]> Git Repo - linux.git/blob - kernel/exit.c
net/mlx5: Unregister notifier on eswitch init failure
[linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97 };
98
99 static __init int kernel_exit_sysctls_init(void)
100 {
101         register_sysctl_init("kernel", kern_exit_table);
102         return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106
107 static atomic_t oops_count = ATOMIC_INIT(0);
108
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111                                char *page)
112 {
113         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
118 static __init int kernel_exit_sysfs_init(void)
119 {
120         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121         return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128         nr_threads--;
129         detach_pid(p, PIDTYPE_PID);
130         if (group_dead) {
131                 detach_pid(p, PIDTYPE_TGID);
132                 detach_pid(p, PIDTYPE_PGID);
133                 detach_pid(p, PIDTYPE_SID);
134
135                 list_del_rcu(&p->tasks);
136                 list_del_init(&p->sibling);
137                 __this_cpu_dec(process_counts);
138         }
139         list_del_rcu(&p->thread_node);
140 }
141
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147         struct signal_struct *sig = tsk->signal;
148         bool group_dead = thread_group_leader(tsk);
149         struct sighand_struct *sighand;
150         struct tty_struct *tty;
151         u64 utime, stime;
152
153         sighand = rcu_dereference_check(tsk->sighand,
154                                         lockdep_tasklist_lock_is_held());
155         spin_lock(&sighand->siglock);
156
157 #ifdef CONFIG_POSIX_TIMERS
158         posix_cpu_timers_exit(tsk);
159         if (group_dead)
160                 posix_cpu_timers_exit_group(tsk);
161 #endif
162
163         if (group_dead) {
164                 tty = sig->tty;
165                 sig->tty = NULL;
166         } else {
167                 /*
168                  * If there is any task waiting for the group exit
169                  * then notify it:
170                  */
171                 if (sig->notify_count > 0 && !--sig->notify_count)
172                         wake_up_process(sig->group_exec_task);
173
174                 if (tsk == sig->curr_target)
175                         sig->curr_target = next_thread(tsk);
176         }
177
178         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179                               sizeof(unsigned long long));
180
181         /*
182          * Accumulate here the counters for all threads as they die. We could
183          * skip the group leader because it is the last user of signal_struct,
184          * but we want to avoid the race with thread_group_cputime() which can
185          * see the empty ->thread_head list.
186          */
187         task_cputime(tsk, &utime, &stime);
188         write_seqlock(&sig->stats_lock);
189         sig->utime += utime;
190         sig->stime += stime;
191         sig->gtime += task_gtime(tsk);
192         sig->min_flt += tsk->min_flt;
193         sig->maj_flt += tsk->maj_flt;
194         sig->nvcsw += tsk->nvcsw;
195         sig->nivcsw += tsk->nivcsw;
196         sig->inblock += task_io_get_inblock(tsk);
197         sig->oublock += task_io_get_oublock(tsk);
198         task_io_accounting_add(&sig->ioac, &tsk->ioac);
199         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200         sig->nr_threads--;
201         __unhash_process(tsk, group_dead);
202         write_sequnlock(&sig->stats_lock);
203
204         /*
205          * Do this under ->siglock, we can race with another thread
206          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207          */
208         flush_sigqueue(&tsk->pending);
209         tsk->sighand = NULL;
210         spin_unlock(&sighand->siglock);
211
212         __cleanup_sighand(sighand);
213         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214         if (group_dead) {
215                 flush_sigqueue(&sig->shared_pending);
216                 tty_kref_put(tty);
217         }
218 }
219
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223
224         kprobe_flush_task(tsk);
225         rethook_flush_task(tsk);
226         perf_event_delayed_put(tsk);
227         trace_sched_process_free(tsk);
228         put_task_struct(tsk);
229 }
230
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233         if (refcount_dec_and_test(&task->rcu_users))
234                 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240
241 void release_task(struct task_struct *p)
242 {
243         struct task_struct *leader;
244         struct pid *thread_pid;
245         int zap_leader;
246 repeat:
247         /* don't need to get the RCU readlock here - the process is dead and
248          * can't be modifying its own credentials. But shut RCU-lockdep up */
249         rcu_read_lock();
250         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251         rcu_read_unlock();
252
253         cgroup_release(p);
254
255         write_lock_irq(&tasklist_lock);
256         ptrace_release_task(p);
257         thread_pid = get_pid(p->thread_pid);
258         __exit_signal(p);
259
260         /*
261          * If we are the last non-leader member of the thread
262          * group, and the leader is zombie, then notify the
263          * group leader's parent process. (if it wants notification.)
264          */
265         zap_leader = 0;
266         leader = p->group_leader;
267         if (leader != p && thread_group_empty(leader)
268                         && leader->exit_state == EXIT_ZOMBIE) {
269                 /*
270                  * If we were the last child thread and the leader has
271                  * exited already, and the leader's parent ignores SIGCHLD,
272                  * then we are the one who should release the leader.
273                  */
274                 zap_leader = do_notify_parent(leader, leader->exit_signal);
275                 if (zap_leader)
276                         leader->exit_state = EXIT_DEAD;
277         }
278
279         write_unlock_irq(&tasklist_lock);
280         proc_flush_pid(thread_pid);
281         put_pid(thread_pid);
282         release_thread(p);
283         put_task_struct_rcu_user(p);
284
285         p = leader;
286         if (unlikely(zap_leader))
287                 goto repeat;
288 }
289
290 int rcuwait_wake_up(struct rcuwait *w)
291 {
292         int ret = 0;
293         struct task_struct *task;
294
295         rcu_read_lock();
296
297         /*
298          * Order condition vs @task, such that everything prior to the load
299          * of @task is visible. This is the condition as to why the user called
300          * rcuwait_wake() in the first place. Pairs with set_current_state()
301          * barrier (A) in rcuwait_wait_event().
302          *
303          *    WAIT                WAKE
304          *    [S] tsk = current   [S] cond = true
305          *        MB (A)              MB (B)
306          *    [L] cond            [L] tsk
307          */
308         smp_mb(); /* (B) */
309
310         task = rcu_dereference(w->task);
311         if (task)
312                 ret = wake_up_process(task);
313         rcu_read_unlock();
314
315         return ret;
316 }
317 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
318
319 /*
320  * Determine if a process group is "orphaned", according to the POSIX
321  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
322  * by terminal-generated stop signals.  Newly orphaned process groups are
323  * to receive a SIGHUP and a SIGCONT.
324  *
325  * "I ask you, have you ever known what it is to be an orphan?"
326  */
327 static int will_become_orphaned_pgrp(struct pid *pgrp,
328                                         struct task_struct *ignored_task)
329 {
330         struct task_struct *p;
331
332         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
333                 if ((p == ignored_task) ||
334                     (p->exit_state && thread_group_empty(p)) ||
335                     is_global_init(p->real_parent))
336                         continue;
337
338                 if (task_pgrp(p->real_parent) != pgrp &&
339                     task_session(p->real_parent) == task_session(p))
340                         return 0;
341         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
342
343         return 1;
344 }
345
346 int is_current_pgrp_orphaned(void)
347 {
348         int retval;
349
350         read_lock(&tasklist_lock);
351         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
352         read_unlock(&tasklist_lock);
353
354         return retval;
355 }
356
357 static bool has_stopped_jobs(struct pid *pgrp)
358 {
359         struct task_struct *p;
360
361         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
362                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
363                         return true;
364         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
365
366         return false;
367 }
368
369 /*
370  * Check to see if any process groups have become orphaned as
371  * a result of our exiting, and if they have any stopped jobs,
372  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
373  */
374 static void
375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
376 {
377         struct pid *pgrp = task_pgrp(tsk);
378         struct task_struct *ignored_task = tsk;
379
380         if (!parent)
381                 /* exit: our father is in a different pgrp than
382                  * we are and we were the only connection outside.
