&sig->cred_guard_mutex);
1881 init_rwsem(&sig->exec_update_lock);
1886 static void copy_seccomp(struct task_struct *p)
1888 #ifdef CONFIG_SECCOMP
1890 * Must be called with sighand->lock held, which is common to
1891 * all threads in the group. Holding cred_guard_mutex is not
1892 * needed because this new task is not yet running and cannot
1895 assert_spin_locked(¤t->sighand->siglock);
1897 /* Ref-count the new filter user, and assign it. */
1898 get_seccomp_filter(current);
1899 p->seccomp = current->seccomp;
1902 * Explicitly enable no_new_privs here in case it got set
1903 * between the task_struct being duplicated and holding the
1904 * sighand lock. The seccomp state and nnp must be in sync.
1906 if (task_no_new_privs(current))
1907 task_set_no_new_privs(p);
1910 * If the parent gained a seccomp mode after copying thread
1911 * flags and between before we held the sighand lock, we have
1912 * to manually enable the seccomp thread flag here.
1914 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1915 set_task_syscall_work(p, SECCOMP);
1919 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1921 current->clear_child_tid = tidptr;
1923 return task_pid_vnr(current);
1926 static void rt_mutex_init_task(struct task_struct *p)
1928 raw_spin_lock_init(&p->pi_lock);
1929 #ifdef CONFIG_RT_MUTEXES
1930 p->pi_waiters = RB_ROOT_CACHED;
1931 p->pi_top_task = NULL;
1932 p->pi_blocked_on = NULL;
1936 static inline void init_task_pid_links(struct task_struct *task)
1940 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1941 INIT_HLIST_NODE(&task->pid_links[type]);
1945 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1947 if (type == PIDTYPE_PID)
1948 task->thread_pid = pid;
1950 task->signal->pids[type] = pid;
1953 static inline void rcu_copy_process(struct task_struct *p)
1955 #ifdef CONFIG_PREEMPT_RCU
1956 p->rcu_read_lock_nesting = 0;
1957 p->rcu_read_unlock_special.s = 0;
1958 p->rcu_blocked_node = NULL;
1959 INIT_LIST_HEAD(&p->rcu_node_entry);
1960 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1961 #ifdef CONFIG_TASKS_RCU
1962 p->rcu_tasks_holdout = false;
1963 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1964 p->rcu_tasks_idle_cpu = -1;
1965 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1966 #endif /* #ifdef CONFIG_TASKS_RCU */
1967 #ifdef CONFIG_TASKS_TRACE_RCU
1968 p->trc_reader_nesting = 0;
1969 p->trc_reader_special.s = 0;
1970 INIT_LIST_HEAD(&p->trc_holdout_list);
1971 INIT_LIST_HEAD(&p->trc_blkd_node);
1972 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1976 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1977 * @pid: the struct pid for which to create a pidfd
1978 * @flags: flags of the new @pidfd
1979 * @ret: Where to return the file for the pidfd.
1981 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1982 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1984 * The helper doesn't perform checks on @pid which makes it useful for pidfds
1985 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1986 * pidfd file are prepared.
1988 * If this function returns successfully the caller is responsible to either
1989 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1990 * order to install the pidfd into its file descriptor table or they must use
1991 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1994 * This function is useful when a pidfd must already be reserved but there
1995 * might still be points of failure afterwards and the caller wants to ensure
1996 * that no pidfd is leaked into its file descriptor table.
1998 * Return: On success, a reserved pidfd is returned from the function and a new
1999 * pidfd file is returned in the last argument to the function. On
2000 * error, a negative error code is returned from the function and the
2001 * last argument remains unchanged.
2003 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2006 struct file *pidfd_file;
2008 pidfd = get_unused_fd_flags(O_CLOEXEC);
2012 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2013 if (IS_ERR(pidfd_file)) {
2014 put_unused_fd(pidfd);
2015 return PTR_ERR(pidfd_file);
2018 * anon_inode_getfile() ignores everything outside of the
2019 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2021 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2027 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2028 * @pid: the struct pid for which to create a pidfd
2029 * @flags: flags of the new @pidfd
2030 * @ret: Where to return the pidfd.
2032 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2033 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2035 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2036 * task identified by @pid must be a thread-group leader.
2038 * If this function returns successfully the caller is responsible to either
2039 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2040 * order to install the pidfd into its file descriptor table or they must use
2041 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2044 * This function is useful when a pidfd must already be reserved but there
2045 * might still be points of failure afterwards and the caller wants to ensure
2046 * that no pidfd is leaked into its file descriptor table.
