1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
46 #include "compression.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
55 #include "inode-item.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
67 #include "relocation.h"
72 #include "raid-stripe-tree.h"
75 struct btrfs_iget_args {
77 struct btrfs_root *root;
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
104 static struct lock_class_key file_extent_tree_class;
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
113 static struct kmem_cache *btrfs_inode_cachep;
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
143 /* This makes the path point to (inum INODE_ITEM ioff). */
145 key.type = BTRFS_INODE_ITEM_KEY;
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
168 * -ENOMEM, not a critical error, just output an generic error
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
176 ret = paths_from_inode(inum, ipath);
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
192 btrfs_put_root(local_root);
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
283 btrfs_release_path(&path);
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
288 btrfs_release_path(&path);
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
336 * Lock inode i_rwsem based on arguments passed.
338 * ilock_flags can have the following bit set:
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
354 inode_lock_shared(&inode->vfs_inode);
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
362 inode_lock(&inode->vfs_inode);
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
370 * Unock inode i_rwsem.
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
382 inode_unlock(&inode->vfs_inode);
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 struct folio *locked_folio,
397 u64 offset, u64 bytes)
399 unsigned long index = offset >> PAGE_SHIFT;
400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 u64 page_start = 0, page_end = 0;
405 page_start = folio_pos(locked_folio);
406 page_end = page_start + folio_size(locked_folio) - 1;
409 while (index <= end_index) {
411 * For locked page, we will call btrfs_mark_ordered_io_finished
412 * through btrfs_mark_ordered_io_finished() on it
413 * in run_delalloc_range() for the error handling, which will
414 * clear page Ordered and run the ordered extent accounting.
416 * Here we can't just clear the Ordered bit, or
417 * btrfs_mark_ordered_io_finished() would skip the accounting
418 * for the page range, and the ordered extent will never finish.
420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
424 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
430 * Here we just clear all Ordered bits for every page in the
431 * range, then btrfs_mark_ordered_io_finished() will handle
432 * the ordered extent accounting for the range.
434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
440 /* The locked page covers the full range, nothing needs to be done */
441 if (bytes + offset <= page_start + folio_size(locked_folio))
444 * In case this page belongs to the delalloc range being
445 * instantiated then skip it, since the first page of a range is
446 * going to be properly cleaned up by the caller of
449 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 bytes = offset + bytes - folio_pos(locked_folio) -
451 folio_size(locked_folio);
452 offset = folio_pos(locked_folio) + folio_size(locked_folio);
456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 struct btrfs_new_inode_args *args)
466 if (args->default_acl) {
467 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
477 if (!args->default_acl && !args->acl)
478 cache_no_acl(args->inode);
479 return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 &args->dentry->d_name);
484 * this does all the hard work for inserting an inline extent into
485 * the btree. The caller should have done a btrfs_drop_extents so that
486 * no overlapping inline items exist in the btree
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 struct btrfs_path *path,
490 struct btrfs_inode *inode, bool extent_inserted,
491 size_t size, size_t compressed_size,
493 struct folio *compressed_folio,
496 struct btrfs_root *root = inode->root;
497 struct extent_buffer *leaf;
498 const u32 sectorsize = trans->fs_info->sectorsize;
501 struct btrfs_file_extent_item *ei;
503 size_t cur_size = size;
507 * The decompressed size must still be no larger than a sector. Under
508 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 * big deal and we can continue the insertion.
511 ASSERT(size <= sectorsize);
514 * The compressed size also needs to be no larger than a sector.
515 * That's also why we only need one page as the parameter.
517 if (compressed_folio)
518 ASSERT(compressed_size <= sectorsize);
520 ASSERT(compressed_size == 0);
522 if (compressed_size && compressed_folio)
523 cur_size = compressed_size;
525 if (!extent_inserted) {
526 struct btrfs_key key;
529 key.objectid = btrfs_ino(inode);
531 key.type = BTRFS_EXTENT_DATA_KEY;
533 datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 ret = btrfs_insert_empty_item(trans, root, path, &key,
539 leaf = path->nodes[0];
540 ei = btrfs_item_ptr(leaf, path->slots[0],
541 struct btrfs_file_extent_item);
542 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 btrfs_set_file_extent_encryption(leaf, ei, 0);
545 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 ptr = btrfs_file_extent_inline_start(ei);
549 if (compress_type != BTRFS_COMPRESS_NONE) {
550 kaddr = kmap_local_folio(compressed_folio, 0);
551 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
554 btrfs_set_file_extent_compression(leaf, ei,
559 folio = __filemap_get_folio(inode->vfs_inode.i_mapping,
561 ASSERT(!IS_ERR(folio));
562 btrfs_set_file_extent_compression(leaf, ei, 0);
563 kaddr = kmap_local_folio(folio, 0);
564 write_extent_buffer(leaf, kaddr, ptr, size);
568 btrfs_mark_buffer_dirty(trans, leaf);
569 btrfs_release_path(path);
572 * We align size to sectorsize for inline extents just for simplicity
575 ret = btrfs_inode_set_file_extent_range(inode, 0,
576 ALIGN(size, root->fs_info->sectorsize));
581 * We're an inline extent, so nobody can extend the file past i_size
582 * without locking a page we already have locked.
584 * We must do any i_size and inode updates before we unlock the pages.
585 * Otherwise we could end up racing with unlink.
587 i_size = i_size_read(&inode->vfs_inode);
588 if (update_i_size && size > i_size) {
589 i_size_write(&inode->vfs_inode, size);
592 inode->disk_i_size = i_size;
598 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
599 u64 offset, u64 size,
600 size_t compressed_size)
602 struct btrfs_fs_info *fs_info = inode->root->fs_info;
603 u64 data_len = (compressed_size ?: size);
605 /* Inline extents must start at offset 0. */
610 * Due to the page size limit, for subpage we can only trigger the
611 * writeback for the dirty sectors of page, that means data writeback
612 * is doing more writeback than what we want.
614 * This is especially unexpected for some call sites like fallocate,
615 * where we only increase i_size after everything is done.
616 * This means we can trigger inline extent even if we didn't want to.
617 * So here we skip inline extent creation completely.