383                  */
384                 parent = tsk->real_parent;
385         else
386                 /* reparent: our child is in a different pgrp than
387                  * we are, and it was the only connection outside.
388                  */
389                 ignored_task = NULL;
390
391         if (task_pgrp(parent) != pgrp &&
392             task_session(parent) == task_session(tsk) &&
393             will_become_orphaned_pgrp(pgrp, ignored_task) &&
394             has_stopped_jobs(pgrp)) {
395                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
396                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
397         }
398 }
399
400 static void coredump_task_exit(struct task_struct *tsk)
401 {
402         struct core_state *core_state;
403
404         /*
405          * Serialize with any possible pending coredump.
406          * We must hold siglock around checking core_state
407          * and setting PF_POSTCOREDUMP.  The core-inducing thread
408          * will increment ->nr_threads for each thread in the
409          * group without PF_POSTCOREDUMP set.
410          */
411         spin_lock_irq(&tsk->sighand->siglock);
412         tsk->flags |= PF_POSTCOREDUMP;
413         core_state = tsk->signal->core_state;
414         spin_unlock_irq(&tsk->sighand->siglock);
415         if (core_state) {
416                 struct core_thread self;
417
418                 self.task = current;
419                 if (self.task->flags & PF_SIGNALED)
420                         self.next = xchg(&core_state->dumper.next, &self);
421                 else
422                         self.task = NULL;
423                 /*
424                  * Implies mb(), the result of xchg() must be visible
425                  * to core_state->dumper.
426                  */
427                 if (atomic_dec_and_test(&core_state->nr_threads))
428                         complete(&core_state->startup);
429
430                 for (;;) {
431                         set_current_state(TASK_IDLE|TASK_FREEZABLE);
432                         if (!self.task) /* see coredump_finish() */
433                                 break;
434                         schedule();
435                 }
436                 __set_current_state(TASK_RUNNING);
437         }
438 }
439
440 #ifdef CONFIG_MEMCG
441 /* drops tasklist_lock if succeeds */
442 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
443 {
444         bool ret = false;
445
446         task_lock(tsk);
447         if (likely(tsk->mm == mm)) {
448                 /* tsk can't pass exit_mm/exec_mmap and exit */
449                 read_unlock(&tasklist_lock);
450                 WRITE_ONCE(mm->owner, tsk);
451                 lru_gen_migrate_mm(mm);
452                 ret = true;
453         }
454         task_unlock(tsk);
455         return ret;
456 }
457
458 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
459 {
460         struct task_struct *t;
461
462         for_each_thread(g, t) {
463                 struct mm_struct *t_mm = READ_ONCE(t->mm);
464                 if (t_mm == mm) {
465                         if (__try_to_set_owner(t, mm))
466                                 return true;
467                 } else if (t_mm)
468                         break;
469         }
470
471         return false;
472 }
473
474 /*
475  * A task is exiting.   If it owned this mm, find a new owner for the mm.
476  */
477 void mm_update_next_owner(struct mm_struct *mm)
478 {
479         struct task_struct *g, *p = current;
480
481         /*
482          * If the exiting or execing task is not the owner, it's
483          * someone else's problem.
484          */
485         if (mm->owner != p)
486                 return;
487         /*
488          * The current owner is exiting/execing and there are no other
489          * candidates.  Do not leave the mm pointing to a possibly
490          * freed task structure.
491          */
492         if (atomic_read(&mm->mm_users) <= 1) {
493                 WRITE_ONCE(mm->owner, NULL);
494                 return;
495         }
496
497         read_lock(&tasklist_lock);
498         /*
499          * Search in the children
500          */
501         list_for_each_entry(g, &p->children, sibling) {
502                 if (try_to_set_owner(g, mm))
503                         goto ret;
504         }
505         /*
506          * Search in the siblings
507          */
508         list_for_each_entry(g, &p->real_parent->children, sibling) {
509                 if (try_to_set_owner(g, mm))
510                         goto ret;
511         }
512         /*
513          * Search through everything else, we should not get here often.
514          */
515         for_each_process(g) {
516                 if (atomic_read(&mm->mm_users) <= 1)
517                         break;
518                 if (g->flags & PF_KTHREAD)
519                         continue;
520                 if (try_to_set_owner(g, mm))
521                         goto ret;
522         }
523         read_unlock(&tasklist_lock);
524         /*
525          * We found no owner yet mm_users > 1: this implies that we are
526          * most likely racing with swapoff (try_to_unuse()) or /proc or
527          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
528          */
529         WRITE_ONCE(mm->owner, NULL);
530  ret:
531         return;
532
533 }
534 #endif /* CONFIG_MEMCG */
535
536 /*
537  * Turn us into a lazy TLB process if we
538  * aren't already..
539  */
540 static void exit_mm(void)
541 {
542         struct mm_struct *mm = current->mm;
543
544         exit_mm_release(current, mm);
545         if (!mm)
546                 return;
547         mmap_read_lock(mm);
548         mmgrab_lazy_tlb(mm);
549         BUG_ON(mm != current->active_mm);
550         /* more a memory barrier than a real lock */
551         task_lock(current);
552         /*
553          * When a thread stops operating on an address space, the loop
554          * in membarrier_private_expedited() may not observe that
555          * tsk->mm, and the loop in membarrier_global_expedited() may
556          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
557          * rq->membarrier_state, so those would not issue an IPI.
558          * Membarrier requires a memory barrier after accessing
559          * user-space memory, before clearing tsk->mm or the
560          * rq->membarrier_state.