2048 * Return: On success, a reserved pidfd is returned from the function and a new
2049 * pidfd file is returned in the last argument to the function. On
2050 * error, a negative error code is returned from the function and the
2051 * last argument remains unchanged.
2053 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2055 bool thread = flags & PIDFD_THREAD;
2057 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2060 return __pidfd_prepare(pid, flags, ret);
2063 static void __delayed_free_task(struct rcu_head *rhp)
2065 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2070 static __always_inline void delayed_free_task(struct task_struct *tsk)
2072 if (IS_ENABLED(CONFIG_MEMCG))
2073 call_rcu(&tsk->rcu, __delayed_free_task);
2078 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2080 /* Skip if kernel thread */
2084 /* Skip if spawning a thread or using vfork */
2085 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2088 /* We need to synchronize with __set_oom_adj */
2089 mutex_lock(&oom_adj_mutex);
2090 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2091 /* Update the values in case they were changed after copy_signal */
2092 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2093 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2094 mutex_unlock(&oom_adj_mutex);
2098 static void rv_task_fork(struct task_struct *p)
2102 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2103 p->rv[i].da_mon.monitoring = false;
2106 #define rv_task_fork(p) do {} while (0)
2110 * This creates a new process as a copy of the old one,
2111 * but does not actually start it yet.
2113 * It copies the registers, and all the appropriate
2114 * parts of the process environment (as per the clone
2115 * flags). The actual kick-off is left to the caller.
2117 __latent_entropy struct task_struct *copy_process(
2121 struct kernel_clone_args *args)
2123 int pidfd = -1, retval;
2124 struct task_struct *p;
2125 struct multiprocess_signals delayed;
2126 struct file *pidfile = NULL;
2127 const u64 clone_flags = args->flags;
2128 struct nsproxy *nsp = current->nsproxy;
2131 * Don't allow sharing the root directory with processes in a different
2134 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2135 return ERR_PTR(-EINVAL);
2137 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2138 return ERR_PTR(-EINVAL);
2141 * Thread groups must share signals as well, and detached threads
2142 * can only be started up within the thread group.
2144 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2145 return ERR_PTR(-EINVAL);
2148 * Shared signal handlers imply shared VM. By way of the above,
2149 * thread groups also imply shared VM. Blocking this case allows
2150 * for various simplifications in other code.
2152 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2153 return ERR_PTR(-EINVAL);
2156 * Siblings of global init remain as zombies on exit since they are
2157 * not reaped by their parent (swapper). To solve this and to avoid
2158 * multi-rooted process trees, prevent global and container-inits
2159 * from creating siblings.
2161 if ((clone_flags & CLONE_PARENT) &&
2162 current->signal->flags & SIGNAL_UNKILLABLE)
2163 return ERR_PTR(-EINVAL);
2166 * If the new process will be in a different pid or user namespace
2167 * do not allow it to share a thread group with the forking task.
2169 if (clone_flags & CLONE_THREAD) {
2170 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2171 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2172 return ERR_PTR(-EINVAL);
2175 if (clone_flags & CLONE_PIDFD) {
2177 * - CLONE_DETACHED is blocked so that we can potentially
2178 * reuse it later for CLONE_PIDFD.
2180 if (clone_flags & CLONE_DETACHED)
2181 return ERR_PTR(-EINVAL);
2185 * Force any signals received before this point to be delivered
2186 * before the fork happens. Collect up signals sent to multiple
2187 * processes that happen during the fork and delay them so that
2188 * they appear to happen after the fork.
2190 sigemptyset(&delayed.signal);
2191 INIT_HLIST_NODE(&delayed.node);
2193 spin_lock_irq(¤t->sighand->siglock);
2194 if (!(clone_flags & CLONE_THREAD))
2195 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2196 recalc_sigpending();
2197 spin_unlock_irq(¤t->sighand->siglock);
2198 retval = -ERESTARTNOINTR;
2199 if (task_sigpending(current))
2203 p = dup_task_struct(current, node);
2206 p->flags &= ~PF_KTHREAD;
2208 p->flags |= PF_KTHREAD;
2209 if (args->user_worker) {
2211 * Mark us a user worker, and block any signal that isn't
2214 p->flags |= PF_USER_WORKER;
2215 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2217 if (args->io_thread)
2218 p->flags |= PF_IO_WORKER;
2221 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2223 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2225 * Clear TID on mm_release()?