619 if (fs_info->sectorsize != PAGE_SIZE)
622 /* Inline extents are limited to sectorsize. */
623 if (size > fs_info->sectorsize)
626 /* We cannot exceed the maximum inline data size. */
627 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
630 /* We cannot exceed the user specified max_inline size. */
631 if (data_len > fs_info->max_inline)
634 /* Inline extents must be the entirety of the file. */
635 if (size < i_size_read(&inode->vfs_inode))
642 * conditionally insert an inline extent into the file. This
643 * does the checks required to make sure the data is small enough
644 * to fit as an inline extent.
646 * If being used directly, you must have already checked we're allowed to cow
647 * the range by getting true from can_cow_file_range_inline().
649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
650 u64 size, size_t compressed_size,
652 struct folio *compressed_folio,
655 struct btrfs_drop_extents_args drop_args = { 0 };
656 struct btrfs_root *root = inode->root;
657 struct btrfs_fs_info *fs_info = root->fs_info;
658 struct btrfs_trans_handle *trans;
659 u64 data_len = (compressed_size ?: size);
661 struct btrfs_path *path;
663 path = btrfs_alloc_path();
667 trans = btrfs_join_transaction(root);
669 btrfs_free_path(path);
670 return PTR_ERR(trans);
672 trans->block_rsv = &inode->block_rsv;
674 drop_args.path = path;
676 drop_args.end = fs_info->sectorsize;
677 drop_args.drop_cache = true;
678 drop_args.replace_extent = true;
679 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
680 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
682 btrfs_abort_transaction(trans, ret);
686 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
687 size, compressed_size, compress_type,
688 compressed_folio, update_i_size);
689 if (ret && ret != -ENOSPC) {
690 btrfs_abort_transaction(trans, ret);
692 } else if (ret == -ENOSPC) {
697 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
698 ret = btrfs_update_inode(trans, inode);
699 if (ret && ret != -ENOSPC) {
700 btrfs_abort_transaction(trans, ret);
702 } else if (ret == -ENOSPC) {
707 btrfs_set_inode_full_sync(inode);
710 * Don't forget to free the reserved space, as for inlined extent
711 * it won't count as data extent, free them directly here.
712 * And at reserve time, it's always aligned to page size, so
713 * just free one page here.
715 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
716 btrfs_free_path(path);
717 btrfs_end_transaction(trans);
721 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
722 struct folio *locked_folio,
724 size_t compressed_size,
726 struct folio *compressed_folio,
729 struct extent_state *cached = NULL;
730 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
731 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
732 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
735 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
738 lock_extent(&inode->io_tree, offset, end, &cached);
739 ret = __cow_file_range_inline(inode, offset, size, compressed_size,
740 compress_type, compressed_folio,
743 unlock_extent(&inode->io_tree, offset, end, &cached);
748 * In the successful case (ret == 0 here), cow_file_range will return 1.
750 * Quite a bit further up the callstack in extent_writepage(), ret == 1
751 * is treated as a short circuited success and does not unlock the folio,
752 * so we must do it here.
754 * In the failure case, the locked_folio does get unlocked by
755 * btrfs_folio_end_all_writers, which asserts that it is still locked
756 * at that point, so we must *not* unlock it here.
758 * The other two callsites in compress_file_range do not have a
759 * locked_folio, so they are not relevant to this logic.
764 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
765 clear_flags, PAGE_UNLOCK |
766 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
770 struct async_extent {
774 struct folio **folios;
775 unsigned long nr_folios;
777 struct list_head list;
781 struct btrfs_inode *inode;
782 struct folio *locked_folio;
785 blk_opf_t write_flags;
786 struct list_head extents;
787 struct cgroup_subsys_state *blkcg_css;
788 struct btrfs_work work;
789 struct async_cow *async_cow;
794 struct async_chunk chunks[];
797 static noinline int add_async_extent(struct async_chunk *cow,
798 u64 start, u64 ram_size,
800 struct folio **folios,
801 unsigned long nr_folios,
804 struct async_extent *async_extent;
806 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
809 async_extent->start = start;
810 async_extent->ram_size = ram_size;
811 async_extent->compressed_size = compressed_size;
812 async_extent->folios = folios;
813 async_extent->nr_folios = nr_folios;
814 async_extent->compress_type = compress_type;
815 list_add_tail(&async_extent->list, &cow->extents);
820 * Check if the inode needs to be submitted to compression, based on mount
821 * options, defragmentation, properties or heuristics.
823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
826 struct btrfs_fs_info *fs_info = inode->root->fs_info;
828 if (!btrfs_inode_can_compress(inode)) {
829 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
830 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
835 * Special check for subpage.
837 * We lock the full page then run each delalloc range in the page, thus
838 * for the following case, we will hit some subpage specific corner case:
841 * | |///////| |///////|
844 * In above case, both range A and range B will try to unlock the full
845 * page [0, 64K), causing the one finished later will have page
846 * unlocked already, triggering various page lock requirement BUG_ON()s.
848 * So here we add an artificial limit that subpage compression can only
849 * if the range is fully page aligned.
851 * In theory we only need to ensure the first page is fully covered, but
852 * the tailing partial page will be locked until the full compression
853 * finishes, delaying the write of other range.
855 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
856 * first to prevent any submitted async extent to unlock the full page.
857 * By this, we can ensure for subpage case that only the last async_cow
858 * will unlock the full page.
860 if (fs_info->sectorsize < PAGE_SIZE) {
861 if (!PAGE_ALIGNED(start) ||
862 !PAGE_ALIGNED(end + 1))
867 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
870 if (inode->defrag_compress)
872 /* bad compression ratios */
873 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
875 if (btrfs_test_opt(fs_info, COMPRESS) ||
876 inode->flags & BTRFS_INODE_COMPRESS ||
877 inode->prop_compress)
878 return btrfs_compress_heuristic(inode, start, end);
882 static inline void inode_should_defrag(struct btrfs_inode *inode,
883 u64 start, u64 end, u64 num_bytes, u32 small_write)
885 /* If this is a small write inside eof, kick off a defrag */
886 if (num_bytes < small_write &&
887 (start > 0 || end + 1 < inode->disk_i_size))
888 btrfs_add_inode_defrag(inode, small_write);
891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
893 unsigned long end_index = end >> PAGE_SHIFT;
897 for (unsigned long index = start >> PAGE_SHIFT;
898 index <= end_index; index++) {
899 folio = __filemap_get_folio(inode->i_mapping, index, 0, 0);
902 ret = PTR_ERR(folio);
905 folio_clear_dirty_for_io(folio);
912 * Work queue call back to started compression on a file and pages.