561          */
562         smp_mb__after_spinlock();
563         local_irq_disable();
564         current->mm = NULL;
565         membarrier_update_current_mm(NULL);
566         enter_lazy_tlb(mm, current);
567         local_irq_enable();
568         task_unlock(current);
569         mmap_read_unlock(mm);
570         mm_update_next_owner(mm);
571         mmput(mm);
572         if (test_thread_flag(TIF_MEMDIE))
573                 exit_oom_victim();
574 }
575
576 static struct task_struct *find_alive_thread(struct task_struct *p)
577 {
578         struct task_struct *t;
579
580         for_each_thread(p, t) {
581                 if (!(t->flags & PF_EXITING))
582                         return t;
583         }
584         return NULL;
585 }
586
587 static struct task_struct *find_child_reaper(struct task_struct *father,
588                                                 struct list_head *dead)
589         __releases(&tasklist_lock)
590         __acquires(&tasklist_lock)
591 {
592         struct pid_namespace *pid_ns = task_active_pid_ns(father);
593         struct task_struct *reaper = pid_ns->child_reaper;
594         struct task_struct *p, *n;
595
596         if (likely(reaper != father))
597                 return reaper;
598
599         reaper = find_alive_thread(father);
600         if (reaper) {
601                 pid_ns->child_reaper = reaper;
602                 return reaper;
603         }
604
605         write_unlock_irq(&tasklist_lock);
606
607         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
608                 list_del_init(&p->ptrace_entry);
609                 release_task(p);
610         }
611
612         zap_pid_ns_processes(pid_ns);
613         write_lock_irq(&tasklist_lock);
614
615         return father;
616 }
617
618 /*
619  * When we die, we re-parent all our children, and try to:
620  * 1. give them to another thread in our thread group, if such a member exists
621  * 2. give it to the first ancestor process which prctl'd itself as a
622  *    child_subreaper for its children (like a service manager)
623  * 3. give it to the init process (PID 1) in our pid namespace
624  */
625 static struct task_struct *find_new_reaper(struct task_struct *father,
626                                            struct task_struct *child_reaper)
627 {
628         struct task_struct *thread, *reaper;
629
630         thread = find_alive_thread(father);
631         if (thread)
632                 return thread;
633
634         if (father->signal->has_child_subreaper) {
635                 unsigned int ns_level = task_pid(father)->level;
636                 /*
637                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
638                  * We can't check reaper != child_reaper to ensure we do not
639                  * cross the namespaces, the exiting parent could be injected
640                  * by setns() + fork().
641                  * We check pid->level, this is slightly more efficient than
642                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
643                  */
644                 for (reaper = father->real_parent;
645                      task_pid(reaper)->level == ns_level;
646                      reaper = reaper->real_parent) {
647                         if (reaper == &init_task)
648                                 break;
649                         if (!reaper->signal->is_child_subreaper)
650                                 continue;
651                         thread = find_alive_thread(reaper);
652                         if (thread)
653                                 return thread;
654                 }
655         }
656
657         return child_reaper;
658 }
659
660 /*
661 * Any that need to be release_task'd are put on the @dead list.
662  */
663 static void reparent_leader(struct task_struct *father, struct task_struct *p,
664                                 struct list_head *dead)
665 {
666         if (unlikely(p->exit_state == EXIT_DEAD))
667                 return;
668
669         /* We don't want people slaying init. */
670         p->exit_signal = SIGCHLD;
671
672         /* If it has exited notify the new parent about this child's death. */
673         if (!p->ptrace &&
674             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
675                 if (do_notify_parent(p, p->exit_signal)) {
676                         p->exit_state = EXIT_DEAD;
677                         list_add(&p->ptrace_entry, dead);
678                 }
679         }
680
681         kill_orphaned_pgrp(p, father);
682 }
683
684 /*
685  * This does two things:
686  *
687  * A.  Make init inherit all the child processes
688  * B.  Check to see if any process groups have become orphaned
689  *      as a result of our exiting, and if they have any stopped
690  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
691  */
692 static void forget_original_parent(struct task_struct *father,
693                                         struct list_head *dead)
694 {
695         struct task_struct *p, *t, *reaper;
696
697         if (unlikely(!list_empty(&father->ptraced)))
698                 exit_ptrace(father, dead);
699
700         /* Can drop and reacquire tasklist_lock */
701         reaper = find_child_reaper(father, dead);
702         if (list_empty(&father->children))
703                 return;
704
705         reaper = find_new_reaper(father, reaper);
706         list_for_each_entry(p, &father->children, sibling) {
707                 for_each_thread(p, t) {
708                         RCU_INIT_POINTER(t->real_parent, reaper);
709                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
710                         if (likely(!t->ptrace))
711                                 t->parent = t->real_parent;
712                         if (t->pdeath_signal)
713                                 group_send_sig_info(t->pdeath_signal,
714                                                     SEND_SIG_NOINFO, t,
715                                                     PIDTYPE_TGID);
716                 }
717                 /*
718                  * If this is a threaded reparent there is no need to
719                  * notify anyone anything has happened.
720                  */
721                 if (!same_thread_group(reaper, father))
722                         reparent_leader(father, p, dead);
723         }
724         list_splice_tail_init(&father->children, &reaper->children);
725 }
726
727 /*
728  * Send signals to all our closest relatives so that they know
729  * to properly mourn us..
730  */
731 static void exit_notify(struct task_struct *tsk, int group_dead)
732 {
733         bool autoreap;
734         struct task_struct *p, *n;
735         LIST_HEAD(dead);
736
737         write_lock_irq(&tasklist_lock);
738         forget_original_parent(tsk, &dead);
739
740         if (group_dead)
741                 kill_orphaned_pgrp(tsk->group_leader, NULL);
742
743         tsk->exit_state = EXIT_ZOMBIE;
744         /*
745          * sub-thread or delay_group_leader(), wake up the
746          * PIDFD_THREAD waiters.
747          */
748         if (!thread_group_empty(tsk))
749                 do_notify_pidfd(tsk);
750
751         if (unlikely(tsk->ptrace)) {
752                 int sig = thread_group_leader(tsk) &&
753                                 thread_group_empty(tsk) &&
754                                 !ptrace_reparented(tsk) ?