2227 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2229 ftrace_graph_init_task(p);
2231 rt_mutex_init_task(p);
2233 lockdep_assert_irqs_enabled();
2234 #ifdef CONFIG_PROVE_LOCKING
2235 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2237 retval = copy_creds(p, clone_flags);
2242 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2243 if (p->real_cred->user != INIT_USER &&
2244 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2245 goto bad_fork_cleanup_count;
2247 current->flags &= ~PF_NPROC_EXCEEDED;
2250 * If multiple threads are within copy_process(), then this check
2251 * triggers too late. This doesn't hurt, the check is only there
2252 * to stop root fork bombs.
2255 if (data_race(nr_threads >= max_threads))
2256 goto bad_fork_cleanup_count;
2258 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2259 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2260 p->flags |= PF_FORKNOEXEC;
2261 INIT_LIST_HEAD(&p->children);
2262 INIT_LIST_HEAD(&p->sibling);
2263 rcu_copy_process(p);
2264 p->vfork_done = NULL;
2265 spin_lock_init(&p->alloc_lock);
2267 init_sigpending(&p->pending);
2269 p->utime = p->stime = p->gtime = 0;
2270 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2271 p->utimescaled = p->stimescaled = 0;
2273 prev_cputime_init(&p->prev_cputime);
2275 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2276 seqcount_init(&p->vtime.seqcount);
2277 p->vtime.starttime = 0;
2278 p->vtime.state = VTIME_INACTIVE;
2281 #ifdef CONFIG_IO_URING
2285 p->default_timer_slack_ns = current->timer_slack_ns;
2291 task_io_accounting_init(&p->ioac);
2292 acct_clear_integrals(p);
2294 posix_cputimers_init(&p->posix_cputimers);
2296 p->io_context = NULL;
2297 audit_set_context(p, NULL);
2299 if (args->kthread) {
2300 if (!set_kthread_struct(p))
2301 goto bad_fork_cleanup_delayacct;
2304 p->mempolicy = mpol_dup(p->mempolicy);
2305 if (IS_ERR(p->mempolicy)) {
2306 retval = PTR_ERR(p->mempolicy);
2307 p->mempolicy = NULL;
2308 goto bad_fork_cleanup_delayacct;
2311 #ifdef CONFIG_CPUSETS
2312 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2313 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2315 #ifdef CONFIG_TRACE_IRQFLAGS
2316 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2317 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2318 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2319 p->softirqs_enabled = 1;
2320 p->softirq_context = 0;
2323 p->pagefault_disabled = 0;
2325 #ifdef CONFIG_LOCKDEP
2326 lockdep_init_task(p);
2329 #ifdef CONFIG_DEBUG_MUTEXES
2330 p->blocked_on = NULL; /* not blocked yet */
2332 #ifdef CONFIG_BCACHE
2333 p->sequential_io = 0;
2334 p->sequential_io_avg = 0;
2336 #ifdef CONFIG_BPF_SYSCALL
2337 RCU_INIT_POINTER(p->bpf_storage, NULL);
2341 /* Perform scheduler related setup. Assign this task to a CPU. */
2342 retval = sched_fork(clone_flags, p);
2344 goto bad_fork_cleanup_policy;
2346 retval = perf_event_init_task(p, clone_flags);
2348 goto bad_fork_sched_cancel_fork;
2349 retval = audit_alloc(p);
2351 goto bad_fork_cleanup_perf;
2352 /* copy all the process information */
2354 retval = security_task_alloc(p, clone_flags);
2356 goto bad_fork_cleanup_audit;
2357 retval = copy_semundo(clone_flags, p);
2359 goto bad_fork_cleanup_security;
2360 retval = copy_files(clone_flags, p, args->no_files);
2362 goto bad_fork_cleanup_semundo;
2363 retval = copy_fs(clone_flags, p);
2365 goto bad_fork_cleanup_files;
2366 retval = copy_sighand(clone_flags, p);
2368 goto bad_fork_cleanup_fs;
2369 retval = copy_signal(clone_flags, p);
2371 goto bad_fork_cleanup_sighand;
2372 retval = copy_mm(clone_flags, p);
2374 goto bad_fork_cleanup_signal;
2375 retval = copy_namespaces(clone_flags, p);
2377 goto bad_fork_cleanup_mm;
2378 retval = copy_io(clone_flags, p);
2380 goto bad_fork_cleanup_namespaces;
2381 retval = copy_thread(p, args);
2383 goto bad_fork_cleanup_io;
2385 stackleak_task_init(p);
2387 if (pid != &init_struct_pid) {
2388 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2389 args->set_tid_size);
2391 retval = PTR_ERR(pid);
2392 goto bad_fork_cleanup_thread;
2397 * This has to happen after we've potentially unshared the file
2398 * descriptor table (so that the pidfd doesn't leak into the child
2399 * if the fd table isn't shared).