914 * This is done inside an ordered work queue, and the compression is spread
915 * across many cpus. The actual IO submission is step two, and the ordered work
916 * queue takes care of making sure that happens in the same order things were
917 * put onto the queue by writepages and friends.
919 * If this code finds it can't get good compression, it puts an entry onto the
920 * work queue to write the uncompressed bytes. This makes sure that both
921 * compressed inodes and uncompressed inodes are written in the same order that
922 * the flusher thread sent them down.
924 static void compress_file_range(struct btrfs_work *work)
926 struct async_chunk *async_chunk =
927 container_of(work, struct async_chunk, work);
928 struct btrfs_inode *inode = async_chunk->inode;
929 struct btrfs_fs_info *fs_info = inode->root->fs_info;
930 struct address_space *mapping = inode->vfs_inode.i_mapping;
931 u64 blocksize = fs_info->sectorsize;
932 u64 start = async_chunk->start;
933 u64 end = async_chunk->end;
937 struct folio **folios;
938 unsigned long nr_folios;
939 unsigned long total_compressed = 0;
940 unsigned long total_in = 0;
943 int compress_type = fs_info->compress_type;
945 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
948 * We need to call clear_page_dirty_for_io on each page in the range.
949 * Otherwise applications with the file mmap'd can wander in and change
950 * the page contents while we are compressing them.
952 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
955 * All the folios should have been locked thus no failure.
957 * And even if some folios are missing, btrfs_compress_folios()
958 * would handle them correctly, so here just do an ASSERT() check for
959 * early logic errors.
964 * We need to save i_size before now because it could change in between
965 * us evaluating the size and assigning it. This is because we lock and
966 * unlock the page in truncate and fallocate, and then modify the i_size
969 * The barriers are to emulate READ_ONCE, remove that once i_size_read
973 i_size = i_size_read(&inode->vfs_inode);
975 actual_end = min_t(u64, i_size, end + 1);
978 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
979 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
982 * we don't want to send crud past the end of i_size through
983 * compression, that's just a waste of CPU time. So, if the
984 * end of the file is before the start of our current
985 * requested range of bytes, we bail out to the uncompressed
986 * cleanup code that can deal with all of this.
988 * It isn't really the fastest way to fix things, but this is a
989 * very uncommon corner.
991 if (actual_end <= start)
992 goto cleanup_and_bail_uncompressed;
994 total_compressed = actual_end - start;
997 * Skip compression for a small file range(<=blocksize) that
998 * isn't an inline extent, since it doesn't save disk space at all.
1000 if (total_compressed <= blocksize &&
1001 (start > 0 || end + 1 < inode->disk_i_size))
1002 goto cleanup_and_bail_uncompressed;
1005 * For subpage case, we require full page alignment for the sector
1007 * Thus we must also check against @actual_end, not just @end.
1009 if (blocksize < PAGE_SIZE) {
1010 if (!PAGE_ALIGNED(start) ||
1011 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
1012 goto cleanup_and_bail_uncompressed;
1015 total_compressed = min_t(unsigned long, total_compressed,
1016 BTRFS_MAX_UNCOMPRESSED);
1021 * We do compression for mount -o compress and when the inode has not
1022 * been flagged as NOCOMPRESS. This flag can change at any time if we
1023 * discover bad compression ratios.
1025 if (!inode_need_compress(inode, start, end))
1026 goto cleanup_and_bail_uncompressed;
1028 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1031 * Memory allocation failure is not a fatal error, we can fall
1032 * back to uncompressed code.
1034 goto cleanup_and_bail_uncompressed;
1037 if (inode->defrag_compress)
1038 compress_type = inode->defrag_compress;
1039 else if (inode->prop_compress)
1040 compress_type = inode->prop_compress;
1042 /* Compression level is applied here. */
1043 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1044 mapping, start, folios, &nr_folios, &total_in,
1047 goto mark_incompressible;
1050 * Zero the tail end of the last page, as we might be sending it down
1053 poff = offset_in_page(total_compressed);
1055 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1058 * Try to create an inline extent.
1060 * If we didn't compress the entire range, try to create an uncompressed
1061 * inline extent, else a compressed one.
1063 * Check cow_file_range() for why we don't even try to create inline
1064 * extent for the subpage case.
1066 if (total_in < actual_end)
1067 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1068 BTRFS_COMPRESS_NONE, NULL, false);
1070 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1071 compress_type, folios[0], false);
1074 mapping_set_error(mapping, -EIO);
1079 * We aren't doing an inline extent. Round the compressed size up to a
1080 * block size boundary so the allocator does sane things.
1082 total_compressed = ALIGN(total_compressed, blocksize);
1085 * One last check to make sure the compression is really a win, compare
1086 * the page count read with the blocks on disk, compression must free at
1089 total_in = round_up(total_in, fs_info->sectorsize);
1090 if (total_compressed + blocksize > total_in)
1091 goto mark_incompressible;
1094 * The async work queues will take care of doing actual allocation on
1095 * disk for these compressed pages, and will submit the bios.