755                         tsk->exit_signal : SIGCHLD;
756                 autoreap = do_notify_parent(tsk, sig);
757         } else if (thread_group_leader(tsk)) {
758                 autoreap = thread_group_empty(tsk) &&
759                         do_notify_parent(tsk, tsk->exit_signal);
760         } else {
761                 autoreap = true;
762         }
763
764         if (autoreap) {
765                 tsk->exit_state = EXIT_DEAD;
766                 list_add(&tsk->ptrace_entry, &dead);
767         }
768
769         /* mt-exec, de_thread() is waiting for group leader */
770         if (unlikely(tsk->signal->notify_count < 0))
771                 wake_up_process(tsk->signal->group_exec_task);
772         write_unlock_irq(&tasklist_lock);
773
774         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
775                 list_del_init(&p->ptrace_entry);
776                 release_task(p);
777         }
778 }
779
780 #ifdef CONFIG_DEBUG_STACK_USAGE
781 unsigned long stack_not_used(struct task_struct *p)
782 {
783         unsigned long *n = end_of_stack(p);
784
785         do {    /* Skip over canary */
786 # ifdef CONFIG_STACK_GROWSUP
787                 n--;
788 # else
789                 n++;
790 # endif
791         } while (!*n);
792
793 # ifdef CONFIG_STACK_GROWSUP
794         return (unsigned long)end_of_stack(p) - (unsigned long)n;
795 # else
796         return (unsigned long)n - (unsigned long)end_of_stack(p);
797 # endif
798 }
799
800 /* Count the maximum pages reached in kernel stacks */
801 static inline void kstack_histogram(unsigned long used_stack)
802 {
803 #ifdef CONFIG_VM_EVENT_COUNTERS
804         if (used_stack <= 1024)
805                 count_vm_event(KSTACK_1K);
806 #if THREAD_SIZE > 1024
807         else if (used_stack <= 2048)
808                 count_vm_event(KSTACK_2K);
809 #endif
810 #if THREAD_SIZE > 2048
811         else if (used_stack <= 4096)
812                 count_vm_event(KSTACK_4K);
813 #endif
814 #if THREAD_SIZE > 4096
815         else if (used_stack <= 8192)
816                 count_vm_event(KSTACK_8K);
817 #endif
818 #if THREAD_SIZE > 8192
819         else if (used_stack <= 16384)
820                 count_vm_event(KSTACK_16K);
821 #endif
822 #if THREAD_SIZE > 16384
823         else if (used_stack <= 32768)
824                 count_vm_event(KSTACK_32K);
825 #endif
826 #if THREAD_SIZE > 32768
827         else if (used_stack <= 65536)
828                 count_vm_event(KSTACK_64K);
829 #endif
830 #if THREAD_SIZE > 65536
831         else
832                 count_vm_event(KSTACK_REST);
833 #endif
834 #endif /* CONFIG_VM_EVENT_COUNTERS */
835 }
836
837 static void check_stack_usage(void)
838 {
839         static DEFINE_SPINLOCK(low_water_lock);
840         static int lowest_to_date = THREAD_SIZE;
841         unsigned long free;
842
843         free = stack_not_used(current);
844         kstack_histogram(THREAD_SIZE - free);
845
846         if (free >= lowest_to_date)
847                 return;
848
849         spin_lock(&low_water_lock);
850         if (free < lowest_to_date) {
851                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
852                         current->comm, task_pid_nr(current), free);
853                 lowest_to_date = free;
854         }
855         spin_unlock(&low_water_lock);
856 }
857 #else
858 static inline void check_stack_usage(void) {}
859 #endif
860
861 static void synchronize_group_exit(struct task_struct *tsk, long code)
862 {
863         struct sighand_struct *sighand = tsk->sighand;
864         struct signal_struct *signal = tsk->signal;
865
866         spin_lock_irq(&sighand->siglock);
867         signal->quick_threads--;
868         if ((signal->quick_threads == 0) &&
869             !(signal->flags & SIGNAL_GROUP_EXIT)) {
870                 signal->flags = SIGNAL_GROUP_EXIT;
871                 signal->group_exit_code = code;
872                 signal->group_stop_count = 0;
873         }
874         spin_unlock_irq(&sighand->siglock);
875 }
876
877 void __noreturn do_exit(long code)
878 {
879         struct task_struct *tsk = current;
880         int group_dead;
881
882         WARN_ON(irqs_disabled());
883
884         synchronize_group_exit(tsk, code);
885
886         WARN_ON(tsk->plug);
887
888         kcov_task_exit(tsk);
889         kmsan_task_exit(tsk);
890
891         coredump_task_exit(tsk);
892         ptrace_event(PTRACE_EVENT_EXIT, code);
893         user_events_exit(tsk);
894
895         io_uring_files_cancel();
896         exit_signals(tsk);  /* sets PF_EXITING */
897
898         seccomp_filter_release(tsk);
899
900         acct_update_integrals(tsk);
901         group_dead = atomic_dec_and_test(&tsk->signal->live);
902         if (group_dead) {
903                 /*
904                  * If the last thread of global init has exited, panic
905                  * immediately to get a useable coredump.
906                  */
907                 if (unlikely(is_global_init(tsk)))
908                         panic("Attempted to kill init! exitcode=0x%08x\n",
909                                 tsk->signal->group_exit_code ?: (int)code);
910
911 #ifdef CONFIG_POSIX_TIMERS
912                 hrtimer_cancel(&tsk->signal->real_timer);
913                 exit_itimers(tsk);
914 #endif
915                 if (tsk->mm)
916                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
917         }
918         acct_collect(code, group_dead);
919         if (group_dead)
920                 tty_audit_exit();
921         audit_free(tsk);
922
923         tsk->exit_code = code;
924         taskstats_exit(tsk, group_dead);
925
926         exit_mm();
927
928         if (group_dead)
929                 acct_process();
930         trace_sched_process_exit(tsk);
931
932         exit_sem(tsk);
933         exit_shm(tsk);
934         exit_files(tsk);
935         exit_fs(tsk);
936         if (group_dead)
937                 disassociate_ctty(1);
938         exit_task_namespaces(tsk);
939         exit_task_work(tsk);
940         exit_thread(tsk);
941
942         /*
943          * Flush inherited counters to the parent - before the parent
944          * gets woken up by child-exit notifications.
945          *
946          * because of cgroup mode, must be called before cgroup_exit()
947          */
948         perf_event_exit_task(tsk);
949
950         sched_autogroup_exit_task(tsk);
951         cgroup_exit(tsk);
952
953         /*
954          * FIXME: do that only when needed, using sched_exit tracepoint
955          */
956         flush_ptrace_hw_breakpoint(tsk);
957
958         exit_tasks_rcu_start();
959         exit_notify(tsk, group_dead);
960         proc_exit_connector(tsk);
961         mpol_put_task_policy(tsk);
962 #ifdef CONFIG_FUTEX
963         if (unlikely(current->pi_state_cache))
964                 kfree(current->pi_state_cache);
965 #endif
966         /*
967          * Make sure we are holding no locks:
968          */
969         debug_check_no_locks_held();
970
971         if (tsk->io_context)
972                 exit_io_context(tsk);
973
974         if (tsk->splice_pipe)
975                 free_pipe_info(tsk->splice_pipe);
976
977         if (tsk->task_frag.page)
978                 put_page(tsk->task_frag.page);
979
980         exit_task_stack_account(tsk);
981
982         check_stack_usage();
983         preempt_disable();
984         if (tsk->nr_dirtied)
985                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
986         exit_rcu();
987         exit_tasks_rcu_finish();
988
989         lockdep_free_task(tsk);
990         do_task_dead();
991 }
992
993 void __noreturn make_task_dead(int signr)
994 {
995         /*
996          * Take the task off the cpu after something catastrophic has
997          * happened.
998          *
999          * We can get here from a kernel oops, sometimes with preemption off.
1000          * Start by checking for critical errors.
1001          * Then fix up important state like USER_DS and preemption.
1002          * Then do everything else.
1003          */
1004         struct task_struct *tsk = current;
1005         unsigned int limit;
1006
1007         if (unlikely(in_interrupt()))
1008                 panic("Aiee, killing interrupt handler!");
1009         if (unlikely(!tsk->pid))
1010                 panic("Attempted to kill the idle task!");
1011
1012         if (unlikely(irqs_disabled())) {
1013                 pr_info("note: %s[%d] exited with irqs disabled\n",
1014                         current->comm, task_pid_nr(current));
1015                 local_irq_enable();
1016         }
1017         if (unlikely(in_atomic())) {
1018                 pr_info("note: %s[%d] exited with preempt_count %d\n",
1019                         current->comm, task_pid_nr(current),
1020                         preempt_count());
1021                 preempt_count_set(PREEMPT_ENABLED);
1022         }
1023
1024         /*
1025          * Every time the system oopses, if the oops happens while a reference
1026          * to an object was held, the reference leaks.
1027          * If the oops doesn't also leak memory, repeated oopsing can cause
1028          * reference counters to wrap around (if they're not using refcount_t).
1029          * This means that repeated oopsing can make unexploitable-looking bugs
1030          * exploitable through repeated oopsing.
1031          * To make sure this can't happen, place an upper bound on how often the
1032          * kernel may oops without panic().