2401 if (clone_flags & CLONE_PIDFD) {
2402 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2404 /* Note that no task has been attached to @pid yet. */
2405 retval = __pidfd_prepare(pid, flags, &pidfile);
2407 goto bad_fork_free_pid;
2410 retval = put_user(pidfd, args->pidfd);
2412 goto bad_fork_put_pidfd;
2421 * sigaltstack should be cleared when sharing the same VM
2423 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2427 * Syscall tracing and stepping should be turned off in the
2428 * child regardless of CLONE_PTRACE.
2430 user_disable_single_step(p);
2431 clear_task_syscall_work(p, SYSCALL_TRACE);
2432 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2433 clear_task_syscall_work(p, SYSCALL_EMU);
2435 clear_tsk_latency_tracing(p);
2437 /* ok, now we should be set up.. */
2438 p->pid = pid_nr(pid);
2439 if (clone_flags & CLONE_THREAD) {
2440 p->group_leader = current->group_leader;
2441 p->tgid = current->tgid;
2443 p->group_leader = p;
2448 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2449 p->dirty_paused_when = 0;
2451 p->pdeath_signal = 0;
2452 p->task_works = NULL;
2453 clear_posix_cputimers_work(p);
2455 #ifdef CONFIG_KRETPROBES
2456 p->kretprobe_instances.first = NULL;
2458 #ifdef CONFIG_RETHOOK
2459 p->rethooks.first = NULL;
2463 * Ensure that the cgroup subsystem policies allow the new process to be
2464 * forked. It should be noted that the new process's css_set can be changed
2465 * between here and cgroup_post_fork() if an organisation operation is in
2468 retval = cgroup_can_fork(p, args);
2470 goto bad_fork_put_pidfd;
2473 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2474 * the new task on the correct runqueue. All this *before* the task
2477 * This isn't part of ->can_fork() because while the re-cloning is
2478 * cgroup specific, it unconditionally needs to place the task on a
2481 retval = sched_cgroup_fork(p, args);
2483 goto bad_fork_cancel_cgroup;
2486 * From this point on we must avoid any synchronous user-space
2487 * communication until we take the tasklist-lock. In particular, we do
2488 * not want user-space to be able to predict the process start-time by
2489 * stalling fork(2) after we recorded the start_time but before it is
2490 * visible to the system.
2493 p->start_time = ktime_get_ns();
2494 p->start_boottime = ktime_get_boottime_ns();
2497 * Make it visible to the rest of the system, but dont wake it up yet.
2498 * Need tasklist lock for parent etc handling!
2500 write_lock_irq(&tasklist_lock);
2502 /* CLONE_PARENT re-uses the old parent */
2503 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2504 p->real_parent = current->real_parent;
2505 p->parent_exec_id = current->parent_exec_id;
2506 if (clone_flags & CLONE_THREAD)
2507 p->exit_signal = -1;
2509 p->exit_signal = current->group_leader->exit_signal;
2511 p->real_parent = current;
2512 p->parent_exec_id = current->self_exec_id;
2513 p->exit_signal = args->exit_signal;
2516 klp_copy_process(p);
2520 spin_lock(¤t->sighand->siglock);
2524 rseq_fork(p, clone_flags);
2526 /* Don't start children in a dying pid namespace */
2527 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2529 goto bad_fork_core_free;
2532 /* Let kill terminate clone/fork in the middle */
2533 if (fatal_signal_pending(current)) {
2535 goto bad_fork_core_free;
2538 /* No more failure paths after this point. */
2541 * Copy seccomp details explicitly here, in case they were changed
2542 * before holding sighand lock.
2546 init_task_pid_links(p);
2547 if (likely(p->pid)) {
2548 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2550 init_task_pid(p, PIDTYPE_PID, pid);
2551 if (thread_group_leader(p)) {
2552 init_task_pid(p, PIDTYPE_TGID, pid);
2553 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2554 init_task_pid(p, PIDTYPE_SID, task_session(current));
2556 if (is_child_reaper(pid)) {
2557 ns_of_pid(pid)->child_reaper = p;
2558 p->signal->flags |= SIGNAL_UNKILLABLE;
2560 p->signal->shared_pending.signal = delayed.signal;
2561 p->signal->tty = tty_kref_get(current->signal->tty);
2563 * Inherit has_child_subreaper flag under the same
2564 * tasklist_lock with adding child to the process tree
2565 * for propagate_has_child_subreaper optimization.