1097 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1098 nr_folios, compress_type);
1100 if (start + total_in < end) {
1107 mark_incompressible:
1108 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1109 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1110 cleanup_and_bail_uncompressed:
1111 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1112 BTRFS_COMPRESS_NONE);
1116 for (i = 0; i < nr_folios; i++) {
1117 WARN_ON(folios[i]->mapping);
1118 btrfs_free_compr_folio(folios[i]);
1124 static void free_async_extent_pages(struct async_extent *async_extent)
1128 if (!async_extent->folios)
1131 for (i = 0; i < async_extent->nr_folios; i++) {
1132 WARN_ON(async_extent->folios[i]->mapping);
1133 btrfs_free_compr_folio(async_extent->folios[i]);
1135 kfree(async_extent->folios);
1136 async_extent->nr_folios = 0;
1137 async_extent->folios = NULL;
1140 static void submit_uncompressed_range(struct btrfs_inode *inode,
1141 struct async_extent *async_extent,
1142 struct folio *locked_folio)
1144 u64 start = async_extent->start;
1145 u64 end = async_extent->start + async_extent->ram_size - 1;
1147 struct writeback_control wbc = {
1148 .sync_mode = WB_SYNC_ALL,
1149 .range_start = start,
1151 .no_cgroup_owner = 1,
1154 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1155 ret = run_delalloc_cow(inode, locked_folio, start, end,
1157 wbc_detach_inode(&wbc);
1159 btrfs_cleanup_ordered_extents(inode, locked_folio,
1160 start, end - start + 1);
1162 const u64 page_start = folio_pos(locked_folio);
1164 folio_start_writeback(locked_folio);
1165 folio_end_writeback(locked_folio);
1166 btrfs_mark_ordered_io_finished(inode, locked_folio,
1167 page_start, PAGE_SIZE,
1169 mapping_set_error(locked_folio->mapping, ret);
1170 folio_unlock(locked_folio);
1175 static void submit_one_async_extent(struct async_chunk *async_chunk,
1176 struct async_extent *async_extent,
1179 struct btrfs_inode *inode = async_chunk->inode;
1180 struct extent_io_tree *io_tree = &inode->io_tree;
1181 struct btrfs_root *root = inode->root;
1182 struct btrfs_fs_info *fs_info = root->fs_info;
1183 struct btrfs_ordered_extent *ordered;
1184 struct btrfs_file_extent file_extent;
1185 struct btrfs_key ins;
1186 struct folio *locked_folio = NULL;
1187 struct extent_state *cached = NULL;
1188 struct extent_map *em;
1190 u64 start = async_extent->start;
1191 u64 end = async_extent->start + async_extent->ram_size - 1;
1193 if (async_chunk->blkcg_css)
1194 kthread_associate_blkcg(async_chunk->blkcg_css);
1197 * If async_chunk->locked_folio is in the async_extent range, we need to
1200 if (async_chunk->locked_folio) {
1201 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1202 u64 locked_folio_end = locked_folio_start +
1203 folio_size(async_chunk->locked_folio) - 1;
1205 if (!(start >= locked_folio_end || end <= locked_folio_start))
1206 locked_folio = async_chunk->locked_folio;
1209 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1210 submit_uncompressed_range(inode, async_extent, locked_folio);
1214 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1215 async_extent->compressed_size,
1216 async_extent->compressed_size,
1217 0, *alloc_hint, &ins, 1, 1);
1220 * We can't reserve contiguous space for the compressed size.
1221 * Unlikely, but it's possible that we could have enough
1222 * non-contiguous space for the uncompressed size instead. So
1223 * fall back to uncompressed.
1225 submit_uncompressed_range(inode, async_extent, locked_folio);
1229 lock_extent(io_tree, start, end, &cached);
1231 /* Here we're doing allocation and writeback of the compressed pages */
1232 file_extent.disk_bytenr = ins.objectid;
1233 file_extent.disk_num_bytes = ins.offset;
1234 file_extent.ram_bytes = async_extent->ram_size;
1235 file_extent.num_bytes = async_extent->ram_size;
1236 file_extent.offset = 0;
1237 file_extent.compression = async_extent->compress_type;
1239 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1242 goto out_free_reserve;
1244 free_extent_map(em);
1246 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1247 1 << BTRFS_ORDERED_COMPRESSED);
1248 if (IS_ERR(ordered)) {
1249 btrfs_drop_extent_map_range(inode, start, end, false);
1250 ret = PTR_ERR(ordered);
1251 goto out_free_reserve;
1253 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1255 /* Clear dirty, set writeback and unlock the pages. */
1256 extent_clear_unlock_delalloc(inode, start, end,
1257 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1258 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1259 btrfs_submit_compressed_write(ordered,
1260 async_extent->folios, /* compressed_folios */
1261 async_extent->nr_folios,
1262 async_chunk->write_flags, true);
1263 *alloc_hint = ins.objectid + ins.offset;
1265 if (async_chunk->blkcg_css)
1266 kthread_associate_blkcg(NULL);
1267 kfree(async_extent);
1271 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1272 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1273 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1274 extent_clear_unlock_delalloc(inode, start, end,
1276 EXTENT_LOCKED | EXTENT_DELALLOC |
1277 EXTENT_DELALLOC_NEW |
1278 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1279 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1280 PAGE_END_WRITEBACK);
1281 free_async_extent_pages(async_extent);
1282 if (async_chunk->blkcg_css)
1283 kthread_associate_blkcg(NULL);
1284 btrfs_debug(fs_info,
1285 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1286 btrfs_root_id(root), btrfs_ino(inode), start,
1287 async_extent->ram_size, ret);
1288 kfree(async_extent);
1291 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1294 struct extent_map_tree *em_tree = &inode->extent_tree;
1295 struct extent_map *em;
1298 read_lock(&em_tree->lock);
1299 em = search_extent_mapping(em_tree, start, num_bytes);
1302 * if block start isn't an actual block number then find the
1303 * first block in this inode and use that as a hint. If that
1304 * block is also bogus then just don't worry about it.
1306 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1307 free_extent_map(em);
1308 em = search_extent_mapping(em_tree, 0, 0);
1309 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1310 alloc_hint = extent_map_block_start(em);
1312 free_extent_map(em);
1314 alloc_hint = extent_map_block_start(em);
1315 free_extent_map(em);
1318 read_unlock(&em_tree->lock);
1324 * when extent_io.c finds a delayed allocation range in the file,
1325 * the call backs end up in this code. The basic idea is to
1326 * allocate extents on disk for the range, and create ordered data structs
1327 * in ram to track those extents.
1329 * locked_folio is the folio that writepage had locked already. We use
1330 * it to make sure we don't do extra locks or unlocks.
1332 * When this function fails, it unlocks all pages except @locked_folio.
1334 * When this function successfully creates an inline extent, it returns 1 and
1335 * unlocks all pages including locked_folio and starts I/O on them.