1033          */
1034         limit = READ_ONCE(oops_limit);
1035         if (atomic_inc_return(&oops_count) >= limit && limit)
1036                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1037
1038         /*
1039          * We're taking recursive faults here in make_task_dead. Safest is to just
1040          * leave this task alone and wait for reboot.
1041          */
1042         if (unlikely(tsk->flags & PF_EXITING)) {
1043                 pr_alert("Fixing recursive fault but reboot is needed!\n");
1044                 futex_exit_recursive(tsk);
1045                 tsk->exit_state = EXIT_DEAD;
1046                 refcount_inc(&tsk->rcu_users);
1047                 do_task_dead();
1048         }
1049
1050         do_exit(signr);
1051 }
1052
1053 SYSCALL_DEFINE1(exit, int, error_code)
1054 {
1055         do_exit((error_code&0xff)<<8);
1056 }
1057
1058 /*
1059  * Take down every thread in the group.  This is called by fatal signals
1060  * as well as by sys_exit_group (below).
1061  */
1062 void __noreturn
1063 do_group_exit(int exit_code)
1064 {
1065         struct signal_struct *sig = current->signal;
1066
1067         if (sig->flags & SIGNAL_GROUP_EXIT)
1068                 exit_code = sig->group_exit_code;
1069         else if (sig->group_exec_task)
1070                 exit_code = 0;
1071         else {
1072                 struct sighand_struct *const sighand = current->sighand;
1073
1074                 spin_lock_irq(&sighand->siglock);
1075                 if (sig->flags & SIGNAL_GROUP_EXIT)
1076                         /* Another thread got here before we took the lock.  */
1077                         exit_code = sig->group_exit_code;
1078                 else if (sig->group_exec_task)
1079                         exit_code = 0;
1080                 else {
1081                         sig->group_exit_code = exit_code;
1082                         sig->flags = SIGNAL_GROUP_EXIT;
1083                         zap_other_threads(current);
1084                 }
1085                 spin_unlock_irq(&sighand->siglock);
1086         }
1087
1088         do_exit(exit_code);
1089         /* NOTREACHED */
1090 }
1091
1092 /*
1093  * this kills every thread in the thread group. Note that any externally
1094  * wait4()-ing process will get the correct exit code - even if this
1095  * thread is not the thread group leader.
1096  */
1097 SYSCALL_DEFINE1(exit_group, int, error_code)
1098 {
1099         do_group_exit((error_code & 0xff) << 8);
1100         /* NOTREACHED */
1101         return 0;
1102 }
1103
1104 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1105 {
1106         return  wo->wo_type == PIDTYPE_MAX ||
1107                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1108 }
1109
1110 static int
1111 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1112 {
1113         if (!eligible_pid(wo, p))
1114                 return 0;
1115
1116         /*
1117          * Wait for all children (clone and not) if __WALL is set or
1118          * if it is traced by us.
1119          */
1120         if (ptrace || (wo->wo_flags & __WALL))
1121                 return 1;
1122
1123         /*
1124          * Otherwise, wait for clone children *only* if __WCLONE is set;
1125          * otherwise, wait for non-clone children *only*.
1126          *
1127          * Note: a "clone" child here is one that reports to its parent
1128          * using a signal other than SIGCHLD, or a non-leader thread which
1129          * we can only see if it is traced by us.
1130          */
1131         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1132                 return 0;
1133
1134         return 1;
1135 }
1136
1137 /*
1138  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1139  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1140  * the lock and this task is uninteresting.  If we return nonzero, we have
1141  * released the lock and the system call should return.
1142  */
1143 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1144 {
1145         int state, status;
1146         pid_t pid = task_pid_vnr(p);
1147         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1148         struct waitid_info *infop;
1149
1150         if (!likely(wo->wo_flags & WEXITED))
1151                 return 0;
1152
1153         if (unlikely(wo->wo_flags & WNOWAIT)) {
1154                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1155                         ? p->signal->group_exit_code : p->exit_code;
1156                 get_task_struct(p);
1157                 read_unlock(&tasklist_lock);
1158                 sched_annotate_sleep();
1159                 if (wo->wo_rusage)
1160                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1161                 put_task_struct(p);
1162                 goto out_info;
1163         }
1164         /*
1165          * Move the task's state to DEAD/TRACE, only one thread can do this.
1166          */
1167         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1168                 EXIT_TRACE : EXIT_DEAD;
1169         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1170                 return 0;
1171         /*
1172          * We own this thread, nobody else can reap it.
1173          */
1174         read_unlock(&tasklist_lock);
1175         sched_annotate_sleep();
1176
1177         /*
1178          * Check thread_group_leader() to exclude the traced sub-threads.
1179          */
1180         if (state == EXIT_DEAD && thread_group_leader(p)) {
1181                 struct signal_struct *sig = p->signal;
1182                 struct signal_struct *psig = current->signal;
1183                 unsigned long maxrss;
1184                 u64 tgutime, tgstime;
1185
1186                 /*
1187                  * The resource counters for the group leader are in its
1188                  * own task_struct.  Those for dead threads in the group
1189                  * are in its signal_struct, as are those for the child
1190                  * processes it has previously reaped.  All these
1191                  * accumulate in the parent's signal_struct c* fields.
1192                  *
1193                  * We don't bother to take a lock here to protect these
1194                  * p->signal fields because the whole thread group is dead
1195                  * and nobody can change them.
1196                  *
1197                  * psig->stats_lock also protects us from our sub-threads
1198                  * which can reap other children at the same time.
1199                  *
1200                  * We use thread_group_cputime_adjusted() to get times for
1201                  * the thread group, which consolidates times for all threads
1202                  * in the group including the group leader.
1203                  */
1204                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1205                 write_seqlock_irq(&psig->stats_lock);
1206                 psig->cutime += tgutime + sig->cutime;
1207                 psig->cstime += tgstime + sig->cstime;
1208                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1209                 psig->cmin_flt +=
1210                         p->min_flt + sig->min_flt + sig->cmin_flt;
1211                 psig->cmaj_flt +=
1212                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1213                 psig->cnvcsw +=
1214                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1215                 psig->cnivcsw +=
1216                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1217                 psig->cinblock +=
1218                         task_io_get_inblock(p) +
1219                         sig->inblock + sig->cinblock;
1220                 psig->coublock +=
1221                         task_io_get_oublock(p) +
1222                         sig->oublock + sig->coublock;
1223                 maxrss = max(sig->maxrss, sig->cmaxrss);
1224                 if (psig->cmaxrss < maxrss)
1225                         psig->cmaxrss = maxrss;
1226                 task_io_accounting_add(&psig->ioac, &p->ioac);
1227                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1228                 write_sequnlock_irq(&psig->stats_lock);
1229         }
1230
1231         if (wo->wo_rusage)
1232                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1233         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1234                 ? p->signal->group_exit_code : p->exit_code;
1235         wo->wo_stat = status;
1236
1237         if (state == EXIT_TRACE) {
1238                 write_lock_irq(&tasklist_lock);
1239                 /* We dropped tasklist, ptracer could die and untrace */
1240                 ptrace_unlink(p);
1241
1242                 /* If parent wants a zombie, don't release it now */
1243                 state = EXIT_ZOMBIE;
1244                 if (do_notify_parent(p, p->exit_signal))
1245                         state = EXIT_DEAD;
1246                 p->exit_state = state;
1247                 write_unlock_irq(&tasklist_lock);
1248         }
1249         if (state == EXIT_DEAD)
1250                 release_task(p);
1251
1252 out_info:
1253         infop = wo->wo_info;
1254         if (infop) {
1255                 if ((status & 0x7f) == 0) {
1256                         infop->cause = CLD_EXITED;
1257                         infop->status = status >> 8;
1258                 } else {
1259                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1260                         infop->status = status & 0x7f;
1261                 }
1262                 infop->pid = pid;
1263                 infop->uid = uid;
1264         }
1265
1266         return pid;
1267 }
1268
1269 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1270 {
1271         if (ptrace) {
1272                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1273                         return &p->exit_code;
1274         } else {
1275                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1276                         return &p->signal->group_exit_code;
1277         }
1278         return NULL;
1279 }
1280
1281 /**
1282  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1283  * @wo: wait options
1284  * @ptrace: is the wait for ptrace
1285  * @p: task to wait for
1286  *
1287  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1288  *
1289  * CONTEXT:
1290  * read_lock(&tasklist_lock), which is released if return value is
1291  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1292  *
1293  * RETURNS:
1294  * 0 if wait condition didn't exist and search for other wait conditions
1295  * should continue.  Non-zero return, -errno on failure and @p's pid on
1296  * success, implies that tasklist_lock is released and wait condition
1297  * search should terminate.