2567 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2568 p->real_parent->signal->is_child_subreaper;
2569 list_add_tail(&p->sibling, &p->real_parent->children);
2570 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2571 attach_pid(p, PIDTYPE_TGID);
2572 attach_pid(p, PIDTYPE_PGID);
2573 attach_pid(p, PIDTYPE_SID);
2574 __this_cpu_inc(process_counts);
2576 current->signal->nr_threads++;
2577 current->signal->quick_threads++;
2578 atomic_inc(¤t->signal->live);
2579 refcount_inc(¤t->signal->sigcnt);
2580 task_join_group_stop(p);
2581 list_add_tail_rcu(&p->thread_node,
2582 &p->signal->thread_head);
2584 attach_pid(p, PIDTYPE_PID);
2588 hlist_del_init(&delayed.node);
2589 spin_unlock(¤t->sighand->siglock);
2590 syscall_tracepoint_update(p);
2591 write_unlock_irq(&tasklist_lock);
2594 fd_install(pidfd, pidfile);
2596 proc_fork_connector(p);
2598 cgroup_post_fork(p, args);
2601 trace_task_newtask(p, clone_flags);
2602 uprobe_copy_process(p, clone_flags);
2603 user_events_fork(p, clone_flags);
2605 copy_oom_score_adj(clone_flags, p);
2611 spin_unlock(¤t->sighand->siglock);
2612 write_unlock_irq(&tasklist_lock);
2613 bad_fork_cancel_cgroup:
2614 cgroup_cancel_fork(p, args);
2616 if (clone_flags & CLONE_PIDFD) {
2618 put_unused_fd(pidfd);
2621 if (pid != &init_struct_pid)
2623 bad_fork_cleanup_thread:
2625 bad_fork_cleanup_io:
2628 bad_fork_cleanup_namespaces:
2629 exit_task_namespaces(p);
2630 bad_fork_cleanup_mm:
2632 mm_clear_owner(p->mm, p);
2635 bad_fork_cleanup_signal:
2636 if (!(clone_flags & CLONE_THREAD))
2637 free_signal_struct(p->signal);
2638 bad_fork_cleanup_sighand:
2639 __cleanup_sighand(p->sighand);
2640 bad_fork_cleanup_fs:
2641 exit_fs(p); /* blocking */
2642 bad_fork_cleanup_files:
2643 exit_files(p); /* blocking */
2644 bad_fork_cleanup_semundo:
2646 bad_fork_cleanup_security:
2647 security_task_free(p);
2648 bad_fork_cleanup_audit:
2650 bad_fork_cleanup_perf:
2651 perf_event_free_task(p);
2652 bad_fork_sched_cancel_fork:
2653 sched_cancel_fork(p);
2654 bad_fork_cleanup_policy:
2655 lockdep_free_task(p);
2657 mpol_put(p->mempolicy);
2659 bad_fork_cleanup_delayacct:
2660 delayacct_tsk_free(p);
2661 bad_fork_cleanup_count:
2662 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2665 WRITE_ONCE(p->__state, TASK_DEAD);
2666 exit_task_stack_account(p);
2668 delayed_free_task(p);
2670 spin_lock_irq(¤t->sighand->siglock);
2671 hlist_del_init(&delayed.node);
2672 spin_unlock_irq(¤t->sighand->siglock);
2673 return ERR_PTR(retval);
2676 static inline void init_idle_pids(struct task_struct *idle)
2680 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2681 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2682 init_task_pid(idle, type, &init_struct_pid);
2686 static int idle_dummy(void *dummy)
2688 /* This function is never called */
2692 struct task_struct * __init fork_idle(int cpu)
2694 struct task_struct *task;
2695 struct kernel_clone_args args = {
2703 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2704 if (!IS_ERR(task)) {
2705 init_idle_pids(task);
2706 init_idle(task, cpu);
2713 * This is like kernel_clone(), but shaved down and tailored to just
2714 * creating io_uring workers. It returns a created task, or an error pointer.
2715 * The returned task is inactive, and the caller must fire it up through
2716 * wake_up_new_task(p). All signals are blocked in the created task.
2718 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2720 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2722 struct kernel_clone_args args = {
2723 .flags = ((lower_32_bits(flags) | CLONE_VM |
2724 CLONE_UNTRACED) & ~CSIGNAL),
2725 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2732 return copy_process(NULL, 0, node, &args);
2736 * Ok, this is the main fork-routine.
2738 * It copies the process, and if successful kick-starts
2739 * it and waits for it to finish using the VM if required.
2741 * args->exit_signal is expected to be checked for sanity by the caller.
