1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 struct inode *inode = file_inode(vmf->vma->vm_file);
41 vm_flags_t flags = vmf->vma->vm_flags;
44 ret = filemap_fault(vmf);
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 struct folio *folio = page_folio(vmf->page);
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = !f2fs_is_pinned_file(inode);
64 if (unlikely(IS_IMMUTABLE(inode)))
65 return VM_FAULT_SIGBUS;
67 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
72 if (unlikely(f2fs_cp_error(sbi))) {
77 if (!f2fs_is_checkpoint_ready(sbi)) {
82 err = f2fs_convert_inline_inode(inode);
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87 if (f2fs_compressed_file(inode)) {
88 int ret = f2fs_is_compressed_cluster(inode, folio->index);
98 /* should do out of any locked page */
100 f2fs_balance_fs(sbi, true);
102 sb_start_pagefault(inode->i_sb);
104 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106 file_update_time(vmf->vma->vm_file);
107 filemap_invalidate_lock_shared(inode->i_mapping);
109 if (unlikely(folio->mapping != inode->i_mapping ||
110 folio_pos(folio) > i_size_read(inode) ||
111 !folio_test_uptodate(folio))) {
117 set_new_dnode(&dn, inode, NULL, NULL, 0);
119 /* block allocation */
120 err = f2fs_get_block_locked(&dn, folio->index);
122 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
124 if (f2fs_is_pinned_file(inode) &&
125 !__is_valid_data_blkaddr(dn.data_blkaddr))
134 f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
136 /* wait for GCed page writeback via META_MAPPING */
137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
140 * check to see if the page is mapped already (no holes)
142 if (folio_test_mappedtodisk(folio))
145 /* page is wholly or partially inside EOF */
146 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
147 i_size_read(inode)) {
150 offset = i_size_read(inode) & ~PAGE_MASK;
151 folio_zero_segment(folio, offset, folio_size(folio));
153 folio_mark_dirty(folio);
155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 f2fs_update_time(sbi, REQ_TIME);
159 filemap_invalidate_unlock_shared(inode->i_mapping);
161 sb_end_pagefault(inode->i_sb);
163 ret = vmf_fs_error(err);
165 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 .fault = f2fs_filemap_fault,
171 .map_pages = filemap_map_pages,
172 .page_mkwrite = f2fs_vm_page_mkwrite,
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 struct dentry *dentry;
180 * Make sure to get the non-deleted alias. The alias associated with
181 * the open file descriptor being fsync()'ed may be deleted already.
183 dentry = d_find_alias(inode);
187 *pino = d_parent_ino(dentry);
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 enum cp_reason_type cp_reason = CP_NO_NEEDED;
197 if (!S_ISREG(inode->i_mode))
198 cp_reason = CP_NON_REGULAR;
199 else if (f2fs_compressed_file(inode))
200 cp_reason = CP_COMPRESSED;
201 else if (inode->i_nlink != 1)
202 cp_reason = CP_HARDLINK;
203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 cp_reason = CP_SB_NEED_CP;
205 else if (file_wrong_pino(inode))
206 cp_reason = CP_WRONG_PINO;
207 else if (!f2fs_space_for_roll_forward(sbi))
208 cp_reason = CP_NO_SPC_ROLL;
209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 cp_reason = CP_NODE_NEED_CP;
211 else if (test_opt(sbi, FASTBOOT))
212 cp_reason = CP_FASTBOOT_MODE;
213 else if (F2FS_OPTION(sbi).active_logs == 2)
214 cp_reason = CP_SPEC_LOG_NUM;
215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219 cp_reason = CP_RECOVER_DIR;
220 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
222 cp_reason = CP_XATTR_DIR;
227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
229 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
231 /* But we need to avoid that there are some inode updates */
232 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
238 static void try_to_fix_pino(struct inode *inode)
240 struct f2fs_inode_info *fi = F2FS_I(inode);
243 f2fs_down_write(&fi->i_sem);
244 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
245 get_parent_ino(inode, &pino)) {
246 f2fs_i_pino_write(inode, pino);
247 file_got_pino(inode);
249 f2fs_up_write(&fi->i_sem);
252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
253 int datasync, bool atomic)
255 struct inode *inode = file->f_mapping->host;
256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 nid_t ino = inode->i_ino;
259 enum cp_reason_type cp_reason = 0;
260 struct writeback_control wbc = {
261 .sync_mode = WB_SYNC_ALL,
262 .nr_to_write = LONG_MAX,
265 unsigned int seq_id = 0;
267 if (unlikely(f2fs_readonly(inode->i_sb)))
270 trace_f2fs_sync_file_enter(inode);
272 if (S_ISDIR(inode->i_mode))
275 /* if fdatasync is triggered, let's do in-place-update */
276 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277 set_inode_flag(inode, FI_NEED_IPU);
278 ret = file_write_and_wait_range(file, start, end);
279 clear_inode_flag(inode, FI_NEED_IPU);
281 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
282 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
286 /* if the inode is dirty, let's recover all the time */
287 if (!f2fs_skip_inode_update(inode, datasync)) {
288 f2fs_write_inode(inode, NULL);
293 * if there is no written data, don't waste time to write recovery info.
295 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
298 /* it may call write_inode just prior to fsync */
299 if (need_inode_page_update(sbi, ino))
302 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
308 * for OPU case, during fsync(), node can be persisted before
309 * data when lower device doesn't support write barrier, result
310 * in data corruption after SPO.
311 * So for strict fsync mode, force to use atomic write semantics
312 * to keep write order in between data/node and last node to
313 * avoid potential data corruption.
315 if (F2FS_OPTION(sbi).fsync_mode ==
316 FSYNC_MODE_STRICT && !atomic)
321 * Both of fdatasync() and fsync() are able to be recovered from
324 f2fs_down_read(&F2FS_I(inode)->i_sem);
325 cp_reason = need_do_checkpoint(inode);
326 f2fs_up_read(&F2FS_I(inode)->i_sem);
329 /* all the dirty node pages should be flushed for POR */
330 ret = f2fs_sync_fs(inode->i_sb, 1);
333 * We've secured consistency through sync_fs. Following pino
334 * will be used only for fsynced inodes after checkpoint.
336 try_to_fix_pino(inode);
337 clear_inode_flag(inode, FI_APPEND_WRITE);
338 clear_inode_flag(inode, FI_UPDATE_WRITE);
342 atomic_inc(&sbi->wb_sync_req[NODE]);
343 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
344 atomic_dec(&sbi->wb_sync_req[NODE]);
348 /* if cp_error was enabled, we should avoid infinite loop */
349 if (unlikely(f2fs_cp_error(sbi))) {
354 if (f2fs_need_inode_block_update(sbi, ino)) {
355 f2fs_mark_inode_dirty_sync(inode, true);
356 f2fs_write_inode(inode, NULL);
361 * If it's atomic_write, it's just fine to keep write ordering. So
362 * here we don't need to wait for node write completion, since we use
363 * node chain which serializes node blocks. If one of node writes are
364 * reordered, we can see simply broken chain, resulting in stopping
365 * roll-forward recovery. It means we'll recover all or none node blocks
369 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
374 /* once recovery info is written, don't need to tack this */
375 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
376 clear_inode_flag(inode, FI_APPEND_WRITE);
378 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
379 ret = f2fs_issue_flush(sbi, inode->i_ino);
381 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382 clear_inode_flag(inode, FI_UPDATE_WRITE);
383 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
385 f2fs_update_time(sbi, REQ_TIME);
387 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
393 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
395 return f2fs_do_sync_file(file, start, end, datasync, false);
398 static bool __found_offset(struct address_space *mapping,
399 struct dnode_of_data *dn, pgoff_t index, int whence)
401 block_t blkaddr = f2fs_data_blkaddr(dn);
402 struct inode *inode = mapping->host;
403 bool compressed_cluster = false;
405 if (f2fs_compressed_file(inode)) {
406 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
407 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
409 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
414 if (__is_valid_data_blkaddr(blkaddr))
416 if (blkaddr == NEW_ADDR &&
417 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
419 if (compressed_cluster)
423 if (compressed_cluster)
425 if (blkaddr == NULL_ADDR)
432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
434 struct inode *inode = file->f_mapping->host;
435 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
436 struct dnode_of_data dn;
437 pgoff_t pgofs, end_offset;
438 loff_t data_ofs = offset;
442 inode_lock_shared(inode);
444 isize = i_size_read(inode);
448 /* handle inline data case */
449 if (f2fs_has_inline_data(inode)) {
450 if (whence == SEEK_HOLE) {
453 } else if (whence == SEEK_DATA) {
459 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
461 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462 set_new_dnode(&dn, inode, NULL, NULL, 0);
463 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464 if (err && err != -ENOENT) {
466 } else if (err == -ENOENT) {
467 /* direct node does not exists */
468 if (whence == SEEK_DATA) {
469 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
476 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
478 /* find data/hole in dnode block */
479 for (; dn.ofs_in_node < end_offset;
480 dn.ofs_in_node++, pgofs++,
481 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
484 blkaddr = f2fs_data_blkaddr(&dn);
486 if (__is_valid_data_blkaddr(blkaddr) &&
487 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488 blkaddr, DATA_GENERIC_ENHANCE)) {
493 if (__found_offset(file->f_mapping, &dn,
502 if (whence == SEEK_DATA)
505 if (whence == SEEK_HOLE && data_ofs > isize)
507 inode_unlock_shared(inode);
508 return vfs_setpos(file, data_ofs, maxbytes);
510 inode_unlock_shared(inode);
514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
516 struct inode *inode = file->f_mapping->host;
517 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
523 return generic_file_llseek_size(file, offset, whence,
524 maxbytes, i_size_read(inode));
529 return f2fs_seek_block(file, offset, whence);
535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
537 struct inode *inode = file_inode(file);
539 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
542 if (!f2fs_is_compress_backend_ready(inode))
546 vma->vm_ops = &f2fs_file_vm_ops;
548 f2fs_down_read(&F2FS_I(inode)->i_sem);
549 set_inode_flag(inode, FI_MMAP_FILE);
550 f2fs_up_read(&F2FS_I(inode)->i_sem);
555 static int finish_preallocate_blocks(struct inode *inode)
560 if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
565 if (!file_should_truncate(inode)) {
566 set_inode_flag(inode, FI_OPENED_FILE);
571 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
572 filemap_invalidate_lock(inode->i_mapping);
574 truncate_setsize(inode, i_size_read(inode));
575 ret = f2fs_truncate(inode);
577 filemap_invalidate_unlock(inode->i_mapping);
578 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
581 set_inode_flag(inode, FI_OPENED_FILE);
587 file_dont_truncate(inode);
591 static int f2fs_file_open(struct inode *inode, struct file *filp)
593 int err = fscrypt_file_open(inode, filp);
598 if (!f2fs_is_compress_backend_ready(inode))
601 err = fsverity_file_open(inode, filp);
605 filp->f_mode |= FMODE_NOWAIT;
606 filp->f_mode |= FMODE_CAN_ODIRECT;
608 err = dquot_file_open(inode, filp);
612 return finish_preallocate_blocks(inode);
615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
617 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
618 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
620 bool compressed_cluster = false;
621 int cluster_index = 0, valid_blocks = 0;
622 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
623 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
625 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
627 /* Assumption: truncation starts with cluster */
628 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
629 block_t blkaddr = le32_to_cpu(*addr);
631 if (f2fs_compressed_file(dn->inode) &&
632 !(cluster_index & (cluster_size - 1))) {
633 if (compressed_cluster)
634 f2fs_i_compr_blocks_update(dn->inode,
635 valid_blocks, false);
636 compressed_cluster = (blkaddr == COMPRESS_ADDR);
640 if (blkaddr == NULL_ADDR)
643 f2fs_set_data_blkaddr(dn, NULL_ADDR);
645 if (__is_valid_data_blkaddr(blkaddr)) {
646 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
648 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
649 DATA_GENERIC_ENHANCE))
651 if (compressed_cluster)
655 f2fs_invalidate_blocks(sbi, blkaddr);
657 if (!released || blkaddr != COMPRESS_ADDR)
661 if (compressed_cluster)
662 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
667 * once we invalidate valid blkaddr in range [ofs, ofs + count],
668 * we will invalidate all blkaddr in the whole range.