1336 * (In reality inline extents are limited to a single page, so locked_folio is
1337 * the only page handled anyway).
1339 * When this function succeed and creates a normal extent, the page locking
1340 * status depends on the passed in flags:
1342 * - If @keep_locked is set, all pages are kept locked.
1343 * - Else all pages except for @locked_folio are unlocked.
1345 * When a failure happens in the second or later iteration of the
1346 * while-loop, the ordered extents created in previous iterations are kept
1347 * intact. So, the caller must clean them up by calling
1348 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1351 static noinline int cow_file_range(struct btrfs_inode *inode,
1352 struct folio *locked_folio, u64 start,
1353 u64 end, u64 *done_offset,
1354 bool keep_locked, bool no_inline)
1356 struct btrfs_root *root = inode->root;
1357 struct btrfs_fs_info *fs_info = root->fs_info;
1358 struct extent_state *cached = NULL;
1360 u64 orig_start = start;
1362 unsigned long ram_size;
1363 u64 cur_alloc_size = 0;
1365 u64 blocksize = fs_info->sectorsize;
1366 struct btrfs_key ins;
1367 struct extent_map *em;
1368 unsigned clear_bits;
1369 unsigned long page_ops;
1370 bool extent_reserved = false;
1373 if (btrfs_is_free_space_inode(inode)) {
1378 num_bytes = ALIGN(end - start + 1, blocksize);
1379 num_bytes = max(blocksize, num_bytes);
1380 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1382 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1385 /* lets try to make an inline extent */
1386 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1387 BTRFS_COMPRESS_NONE, NULL, false);
1390 * We succeeded, return 1 so the caller knows we're done
1391 * with this page and already handled the IO.
1393 * If there was an error then cow_file_range_inline() has
1394 * already done the cleanup.
1402 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1405 * Relocation relies on the relocated extents to have exactly the same
1406 * size as the original extents. Normally writeback for relocation data
1407 * extents follows a NOCOW path because relocation preallocates the
1408 * extents. However, due to an operation such as scrub turning a block
1409 * group to RO mode, it may fallback to COW mode, so we must make sure
1410 * an extent allocated during COW has exactly the requested size and can
1411 * not be split into smaller extents, otherwise relocation breaks and
1412 * fails during the stage where it updates the bytenr of file extent
1415 if (btrfs_is_data_reloc_root(root))
1416 min_alloc_size = num_bytes;
1418 min_alloc_size = fs_info->sectorsize;
1420 while (num_bytes > 0) {
1421 struct btrfs_ordered_extent *ordered;
1422 struct btrfs_file_extent file_extent;
1424 cur_alloc_size = num_bytes;
1425 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1426 min_alloc_size, 0, alloc_hint,
1428 if (ret == -EAGAIN) {
1430 * btrfs_reserve_extent only returns -EAGAIN for zoned
1431 * file systems, which is an indication that there are
1432 * no active zones to allocate from at the moment.
1434 * If this is the first loop iteration, wait for at
1435 * least one zone to finish before retrying the
1436 * allocation. Otherwise ask the caller to write out
1437 * the already allocated blocks before coming back to
1438 * us, or return -ENOSPC if it can't handle retries.
1440 ASSERT(btrfs_is_zoned(fs_info));
1441 if (start == orig_start) {
1442 wait_on_bit_io(&inode->root->fs_info->flags,
1443 BTRFS_FS_NEED_ZONE_FINISH,
1444 TASK_UNINTERRUPTIBLE);
1448 *done_offset = start - 1;
1455 cur_alloc_size = ins.offset;
1456 extent_reserved = true;
1458 ram_size = ins.offset;
1459 file_extent.disk_bytenr = ins.objectid;
1460 file_extent.disk_num_bytes = ins.offset;
1461 file_extent.num_bytes = ins.offset;
1462 file_extent.ram_bytes = ins.offset;
1463 file_extent.offset = 0;
1464 file_extent.compression = BTRFS_COMPRESS_NONE;
1466 lock_extent(&inode->io_tree, start, start + ram_size - 1,
1469 em = btrfs_create_io_em(inode, start, &file_extent,
1470 BTRFS_ORDERED_REGULAR);
1472 unlock_extent(&inode->io_tree, start,
1473 start + ram_size - 1, &cached);
1477 free_extent_map(em);
1479 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1480 1 << BTRFS_ORDERED_REGULAR);
1481 if (IS_ERR(ordered)) {
1482 unlock_extent(&inode->io_tree, start,
1483 start + ram_size - 1, &cached);
1484 ret = PTR_ERR(ordered);
1485 goto out_drop_extent_cache;
1488 if (btrfs_is_data_reloc_root(root)) {
1489 ret = btrfs_reloc_clone_csums(ordered);
1492 * Only drop cache here, and process as normal.
1494 * We must not allow extent_clear_unlock_delalloc()
1495 * at out_unlock label to free meta of this ordered
1496 * extent, as its meta should be freed by
1497 * btrfs_finish_ordered_io().
1499 * So we must continue until @start is increased to
1500 * skip current ordered extent.
1503 btrfs_drop_extent_map_range(inode, start,
1504 start + ram_size - 1,
1507 btrfs_put_ordered_extent(ordered);
1509 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1512 * We're not doing compressed IO, don't unlock the first page
1513 * (which the caller expects to stay locked), don't clear any
1514 * dirty bits and don't set any writeback bits
1516 * Do set the Ordered (Private2) bit so we know this page was
1517 * properly setup for writepage.
1519 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1520 page_ops |= PAGE_SET_ORDERED;
1522 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1523 locked_folio, &cached,
1524 EXTENT_LOCKED | EXTENT_DELALLOC,
1526 if (num_bytes < cur_alloc_size)
1529 num_bytes -= cur_alloc_size;
1530 alloc_hint = ins.objectid + ins.offset;
1531 start += cur_alloc_size;
1532 extent_reserved = false;
1535 * btrfs_reloc_clone_csums() error, since start is increased
1536 * extent_clear_unlock_delalloc() at out_unlock label won't
1537 * free metadata of current ordered extent, we're OK to exit.