2743 pid_t kernel_clone(struct kernel_clone_args *args)
2745 u64 clone_flags = args->flags;
2746 struct completion vfork;
2748 struct task_struct *p;
2753 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2754 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2755 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2756 * field in struct clone_args and it still doesn't make sense to have
2757 * them both point at the same memory location. Performing this check
2758 * here has the advantage that we don't need to have a separate helper
2759 * to check for legacy clone().
2761 if ((clone_flags & CLONE_PIDFD) &&
2762 (clone_flags & CLONE_PARENT_SETTID) &&
2763 (args->pidfd == args->parent_tid))
2767 * Determine whether and which event to report to ptracer. When
2768 * called from kernel_thread or CLONE_UNTRACED is explicitly
2769 * requested, no event is reported; otherwise, report if the event
2770 * for the type of forking is enabled.
2772 if (!(clone_flags & CLONE_UNTRACED)) {
2773 if (clone_flags & CLONE_VFORK)
2774 trace = PTRACE_EVENT_VFORK;
2775 else if (args->exit_signal != SIGCHLD)
2776 trace = PTRACE_EVENT_CLONE;
2778 trace = PTRACE_EVENT_FORK;
2780 if (likely(!ptrace_event_enabled(current, trace)))
2784 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2785 add_latent_entropy();
2791 * Do this prior waking up the new thread - the thread pointer
2792 * might get invalid after that point, if the thread exits quickly.
2794 trace_sched_process_fork(current, p);
2796 pid = get_task_pid(p, PIDTYPE_PID);
2799 if (clone_flags & CLONE_PARENT_SETTID)
2800 put_user(nr, args->parent_tid);
2802 if (clone_flags & CLONE_VFORK) {
2803 p->vfork_done = &vfork;
2804 init_completion(&vfork);
2808 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2809 /* lock the task to synchronize with memcg migration */
2811 lru_gen_add_mm(p->mm);
2815 wake_up_new_task(p);
2817 /* forking complete and child started to run, tell ptracer */
2818 if (unlikely(trace))
2819 ptrace_event_pid(trace, pid);
2821 if (clone_flags & CLONE_VFORK) {
2822 if (!wait_for_vfork_done(p, &vfork))
2823 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2831 * Create a kernel thread.
2833 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2834 unsigned long flags)
2836 struct kernel_clone_args args = {
2837 .flags = ((lower_32_bits(flags) | CLONE_VM |
2838 CLONE_UNTRACED) & ~CSIGNAL),
2839 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2846 return kernel_clone(&args);
2850 * Create a user mode thread.
2852 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2854 struct kernel_clone_args args = {
2855 .flags = ((lower_32_bits(flags) | CLONE_VM |
2856 CLONE_UNTRACED) & ~CSIGNAL),
2857 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2862 return kernel_clone(&args);
2865 #ifdef __ARCH_WANT_SYS_FORK
2866 SYSCALL_DEFINE0(fork)
2869 struct kernel_clone_args args = {
2870 .exit_signal = SIGCHLD,
2873 return kernel_clone(&args);
2875 /* can not support in nommu mode */
2881 #ifdef __ARCH_WANT_SYS_VFORK
2882 SYSCALL_DEFINE0(vfork)
2884 struct kernel_clone_args args = {
2885 .flags = CLONE_VFORK | CLONE_VM,
2886 .exit_signal = SIGCHLD,
2889 return kernel_clone(&args);
2893 #ifdef __ARCH_WANT_SYS_CLONE
2894 #ifdef CONFIG_CLONE_BACKWARDS
2895 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2896 int __user *, parent_tidptr,
2898 int __user *, child_tidptr)
2899 #elif defined(CONFIG_CLONE_BACKWARDS2)
2900 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2901 int __user *, parent_tidptr,
2902 int __user *, child_tidptr,
2904 #elif defined(CONFIG_CLONE_BACKWARDS3)
2905 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2907 int __user *, parent_tidptr,
2908 int __user *, child_tidptr,
2911 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2912 int __user *, parent_tidptr,
2913 int __user *, child_tidptr,
2917 struct kernel_clone_args args = {
2918 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2919 .pidfd = parent_tidptr,
2920 .child_tid = child_tidptr,
2921 .parent_tid = parent_tidptr,
2922 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2927 return kernel_clone(&args);
2931 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2932 struct clone_args __user *uargs,
2936 struct clone_args args;
2937 pid_t *kset_tid = kargs->set_tid;
2939 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2940 CLONE_ARGS_SIZE_VER0);
2941 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2942 CLONE_ARGS_SIZE_VER1);
2943 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2944 CLONE_ARGS_SIZE_VER2);
2945 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2947 if (unlikely(usize > PAGE_SIZE))
2949 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2952 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2956 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2959 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2962 if (unlikely(args.set_tid && args.set_tid_size == 0))
2966 * Verify that higher 32bits of exit_signal are unset and that
2967 * it is a valid signal
2969 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2970 !valid_signal(args.exit_signal)))
2973 if ((args.flags & CLONE_INTO_CGROUP) &&
2974 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2977 *kargs = (struct kernel_clone_args){
2978 .flags = args.flags,
2979 .pidfd = u64_to_user_ptr(args.pidfd),
2980 .child_tid = u64_to_user_ptr(args.child_tid),
2981 .parent_tid = u64_to_user_ptr(args.parent_tid),
2982 .exit_signal = args.exit_signal,
2983 .stack = args.stack,
2984 .stack_size = args.stack_size,
2986 .set_tid_size = args.set_tid_size,
2987 .cgroup = args.cgroup,
2991 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2992 (kargs->set_tid_size * sizeof(pid_t))))
2995 kargs->set_tid = kset_tid;
3001 * clone3_stack_valid - check and prepare stack
3002 * @kargs: kernel clone args
3004 * Verify that the stack arguments userspace gave us are sane.