670 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
672 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
673 f2fs_update_age_extent_cache_range(dn, fofs, len);
674 dec_valid_block_count(sbi, dn->inode, nr_free);
676 dn->ofs_in_node = ofs;
678 f2fs_update_time(sbi, REQ_TIME);
679 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
680 dn->ofs_in_node, nr_free);
683 static int truncate_partial_data_page(struct inode *inode, u64 from,
686 loff_t offset = from & (PAGE_SIZE - 1);
687 pgoff_t index = from >> PAGE_SHIFT;
688 struct address_space *mapping = inode->i_mapping;
691 if (!offset && !cache_only)
695 page = find_lock_page(mapping, index);
696 if (page && PageUptodate(page))
698 f2fs_put_page(page, 1);
702 page = f2fs_get_lock_data_page(inode, index, true);
704 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
706 f2fs_wait_on_page_writeback(page, DATA, true, true);
707 zero_user(page, offset, PAGE_SIZE - offset);
709 /* An encrypted inode should have a key and truncate the last page. */
710 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
712 set_page_dirty(page);
713 f2fs_put_page(page, 1);
717 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
720 struct dnode_of_data dn;
722 int count = 0, err = 0;
724 bool truncate_page = false;
726 trace_f2fs_truncate_blocks_enter(inode, from);
728 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
730 if (free_from >= max_file_blocks(inode))
736 ipage = f2fs_get_node_page(sbi, inode->i_ino);
738 err = PTR_ERR(ipage);
742 if (f2fs_has_inline_data(inode)) {
743 f2fs_truncate_inline_inode(inode, ipage, from);
744 f2fs_put_page(ipage, 1);
745 truncate_page = true;
749 set_new_dnode(&dn, inode, ipage, NULL, 0);
750 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
757 count = ADDRS_PER_PAGE(dn.node_page, inode);
759 count -= dn.ofs_in_node;
760 f2fs_bug_on(sbi, count < 0);
762 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
763 f2fs_truncate_data_blocks_range(&dn, count);
769 err = f2fs_truncate_inode_blocks(inode, free_from);
774 /* lastly zero out the first data page */
776 err = truncate_partial_data_page(inode, from, truncate_page);
778 trace_f2fs_truncate_blocks_exit(inode, err);
782 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
784 u64 free_from = from;
787 #ifdef CONFIG_F2FS_FS_COMPRESSION
789 * for compressed file, only support cluster size
790 * aligned truncation.
792 if (f2fs_compressed_file(inode))
793 free_from = round_up(from,
794 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
797 err = f2fs_do_truncate_blocks(inode, free_from, lock);
801 #ifdef CONFIG_F2FS_FS_COMPRESSION
803 * For compressed file, after release compress blocks, don't allow write
804 * direct, but we should allow write direct after truncate to zero.
806 if (f2fs_compressed_file(inode) && !free_from
807 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
808 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
810 if (from != free_from) {
811 err = f2fs_truncate_partial_cluster(inode, from, lock);
820 int f2fs_truncate(struct inode *inode)
824 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
827 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
828 S_ISLNK(inode->i_mode)))
831 trace_f2fs_truncate(inode);
833 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
836 err = f2fs_dquot_initialize(inode);
840 /* we should check inline_data size */
841 if (!f2fs_may_inline_data(inode)) {
842 err = f2fs_convert_inline_inode(inode);
847 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
851 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
852 f2fs_mark_inode_dirty_sync(inode, false);
856 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860 if (!fscrypt_dio_supported(inode))
862 if (fsverity_active(inode))
864 if (f2fs_compressed_file(inode))
866 if (f2fs_has_inline_data(inode))
869 /* disallow direct IO if any of devices has unaligned blksize */
870 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
873 * for blkzoned device, fallback direct IO to buffered IO, so
874 * all IOs can be serialized by log-structured write.
876 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
877 !f2fs_is_pinned_file(inode))
879 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
885 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
886 struct kstat *stat, u32 request_mask, unsigned int query_flags)
888 struct inode *inode = d_inode(path->dentry);
889 struct f2fs_inode_info *fi = F2FS_I(inode);
890 struct f2fs_inode *ri = NULL;
893 if (f2fs_has_extra_attr(inode) &&
894 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
895 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
896 stat->result_mask |= STATX_BTIME;
897 stat->btime.tv_sec = fi->i_crtime.tv_sec;
898 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
902 * Return the DIO alignment restrictions if requested. We only return
903 * this information when requested, since on encrypted files it might
904 * take a fair bit of work to get if the file wasn't opened recently.
906 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
907 * cannot represent that, so in that case we report no DIO support.
909 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
910 unsigned int bsize = i_blocksize(inode);
912 stat->result_mask |= STATX_DIOALIGN;
913 if (!f2fs_force_buffered_io(inode, WRITE)) {
914 stat->dio_mem_align = bsize;
915 stat->dio_offset_align = bsize;
920 if (flags & F2FS_COMPR_FL)
921 stat->attributes |= STATX_ATTR_COMPRESSED;
922 if (flags & F2FS_APPEND_FL)
923 stat->attributes |= STATX_ATTR_APPEND;
924 if (IS_ENCRYPTED(inode))
925 stat->attributes |= STATX_ATTR_ENCRYPTED;
926 if (flags & F2FS_IMMUTABLE_FL)
927 stat->attributes |= STATX_ATTR_IMMUTABLE;
928 if (flags & F2FS_NODUMP_FL)
929 stat->attributes |= STATX_ATTR_NODUMP;
930 if (IS_VERITY(inode))
931 stat->attributes |= STATX_ATTR_VERITY;
933 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
935 STATX_ATTR_ENCRYPTED |
936 STATX_ATTR_IMMUTABLE |
940 generic_fillattr(idmap, request_mask, inode, stat);
942 /* we need to show initial sectors used for inline_data/dentries */
943 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
944 f2fs_has_inline_dentry(inode))
945 stat->blocks += (stat->size + 511) >> 9;
950 #ifdef CONFIG_F2FS_FS_POSIX_ACL
951 static void __setattr_copy(struct mnt_idmap *idmap,
952 struct inode *inode, const struct iattr *attr)
954 unsigned int ia_valid = attr->ia_valid;
956 i_uid_update(idmap, attr, inode);
957 i_gid_update(idmap, attr, inode);
958 if (ia_valid & ATTR_ATIME)
959 inode_set_atime_to_ts(inode, attr->ia_atime);
960 if (ia_valid & ATTR_MTIME)
961 inode_set_mtime_to_ts(inode, attr->ia_mtime);
962 if (ia_valid & ATTR_CTIME)
963 inode_set_ctime_to_ts(inode, attr->ia_ctime);
964 if (ia_valid & ATTR_MODE) {
965 umode_t mode = attr->ia_mode;
967 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
969 set_acl_inode(inode, mode);
973 #define __setattr_copy setattr_copy
976 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
979 struct inode *inode = d_inode(dentry);
980 struct f2fs_inode_info *fi = F2FS_I(inode);
983 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
986 if (unlikely(IS_IMMUTABLE(inode)))
989 if (unlikely(IS_APPEND(inode) &&
990 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
991 ATTR_GID | ATTR_TIMES_SET))))
994 if ((attr->ia_valid & ATTR_SIZE)) {
995 if (!f2fs_is_compress_backend_ready(inode))
997 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
998 !IS_ALIGNED(attr->ia_size,
999 F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1003 err = setattr_prepare(idmap, dentry, attr);
1007 err = fscrypt_prepare_setattr(dentry, attr);
1011 err = fsverity_prepare_setattr(dentry, attr);
1015 if (is_quota_modification(idmap, inode, attr)) {
1016 err = f2fs_dquot_initialize(inode);
1020 if (i_uid_needs_update(idmap, attr, inode) ||
1021 i_gid_needs_update(idmap, attr, inode)) {
1022 f2fs_lock_op(F2FS_I_SB(inode));
1023 err = dquot_transfer(idmap, inode, attr);
1025 set_sbi_flag(F2FS_I_SB(inode),
1026 SBI_QUOTA_NEED_REPAIR);
1027 f2fs_unlock_op(F2FS_I_SB(inode));
1031 * update uid/gid under lock_op(), so that dquot and inode can
1032 * be updated atomically.
1034 i_uid_update(idmap, attr, inode);
1035 i_gid_update(idmap, attr, inode);
1036 f2fs_mark_inode_dirty_sync(inode, true);
1037 f2fs_unlock_op(F2FS_I_SB(inode));
1040 if (attr->ia_valid & ATTR_SIZE) {
1041 loff_t old_size = i_size_read(inode);
1043 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1045 * should convert inline inode before i_size_write to
1046 * keep smaller than inline_data size with inline flag.
1048 err = f2fs_convert_inline_inode(inode);
1054 * wait for inflight dio, blocks should be removed after
1057 if (attr->ia_size < old_size)
1058 inode_dio_wait(inode);
1060 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1061 filemap_invalidate_lock(inode->i_mapping);
1063 truncate_setsize(inode, attr->ia_size);
1065 if (attr->ia_size <= old_size)
1066 err = f2fs_truncate(inode);
1068 * do not trim all blocks after i_size if target size is
1069 * larger than i_size.
1071 filemap_invalidate_unlock(inode->i_mapping);
1072 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1076 spin_lock(&fi->i_size_lock);
1077 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1078 fi->last_disk_size = i_size_read(inode);
1079 spin_unlock(&fi->i_size_lock);
1082 __setattr_copy(idmap, inode, attr);
1084 if (attr->ia_valid & ATTR_MODE) {
1085 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1087 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1089 inode->i_mode = fi->i_acl_mode;
1090 clear_inode_flag(inode, FI_ACL_MODE);
1094 /* file size may changed here */
1095 f2fs_mark_inode_dirty_sync(inode, true);
1097 /* inode change will produce dirty node pages flushed by checkpoint */
1098 f2fs_balance_fs(F2FS_I_SB(inode), true);
1103 const struct inode_operations f2fs_file_inode_operations = {
1104 .getattr = f2fs_getattr,
1105 .setattr = f2fs_setattr,
1106 .get_inode_acl = f2fs_get_acl,
1107 .set_acl = f2fs_set_acl,
1108 .listxattr = f2fs_listxattr,
1109 .fiemap = f2fs_fiemap,
1110 .fileattr_get = f2fs_fileattr_get,
1111 .fileattr_set = f2fs_fileattr_set,
1114 static int fill_zero(struct inode *inode, pgoff_t index,
1115 loff_t start, loff_t len)
1117 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1123 f2fs_balance_fs(sbi, true);
1126 page = f2fs_get_new_data_page(inode, NULL, index, false);
1127 f2fs_unlock_op(sbi);
1130 return PTR_ERR(page);
1132 f2fs_wait_on_page_writeback(page, DATA, true, true);
1133 zero_user(page, start, len);
1134 set_page_dirty(page);
1135 f2fs_put_page(page, 1);
1139 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1143 while (pg_start < pg_end) {
1144 struct dnode_of_data dn;
1145 pgoff_t end_offset, count;
1147 set_new_dnode(&dn, inode, NULL, NULL, 0);
1148 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1150 if (err == -ENOENT) {
1151 pg_start = f2fs_get_next_page_offset(&dn,
1158 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1159 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1161 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1163 f2fs_truncate_data_blocks_range(&dn, count);
1164 f2fs_put_dnode(&dn);
1171 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1173 pgoff_t pg_start, pg_end;
1174 loff_t off_start, off_end;
1177 ret = f2fs_convert_inline_inode(inode);
1181 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1182 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1184 off_start = offset & (PAGE_SIZE - 1);
1185 off_end = (offset + len) & (PAGE_SIZE - 1);
1187 if (pg_start == pg_end) {
1188 ret = fill_zero(inode, pg_start, off_start,
1189 off_end - off_start);
1194 ret = fill_zero(inode, pg_start++, off_start,
1195 PAGE_SIZE - off_start);
1200 ret = fill_zero(inode, pg_end, 0, off_end);
1205 if (pg_start < pg_end) {
1206 loff_t blk_start, blk_end;
1207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1209 f2fs_balance_fs(sbi, true);
1211 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1212 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1214 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1215 filemap_invalidate_lock(inode->i_mapping);
1217 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1220 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1221 f2fs_unlock_op(sbi);
1223 filemap_invalidate_unlock(inode->i_mapping);
1224 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1231 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1232 int *do_replace, pgoff_t off, pgoff_t len)
1234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1235 struct dnode_of_data dn;
1239 set_new_dnode(&dn, inode, NULL, NULL, 0);
1240 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1241 if (ret && ret != -ENOENT) {
1243 } else if (ret == -ENOENT) {
1244 if (dn.max_level == 0)
1246 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1247 dn.ofs_in_node, len);
1253 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1254 dn.ofs_in_node, len);
1255 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1256 *blkaddr = f2fs_data_blkaddr(&dn);
1258 if (__is_valid_data_blkaddr(*blkaddr) &&
1259 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1260 DATA_GENERIC_ENHANCE)) {
1261 f2fs_put_dnode(&dn);
1262 return -EFSCORRUPTED;
1265 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1267 if (f2fs_lfs_mode(sbi)) {
1268 f2fs_put_dnode(&dn);
1272 /* do not invalidate this block address */
1273 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1277 f2fs_put_dnode(&dn);
1286 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1287 int *do_replace, pgoff_t off, int len)
1289 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1290 struct dnode_of_data dn;
1293 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1294 if (*do_replace == 0)
1297 set_new_dnode(&dn, inode, NULL, NULL, 0);