1298  */
1299 static int wait_task_stopped(struct wait_opts *wo,
1300                                 int ptrace, struct task_struct *p)
1301 {
1302         struct waitid_info *infop;
1303         int exit_code, *p_code, why;
1304         uid_t uid = 0; /* unneeded, required by compiler */
1305         pid_t pid;
1306
1307         /*
1308          * Traditionally we see ptrace'd stopped tasks regardless of options.
1309          */
1310         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1311                 return 0;
1312
1313         if (!task_stopped_code(p, ptrace))
1314                 return 0;
1315
1316         exit_code = 0;
1317         spin_lock_irq(&p->sighand->siglock);
1318
1319         p_code = task_stopped_code(p, ptrace);
1320         if (unlikely(!p_code))
1321                 goto unlock_sig;
1322
1323         exit_code = *p_code;
1324         if (!exit_code)
1325                 goto unlock_sig;
1326
1327         if (!unlikely(wo->wo_flags & WNOWAIT))
1328                 *p_code = 0;
1329
1330         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1331 unlock_sig:
1332         spin_unlock_irq(&p->sighand->siglock);
1333         if (!exit_code)
1334                 return 0;
1335
1336         /*
1337          * Now we are pretty sure this task is interesting.
1338          * Make sure it doesn't get reaped out from under us while we
1339          * give up the lock and then examine it below.  We don't want to
1340          * keep holding onto the tasklist_lock while we call getrusage and
1341          * possibly take page faults for user memory.
1342          */
1343         get_task_struct(p);
1344         pid = task_pid_vnr(p);
1345         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1346         read_unlock(&tasklist_lock);
1347         sched_annotate_sleep();
1348         if (wo->wo_rusage)
1349                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1350         put_task_struct(p);
1351
1352         if (likely(!(wo->wo_flags & WNOWAIT)))
1353                 wo->wo_stat = (exit_code << 8) | 0x7f;
1354
1355         infop = wo->wo_info;
1356         if (infop) {
1357                 infop->cause = why;
1358                 infop->status = exit_code;
1359                 infop->pid = pid;
1360                 infop->uid = uid;
1361         }
1362         return pid;
1363 }
1364
1365 /*
1366  * Handle do_wait work for one task in a live, non-stopped state.
1367  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1368  * the lock and this task is uninteresting.  If we return nonzero, we have
1369  * released the lock and the system call should return.
1370  */
1371 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1372 {
1373         struct waitid_info *infop;
1374         pid_t pid;
1375         uid_t uid;
1376
1377         if (!unlikely(wo->wo_flags & WCONTINUED))
1378                 return 0;
1379
1380         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1381                 return 0;
1382
1383         spin_lock_irq(&p->sighand->siglock);
1384         /* Re-check with the lock held.  */
1385         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1386                 spin_unlock_irq(&p->sighand->siglock);
1387                 return 0;
1388         }
1389         if (!unlikely(wo->wo_flags & WNOWAIT))
1390                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1391         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1392         spin_unlock_irq(&p->sighand->siglock);
1393
1394         pid = task_pid_vnr(p);
1395         get_task_struct(p);
1396         read_unlock(&tasklist_lock);
1397         sched_annotate_sleep();
1398         if (wo->wo_rusage)
1399                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1400         put_task_struct(p);
1401
1402         infop = wo->wo_info;
1403         if (!infop) {
1404                 wo->wo_stat = 0xffff;
1405         } else {
1406                 infop->cause = CLD_CONTINUED;
1407                 infop->pid = pid;
1408                 infop->uid = uid;
1409                 infop->status = SIGCONT;
1410         }
1411         return pid;
1412 }
1413
1414 /*
1415  * Consider @p for a wait by @parent.
1416  *
1417  * -ECHILD should be in ->notask_error before the first call.
1418  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1419  * Returns zero if the search for a child should continue;
1420  * then ->notask_error is 0 if @p is an eligible child,
1421  * or still -ECHILD.
1422  */
1423 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1424                                 struct task_struct *p)
1425 {
1426         /*
1427          * We can race with wait_task_zombie() from another thread.
1428          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1429          * can't confuse the checks below.
1430          */
1431         int exit_state = READ_ONCE(p->exit_state);
1432         int ret;
1433
1434         if (unlikely(exit_state == EXIT_DEAD))
1435                 return 0;
1436
1437         ret = eligible_child(wo, ptrace, p);
1438         if (!ret)
1439                 return ret;
1440
1441         if (unlikely(exit_state == EXIT_TRACE)) {
1442                 /*
1443                  * ptrace == 0 means we are the natural parent. In this case
1444                  * we should clear notask_error, debugger will notify us.
1445                  */
1446                 if (likely(!ptrace))
1447                         wo->notask_error = 0;
1448                 return 0;
1449         }
1450
1451         if (likely(!ptrace) && unlikely(p->ptrace)) {
1452                 /*
1453                  * If it is traced by its real parent's group, just pretend
1454                  * the caller is ptrace_do_wait() and reap this child if it
1455                  * is zombie.
1456                  *
1457                  * This also hides group stop state from real parent; otherwise
1458                  * a single stop can be reported twice as group and ptrace stop.
1459                  * If a ptracer wants to distinguish these two events for its
1460                  * own children it should create a separate process which takes
1461                  * the role of real parent.
1462                  */
1463                 if (!ptrace_reparented(p))
1464                         ptrace = 1;
1465         }
1466
1467         /* slay zombie? */
1468         if (exit_state == EXIT_ZOMBIE) {
1469                 /* we don't reap group leaders with subthreads */
1470                 if (!delay_group_leader(p)) {
1471                         /*
1472                          * A zombie ptracee is only visible to its ptracer.
1473                          * Notification and reaping will be cascaded to the
1474                          * real parent when the ptracer detaches.