3005 * In addition, set the stack direction for userspace since it's easy for us to
3008 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3010 if (kargs->stack == 0) {
3011 if (kargs->stack_size > 0)
3014 if (kargs->stack_size == 0)
3017 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3020 #if !defined(CONFIG_STACK_GROWSUP)
3021 kargs->stack += kargs->stack_size;
3028 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3030 /* Verify that no unknown flags are passed along. */
3032 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3036 * - make the CLONE_DETACHED bit reusable for clone3
3037 * - make the CSIGNAL bits reusable for clone3
3039 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3042 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3043 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3046 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3050 if (!clone3_stack_valid(kargs))
3057 * sys_clone3 - create a new process with specific properties
3058 * @uargs: argument structure
3059 * @size: size of @uargs
3061 * clone3() is the extensible successor to clone()/clone2().
3062 * It takes a struct as argument that is versioned by its size.
3064 * Return: On success, a positive PID for the child process.
3065 * On error, a negative errno number.
3067 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3071 struct kernel_clone_args kargs;
3072 pid_t set_tid[MAX_PID_NS_LEVEL];
3074 #ifdef __ARCH_BROKEN_SYS_CLONE3
3075 #warning clone3() entry point is missing, please fix
3079 kargs.set_tid = set_tid;
3081 err = copy_clone_args_from_user(&kargs, uargs, size);
3085 if (!clone3_args_valid(&kargs))
3088 return kernel_clone(&kargs);
3091 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3093 struct task_struct *leader, *parent, *child;
3096 read_lock(&tasklist_lock);
3097 leader = top = top->group_leader;
3099 for_each_thread(leader, parent) {
3100 list_for_each_entry(child, &parent->children, sibling) {
3101 res = visitor(child, data);
3113 if (leader != top) {
3115 parent = child->real_parent;
3116 leader = parent->group_leader;
3120 read_unlock(&tasklist_lock);
3123 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3124 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3127 static void sighand_ctor(void *data)
3129 struct sighand_struct *sighand = data;
3131 spin_lock_init(&sighand->siglock);
3132 init_waitqueue_head(&sighand->signalfd_wqh);
3135 void __init mm_cache_init(void)
3137 unsigned int mm_size;
3140 * The mm_cpumask is located at the end of mm_struct, and is
3141 * dynamically sized based on the maximum CPU number this system
3142 * can have, taking hotplug into account (nr_cpu_ids).
3144 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3146 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3147 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3148 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3149 offsetof(struct mm_struct, saved_auxv),
3150 sizeof_field(struct mm_struct, saved_auxv),
3154 void __init proc_caches_init(void)
3156 sighand_cachep = kmem_cache_create("sighand_cache",
3157 sizeof(struct sighand_struct), 0,
3158 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3159 SLAB_ACCOUNT, sighand_ctor);
3160 signal_cachep = kmem_cache_create("signal_cache",
3161 sizeof(struct signal_struct), 0,
3162 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3164 files_cachep = kmem_cache_create("files_cache",
3165 sizeof(struct files_struct), 0,
3166 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3168 fs_cachep = kmem_cache_create("fs_cache",
3169 sizeof(struct fs_struct), 0,
3170 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3173 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3174 #ifdef CONFIG_PER_VMA_LOCK
3175 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3178 nsproxy_cache_init();
3182 * Check constraints on flags passed to the unshare system call.