1298 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1300 dec_valid_block_count(sbi, inode, 1);
1301 f2fs_invalidate_blocks(sbi, *blkaddr);
1303 f2fs_update_data_blkaddr(&dn, *blkaddr);
1305 f2fs_put_dnode(&dn);
1310 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1311 block_t *blkaddr, int *do_replace,
1312 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1314 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1319 if (blkaddr[i] == NULL_ADDR && !full) {
1324 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1325 struct dnode_of_data dn;
1326 struct node_info ni;
1330 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1331 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1335 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1337 f2fs_put_dnode(&dn);
1341 ilen = min((pgoff_t)
1342 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1343 dn.ofs_in_node, len - i);
1345 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1346 f2fs_truncate_data_blocks_range(&dn, 1);
1348 if (do_replace[i]) {
1349 f2fs_i_blocks_write(src_inode,
1351 f2fs_i_blocks_write(dst_inode,
1353 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1354 blkaddr[i], ni.version, true, false);
1360 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1361 if (dst_inode->i_size < new_size)
1362 f2fs_i_size_write(dst_inode, new_size);
1363 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1365 f2fs_put_dnode(&dn);
1367 struct page *psrc, *pdst;
1369 psrc = f2fs_get_lock_data_page(src_inode,
1372 return PTR_ERR(psrc);
1373 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1376 f2fs_put_page(psrc, 1);
1377 return PTR_ERR(pdst);
1380 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1382 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1383 set_page_dirty(pdst);
1384 set_page_private_gcing(pdst);
1385 f2fs_put_page(pdst, 1);
1386 f2fs_put_page(psrc, 1);
1388 ret = f2fs_truncate_hole(src_inode,
1389 src + i, src + i + 1);
1398 static int __exchange_data_block(struct inode *src_inode,
1399 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1400 pgoff_t len, bool full)
1402 block_t *src_blkaddr;
1408 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1410 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1411 array_size(olen, sizeof(block_t)),
1416 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1417 array_size(olen, sizeof(int)),
1420 kvfree(src_blkaddr);
1424 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1425 do_replace, src, olen);
1429 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1430 do_replace, src, dst, olen, full);
1438 kvfree(src_blkaddr);
1444 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1445 kvfree(src_blkaddr);
1450 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1453 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1454 pgoff_t start = offset >> PAGE_SHIFT;
1455 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1458 f2fs_balance_fs(sbi, true);
1460 /* avoid gc operation during block exchange */
1461 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1462 filemap_invalidate_lock(inode->i_mapping);
1465 f2fs_drop_extent_tree(inode);
1466 truncate_pagecache(inode, offset);
1467 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1468 f2fs_unlock_op(sbi);
1470 filemap_invalidate_unlock(inode->i_mapping);
1471 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1475 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1480 if (offset + len >= i_size_read(inode))
1483 /* collapse range should be aligned to block size of f2fs. */
1484 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1487 ret = f2fs_convert_inline_inode(inode);
1491 /* write out all dirty pages from offset */
1492 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1496 ret = f2fs_do_collapse(inode, offset, len);
1500 /* write out all moved pages, if possible */
1501 filemap_invalidate_lock(inode->i_mapping);
1502 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1503 truncate_pagecache(inode, offset);
1505 new_size = i_size_read(inode) - len;
1506 ret = f2fs_truncate_blocks(inode, new_size, true);
1507 filemap_invalidate_unlock(inode->i_mapping);
1509 f2fs_i_size_write(inode, new_size);
1513 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1516 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1517 pgoff_t index = start;
1518 unsigned int ofs_in_node = dn->ofs_in_node;
1522 for (; index < end; index++, dn->ofs_in_node++) {
1523 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1527 dn->ofs_in_node = ofs_in_node;
1528 ret = f2fs_reserve_new_blocks(dn, count);
1532 dn->ofs_in_node = ofs_in_node;
1533 for (index = start; index < end; index++, dn->ofs_in_node++) {
1534 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1536 * f2fs_reserve_new_blocks will not guarantee entire block
1539 if (dn->data_blkaddr == NULL_ADDR) {
1544 if (dn->data_blkaddr == NEW_ADDR)
1547 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1548 DATA_GENERIC_ENHANCE)) {
1549 ret = -EFSCORRUPTED;
1553 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1554 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1557 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1558 f2fs_update_age_extent_cache_range(dn, start, index - start);
1563 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1566 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1567 struct address_space *mapping = inode->i_mapping;
1568 pgoff_t index, pg_start, pg_end;
1569 loff_t new_size = i_size_read(inode);
1570 loff_t off_start, off_end;
1573 ret = inode_newsize_ok(inode, (len + offset));
1577 ret = f2fs_convert_inline_inode(inode);
1581 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1585 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1586 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1588 off_start = offset & (PAGE_SIZE - 1);
1589 off_end = (offset + len) & (PAGE_SIZE - 1);
1591 if (pg_start == pg_end) {
1592 ret = fill_zero(inode, pg_start, off_start,
1593 off_end - off_start);
1597 new_size = max_t(loff_t, new_size, offset + len);
1600 ret = fill_zero(inode, pg_start++, off_start,
1601 PAGE_SIZE - off_start);
1605 new_size = max_t(loff_t, new_size,
1606 (loff_t)pg_start << PAGE_SHIFT);
1609 for (index = pg_start; index < pg_end;) {
1610 struct dnode_of_data dn;
1611 unsigned int end_offset;
1614 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1615 filemap_invalidate_lock(mapping);
1617 truncate_pagecache_range(inode,
1618 (loff_t)index << PAGE_SHIFT,
1619 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1623 set_new_dnode(&dn, inode, NULL, NULL, 0);
1624 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1626 f2fs_unlock_op(sbi);
1627 filemap_invalidate_unlock(mapping);
1628 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1632 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1633 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1635 ret = f2fs_do_zero_range(&dn, index, end);
1636 f2fs_put_dnode(&dn);
1638 f2fs_unlock_op(sbi);
1639 filemap_invalidate_unlock(mapping);
1640 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1642 f2fs_balance_fs(sbi, dn.node_changed);
1648 new_size = max_t(loff_t, new_size,
1649 (loff_t)index << PAGE_SHIFT);
1653 ret = fill_zero(inode, pg_end, 0, off_end);
1657 new_size = max_t(loff_t, new_size, offset + len);
1662 if (new_size > i_size_read(inode)) {
1663 if (mode & FALLOC_FL_KEEP_SIZE)
1664 file_set_keep_isize(inode);
1666 f2fs_i_size_write(inode, new_size);
1671 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1674 struct address_space *mapping = inode->i_mapping;
1675 pgoff_t nr, pg_start, pg_end, delta, idx;
1679 new_size = i_size_read(inode) + len;
1680 ret = inode_newsize_ok(inode, new_size);
1684 if (offset >= i_size_read(inode))
1687 /* insert range should be aligned to block size of f2fs. */
1688 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1691 ret = f2fs_convert_inline_inode(inode);
1695 f2fs_balance_fs(sbi, true);
1697 filemap_invalidate_lock(mapping);
1698 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1699 filemap_invalidate_unlock(mapping);
1703 /* write out all dirty pages from offset */
1704 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1708 pg_start = offset >> PAGE_SHIFT;
1709 pg_end = (offset + len) >> PAGE_SHIFT;
1710 delta = pg_end - pg_start;
1711 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1713 /* avoid gc operation during block exchange */
1714 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1715 filemap_invalidate_lock(mapping);
1716 truncate_pagecache(inode, offset);
1718 while (!ret && idx > pg_start) {
1719 nr = idx - pg_start;
1725 f2fs_drop_extent_tree(inode);
1727 ret = __exchange_data_block(inode, inode, idx,
1728 idx + delta, nr, false);
1729 f2fs_unlock_op(sbi);
1731 filemap_invalidate_unlock(mapping);
1732 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1736 /* write out all moved pages, if possible */
1737 filemap_invalidate_lock(mapping);
1738 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1739 truncate_pagecache(inode, offset);
1740 filemap_invalidate_unlock(mapping);
1743 f2fs_i_size_write(inode, new_size);
1747 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1748 loff_t len, int mode)
1750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1751 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1752 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1753 .m_may_create = true };
1754 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1755 .init_gc_type = FG_GC,
1756 .should_migrate_blocks = false,
1757 .err_gc_skipped = true,
1758 .nr_free_secs = 0 };
1759 pgoff_t pg_start, pg_end;
1762 block_t expanded = 0;
1765 err = inode_newsize_ok(inode, (len + offset));
1769 err = f2fs_convert_inline_inode(inode);
1773 f2fs_balance_fs(sbi, true);
1775 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1776 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1777 off_end = (offset + len) & (PAGE_SIZE - 1);
1779 map.m_lblk = pg_start;
1780 map.m_len = pg_end - pg_start;
1787 if (f2fs_is_pinned_file(inode)) {
1788 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1789 block_t sec_len = roundup(map.m_len, sec_blks);
1791 map.m_len = sec_blks;
1793 if (has_not_enough_free_secs(sbi, 0,
1794 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1795 f2fs_down_write(&sbi->gc_lock);
1796 stat_inc_gc_call_count(sbi, FOREGROUND);
1797 err = f2fs_gc(sbi, &gc_control);
1798 if (err && err != -ENODATA)
1802 f2fs_down_write(&sbi->pin_sem);
1804 err = f2fs_allocate_pinning_section(sbi);
1806 f2fs_up_write(&sbi->pin_sem);
1810 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1811 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1812 file_dont_truncate(inode);
1814 f2fs_up_write(&sbi->pin_sem);
1816 expanded += map.m_len;
1817 sec_len -= map.m_len;
1818 map.m_lblk += map.m_len;
1819 if (!err && sec_len)
1822 map.m_len = expanded;
1824 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1825 expanded = map.m_len;
1834 last_off = pg_start + expanded - 1;
1836 /* update new size to the failed position */
1837 new_size = (last_off == pg_end) ? offset + len :
1838 (loff_t)(last_off + 1) << PAGE_SHIFT;
1840 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1843 if (new_size > i_size_read(inode)) {
1844 if (mode & FALLOC_FL_KEEP_SIZE)
1845 file_set_keep_isize(inode);
1847 f2fs_i_size_write(inode, new_size);
1853 static long f2fs_fallocate(struct file *file, int mode,
1854 loff_t offset, loff_t len)
1856 struct inode *inode = file_inode(file);
1859 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1861 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1863 if (!f2fs_is_compress_backend_ready(inode))
1866 /* f2fs only support ->fallocate for regular file */
1867 if (!S_ISREG(inode->i_mode))
1870 if (IS_ENCRYPTED(inode) &&
1871 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1874 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1875 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1876 FALLOC_FL_INSERT_RANGE))
1882 * Pinned file should not support partial truncation since the block
1883 * can be used by applications.
1885 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1886 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1887 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1892 ret = file_modified(file);
1897 * wait for inflight dio, blocks should be removed after IO
1900 inode_dio_wait(inode);
1902 if (mode & FALLOC_FL_PUNCH_HOLE) {
1903 if (offset >= inode->i_size)
1906 ret = f2fs_punch_hole(inode, offset, len);
1907 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1908 ret = f2fs_collapse_range(inode, offset, len);
1909 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1910 ret = f2fs_zero_range(inode, offset, len, mode);
1911 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1912 ret = f2fs_insert_range(inode, offset, len);
1914 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1918 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1919 f2fs_mark_inode_dirty_sync(inode, false);
1920 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1924 inode_unlock(inode);
1926 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1930 static int f2fs_release_file(struct inode *inode, struct file *filp)
1933 * f2fs_release_file is called at every close calls. So we should
1934 * not drop any inmemory pages by close called by other process.
1936 if (!(filp->f_mode & FMODE_WRITE) ||
1937 atomic_read(&inode->i_writecount) != 1)
1941 f2fs_abort_atomic_write(inode, true);
1942 inode_unlock(inode);
1947 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1949 struct inode *inode = file_inode(file);
1952 * If the process doing a transaction is crashed, we should do
1953 * roll-back. Otherwise, other reader/write can see corrupted database
1954 * until all the writers close its file. Since this should be done
1955 * before dropping file lock, it needs to do in ->flush.