1475                          */
1476                         if (unlikely(ptrace) || likely(!p->ptrace))
1477                                 return wait_task_zombie(wo, p);
1478                 }
1479
1480                 /*
1481                  * Allow access to stopped/continued state via zombie by
1482                  * falling through.  Clearing of notask_error is complex.
1483                  *
1484                  * When !@ptrace:
1485                  *
1486                  * If WEXITED is set, notask_error should naturally be
1487                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1488                  * so, if there are live subthreads, there are events to
1489                  * wait for.  If all subthreads are dead, it's still safe
1490                  * to clear - this function will be called again in finite
1491                  * amount time once all the subthreads are released and
1492                  * will then return without clearing.
1493                  *
1494                  * When @ptrace:
1495                  *
1496                  * Stopped state is per-task and thus can't change once the
1497                  * target task dies.  Only continued and exited can happen.
1498                  * Clear notask_error if WCONTINUED | WEXITED.
1499                  */
1500                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1501                         wo->notask_error = 0;
1502         } else {
1503                 /*
1504                  * @p is alive and it's gonna stop, continue or exit, so
1505                  * there always is something to wait for.
1506                  */
1507                 wo->notask_error = 0;
1508         }
1509
1510         /*
1511          * Wait for stopped.  Depending on @ptrace, different stopped state
1512          * is used and the two don't interact with each other.
1513          */
1514         ret = wait_task_stopped(wo, ptrace, p);
1515         if (ret)
1516                 return ret;
1517
1518         /*
1519          * Wait for continued.  There's only one continued state and the
1520          * ptracer can consume it which can confuse the real parent.  Don't
1521          * use WCONTINUED from ptracer.  You don't need or want it.
1522          */
1523         return wait_task_continued(wo, p);
1524 }
1525
1526 /*
1527  * Do the work of do_wait() for one thread in the group, @tsk.
1528  *
1529  * -ECHILD should be in ->notask_error before the first call.
1530  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1531  * Returns zero if the search for a child should continue; then
1532  * ->notask_error is 0 if there were any eligible children,
1533  * or still -ECHILD.
1534  */
1535 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1536 {
1537         struct task_struct *p;
1538
1539         list_for_each_entry(p, &tsk->children, sibling) {
1540                 int ret = wait_consider_task(wo, 0, p);
1541
1542                 if (ret)
1543                         return ret;
1544         }
1545
1546         return 0;
1547 }
1548
1549 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1550 {
1551         struct task_struct *p;
1552
1553         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1554                 int ret = wait_consider_task(wo, 1, p);
1555
1556                 if (ret)
1557                         return ret;
1558         }
1559
1560         return 0;
1561 }
1562
1563 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1564 {
1565         if (!eligible_pid(wo, p))
1566                 return false;
1567
1568         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1569                 return false;
1570
1571         return true;
1572 }
1573
1574 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1575                                 int sync, void *key)
1576 {
1577         struct wait_opts *wo = container_of(wait, struct wait_opts,
1578                                                 child_wait);
1579         struct task_struct *p = key;
1580
1581         if (pid_child_should_wake(wo, p))
1582                 return default_wake_function(wait, mode, sync, key);
1583
1584         return 0;
1585 }
1586
1587 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1588 {
1589         __wake_up_sync_key(&parent->signal->wait_chldexit,
1590                            TASK_INTERRUPTIBLE, p);
1591 }
1592
1593 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1594                                  struct task_struct *target)
1595 {
1596         struct task_struct *parent =
1597                 !ptrace ? target->real_parent : target->parent;
1598
1599         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1600                                      same_thread_group(current, parent));
1601 }
1602
1603 /*
1604  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1605  * and tracee lists to find the target task.
1606  */
1607 static int do_wait_pid(struct wait_opts *wo)
1608 {
1609         bool ptrace;
1610         struct task_struct *target;
1611         int retval;
1612
1613         ptrace = false;
1614         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1615         if (target && is_effectively_child(wo, ptrace, target)) {
1616                 retval = wait_consider_task(wo, ptrace, target);
1617                 if (retval)
1618                         return retval;
1619         }
1620
1621         ptrace = true;
1622         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1623         if (target && target->ptrace &&
1624             is_effectively_child(wo, ptrace, target)) {
1625                 retval = wait_consider_task(wo, ptrace, target);
1626                 if (retval)
1627                         return retval;
1628         }
1629
1630         return 0;
1631 }
1632
1633 long __do_wait(struct wait_opts *wo)
1634 {
1635         long retval;
1636
1637         /*
1638          * If there is nothing that can match our criteria, just get out.
1639          * We will clear ->notask_error to zero if we see any child that
1640          * might later match our criteria, even if we are not able to reap
1641          * it yet.
1642          */
1643         wo->notask_error = -ECHILD;
1644         if ((wo->wo_type < PIDTYPE_MAX) &&
1645            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1646                 goto notask;
1647
1648         read_lock(&tasklist_lock);
1649
1650         if (wo->wo_type == PIDTYPE_PID) {
1651                 retval = do_wait_pid(wo);
1652                 if (retval)
1653                         return retval;
1654         } else {
1655                 struct task_struct *tsk = current;
1656
1657                 do {
1658                         retval = do_wait_thread(wo, tsk);
1659                         if (retval)
1660                                 return retval;
1661
1662                         retval = ptrace_do_wait(wo, tsk);
1663                         if (retval)
1664                                 return retval;
1665
1666                         if (wo->wo_flags & __WNOTHREAD)
1667                                 break;
1668                 } while_each_thread(current, tsk);
1669         }
1670         read_unlock(&tasklist_lock);
1671
1672 notask:
1673         retval = wo->notask_error;
1674         if (!retval && !(wo->wo_flags & WNOHANG))
1675                 return -ERESTARTSYS;
1676
1677         return retval;
1678 }
1679
1680 static long do_wait(struct wait_opts *wo)
1681 {
1682         int retval;
1683
1684         trace_sched_process_wait(wo->wo_pid);
1685
1686         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1687         wo->child_wait.private = current;
1688         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1689
1690         do {
1691                 set_current_state(TASK_INTERRUPTIBLE);
1692                 retval = __do_wait(wo);
1693                 if (retval != -ERESTARTSYS)
1694                         break;
1695                 if (signal_pending(current))
1696                         break;
1697                 schedule();
1698         } while (1);
1699
1700         __set_current_state(TASK_RUNNING);
1701         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1702         return retval;
1703 }
1704
1705 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1706                           struct waitid_info *infop, int options,
1707                           struct rusage *ru)
1708 {
1709         unsigned int f_flags = 0;
1710         struct pid *pid = NULL;
1711         enum pid_type type;
1712
1713         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1714                         __WNOTHREAD|__WCLONE|__WALL))
1715                 return -EINVAL;