3184 static int check_unshare_flags(unsigned long unshare_flags)
3186 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3187 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3188 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3189 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3193 * Not implemented, but pretend it works if there is nothing
3194 * to unshare. Note that unsharing the address space or the
3195 * signal handlers also need to unshare the signal queues (aka
3198 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3199 if (!thread_group_empty(current))
3202 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3203 if (refcount_read(¤t->sighand->count) > 1)
3206 if (unshare_flags & CLONE_VM) {
3207 if (!current_is_single_threaded())
3215 * Unshare the filesystem structure if it is being shared
3217 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3219 struct fs_struct *fs = current->fs;
3221 if (!(unshare_flags & CLONE_FS) || !fs)
3224 /* don't need lock here; in the worst case we'll do useless copy */
3228 *new_fsp = copy_fs_struct(fs);
3236 * Unshare file descriptor table if it is being shared
3238 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3240 struct files_struct *fd = current->files;
3242 if ((unshare_flags & CLONE_FILES) &&
3243 (fd && atomic_read(&fd->count) > 1)) {
3244 fd = dup_fd(fd, NULL);
3254 * unshare allows a process to 'unshare' part of the process
3255 * context which was originally shared using clone. copy_*
3256 * functions used by kernel_clone() cannot be used here directly
3257 * because they modify an inactive task_struct that is being
3258 * constructed. Here we are modifying the current, active,
3261 int ksys_unshare(unsigned long unshare_flags)
3263 struct fs_struct *fs, *new_fs = NULL;
3264 struct files_struct *new_fd = NULL;
3265 struct cred *new_cred = NULL;
3266 struct nsproxy *new_nsproxy = NULL;
3271 * If unsharing a user namespace must also unshare the thread group
3272 * and unshare the filesystem root and working directories.
3274 if (unshare_flags & CLONE_NEWUSER)
3275 unshare_flags |= CLONE_THREAD | CLONE_FS;
3277 * If unsharing vm, must also unshare signal handlers.
3279 if (unshare_flags & CLONE_VM)
3280 unshare_flags |= CLONE_SIGHAND;
3282 * If unsharing a signal handlers, must also unshare the signal queues.
3284 if (unshare_flags & CLONE_SIGHAND)
3285 unshare_flags |= CLONE_THREAD;
3287 * If unsharing namespace, must also unshare filesystem information.
3289 if (unshare_flags & CLONE_NEWNS)
3290 unshare_flags |= CLONE_FS;
3292 err = check_unshare_flags(unshare_flags);
3294 goto bad_unshare_out;
3296 * CLONE_NEWIPC must also detach from the undolist: after switching
3297 * to a new ipc namespace, the semaphore arrays from the old
3298 * namespace are unreachable.
3300 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3302 err = unshare_fs(unshare_flags, &new_fs);
3304 goto bad_unshare_out;
3305 err = unshare_fd(unshare_flags, &new_fd);
3307 goto bad_unshare_cleanup_fs;
3308 err = unshare_userns(unshare_flags, &new_cred);
3310 goto bad_unshare_cleanup_fd;
3311 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3314 goto bad_unshare_cleanup_cred;
3317 err = set_cred_ucounts(new_cred);
3319 goto bad_unshare_cleanup_cred;
3322 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3325 * CLONE_SYSVSEM is equivalent to sys_exit().
3329 if (unshare_flags & CLONE_NEWIPC) {
3330 /* Orphan segments in old ns (see sem above). */
3332 shm_init_task(current);
3336 switch_task_namespaces(current, new_nsproxy);
3342 spin_lock(&fs->lock);
3343 current->fs = new_fs;
3348 spin_unlock(&fs->lock);
3352 swap(current->files, new_fd);
3354 task_unlock(current);
3357 /* Install the new user namespace */
3358 commit_creds(new_cred);
3363 perf_event_namespaces(current);
3365 bad_unshare_cleanup_cred:
3368 bad_unshare_cleanup_fd:
3370 put_files_struct(new_fd);
3372 bad_unshare_cleanup_fs:
3374 free_fs_struct(new_fs);
3380 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3382 return ksys_unshare(unshare_flags);
3386 * Helper to unshare the files of the current task.
3387 * We don't want to expose copy_files internals to
3388 * the exec layer of the kernel.
3391 int unshare_files(void)
3393 struct task_struct *task = current;
3394 struct files_struct *old, *copy = NULL;
3397 error = unshare_fd(CLONE_FILES, ©);
3405 put_files_struct(old);
3409 int sysctl_max_threads(const struct ctl_table *table, int write,
3410 void *buffer, size_t *lenp, loff_t *ppos)
3414 int threads = max_threads;
3416 int max = MAX_THREADS;
3423 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3427 max_threads = threads;