1957 if (F2FS_I(inode)->atomic_write_task == current &&
1958 (current->flags & PF_EXITING)) {
1960 f2fs_abort_atomic_write(inode, true);
1961 inode_unlock(inode);
1967 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1969 struct f2fs_inode_info *fi = F2FS_I(inode);
1970 u32 masked_flags = fi->i_flags & mask;
1972 /* mask can be shrunk by flags_valid selector */
1975 /* Is it quota file? Do not allow user to mess with it */
1976 if (IS_NOQUOTA(inode))
1979 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1980 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1982 if (!f2fs_empty_dir(inode))
1986 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1987 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1989 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1993 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1994 if (masked_flags & F2FS_COMPR_FL) {
1995 if (!f2fs_disable_compressed_file(inode))
1998 /* try to convert inline_data to support compression */
1999 int err = f2fs_convert_inline_inode(inode);
2003 f2fs_down_write(&fi->i_sem);
2004 if (!f2fs_may_compress(inode) ||
2005 (S_ISREG(inode->i_mode) &&
2006 F2FS_HAS_BLOCKS(inode))) {
2007 f2fs_up_write(&fi->i_sem);
2010 err = set_compress_context(inode);
2011 f2fs_up_write(&fi->i_sem);
2018 fi->i_flags = iflags | (fi->i_flags & ~mask);
2019 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2020 (fi->i_flags & F2FS_NOCOMP_FL));
2022 if (fi->i_flags & F2FS_PROJINHERIT_FL)
2023 set_inode_flag(inode, FI_PROJ_INHERIT);
2025 clear_inode_flag(inode, FI_PROJ_INHERIT);
2027 inode_set_ctime_current(inode);
2028 f2fs_set_inode_flags(inode);
2029 f2fs_mark_inode_dirty_sync(inode, true);
2033 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2036 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2037 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2038 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2039 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2041 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2042 * FS_IOC_FSSETXATTR is done by the VFS.
2045 static const struct {
2048 } f2fs_fsflags_map[] = {
2049 { F2FS_COMPR_FL, FS_COMPR_FL },
2050 { F2FS_SYNC_FL, FS_SYNC_FL },
2051 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2052 { F2FS_APPEND_FL, FS_APPEND_FL },
2053 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2054 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2055 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2056 { F2FS_INDEX_FL, FS_INDEX_FL },
2057 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2058 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2059 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2062 #define F2FS_GETTABLE_FS_FL ( \
2072 FS_PROJINHERIT_FL | \
2074 FS_INLINE_DATA_FL | \
2079 #define F2FS_SETTABLE_FS_FL ( \
2088 FS_PROJINHERIT_FL | \
2091 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2092 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2097 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2098 if (iflags & f2fs_fsflags_map[i].iflag)
2099 fsflags |= f2fs_fsflags_map[i].fsflag;
2104 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2105 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2110 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2111 if (fsflags & f2fs_fsflags_map[i].fsflag)
2112 iflags |= f2fs_fsflags_map[i].iflag;
2117 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2119 struct inode *inode = file_inode(filp);
2121 return put_user(inode->i_generation, (int __user *)arg);
2124 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2126 struct inode *inode = file_inode(filp);
2127 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2128 struct f2fs_inode_info *fi = F2FS_I(inode);
2129 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2133 if (!(filp->f_mode & FMODE_WRITE))
2136 if (!inode_owner_or_capable(idmap, inode))
2139 if (!S_ISREG(inode->i_mode))
2142 if (filp->f_flags & O_DIRECT)
2145 ret = mnt_want_write_file(filp);
2151 if (!f2fs_disable_compressed_file(inode) ||
2152 f2fs_is_pinned_file(inode)) {
2157 if (f2fs_is_atomic_file(inode))
2160 ret = f2fs_convert_inline_inode(inode);
2164 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2165 f2fs_down_write(&fi->i_gc_rwsem[READ]);
2168 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2169 * f2fs_is_atomic_file.
2171 if (get_dirty_pages(inode))
2172 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2173 inode->i_ino, get_dirty_pages(inode));
2174 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2178 /* Check if the inode already has a COW inode */
2179 if (fi->cow_inode == NULL) {
2180 /* Create a COW inode for atomic write */
2181 struct dentry *dentry = file_dentry(filp);
2182 struct inode *dir = d_inode(dentry->d_parent);
2184 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2188 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2189 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2191 /* Set the COW inode's atomic_inode to the atomic inode */
2192 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2194 /* Reuse the already created COW inode */
2195 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2197 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2199 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2204 f2fs_write_inode(inode, NULL);
2206 stat_inc_atomic_inode(inode);
2208 set_inode_flag(inode, FI_ATOMIC_FILE);
2210 isize = i_size_read(inode);
2211 fi->original_i_size = isize;
2213 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2214 truncate_inode_pages_final(inode->i_mapping);
2215 f2fs_i_size_write(inode, 0);
2218 f2fs_i_size_write(fi->cow_inode, isize);
2221 f2fs_up_write(&fi->i_gc_rwsem[READ]);
2222 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2226 f2fs_update_time(sbi, REQ_TIME);
2227 fi->atomic_write_task = current;
2228 stat_update_max_atomic_write(inode);
2229 fi->atomic_write_cnt = 0;
2231 inode_unlock(inode);
2232 mnt_drop_write_file(filp);
2236 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2238 struct inode *inode = file_inode(filp);
2239 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2242 if (!(filp->f_mode & FMODE_WRITE))
2245 if (!inode_owner_or_capable(idmap, inode))
2248 ret = mnt_want_write_file(filp);
2252 f2fs_balance_fs(F2FS_I_SB(inode), true);
2256 if (f2fs_is_atomic_file(inode)) {
2257 ret = f2fs_commit_atomic_write(inode);
2259 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2261 f2fs_abort_atomic_write(inode, ret);
2263 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2266 inode_unlock(inode);
2267 mnt_drop_write_file(filp);
2271 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2273 struct inode *inode = file_inode(filp);
2274 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2277 if (!(filp->f_mode & FMODE_WRITE))
2280 if (!inode_owner_or_capable(idmap, inode))
2283 ret = mnt_want_write_file(filp);
2289 f2fs_abort_atomic_write(inode, true);
2291 inode_unlock(inode);
2293 mnt_drop_write_file(filp);
2294 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2298 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2299 bool readonly, bool need_lock)
2301 struct super_block *sb = sbi->sb;
2305 case F2FS_GOING_DOWN_FULLSYNC:
2306 ret = bdev_freeze(sb->s_bdev);
2309 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2310 bdev_thaw(sb->s_bdev);
2312 case F2FS_GOING_DOWN_METASYNC:
2313 /* do checkpoint only */
2314 ret = f2fs_sync_fs(sb, 1);
2320 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2322 case F2FS_GOING_DOWN_NOSYNC:
2323 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2325 case F2FS_GOING_DOWN_METAFLUSH:
2326 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2327 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2329 case F2FS_GOING_DOWN_NEED_FSCK:
2330 set_sbi_flag(sbi, SBI_NEED_FSCK);
2331 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2332 set_sbi_flag(sbi, SBI_IS_DIRTY);
2333 /* do checkpoint only */
2334 ret = f2fs_sync_fs(sb, 1);
2346 /* grab sb->s_umount to avoid racing w/ remount() */
2348 down_read(&sbi->sb->s_umount);
2350 f2fs_stop_gc_thread(sbi);
2351 f2fs_stop_discard_thread(sbi);
2353 f2fs_drop_discard_cmd(sbi);
2354 clear_opt(sbi, DISCARD);
2357 up_read(&sbi->sb->s_umount);
2359 f2fs_update_time(sbi, REQ_TIME);
2362 trace_f2fs_shutdown(sbi, flag, ret);
2367 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2369 struct inode *inode = file_inode(filp);
2370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2373 bool need_drop = false, readonly = false;
2375 if (!capable(CAP_SYS_ADMIN))
2378 if (get_user(in, (__u32 __user *)arg))
2381 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2382 ret = mnt_want_write_file(filp);
2387 /* fallback to nosync shutdown for readonly fs */
2388 in = F2FS_GOING_DOWN_NOSYNC;
2395 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2398 mnt_drop_write_file(filp);
2403 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2405 struct inode *inode = file_inode(filp);
2406 struct super_block *sb = inode->i_sb;
2407 struct fstrim_range range;
2410 if (!capable(CAP_SYS_ADMIN))
2413 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2416 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2420 ret = mnt_want_write_file(filp);
2424 range.minlen = max((unsigned int)range.minlen,
2425 bdev_discard_granularity(sb->s_bdev));
2426 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2427 mnt_drop_write_file(filp);
2431 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2434 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2438 static bool uuid_is_nonzero(__u8 u[16])
2442 for (i = 0; i < 16; i++)
2448 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2450 struct inode *inode = file_inode(filp);
2453 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2456 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2457 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2461 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2463 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2465 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2468 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2470 struct inode *inode = file_inode(filp);
2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2472 u8 encrypt_pw_salt[16];
2475 if (!f2fs_sb_has_encrypt(sbi))
2478 err = mnt_want_write_file(filp);
2482 f2fs_down_write(&sbi->sb_lock);
2484 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2487 /* update superblock with uuid */
2488 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2490 err = f2fs_commit_super(sbi, false);
2493 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2497 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2499 f2fs_up_write(&sbi->sb_lock);
2500 mnt_drop_write_file(filp);
2502 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2508 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2511 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2514 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2517 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2519 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2522 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2525 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2527 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2530 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2533 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2536 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2539 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2542 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2545 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2548 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2551 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2553 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2556 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2559 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2561 struct inode *inode = file_inode(filp);
2562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2563 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2565 .should_migrate_blocks = false,
2566 .nr_free_secs = 0 };
2570 if (!capable(CAP_SYS_ADMIN))
2573 if (get_user(sync, (__u32 __user *)arg))
2576 if (f2fs_readonly(sbi->sb))
2579 ret = mnt_want_write_file(filp);
2584 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2589 f2fs_down_write(&sbi->gc_lock);
2592 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2593 gc_control.err_gc_skipped = sync;
2594 stat_inc_gc_call_count(sbi, FOREGROUND);
2595 ret = f2fs_gc(sbi, &gc_control);
2597 mnt_drop_write_file(filp);
2601 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2603 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2604 struct f2fs_gc_control gc_control = {
2605 .init_gc_type = range->sync ? FG_GC : BG_GC,
2607 .should_migrate_blocks = false,
2608 .err_gc_skipped = range->sync,
2609 .nr_free_secs = 0 };
2613 if (!capable(CAP_SYS_ADMIN))
2615 if (f2fs_readonly(sbi->sb))
2618 end = range->start + range->len;
2619 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2620 end >= MAX_BLKADDR(sbi))
2623 ret = mnt_want_write_file(filp);
2629 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2634 f2fs_down_write(&sbi->gc_lock);
2637 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2638 stat_inc_gc_call_count(sbi, FOREGROUND);
2639 ret = f2fs_gc(sbi, &gc_control);
2645 range->start += CAP_BLKS_PER_SEC(sbi);
2646 if (range->start <= end)
2649 mnt_drop_write_file(filp);
2653 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2655 struct f2fs_gc_range range;
2657 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2660 return __f2fs_ioc_gc_range(filp, &range);
2663 static int f2fs_ioc_write_checkpoint(struct file *filp)
2665 struct inode *inode = file_inode(filp);
2666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2669 if (!capable(CAP_SYS_ADMIN))
2672 if (f2fs_readonly(sbi->sb))
2675 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2676 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2680 ret = mnt_want_write_file(filp);
2684 ret = f2fs_sync_fs(sbi->sb, 1);
2686 mnt_drop_write_file(filp);
2690 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2692 struct f2fs_defragment *range)
2694 struct inode *inode = file_inode(filp);
2695 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2696 .m_seg_type = NO_CHECK_TYPE,
2697 .m_may_create = false };
2698 struct extent_info ei = {};
2699 pgoff_t pg_start, pg_end, next_pgofs;
2700 unsigned int total = 0, sec_num;
2701 block_t blk_end = 0;
2702 bool fragmented = false;
2705 f2fs_balance_fs(sbi, true);
2708 pg_start = range->start >> PAGE_SHIFT;
2709 pg_end = min_t(pgoff_t,
2710 (range->start + range->len) >> PAGE_SHIFT,
2711 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2713 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2714 f2fs_is_atomic_file(inode)) {
2719 /* if in-place-update policy is enabled, don't waste time here */
2720 set_inode_flag(inode, FI_OPU_WRITE);
2721 if (f2fs_should_update_inplace(inode, NULL)) {
2726 /* writeback all dirty pages in the range */
2727 err = filemap_write_and_wait_range(inode->i_mapping,
2728 pg_start << PAGE_SHIFT,
2729 (pg_end << PAGE_SHIFT) - 1);
2734 * lookup mapping info in extent cache, skip defragmenting if physical
2735 * block addresses are continuous.