1716         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1717                 return -EINVAL;
1718
1719         switch (which) {
1720         case P_ALL:
1721                 type = PIDTYPE_MAX;
1722                 break;
1723         case P_PID:
1724                 type = PIDTYPE_PID;
1725                 if (upid <= 0)
1726                         return -EINVAL;
1727
1728                 pid = find_get_pid(upid);
1729                 break;
1730         case P_PGID:
1731                 type = PIDTYPE_PGID;
1732                 if (upid < 0)
1733                         return -EINVAL;
1734
1735                 if (upid)
1736                         pid = find_get_pid(upid);
1737                 else
1738                         pid = get_task_pid(current, PIDTYPE_PGID);
1739                 break;
1740         case P_PIDFD:
1741                 type = PIDTYPE_PID;
1742                 if (upid < 0)
1743                         return -EINVAL;
1744
1745                 pid = pidfd_get_pid(upid, &f_flags);
1746                 if (IS_ERR(pid))
1747                         return PTR_ERR(pid);
1748
1749                 break;
1750         default:
1751                 return -EINVAL;
1752         }
1753
1754         wo->wo_type     = type;
1755         wo->wo_pid      = pid;
1756         wo->wo_flags    = options;
1757         wo->wo_info     = infop;
1758         wo->wo_rusage   = ru;
1759         if (f_flags & O_NONBLOCK)
1760                 wo->wo_flags |= WNOHANG;
1761
1762         return 0;
1763 }
1764
1765 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1766                           int options, struct rusage *ru)
1767 {
1768         struct wait_opts wo;
1769         long ret;
1770
1771         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1772         if (ret)
1773                 return ret;
1774
1775         ret = do_wait(&wo);
1776         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1777                 ret = -EAGAIN;
1778
1779         put_pid(wo.wo_pid);
1780         return ret;
1781 }
1782
1783 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1784                 infop, int, options, struct rusage __user *, ru)
1785 {
1786         struct rusage r;
1787         struct waitid_info info = {.status = 0};
1788         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1789         int signo = 0;
1790
1791         if (err > 0) {
1792                 signo = SIGCHLD;
1793                 err = 0;
1794                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1795                         return -EFAULT;
1796         }
1797         if (!infop)
1798                 return err;
1799
1800         if (!user_write_access_begin(infop, sizeof(*infop)))
1801                 return -EFAULT;
1802
1803         unsafe_put_user(signo, &infop->si_signo, Efault);
1804         unsafe_put_user(0, &infop->si_errno, Efault);
1805         unsafe_put_user(info.cause, &infop->si_code, Efault);
1806         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1807         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1808         unsafe_put_user(info.status, &infop->si_status, Efault);
1809         user_write_access_end();
1810         return err;
1811 Efault:
1812         user_write_access_end();
1813         return -EFAULT;
1814 }
1815
1816 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1817                   struct rusage *ru)
1818 {
1819         struct wait_opts wo;
1820         struct pid *pid = NULL;
1821         enum pid_type type;
1822         long ret;
1823
1824         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1825                         __WNOTHREAD|__WCLONE|__WALL))
1826                 return -EINVAL;
1827
1828         /* -INT_MIN is not defined */
1829         if (upid == INT_MIN)
1830                 return -ESRCH;
1831
1832         if (upid == -1)
1833                 type = PIDTYPE_MAX;
1834         else if (upid < 0) {
1835                 type = PIDTYPE_PGID;
1836                 pid = find_get_pid(-upid);
1837         } else if (upid == 0) {
1838                 type = PIDTYPE_PGID;
1839                 pid = get_task_pid(current, PIDTYPE_PGID);
1840         } else /* upid > 0 */ {
1841                 type = PIDTYPE_PID;
1842                 pid = find_get_pid(upid);
1843         }
1844
1845         wo.wo_type      = type;
1846         wo.wo_pid       = pid;
1847         wo.wo_flags     = options | WEXITED;
1848         wo.wo_info      = NULL;
1849         wo.wo_stat      = 0;
1850         wo.wo_rusage    = ru;
1851         ret = do_wait(&wo);
1852         put_pid(pid);
1853         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1854                 ret = -EFAULT;
1855
1856         return ret;
1857 }
1858
1859 int kernel_wait(pid_t pid, int *stat)
1860 {
1861         struct wait_opts wo = {
1862                 .wo_type        = PIDTYPE_PID,
1863                 .wo_pid         = find_get_pid(pid),
1864                 .wo_flags       = WEXITED,
1865         };
1866         int ret;
1867
1868         ret = do_wait(&wo);
1869         if (ret > 0 && wo.wo_stat)
1870                 *stat = wo.wo_stat;
1871         put_pid(wo.wo_pid);
1872         return ret;
1873 }
1874
1875 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1876                 int, options, struct rusage __user *, ru)
1877 {
1878         struct rusage r;
1879         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1880
1881         if (err > 0) {
1882                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1883                         return -EFAULT;
1884         }
1885         return err;
1886 }
1887
1888 #ifdef __ARCH_WANT_SYS_WAITPID
1889
1890 /*
1891  * sys_waitpid() remains for compatibility. waitpid() should be
1892  * implemented by calling sys_wait4() from libc.a.
1893  */
1894 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1895 {
1896         return kernel_wait4(pid, stat_addr, options, NULL);
1897 }
1898
1899 #endif
1900
1901 #ifdef CONFIG_COMPAT
1902 COMPAT_SYSCALL_DEFINE4(wait4,
1903         compat_pid_t, pid,
1904         compat_uint_t __user *, stat_addr,
1905         int, options,
1906         struct compat_rusage __user *, ru)
1907 {
1908         struct rusage r;
1909         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1910         if (err > 0) {
1911                 if (ru && put_compat_rusage(&r, ru))
1912                         return -EFAULT;
1913         }
1914         return err;
1915 }
1916
1917 COMPAT_SYSCALL_DEFINE5(waitid,
1918                 int, which, compat_pid_t, pid,
1919                 struct compat_siginfo __user *, infop, int, options,
1920                 struct compat_rusage __user *, uru)
1921 {
1922         struct rusage ru;
1923         struct waitid_info info = {.status = 0};
1924         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1925         int signo = 0;
1926         if (err > 0) {
1927                 signo = SIGCHLD;
1928                 err = 0;
1929                 if (uru) {
1930                         /* kernel_waitid() overwrites everything in ru */
1931                         if (COMPAT_USE_64BIT_TIME)
1932                                 err = copy_to_user(uru, &ru, sizeof(ru));
1933                         else
1934                                 err = put_compat_rusage(&ru, uru);
1935                         if (err)
1936                                 return -EFAULT;
1937                 }
1938         }
1939
1940         if (!infop)
1941                 return err;
1942
1943         if (!user_write_access_begin(infop, sizeof(*infop)))
1944                 return -EFAULT;
1945
1946         unsafe_put_user(signo, &infop->si_signo, Efault);
1947         unsafe_put_user(0, &infop->si_errno, Efault);
1948         unsafe_put_user(info.cause, &infop->si_code, Efault);
1949         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1950         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1951         unsafe_put_user(info.status, &infop->si_status, Efault);
1952         user_write_access_end();
1953         return err;
1954 Efault:
1955         user_write_access_end();
1956         return -EFAULT;
1957 }
1958 #endif
1959
1960 /*
1961  * This needs to be __function_aligned as GCC implicitly makes any
1962  * implementation of abort() cold and drops alignment specified by
1963  * -falign-functions=N.
1964  *
1965  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1966  */
1967 __weak __function_aligned void abort(void)
1968 {
1969         BUG();
1970
1971         /* if that doesn't kill us, halt */
1972         panic("Oops failed to kill thread");
1973 }
1974 EXPORT_SYMBOL(abort);
This page took 0.136507 seconds and 4 git commands to generate.