1547 out_drop_extent_cache:
1548 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1550 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1554 * Now, we have three regions to clean up:
1556 * |-------(1)----|---(2)---|-------------(3)----------|
1557 * `- orig_start `- start `- start + cur_alloc_size `- end
1559 * We process each region below.
1562 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1563 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1564 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1567 * For the range (1). We have already instantiated the ordered extents
1568 * for this region. They are cleaned up by
1569 * btrfs_cleanup_ordered_extents() in e.g,
1570 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1571 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1572 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1575 * However, in case of @keep_locked, we still need to unlock the pages
1576 * (except @locked_folio) to ensure all the pages are unlocked.
1578 if (keep_locked && orig_start < start) {
1580 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1581 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1582 locked_folio, NULL, 0, page_ops);
1586 * At this point we're unlocked, we want to make sure we're only
1587 * clearing these flags under the extent lock, so lock the rest of the
1588 * range and clear everything up.
1590 lock_extent(&inode->io_tree, start, end, NULL);
1593 * For the range (2). If we reserved an extent for our delalloc range
1594 * (or a subrange) and failed to create the respective ordered extent,
1595 * then it means that when we reserved the extent we decremented the
1596 * extent's size from the data space_info's bytes_may_use counter and
1597 * incremented the space_info's bytes_reserved counter by the same
1598 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1599 * to decrement again the data space_info's bytes_may_use counter,
1600 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1602 if (extent_reserved) {
1603 extent_clear_unlock_delalloc(inode, start,
1604 start + cur_alloc_size - 1,
1605 locked_folio, &cached, clear_bits,
1607 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1608 start += cur_alloc_size;
1612 * For the range (3). We never touched the region. In addition to the
1613 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1614 * space_info's bytes_may_use counter, reserved in
1615 * btrfs_check_data_free_space().
1618 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1619 extent_clear_unlock_delalloc(inode, start, end, locked_folio,
1620 &cached, clear_bits, page_ops);
1621 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1627 * Phase two of compressed writeback. This is the ordered portion of the code,
1628 * which only gets called in the order the work was queued. We walk all the
1629 * async extents created by compress_file_range and send them down to the disk.
1631 * If called with @do_free == true then it'll try to finish the work and free
1632 * the work struct eventually.
1634 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1636 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1638 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1639 struct async_extent *async_extent;
1640 unsigned long nr_pages;
1644 struct async_cow *async_cow;
1646 btrfs_add_delayed_iput(async_chunk->inode);
1647 if (async_chunk->blkcg_css)
1648 css_put(async_chunk->blkcg_css);
1650 async_cow = async_chunk->async_cow;
1651 if (atomic_dec_and_test(&async_cow->num_chunks))
1656 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1659 while (!list_empty(&async_chunk->extents)) {
1660 async_extent = list_entry(async_chunk->extents.next,
1661 struct async_extent, list);
1662 list_del(&async_extent->list);
1663 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1666 /* atomic_sub_return implies a barrier */
1667 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1669 cond_wake_up_nomb(&fs_info->async_submit_wait);
1672 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1673 struct folio *locked_folio, u64 start,
1674 u64 end, struct writeback_control *wbc)
1676 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1677 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1678 struct async_cow *ctx;
1679 struct async_chunk *async_chunk;
1680 unsigned long nr_pages;
1681 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1684 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1686 nofs_flag = memalloc_nofs_save();
1687 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1688 memalloc_nofs_restore(nofs_flag);
1692 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1694 async_chunk = ctx->chunks;
1695 atomic_set(&ctx->num_chunks, num_chunks);
1697 for (i = 0; i < num_chunks; i++) {
1698 u64 cur_end = min(end, start + SZ_512K - 1);
1701 * igrab is called higher up in the call chain, take only the
1702 * lightweight reference for the callback lifetime
1704 ihold(&inode->vfs_inode);
1705 async_chunk[i].async_cow = ctx;
1706 async_chunk[i].inode = inode;
1707 async_chunk[i].start = start;
1708 async_chunk[i].end = cur_end;
1709 async_chunk[i].write_flags = write_flags;
1710 INIT_LIST_HEAD(&async_chunk[i].extents);
1713 * The locked_folio comes all the way from writepage and its
1714 * the original folio we were actually given. As we spread
1715 * this large delalloc region across multiple async_chunk
1716 * structs, only the first struct needs a pointer to
1719 * This way we don't need racey decisions about who is supposed
1724 * Depending on the compressibility, the pages might or
1725 * might not go through async. We want all of them to
1726 * be accounted against wbc once. Let's do it here
1727 * before the paths diverge. wbc accounting is used
1728 * only for foreign writeback detection and doesn't
1729 * need full accuracy. Just account the whole thing
1730 * against the first page.
1732 wbc_account_cgroup_owner(wbc, &locked_folio->page,
1734 async_chunk[i].locked_folio = locked_folio;
1735 locked_folio = NULL;
1737 async_chunk[i].locked_folio = NULL;
1740 if (blkcg_css != blkcg_root_css) {
1742 async_chunk[i].blkcg_css = blkcg_css;
1743 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1745 async_chunk[i].blkcg_css = NULL;
1748 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1749 submit_compressed_extents);
1751 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1752 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1754 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1756 start = cur_end + 1;
1762 * Run the delalloc range from start to end, and write back any dirty pages
1763 * covered by the range.
1765 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1766 struct folio *locked_folio, u64 start,
1767 u64 end, struct writeback_control *wbc,
1770 u64 done_offset = end;
1773 while (start <= end) {
1774 ret = cow_file_range(inode, locked_folio, start, end,
1775 &done_offset, true, false);
1778 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1779 start, done_offset, wbc, pages_dirty);
1780 start = done_offset + 1;
1786 static int fallback_to_cow(struct btrfs_inode *inode,
1787 struct folio *locked_folio, const u64 start,
1790 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1791 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1792 const u64 range_bytes = end + 1 - start;
1793 struct extent_io_tree *io_tree = &inode->io_tree;
1794 struct extent_state *cached_state = NULL;
1795 u64 range_start = start;
1800 * If EXTENT_NORESERVE is set it means that when the buffered write was
1801 * made we had not enough available data space and therefore we did not
1802 * reserve data space for it, since we though we could do NOCOW for the
1803 * respective file range (either there is prealloc extent or the inode
1804 * has the NOCOW bit set).