2737 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2738 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2742 map.m_lblk = pg_start;
2743 map.m_next_pgofs = &next_pgofs;
2746 * lookup mapping info in dnode page cache, skip defragmenting if all
2747 * physical block addresses are continuous even if there are hole(s)
2748 * in logical blocks.
2750 while (map.m_lblk < pg_end) {
2751 map.m_len = pg_end - map.m_lblk;
2752 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2756 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2757 map.m_lblk = next_pgofs;
2761 if (blk_end && blk_end != map.m_pblk)
2764 /* record total count of block that we're going to move */
2767 blk_end = map.m_pblk + map.m_len;
2769 map.m_lblk += map.m_len;
2777 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2780 * make sure there are enough free section for LFS allocation, this can
2781 * avoid defragment running in SSR mode when free section are allocated
2784 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2789 map.m_lblk = pg_start;
2790 map.m_len = pg_end - pg_start;
2793 while (map.m_lblk < pg_end) {
2798 map.m_len = pg_end - map.m_lblk;
2799 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2803 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2804 map.m_lblk = next_pgofs;
2808 set_inode_flag(inode, FI_SKIP_WRITES);
2811 while (idx < map.m_lblk + map.m_len &&
2812 cnt < BLKS_PER_SEG(sbi)) {
2815 page = f2fs_get_lock_data_page(inode, idx, true);
2817 err = PTR_ERR(page);
2821 f2fs_wait_on_page_writeback(page, DATA, true, true);
2823 set_page_dirty(page);
2824 set_page_private_gcing(page);
2825 f2fs_put_page(page, 1);
2834 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2837 clear_inode_flag(inode, FI_SKIP_WRITES);
2839 err = filemap_fdatawrite(inode->i_mapping);
2844 clear_inode_flag(inode, FI_SKIP_WRITES);
2846 clear_inode_flag(inode, FI_OPU_WRITE);
2848 inode_unlock(inode);
2850 range->len = (u64)total << PAGE_SHIFT;
2854 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2856 struct inode *inode = file_inode(filp);
2857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2858 struct f2fs_defragment range;
2861 if (!capable(CAP_SYS_ADMIN))
2864 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2867 if (f2fs_readonly(sbi->sb))
2870 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2874 /* verify alignment of offset & size */
2875 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2878 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2879 max_file_blocks(inode)))
2882 err = mnt_want_write_file(filp);
2886 err = f2fs_defragment_range(sbi, filp, &range);
2887 mnt_drop_write_file(filp);
2890 f2fs_update_time(sbi, REQ_TIME);
2894 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2901 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2902 struct file *file_out, loff_t pos_out, size_t len)
2904 struct inode *src = file_inode(file_in);
2905 struct inode *dst = file_inode(file_out);
2906 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2907 size_t olen = len, dst_max_i_size = 0;
2911 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2912 src->i_sb != dst->i_sb)
2915 if (unlikely(f2fs_readonly(src->i_sb)))
2918 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2921 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2924 if (pos_out < 0 || pos_in < 0)
2928 if (pos_in == pos_out)
2930 if (pos_out > pos_in && pos_out < pos_in + len)
2937 if (!inode_trylock(dst))
2941 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2942 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2947 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2953 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2956 olen = len = src->i_size - pos_in;
2957 if (pos_in + len == src->i_size)
2958 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2964 dst_osize = dst->i_size;
2965 if (pos_out + olen > dst->i_size)
2966 dst_max_i_size = pos_out + olen;
2968 /* verify the end result is block aligned */
2969 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2970 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2971 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2974 ret = f2fs_convert_inline_inode(src);
2978 ret = f2fs_convert_inline_inode(dst);
2982 /* write out all dirty pages from offset */
2983 ret = filemap_write_and_wait_range(src->i_mapping,
2984 pos_in, pos_in + len);
2988 ret = filemap_write_and_wait_range(dst->i_mapping,
2989 pos_out, pos_out + len);
2993 f2fs_balance_fs(sbi, true);
2995 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2998 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3003 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3004 F2FS_BYTES_TO_BLK(pos_out),
3005 F2FS_BYTES_TO_BLK(len), false);
3009 f2fs_i_size_write(dst, dst_max_i_size);
3010 else if (dst_osize != dst->i_size)
3011 f2fs_i_size_write(dst, dst_osize);
3013 f2fs_unlock_op(sbi);
3016 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3018 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3022 inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3023 f2fs_mark_inode_dirty_sync(src, false);
3025 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3026 f2fs_mark_inode_dirty_sync(dst, false);
3028 f2fs_update_time(sbi, REQ_TIME);
3038 static int __f2fs_ioc_move_range(struct file *filp,
3039 struct f2fs_move_range *range)
3044 if (!(filp->f_mode & FMODE_READ) ||
3045 !(filp->f_mode & FMODE_WRITE))
3048 dst = fdget(range->dst_fd);
3052 if (!(fd_file(dst)->f_mode & FMODE_WRITE)) {
3057 err = mnt_want_write_file(filp);
3061 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3062 range->pos_out, range->len);
3064 mnt_drop_write_file(filp);
3070 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3072 struct f2fs_move_range range;
3074 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3077 return __f2fs_ioc_move_range(filp, &range);
3080 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3082 struct inode *inode = file_inode(filp);
3083 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3084 struct sit_info *sm = SIT_I(sbi);
3085 unsigned int start_segno = 0, end_segno = 0;
3086 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3087 struct f2fs_flush_device range;
3088 struct f2fs_gc_control gc_control = {
3089 .init_gc_type = FG_GC,
3090 .should_migrate_blocks = true,
3091 .err_gc_skipped = true,
3092 .nr_free_secs = 0 };
3095 if (!capable(CAP_SYS_ADMIN))
3098 if (f2fs_readonly(sbi->sb))
3101 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3104 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3108 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3109 __is_large_section(sbi)) {
3110 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3111 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3115 ret = mnt_want_write_file(filp);
3119 if (range.dev_num != 0)
3120 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3121 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3123 start_segno = sm->last_victim[FLUSH_DEVICE];
3124 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3125 start_segno = dev_start_segno;
3126 end_segno = min(start_segno + range.segments, dev_end_segno);
3128 while (start_segno < end_segno) {
3129 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3133 sm->last_victim[GC_CB] = end_segno + 1;
3134 sm->last_victim[GC_GREEDY] = end_segno + 1;
3135 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3137 gc_control.victim_segno = start_segno;
3138 stat_inc_gc_call_count(sbi, FOREGROUND);
3139 ret = f2fs_gc(sbi, &gc_control);
3147 mnt_drop_write_file(filp);
3151 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3153 struct inode *inode = file_inode(filp);
3154 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3156 /* Must validate to set it with SQLite behavior in Android. */
3157 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3159 return put_user(sb_feature, (u32 __user *)arg);
3163 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3165 struct dquot *transfer_to[MAXQUOTAS] = {};
3166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167 struct super_block *sb = sbi->sb;
3170 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3171 if (IS_ERR(transfer_to[PRJQUOTA]))
3172 return PTR_ERR(transfer_to[PRJQUOTA]);
3174 err = __dquot_transfer(inode, transfer_to);
3176 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3177 dqput(transfer_to[PRJQUOTA]);
3181 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3183 struct f2fs_inode_info *fi = F2FS_I(inode);
3184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3185 struct f2fs_inode *ri = NULL;
3189 if (!f2fs_sb_has_project_quota(sbi)) {
3190 if (projid != F2FS_DEF_PROJID)
3196 if (!f2fs_has_extra_attr(inode))
3199 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3201 if (projid_eq(kprojid, fi->i_projid))
3205 /* Is it quota file? Do not allow user to mess with it */
3206 if (IS_NOQUOTA(inode))
3209 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3212 err = f2fs_dquot_initialize(inode);
3217 err = f2fs_transfer_project_quota(inode, kprojid);
3221 fi->i_projid = kprojid;
3222 inode_set_ctime_current(inode);
3223 f2fs_mark_inode_dirty_sync(inode, true);
3225 f2fs_unlock_op(sbi);
3229 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3234 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3236 if (projid != F2FS_DEF_PROJID)
3242 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3244 struct inode *inode = d_inode(dentry);
3245 struct f2fs_inode_info *fi = F2FS_I(inode);
3246 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3248 if (IS_ENCRYPTED(inode))
3249 fsflags |= FS_ENCRYPT_FL;
3250 if (IS_VERITY(inode))
3251 fsflags |= FS_VERITY_FL;
3252 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3253 fsflags |= FS_INLINE_DATA_FL;
3254 if (is_inode_flag_set(inode, FI_PIN_FILE))
3255 fsflags |= FS_NOCOW_FL;
3257 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3259 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3260 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3265 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3266 struct dentry *dentry, struct fileattr *fa)
3268 struct inode *inode = d_inode(dentry);
3269 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3273 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3275 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3277 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3279 fsflags &= F2FS_SETTABLE_FS_FL;
3280 if (!fa->flags_valid)
3281 mask &= FS_COMMON_FL;
3283 iflags = f2fs_fsflags_to_iflags(fsflags);
3284 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3287 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3289 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3294 int f2fs_pin_file_control(struct inode *inode, bool inc)
3296 struct f2fs_inode_info *fi = F2FS_I(inode);
3297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3299 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3300 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3301 __func__, inode->i_ino, fi->i_gc_failures);
3302 clear_inode_flag(inode, FI_PIN_FILE);
3306 /* Use i_gc_failures for normal file as a risk signal. */
3308 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3313 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3315 struct inode *inode = file_inode(filp);
3316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3320 if (get_user(pin, (__u32 __user *)arg))
3323 if (!S_ISREG(inode->i_mode))
3326 if (f2fs_readonly(sbi->sb))
3329 ret = mnt_want_write_file(filp);
3335 if (f2fs_is_atomic_file(inode)) {
3341 clear_inode_flag(inode, FI_PIN_FILE);
3342 f2fs_i_gc_failures_write(inode, 0);
3344 } else if (f2fs_is_pinned_file(inode)) {
3348 if (F2FS_HAS_BLOCKS(inode)) {
3353 /* Let's allow file pinning on zoned device. */
3354 if (!f2fs_sb_has_blkzoned(sbi) &&
3355 f2fs_should_update_outplace(inode, NULL)) {
3360 if (f2fs_pin_file_control(inode, false)) {
3365 ret = f2fs_convert_inline_inode(inode);
3369 if (!f2fs_disable_compressed_file(inode)) {
3374 set_inode_flag(inode, FI_PIN_FILE);
3375 ret = F2FS_I(inode)->i_gc_failures;
3377 f2fs_update_time(sbi, REQ_TIME);
3379 inode_unlock(inode);
3380 mnt_drop_write_file(filp);
3384 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3386 struct inode *inode = file_inode(filp);
3389 if (is_inode_flag_set(inode, FI_PIN_FILE))
3390 pin = F2FS_I(inode)->i_gc_failures;
3391 return put_user(pin, (u32 __user *)arg);
3394 int f2fs_precache_extents(struct inode *inode)
3396 struct f2fs_inode_info *fi = F2FS_I(inode);
3397 struct f2fs_map_blocks map;
3398 pgoff_t m_next_extent;
3402 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3407 map.m_next_pgofs = NULL;
3408 map.m_next_extent = &m_next_extent;
3409 map.m_seg_type = NO_CHECK_TYPE;
3410 map.m_may_create = false;
3411 end = F2FS_BLK_ALIGN(i_size_read(inode));
3413 while (map.m_lblk < end) {
3414 map.m_len = end - map.m_lblk;
3416 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3417 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3418 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3419 if (err || !map.m_len)
3422 map.m_lblk = m_next_extent;
3428 static int f2fs_ioc_precache_extents(struct file *filp)
3430 return f2fs_precache_extents(file_inode(filp));
3433 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3435 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3438 if (!capable(CAP_SYS_ADMIN))
3441 if (f2fs_readonly(sbi->sb))
3444 if (copy_from_user(&block_count, (void __user *)arg,
3445 sizeof(block_count)))
3448 return f2fs_resize_fs(filp, block_count);
3451 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3453 struct inode *inode = file_inode(filp);
3455 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3457 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3458 f2fs_warn(F2FS_I_SB(inode),
3459 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3464 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3467 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3469 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3472 return fsverity_ioctl_measure(filp, (void __user *)arg);
3475 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3477 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3480 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3483 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3485 struct inode *inode = file_inode(filp);
3486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3491 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3495 f2fs_down_read(&sbi->sb_lock);
3496 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3497 ARRAY_SIZE(sbi->raw_super->volume_name),
3498 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3499 f2fs_up_read(&sbi->sb_lock);
3501 if (copy_to_user((char __user *)arg, vbuf,
3502 min(FSLABEL_MAX, count)))
3509 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3511 struct inode *inode = file_inode(filp);
3512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3516 if (!capable(CAP_SYS_ADMIN))
3519 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3521 return PTR_ERR(vbuf);
3523 err = mnt_want_write_file(filp);
3527 f2fs_down_write(&sbi->sb_lock);
3529 memset(sbi->raw_super->volume_name, 0,
3530 sizeof(sbi->raw_super->volume_name));
3531 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3532 sbi->raw_super->volume_name,
3533 ARRAY_SIZE(sbi->raw_super->volume_name));
3535 err = f2fs_commit_super(sbi, false);
3537 f2fs_up_write(&sbi->sb_lock);
3539 mnt_drop_write_file(filp);
3545 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3547 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3550 if (!f2fs_compressed_file(inode))
3553 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3558 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3560 struct inode *inode = file_inode(filp);
3564 ret = f2fs_get_compress_blocks(inode, &blocks);
3568 return put_user(blocks, (u64 __user *)arg);
3571 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3573 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3574 unsigned int released_blocks = 0;
3575 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3579 for (i = 0; i < count; i++) {
3580 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3581 dn->ofs_in_node + i);
3583 if (!__is_valid_data_blkaddr(blkaddr))
3585 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3586 DATA_GENERIC_ENHANCE)))
3587 return -EFSCORRUPTED;
3591 int compr_blocks = 0;
3593 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3594 blkaddr = f2fs_data_blkaddr(dn);
3597 if (blkaddr == COMPRESS_ADDR)
3599 dn->ofs_in_node += cluster_size;
3603 if (__is_valid_data_blkaddr(blkaddr))
3606 if (blkaddr != NEW_ADDR)
3609 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3612 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3613 dec_valid_block_count(sbi, dn->inode,
3614 cluster_size - compr_blocks);
3616 released_blocks += cluster_size - compr_blocks;
3618 count -= cluster_size;
3621 return released_blocks;
3624 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3626 struct inode *inode = file_inode(filp);
3627 struct f2fs_inode_info *fi = F2FS_I(inode);
3628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3629 pgoff_t page_idx = 0, last_idx;
3630 unsigned int released_blocks = 0;
3634 if (!f2fs_sb_has_compression(sbi))
3637 if (f2fs_readonly(sbi->sb))
3640 ret = mnt_want_write_file(filp);
3644 f2fs_balance_fs(sbi, true);
3648 writecount = atomic_read(&inode->i_writecount);
3649 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3650 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3655 if (!f2fs_compressed_file(inode) ||
3656 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3661 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3665 if (!atomic_read(&fi->i_compr_blocks)) {
3670 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3671 inode_set_ctime_current(inode);
3672 f2fs_mark_inode_dirty_sync(inode, true);
3674 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3675 filemap_invalidate_lock(inode->i_mapping);
3677 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3679 while (page_idx < last_idx) {
3680 struct dnode_of_data dn;
3681 pgoff_t end_offset, count;
3685 set_new_dnode(&dn, inode, NULL, NULL, 0);
3686 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3688 f2fs_unlock_op(sbi);
3689 if (ret == -ENOENT) {
3690 page_idx = f2fs_get_next_page_offset(&dn,
3698 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3699 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3700 count = round_up(count, fi->i_cluster_size);
3702 ret = release_compress_blocks(&dn, count);
3704 f2fs_put_dnode(&dn);
3706 f2fs_unlock_op(sbi);
3712 released_blocks += ret;
3715 filemap_invalidate_unlock(inode->i_mapping);
3716 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3718 if (released_blocks)
3719 f2fs_update_time(sbi, REQ_TIME);
3720 inode_unlock(inode);
3722 mnt_drop_write_file(filp);
3725 ret = put_user(released_blocks, (u64 __user *)arg);
3726 } else if (released_blocks &&
3727 atomic_read(&fi->i_compr_blocks)) {
3728 set_sbi_flag(sbi, SBI_NEED_FSCK);
3729 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3730 "iblocks=%llu, released=%u, compr_blocks=%u, "
3732 __func__, inode->i_ino, inode->i_blocks,
3734 atomic_read(&fi->i_compr_blocks));
3740 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3741 unsigned int *reserved_blocks)
3743 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3744 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3748 for (i = 0; i < count; i++) {
3749 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3750 dn->ofs_in_node + i);
3752 if (!__is_valid_data_blkaddr(blkaddr))
3754 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3755 DATA_GENERIC_ENHANCE)))
3756 return -EFSCORRUPTED;
3760 int compr_blocks = 0;
3761 blkcnt_t reserved = 0;
3762 blkcnt_t to_reserved;
3765 for (i = 0; i < cluster_size; i++) {
3766 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3767 dn->ofs_in_node + i);
3770 if (blkaddr != COMPRESS_ADDR) {
3771 dn->ofs_in_node += cluster_size;
3778 * compressed cluster was not released due to it
3779 * fails in release_compress_blocks(), so NEW_ADDR
3780 * is a possible case.
3782 if (blkaddr == NEW_ADDR) {
3786 if (__is_valid_data_blkaddr(blkaddr)) {
3792 to_reserved = cluster_size - compr_blocks - reserved;
3794 /* for the case all blocks in cluster were reserved */
3795 if (to_reserved == 1) {
3796 dn->ofs_in_node += cluster_size;
3800 ret = inc_valid_block_count(sbi, dn->inode,
3801 &to_reserved, false);
3805 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3806 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3807 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3810 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3812 *reserved_blocks += to_reserved;
3814 count -= cluster_size;
3820 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3822 struct inode *inode = file_inode(filp);
3823 struct f2fs_inode_info *fi = F2FS_I(inode);
3824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3825 pgoff_t page_idx = 0, last_idx;
3826 unsigned int reserved_blocks = 0;
3829 if (!f2fs_sb_has_compression(sbi))
3832 if (f2fs_readonly(sbi->sb))
3835 ret = mnt_want_write_file(filp);
3839 f2fs_balance_fs(sbi, true);
3843 if (!f2fs_compressed_file(inode) ||
3844 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3849 if (atomic_read(&fi->i_compr_blocks))
3852 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3853 filemap_invalidate_lock(inode->i_mapping);
3855 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3857 while (page_idx < last_idx) {
3858 struct dnode_of_data dn;
3859 pgoff_t end_offset, count;
3863 set_new_dnode(&dn, inode, NULL, NULL, 0);
3864 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3866 f2fs_unlock_op(sbi);
3867 if (ret == -ENOENT) {
3868 page_idx = f2fs_get_next_page_offset(&dn,
3876 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3877 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3878 count = round_up(count, fi->i_cluster_size);
3880 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3882 f2fs_put_dnode(&dn);
3884 f2fs_unlock_op(sbi);
3892 filemap_invalidate_unlock(inode->i_mapping);
3893 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3896 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3897 inode_set_ctime_current(inode);
3898 f2fs_mark_inode_dirty_sync(inode, true);
3901 if (reserved_blocks)
3902 f2fs_update_time(sbi, REQ_TIME);
3903 inode_unlock(inode);
3904 mnt_drop_write_file(filp);
3907 ret = put_user(reserved_blocks, (u64 __user *)arg);
3908 } else if (reserved_blocks &&
3909 atomic_read(&fi->i_compr_blocks)) {
3910 set_sbi_flag(sbi, SBI_NEED_FSCK);
3911 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3912 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3914 __func__, inode->i_ino, inode->i_blocks,
3916 atomic_read(&fi->i_compr_blocks));
3922 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3923 pgoff_t off, block_t block, block_t len, u32 flags)
3925 sector_t sector = SECTOR_FROM_BLOCK(block);
3926 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3929 if (flags & F2FS_TRIM_FILE_DISCARD) {
3930 if (bdev_max_secure_erase_sectors(bdev))
3931 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3934 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3938 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3939 if (IS_ENCRYPTED(inode))
3940 ret = fscrypt_zeroout_range(inode, off, block, len);
3942 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3949 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3951 struct inode *inode = file_inode(filp);
3952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3953 struct address_space *mapping = inode->i_mapping;
3954 struct block_device *prev_bdev = NULL;
3955 struct f2fs_sectrim_range range;
3956 pgoff_t index, pg_end, prev_index = 0;
3957 block_t prev_block = 0, len = 0;
3959 bool to_end = false;
3962 if (!(filp->f_mode & FMODE_WRITE))
3965 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3969 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3970 !S_ISREG(inode->i_mode))
3973 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3974 !f2fs_hw_support_discard(sbi)) ||
3975 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3976 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3979 ret = mnt_want_write_file(filp);
3984 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3985 range.start >= inode->i_size) {
3993 if (inode->i_size - range.start > range.len) {
3994 end_addr = range.start + range.len;
3996 end_addr = range.len == (u64)-1 ?