1806 * However when we need to fallback to COW mode (because for example the
1807 * block group for the corresponding extent was turned to RO mode by a
1808 * scrub or relocation) we need to do the following:
1810 * 1) We increment the bytes_may_use counter of the data space info.
1811 * If COW succeeds, it allocates a new data extent and after doing
1812 * that it decrements the space info's bytes_may_use counter and
1813 * increments its bytes_reserved counter by the same amount (we do
1814 * this at btrfs_add_reserved_bytes()). So we need to increment the
1815 * bytes_may_use counter to compensate (when space is reserved at
1816 * buffered write time, the bytes_may_use counter is incremented);
1818 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1819 * that if the COW path fails for any reason, it decrements (through
1820 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1821 * data space info, which we incremented in the step above.
1823 * If we need to fallback to cow and the inode corresponds to a free
1824 * space cache inode or an inode of the data relocation tree, we must
1825 * also increment bytes_may_use of the data space_info for the same
1826 * reason. Space caches and relocated data extents always get a prealloc
1827 * extent for them, however scrub or balance may have set the block
1828 * group that contains that extent to RO mode and therefore force COW
1829 * when starting writeback.
1831 lock_extent(io_tree, start, end, &cached_state);
1832 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1833 EXTENT_NORESERVE, 0, NULL);
1834 if (count > 0 || is_space_ino || is_reloc_ino) {
1836 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1837 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1839 if (is_space_ino || is_reloc_ino)
1840 bytes = range_bytes;
1842 spin_lock(&sinfo->lock);
1843 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1844 spin_unlock(&sinfo->lock);
1847 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1850 unlock_extent(io_tree, start, end, &cached_state);
1853 * Don't try to create inline extents, as a mix of inline extent that
1854 * is written out and unlocked directly and a normal NOCOW extent
1857 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1863 struct can_nocow_file_extent_args {
1866 /* Start file offset of the range we want to NOCOW. */
1868 /* End file offset (inclusive) of the range we want to NOCOW. */
1870 bool writeback_path;
1873 * Free the path passed to can_nocow_file_extent() once it's not needed
1879 * Output fields. Only set when can_nocow_file_extent() returns 1.
1880 * The expected file extent for the NOCOW write.
1882 struct btrfs_file_extent file_extent;
1886 * Check if we can NOCOW the file extent that the path points to.
1887 * This function may return with the path released, so the caller should check
1888 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1890 * Returns: < 0 on error
1891 * 0 if we can not NOCOW
1894 static int can_nocow_file_extent(struct btrfs_path *path,
1895 struct btrfs_key *key,
1896 struct btrfs_inode *inode,
1897 struct can_nocow_file_extent_args *args)
1899 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1900 struct extent_buffer *leaf = path->nodes[0];
1901 struct btrfs_root *root = inode->root;
1902 struct btrfs_file_extent_item *fi;
1903 struct btrfs_root *csum_root;
1909 bool nowait = path->nowait;
1911 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1912 extent_type = btrfs_file_extent_type(leaf, fi);
1914 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1917 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1918 extent_type == BTRFS_FILE_EXTENT_REG)
1922 * If the extent was created before the generation where the last snapshot
1923 * for its subvolume was created, then this implies the extent is shared,
1924 * hence we must COW.
1926 if (!args->strict &&
1927 btrfs_file_extent_generation(leaf, fi) <=
1928 btrfs_root_last_snapshot(&root->root_item))
1931 /* An explicit hole, must COW. */
1932 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1935 /* Compressed/encrypted/encoded extents must be COWed. */
1936 if (btrfs_file_extent_compression(leaf, fi) ||
1937 btrfs_file_extent_encryption(leaf, fi) ||
1938 btrfs_file_extent_other_encoding(leaf, fi))
1941 extent_end = btrfs_file_extent_end(path);
1943 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1944 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1945 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1946 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1947 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1950 * The following checks can be expensive, as they need to take other
1951 * locks and do btree or rbtree searches, so release the path to avoid
1952 * blocking other tasks for too long.
1954 btrfs_release_path(path);
1956 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1957 key->offset - args->file_extent.offset,
1958 args->file_extent.disk_bytenr, args->strict, path);
1959 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1963 if (args->free_path) {
1965 * We don't need the path anymore, plus through the
1966 * btrfs_lookup_csums_list() call below we will end up allocating
1967 * another path. So free the path to avoid unnecessary extra
1970 btrfs_free_path(path);
1974 /* If there are pending snapshots for this root, we must COW. */
1975 if (args->writeback_path && !is_freespace_inode &&
1976 atomic_read(&root->snapshot_force_cow))
1979 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1980 args->file_extent.offset += args->start - key->offset;
1981 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1984 * Force COW if csums exist in the range. This ensures that csums for a
1985 * given extent are either valid or do not exist.
1988 csum_root = btrfs_csum_root(root->fs_info, io_start);
1989 ret = btrfs_lookup_csums_list(csum_root, io_start,
1990 io_start + args->file_extent.num_bytes - 1,
1992 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1998 if (args->free_path && path)
1999 btrfs_free_path(path);
2001 return ret < 0 ? ret : can_nocow;
2005 * when nowcow writeback call back. This checks for snapshots or COW copies
2006 * of the extents that exist in the file, and COWs the file as required.
2008 * If no cow copies or snapshots exist, we write directly to the existing
2011 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2012 struct folio *locked_folio,
2013 const u64 start, const u64 end)
2015 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2016 struct btrfs_root *root = inode->root;
2017 struct btrfs_path *path;
2018 u64 cow_start = (u64)-1;
2019 u64 cur_offset = start;
2021 bool check_prev = true;
2022 u64 ino = btrfs_ino(inode);
2023 struct can_nocow_file_extent_args nocow_args = { 0 };
2026 * Normally on a zoned device we're only doing COW writes, but in case
2027 * of relocation on a zoned filesystem serializes I/O so that we're only
2028 * writing sequentially and can end up here as well.