3997 sbi->sb->s_maxbytes : inode->i_size;
4001 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4002 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4007 index = F2FS_BYTES_TO_BLK(range.start);
4008 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4010 ret = f2fs_convert_inline_inode(inode);
4014 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4015 filemap_invalidate_lock(mapping);
4017 ret = filemap_write_and_wait_range(mapping, range.start,
4018 to_end ? LLONG_MAX : end_addr - 1);
4022 truncate_inode_pages_range(mapping, range.start,
4023 to_end ? -1 : end_addr - 1);
4025 while (index < pg_end) {
4026 struct dnode_of_data dn;
4027 pgoff_t end_offset, count;
4030 set_new_dnode(&dn, inode, NULL, NULL, 0);
4031 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4033 if (ret == -ENOENT) {
4034 index = f2fs_get_next_page_offset(&dn, index);
4040 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4041 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4042 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4043 struct block_device *cur_bdev;
4044 block_t blkaddr = f2fs_data_blkaddr(&dn);
4046 if (!__is_valid_data_blkaddr(blkaddr))
4049 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4050 DATA_GENERIC_ENHANCE)) {
4051 ret = -EFSCORRUPTED;
4052 f2fs_put_dnode(&dn);
4056 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4057 if (f2fs_is_multi_device(sbi)) {
4058 int di = f2fs_target_device_index(sbi, blkaddr);
4060 blkaddr -= FDEV(di).start_blk;
4064 if (prev_bdev == cur_bdev &&
4065 index == prev_index + len &&
4066 blkaddr == prev_block + len) {
4069 ret = f2fs_secure_erase(prev_bdev,
4070 inode, prev_index, prev_block,
4073 f2fs_put_dnode(&dn);
4082 prev_bdev = cur_bdev;
4084 prev_block = blkaddr;
4089 f2fs_put_dnode(&dn);
4091 if (fatal_signal_pending(current)) {
4099 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4100 prev_block, len, range.flags);
4101 f2fs_update_time(sbi, REQ_TIME);
4103 filemap_invalidate_unlock(mapping);
4104 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4106 inode_unlock(inode);
4107 mnt_drop_write_file(filp);
4112 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4114 struct inode *inode = file_inode(filp);
4115 struct f2fs_comp_option option;
4117 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4120 inode_lock_shared(inode);
4122 if (!f2fs_compressed_file(inode)) {
4123 inode_unlock_shared(inode);
4127 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4128 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4130 inode_unlock_shared(inode);
4132 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4139 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4141 struct inode *inode = file_inode(filp);
4142 struct f2fs_inode_info *fi = F2FS_I(inode);
4143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4144 struct f2fs_comp_option option;
4147 if (!f2fs_sb_has_compression(sbi))
4150 if (!(filp->f_mode & FMODE_WRITE))
4153 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4157 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4158 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4159 option.algorithm >= COMPRESS_MAX)
4162 ret = mnt_want_write_file(filp);
4167 f2fs_down_write(&F2FS_I(inode)->i_sem);
4168 if (!f2fs_compressed_file(inode)) {
4173 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4178 if (F2FS_HAS_BLOCKS(inode)) {
4183 fi->i_compress_algorithm = option.algorithm;
4184 fi->i_log_cluster_size = option.log_cluster_size;
4185 fi->i_cluster_size = BIT(option.log_cluster_size);
4186 /* Set default level */
4187 if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4188 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4190 fi->i_compress_level = 0;
4191 /* Adjust mount option level */
4192 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4193 F2FS_OPTION(sbi).compress_level)
4194 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4195 f2fs_mark_inode_dirty_sync(inode, true);
4197 if (!f2fs_is_compress_backend_ready(inode))
4198 f2fs_warn(sbi, "compression algorithm is successfully set, "
4199 "but current kernel doesn't support this algorithm.");
4201 f2fs_up_write(&fi->i_sem);
4202 inode_unlock(inode);
4203 mnt_drop_write_file(filp);
4208 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4210 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4211 struct address_space *mapping = inode->i_mapping;
4213 pgoff_t redirty_idx = page_idx;
4214 int i, page_len = 0, ret = 0;
4216 page_cache_ra_unbounded(&ractl, len, 0);
4218 for (i = 0; i < len; i++, page_idx++) {
4219 page = read_cache_page(mapping, page_idx, NULL, NULL);
4221 ret = PTR_ERR(page);
4227 for (i = 0; i < page_len; i++, redirty_idx++) {
4228 page = find_lock_page(mapping, redirty_idx);
4230 /* It will never fail, when page has pinned above */
4231 f2fs_bug_on(F2FS_I_SB(inode), !page);
4233 f2fs_wait_on_page_writeback(page, DATA, true, true);
4235 set_page_dirty(page);
4236 set_page_private_gcing(page);
4237 f2fs_put_page(page, 1);
4238 f2fs_put_page(page, 0);
4244 static int f2fs_ioc_decompress_file(struct file *filp)
4246 struct inode *inode = file_inode(filp);
4247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4248 struct f2fs_inode_info *fi = F2FS_I(inode);
4249 pgoff_t page_idx = 0, last_idx, cluster_idx;
4252 if (!f2fs_sb_has_compression(sbi) ||
4253 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4256 if (!(filp->f_mode & FMODE_WRITE))
4259 f2fs_balance_fs(sbi, true);
4261 ret = mnt_want_write_file(filp);
4266 if (!f2fs_is_compress_backend_ready(inode)) {
4271 if (!f2fs_compressed_file(inode) ||
4272 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4277 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4281 if (!atomic_read(&fi->i_compr_blocks))
4284 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4285 last_idx >>= fi->i_log_cluster_size;
4287 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4288 page_idx = cluster_idx << fi->i_log_cluster_size;
4290 if (!f2fs_is_compressed_cluster(inode, page_idx))
4293 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4297 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4298 ret = filemap_fdatawrite(inode->i_mapping);
4304 if (fatal_signal_pending(current)) {
4311 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4315 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4317 f2fs_update_time(sbi, REQ_TIME);
4319 inode_unlock(inode);
4320 mnt_drop_write_file(filp);
4325 static int f2fs_ioc_compress_file(struct file *filp)
4327 struct inode *inode = file_inode(filp);
4328 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4329 struct f2fs_inode_info *fi = F2FS_I(inode);
4330 pgoff_t page_idx = 0, last_idx, cluster_idx;
4333 if (!f2fs_sb_has_compression(sbi) ||
4334 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4337 if (!(filp->f_mode & FMODE_WRITE))
4340 f2fs_balance_fs(sbi, true);
4342 ret = mnt_want_write_file(filp);
4347 if (!f2fs_is_compress_backend_ready(inode)) {
4352 if (!f2fs_compressed_file(inode) ||
4353 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4358 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4362 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4364 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4365 last_idx >>= fi->i_log_cluster_size;
4367 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4368 page_idx = cluster_idx << fi->i_log_cluster_size;
4370 if (f2fs_is_sparse_cluster(inode, page_idx))
4373 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4377 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4378 ret = filemap_fdatawrite(inode->i_mapping);
4384 if (fatal_signal_pending(current)) {
4391 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4394 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4397 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4399 f2fs_update_time(sbi, REQ_TIME);
4401 inode_unlock(inode);
4402 mnt_drop_write_file(filp);
4407 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4410 case FS_IOC_GETVERSION:
4411 return f2fs_ioc_getversion(filp, arg);
4412 case F2FS_IOC_START_ATOMIC_WRITE:
4413 return f2fs_ioc_start_atomic_write(filp, false);
4414 case F2FS_IOC_START_ATOMIC_REPLACE:
4415 return f2fs_ioc_start_atomic_write(filp, true);
4416 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4417 return f2fs_ioc_commit_atomic_write(filp);
4418 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4419 return f2fs_ioc_abort_atomic_write(filp);
4420 case F2FS_IOC_START_VOLATILE_WRITE:
4421 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4423 case F2FS_IOC_SHUTDOWN:
4424 return f2fs_ioc_shutdown(filp, arg);
4426 return f2fs_ioc_fitrim(filp, arg);
4427 case FS_IOC_SET_ENCRYPTION_POLICY:
4428 return f2fs_ioc_set_encryption_policy(filp, arg);
4429 case FS_IOC_GET_ENCRYPTION_POLICY:
4430 return f2fs_ioc_get_encryption_policy(filp, arg);
4431 case FS_IOC_GET_ENCRYPTION_PWSALT:
4432 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4433 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4434 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4435 case FS_IOC_ADD_ENCRYPTION_KEY:
4436 return f2fs_ioc_add_encryption_key(filp, arg);
4437 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4438 return f2fs_ioc_remove_encryption_key(filp, arg);
4439 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4440 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4441 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4442 return f2fs_ioc_get_encryption_key_status(filp, arg);
4443 case FS_IOC_GET_ENCRYPTION_NONCE:
4444 return f2fs_ioc_get_encryption_nonce(filp, arg);
4445 case F2FS_IOC_GARBAGE_COLLECT:
4446 return f2fs_ioc_gc(filp, arg);
4447 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4448 return f2fs_ioc_gc_range(filp, arg);
4449 case F2FS_IOC_WRITE_CHECKPOINT:
4450 return f2fs_ioc_write_checkpoint(filp);
4451 case F2FS_IOC_DEFRAGMENT:
4452 return f2fs_ioc_defragment(filp, arg);
4453 case F2FS_IOC_MOVE_RANGE:
4454 return f2fs_ioc_move_range(filp, arg);
4455 case F2FS_IOC_FLUSH_DEVICE:
4456 return f2fs_ioc_flush_device(filp, arg);
4457 case F2FS_IOC_GET_FEATURES:
4458 return f2fs_ioc_get_features(filp, arg);
4459 case F2FS_IOC_GET_PIN_FILE:
4460 return f2fs_ioc_get_pin_file(filp, arg);
4461 case F2FS_IOC_SET_PIN_FILE:
4462 return f2fs_ioc_set_pin_file(filp, arg);
4463 case F2FS_IOC_PRECACHE_EXTENTS:
4464 return f2fs_ioc_precache_extents(filp);
4465 case F2FS_IOC_RESIZE_FS:
4466 return f2fs_ioc_resize_fs(filp, arg);
4467 case FS_IOC_ENABLE_VERITY:
4468 return f2fs_ioc_enable_verity(filp, arg);
4469 case FS_IOC_MEASURE_VERITY:
4470 return f2fs_ioc_measure_verity(filp, arg);
4471 case FS_IOC_READ_VERITY_METADATA:
4472 return f2fs_ioc_read_verity_metadata(filp, arg);
4473 case FS_IOC_GETFSLABEL:
4474 return f2fs_ioc_getfslabel(filp, arg);
4475 case FS_IOC_SETFSLABEL:
4476 return f2fs_ioc_setfslabel(filp, arg);
4477 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4478 return f2fs_ioc_get_compress_blocks(filp, arg);
4479 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4480 return f2fs_release_compress_blocks(filp, arg);
4481 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4482 return f2fs_reserve_compress_blocks(filp, arg);
4483 case F2FS_IOC_SEC_TRIM_FILE:
4484 return f2fs_sec_trim_file(filp, arg);
4485 case F2FS_IOC_GET_COMPRESS_OPTION:
4486 return f2fs_ioc_get_compress_option(filp, arg);
4487 case F2FS_IOC_SET_COMPRESS_OPTION:
4488 return f2fs_ioc_set_compress_option(filp, arg);
4489 case F2FS_IOC_DECOMPRESS_FILE:
4490 return f2fs_ioc_decompress_file(filp);
4491 case F2FS_IOC_COMPRESS_FILE:
4492 return f2fs_ioc_compress_file(filp);
4498 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4500 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4502 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4505 return __f2fs_ioctl(filp, cmd, arg);
4509 * Return %true if the given read or write request should use direct I/O, or
4510 * %false if it should use buffered I/O.
4512 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4513 struct iov_iter *iter)
4517 if (!(iocb->ki_flags & IOCB_DIRECT))
4520 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4524 * Direct I/O not aligned to the disk's logical_block_size will be
4525 * attempted, but will fail with -EINVAL.
4527 * f2fs additionally requires that direct I/O be aligned to the
4528 * filesystem block size, which is often a stricter requirement.
4529 * However, f2fs traditionally falls back to buffered I/O on requests
4530 * that are logical_block_size-aligned but not fs-block aligned.
4532 * The below logic implements this behavior.
4534 align = iocb->ki_pos | iov_iter_alignment(iter);
4535 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4536 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4542 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4545 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4547 dec_page_count(sbi, F2FS_DIO_READ);
4550 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4554 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4555 .end_io = f2fs_dio_read_end_io,
4558 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4560 struct file *file = iocb->ki_filp;
4561 struct inode *inode = file_inode(file);
4562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4563 struct f2fs_inode_info *fi = F2FS_I(inode);
4564 const loff_t pos = iocb->ki_pos;
4565 const size_t count = iov_iter_count(to);
4566 struct iomap_dio *dio;
4570 return 0; /* skip atime update */
4572 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4574 if (iocb->ki_flags & IOCB_NOWAIT) {
4575 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4580 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4583 /* dio is not compatible w/ atomic file */
4584 if (f2fs_is_atomic_file(inode)) {
4585 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4591 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4592 * the higher-level function iomap_dio_rw() in order to ensure that the
4593 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4595 inc_page_count(sbi, F2FS_DIO_READ);
4596 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4597 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4598 if (IS_ERR_OR_NULL(dio)) {
4599 ret = PTR_ERR_OR_ZERO(dio);
4600 if (ret != -EIOCBQUEUED)
4601 dec_page_count(sbi, F2FS_DIO_READ);
4603 ret = iomap_dio_complete(dio);
4606 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4608 file_accessed(file);
4610 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4614 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4617 struct inode *inode = file_inode(file);
4620 buf = f2fs_getname(F2FS_I_SB(inode));
4623 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4627 trace_f2fs_datawrite_start(inode, pos, count,
4628 current->pid, path, current->comm);
4630 trace_f2fs_dataread_start(inode, pos, count,
4631 current->pid, path, current->comm);
4636 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4638 struct inode *inode = file_inode(iocb->ki_filp);
4639 const loff_t pos = iocb->ki_pos;
4642 if (!f2fs_is_compress_backend_ready(inode))
4645 if (trace_f2fs_dataread_start_enabled())
4646 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4647 iov_iter_count(to), READ);
4649 /* In LFS mode, if there is inflight dio, wait for its completion */
4650 if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4651 inode_dio_wait(inode);
4653 if (f2fs_should_use_dio(inode, iocb, to)) {
4654 ret = f2fs_dio_read_iter(iocb, to);
4656 ret = filemap_read(iocb, to, 0);
4658 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4659 APP_BUFFERED_READ_IO, ret);
4661 if (trace_f2fs_dataread_end_enabled())
4662 trace_f2fs_dataread_end(inode, pos, ret);
4666 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4667 struct pipe_inode_info *pipe,
4668 size_t len, unsigned int flags)
4670 struct inode *inode = file_inode(in);
4671 const loff_t pos = *ppos;
4674 if (!f2fs_is_compress_backend_ready(inode))
4677 if (trace_f2fs_dataread_start_enabled())
4678 f2fs_trace_rw_file_path(in, pos, len, READ);
4680 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4682 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4683 APP_BUFFERED_READ_IO, ret);
4685 if (trace_f2fs_dataread_end_enabled())
4686 trace_f2fs_dataread_end(inode, pos, ret);
4690 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4692 struct file *file = iocb->ki_filp;
4693 struct inode *inode = file_inode(file);
4697 if (IS_IMMUTABLE(inode))
4700 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4703 count = generic_write_checks(iocb, from);
4707 err = file_modified(file);
4714 * Preallocate blocks for a write request, if it is possible and helpful to do
4715 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4716 * blocks were preallocated, or a negative errno value if something went
4717 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4718 * requested blocks (not just some of them) have been allocated.
4720 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4723 struct inode *inode = file_inode(iocb->ki_filp);
4724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4725 const loff_t pos = iocb->ki_pos;
4726 const size_t count = iov_iter_count(iter);
4727 struct f2fs_map_blocks map = {};
4731 /* If it will be an out-of-place direct write, don't bother. */
4732 if (dio && f2fs_lfs_mode(sbi))
4735 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4736 * buffered IO, if DIO meets any holes.
4738 if (dio && i_size_read(inode) &&
4739 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4742 /* No-wait I/O can't allocate blocks. */
4743 if (iocb->ki_flags & IOCB_NOWAIT)
4746 /* If it will be a short write, don't bother. */
4747 if (fault_in_iov_iter_readable(iter, count))
4750 if (f2fs_has_inline_data(inode)) {
4751 /* If the data will fit inline, don't bother. */
4752 if (pos + count <= MAX_INLINE_DATA(inode))
4754 ret = f2fs_convert_inline_inode(inode);
4759 /* Do not preallocate blocks that will be written partially in 4KB. */
4760 map.m_lblk = F2FS_BLK_ALIGN(pos);
4761 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4762 if (map.m_len > map.m_lblk)
4763 map.m_len -= map.m_lblk;
4767 map.m_may_create = true;
4769 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4770 inode->i_write_hint);
4771 flag = F2FS_GET_BLOCK_PRE_DIO;
4773 map.m_seg_type = NO_CHECK_TYPE;
4774 flag = F2FS_GET_BLOCK_PRE_AIO;
4777 ret = f2fs_map_blocks(inode, &map, flag);
4778 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4779 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4782 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4786 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4787 struct iov_iter *from)
4789 struct file *file = iocb->ki_filp;
4790 struct inode *inode = file_inode(file);
4793 if (iocb->ki_flags & IOCB_NOWAIT)
4796 ret = generic_perform_write(iocb, from);
4799 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4800 APP_BUFFERED_IO, ret);
4805 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4808 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4810 dec_page_count(sbi, F2FS_DIO_WRITE);
4813 f2fs_update_time(sbi, REQ_TIME);
4814 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4818 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4819 struct bio *bio, loff_t file_offset)
4821 struct inode *inode = iter->inode;
4822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4823 int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4824 enum temp_type temp = f2fs_get_segment_temp(seg_type);
4826 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4830 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4831 .end_io = f2fs_dio_write_end_io,
4832 .submit_io = f2fs_dio_write_submit_io,
4835 static void f2fs_flush_buffered_write(struct address_space *mapping,
4836 loff_t start_pos, loff_t end_pos)
4840 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4843 invalidate_mapping_pages(mapping,
4844 start_pos >> PAGE_SHIFT,
4845 end_pos >> PAGE_SHIFT);
4848 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4849 bool *may_need_sync)
4851 struct file *file = iocb->ki_filp;
4852 struct inode *inode = file_inode(file);
4853 struct f2fs_inode_info *fi = F2FS_I(inode);
4854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4855 const bool do_opu = f2fs_lfs_mode(sbi);
4856 const loff_t pos = iocb->ki_pos;
4857 const ssize_t count = iov_iter_count(from);
4858 unsigned int dio_flags;
4859 struct iomap_dio *dio;
4862 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4864 if (iocb->ki_flags & IOCB_NOWAIT) {
4865 /* f2fs_convert_inline_inode() and block allocation can block */
4866 if (f2fs_has_inline_data(inode) ||
4867 !f2fs_overwrite_io(inode, pos, count)) {
4872 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4876 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4877 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4882 ret = f2fs_convert_inline_inode(inode);
4886 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4888 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4892 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4893 * the higher-level function iomap_dio_rw() in order to ensure that the
4894 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4896 inc_page_count(sbi, F2FS_DIO_WRITE);
4898 if (pos + count > inode->i_size)
4899 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4900 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4901 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4902 if (IS_ERR_OR_NULL(dio)) {
4903 ret = PTR_ERR_OR_ZERO(dio);
4904 if (ret == -ENOTBLK)
4906 if (ret != -EIOCBQUEUED)
4907 dec_page_count(sbi, F2FS_DIO_WRITE);
4909 ret = iomap_dio_complete(dio);
4913 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4914 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4918 if (pos + ret > inode->i_size)
4919 f2fs_i_size_write(inode, pos + ret);
4921 set_inode_flag(inode, FI_UPDATE_WRITE);
4923 if (iov_iter_count(from)) {
4925 loff_t bufio_start_pos = iocb->ki_pos;
4928 * The direct write was partial, so we need to fall back to a
4929 * buffered write for the remainder.
4932 ret2 = f2fs_buffered_write_iter(iocb, from);
4933 if (iov_iter_count(from))
4934 f2fs_write_failed(inode, iocb->ki_pos);
4939 * Ensure that the pagecache pages are written to disk and
4940 * invalidated to preserve the expected O_DIRECT semantics.
4943 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4947 f2fs_flush_buffered_write(file->f_mapping,
4952 /* iomap_dio_rw() already handled the generic_write_sync(). */
4953 *may_need_sync = false;
4956 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4960 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4962 struct inode *inode = file_inode(iocb->ki_filp);
4963 const loff_t orig_pos = iocb->ki_pos;
4964 const size_t orig_count = iov_iter_count(from);
4967 bool may_need_sync = true;
4969 const loff_t pos = iocb->ki_pos;
4970 const ssize_t count = iov_iter_count(from);
4973 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4978 if (!f2fs_is_compress_backend_ready(inode)) {
4983 if (iocb->ki_flags & IOCB_NOWAIT) {
4984 if (!inode_trylock(inode)) {
4992 if (f2fs_is_pinned_file(inode) &&
4993 !f2fs_overwrite_io(inode, pos, count)) {
4998 ret = f2fs_write_checks(iocb, from);
5002 /* Determine whether we will do a direct write or a buffered write. */
5003 dio = f2fs_should_use_dio(inode, iocb, from);
5005 /* dio is not compatible w/ atomic write */
5006 if (dio && f2fs_is_atomic_file(inode)) {
5011 /* Possibly preallocate the blocks for the write. */
5012 target_size = iocb->ki_pos + iov_iter_count(from);
5013 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5014 if (preallocated < 0) {
5017 if (trace_f2fs_datawrite_start_enabled())
5018 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5021 /* Do the actual write. */
5023 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5024 f2fs_buffered_write_iter(iocb, from);
5026 if (trace_f2fs_datawrite_end_enabled())
5027 trace_f2fs_datawrite_end(inode, orig_pos, ret);
5030 /* Don't leave any preallocated blocks around past i_size. */
5031 if (preallocated && i_size_read(inode) < target_size) {
5032 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5033 filemap_invalidate_lock(inode->i_mapping);
5034 if (!f2fs_truncate(inode))
5035 file_dont_truncate(inode);
5036 filemap_invalidate_unlock(inode->i_mapping);
5037 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5039 file_dont_truncate(inode);
5042 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5044 inode_unlock(inode);
5046 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5048 if (ret > 0 && may_need_sync)
5049 ret = generic_write_sync(iocb, ret);
5051 /* If buffered IO was forced, flush and drop the data from
5052 * the page cache to preserve O_DIRECT semantics
5054 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5055 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5057 orig_pos + ret - 1);
5062 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5065 struct address_space *mapping;
5066 struct backing_dev_info *bdi;
5067 struct inode *inode = file_inode(filp);
5070 if (advice == POSIX_FADV_SEQUENTIAL) {
5071 if (S_ISFIFO(inode->i_mode))
5074 mapping = filp->f_mapping;
5075 if (!mapping || len < 0)
5078 bdi = inode_to_bdi(mapping->host);
5079 filp->f_ra.ra_pages = bdi->ra_pages *
5080 F2FS_I_SB(inode)->seq_file_ra_mul;
5081 spin_lock(&filp->f_lock);
5082 filp->f_mode &= ~FMODE_RANDOM;
5083 spin_unlock(&filp->f_lock);
5085 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5086 /* Load extent cache at the first readahead. */
5087 f2fs_precache_extents(inode);
5090 err = generic_fadvise(filp, offset, len, advice);
5091 if (!err && advice == POSIX_FADV_DONTNEED &&
5092 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5093 f2fs_compressed_file(inode))
5094 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5099 #ifdef CONFIG_COMPAT
5100 struct compat_f2fs_gc_range {
5105 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5106 struct compat_f2fs_gc_range)
5108 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5110 struct compat_f2fs_gc_range __user *urange;
5111 struct f2fs_gc_range range;
5114 urange = compat_ptr(arg);
5115 err = get_user(range.sync, &urange->sync);
5116 err |= get_user(range.start, &urange->start);
5117 err |= get_user(range.len, &urange->len);
5121 return __f2fs_ioc_gc_range(file, &range);
5124 struct compat_f2fs_move_range {
5130 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5131 struct compat_f2fs_move_range)
5133 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5135 struct compat_f2fs_move_range __user *urange;
5136 struct f2fs_move_range range;
5139 urange = compat_ptr(arg);
5140 err = get_user(range.dst_fd, &urange->dst_fd);
5141 err |= get_user(range.pos_in, &urange->pos_in);
5142 err |= get_user(range.pos_out, &urange->pos_out);
5143 err |= get_user(range.len, &urange->len);
5147 return __f2fs_ioc_move_range(file, &range);
5150 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5152 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5154 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5158 case FS_IOC32_GETVERSION:
5159 cmd = FS_IOC_GETVERSION;
5161 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5162 return f2fs_compat_ioc_gc_range(file, arg);
5163 case F2FS_IOC32_MOVE_RANGE:
5164 return f2fs_compat_ioc_move_range(file, arg);
5165 case F2FS_IOC_START_ATOMIC_WRITE:
5166 case F2FS_IOC_START_ATOMIC_REPLACE:
5167 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5168 case F2FS_IOC_START_VOLATILE_WRITE:
5169 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5170 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5171 case F2FS_IOC_SHUTDOWN:
5173 case FS_IOC_SET_ENCRYPTION_POLICY:
5174 case FS_IOC_GET_ENCRYPTION_PWSALT:
5175 case FS_IOC_GET_ENCRYPTION_POLICY:
5176 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5177 case FS_IOC_ADD_ENCRYPTION_KEY:
5178 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5179 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5180 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5181 case FS_IOC_GET_ENCRYPTION_NONCE:
5182 case F2FS_IOC_GARBAGE_COLLECT:
5183 case F2FS_IOC_WRITE_CHECKPOINT:
5184 case F2FS_IOC_DEFRAGMENT:
5185 case F2FS_IOC_FLUSH_DEVICE:
5186 case F2FS_IOC_GET_FEATURES:
5187 case F2FS_IOC_GET_PIN_FILE:
5188 case F2FS_IOC_SET_PIN_FILE:
5189 case F2FS_IOC_PRECACHE_EXTENTS:
5190 case F2FS_IOC_RESIZE_FS:
5191 case FS_IOC_ENABLE_VERITY:
5192 case FS_IOC_MEASURE_VERITY:
5193 case FS_IOC_READ_VERITY_METADATA:
5194 case FS_IOC_GETFSLABEL:
5195 case FS_IOC_SETFSLABEL:
5196 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5197 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5198 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5199 case F2FS_IOC_SEC_TRIM_FILE:
5200 case F2FS_IOC_GET_COMPRESS_OPTION:
5201 case F2FS_IOC_SET_COMPRESS_OPTION:
5202 case F2FS_IOC_DECOMPRESS_FILE:
5203 case F2FS_IOC_COMPRESS_FILE:
5206 return -ENOIOCTLCMD;
5208 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5212 const struct file_operations f2fs_file_operations = {
5213 .llseek = f2fs_llseek,
5214 .read_iter = f2fs_file_read_iter,
5215 .write_iter = f2fs_file_write_iter,
5216 .iopoll = iocb_bio_iopoll,
5217 .open = f2fs_file_open,
5218 .release = f2fs_release_file,
5219 .mmap = f2fs_file_mmap,
5220 .flush = f2fs_file_flush,
5221 .fsync = f2fs_sync_file,
5222 .fallocate = f2fs_fallocate,
5223 .unlocked_ioctl = f2fs_ioctl,
5224 #ifdef CONFIG_COMPAT
5225 .compat_ioctl = f2fs_compat_ioctl,
5227 .splice_read = f2fs_file_splice_read,
5228 .splice_write = iter_file_splice_write,
5229 .fadvise = f2fs_file_fadvise,
5230 .fop_flags = FOP_BUFFER_RASYNC,