2030 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2032 path = btrfs_alloc_path();
2038 nocow_args.end = end;
2039 nocow_args.writeback_path = true;
2041 while (cur_offset <= end) {
2042 struct btrfs_block_group *nocow_bg = NULL;
2043 struct btrfs_ordered_extent *ordered;
2044 struct btrfs_key found_key;
2045 struct btrfs_file_extent_item *fi;
2046 struct extent_buffer *leaf;
2047 struct extent_state *cached_state = NULL;
2053 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2059 * If there is no extent for our range when doing the initial
2060 * search, then go back to the previous slot as it will be the
2061 * one containing the search offset
2063 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2064 leaf = path->nodes[0];
2065 btrfs_item_key_to_cpu(leaf, &found_key,
2066 path->slots[0] - 1);
2067 if (found_key.objectid == ino &&
2068 found_key.type == BTRFS_EXTENT_DATA_KEY)
2073 /* Go to next leaf if we have exhausted the current one */
2074 leaf = path->nodes[0];
2075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2076 ret = btrfs_next_leaf(root, path);
2081 leaf = path->nodes[0];
2084 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2086 /* Didn't find anything for our INO */
2087 if (found_key.objectid > ino)
2090 * Keep searching until we find an EXTENT_ITEM or there are no
2091 * more extents for this inode
2093 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2094 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2099 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2100 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2101 found_key.offset > end)
2105 * If the found extent starts after requested offset, then
2106 * adjust extent_end to be right before this extent begins
2108 if (found_key.offset > cur_offset) {
2109 extent_end = found_key.offset;
2115 * Found extent which begins before our range and potentially
2118 fi = btrfs_item_ptr(leaf, path->slots[0],
2119 struct btrfs_file_extent_item);
2120 extent_type = btrfs_file_extent_type(leaf, fi);
2121 /* If this is triggered then we have a memory corruption. */
2122 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2123 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2127 extent_end = btrfs_file_extent_end(path);
2130 * If the extent we got ends before our current offset, skip to
2133 if (extent_end <= cur_offset) {
2138 nocow_args.start = cur_offset;
2139 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2146 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2147 nocow_args.file_extent.disk_bytenr +
2148 nocow_args.file_extent.offset);
2152 * If we can't perform NOCOW writeback for the range,
2153 * then record the beginning of the range that needs to
2154 * be COWed. It will be written out before the next
2155 * NOCOW range if we find one, or when exiting this
2158 if (cow_start == (u64)-1)
2159 cow_start = cur_offset;
2160 cur_offset = extent_end;
2161 if (cur_offset > end)
2163 if (!path->nodes[0])
2170 * COW range from cow_start to found_key.offset - 1. As the key
2171 * will contain the beginning of the first extent that can be
2172 * NOCOW, following one which needs to be COW'ed
2174 if (cow_start != (u64)-1) {
2175 ret = fallback_to_cow(inode, locked_folio, cow_start,
2176 found_key.offset - 1);
2177 cow_start = (u64)-1;
2179 btrfs_dec_nocow_writers(nocow_bg);
2184 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2185 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2187 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2189 struct extent_map *em;
2191 em = btrfs_create_io_em(inode, cur_offset,
2192 &nocow_args.file_extent,
2193 BTRFS_ORDERED_PREALLOC);
2195 unlock_extent(&inode->io_tree, cur_offset,
2196 nocow_end, &cached_state);
2197 btrfs_dec_nocow_writers(nocow_bg);
2201 free_extent_map(em);
2204 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2205 &nocow_args.file_extent,
2207 ? (1 << BTRFS_ORDERED_PREALLOC)
2208 : (1 << BTRFS_ORDERED_NOCOW));
2209 btrfs_dec_nocow_writers(nocow_bg);
2210 if (IS_ERR(ordered)) {
2212 btrfs_drop_extent_map_range(inode, cur_offset,
2215 unlock_extent(&inode->io_tree, cur_offset,
2216 nocow_end, &cached_state);
2217 ret = PTR_ERR(ordered);
2221 if (btrfs_is_data_reloc_root(root))
2223 * Error handled later, as we must prevent
2224 * extent_clear_unlock_delalloc() in error handler
2225 * from freeing metadata of created ordered extent.
2227 ret = btrfs_reloc_clone_csums(ordered);
2228 btrfs_put_ordered_extent(ordered);
2230 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2231 locked_folio, &cached_state,
2232 EXTENT_LOCKED | EXTENT_DELALLOC |
2233 EXTENT_CLEAR_DATA_RESV,
2234 PAGE_UNLOCK | PAGE_SET_ORDERED);
2236 cur_offset = extent_end;
2239 * btrfs_reloc_clone_csums() error, now we're OK to call error
2240 * handler, as metadata for created ordered extent will only
2241 * be freed by btrfs_finish_ordered_io().
2246 btrfs_release_path(path);
2248 if (cur_offset <= end && cow_start == (u64)-1)
2249 cow_start = cur_offset;
2251 if (cow_start != (u64)-1) {
2253 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2254 cow_start = (u64)-1;
2259 btrfs_free_path(path);
2264 * If an error happened while a COW region is outstanding, cur_offset
2265 * needs to be reset to cow_start to ensure the COW region is unlocked
2268 if (cow_start != (u64)-1)
2269 cur_offset = cow_start;
2272 * We need to lock the extent here because we're clearing DELALLOC and
2273 * we're not locked at this point.
2275 if (cur_offset < end) {
2276 struct extent_state *cached = NULL;
2278 lock_extent(&inode->io_tree, cur_offset, end, &cached);
2279 extent_clear_unlock_delalloc(inode, cur_offset, end,
2280 locked_folio, &cached,
2281 EXTENT_LOCKED | EXTENT_DELALLOC |
2283 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2284 PAGE_START_WRITEBACK |
2285 PAGE_END_WRITEBACK);
2286 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2288 btrfs_free_path(path);
2292 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2294 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2295 if (inode->defrag_bytes &&
2296 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2304 * Function to process delayed allocation (create CoW) for ranges which are
2305 * being touched for the first time.
2307 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2308 u64 start, u64 end, struct writeback_control *wbc)
2310 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2314 * The range must cover part of the @locked_folio, or a return of 1
2315 * can confuse the caller.
2317 ASSERT(!(end <= folio_pos(locked_folio) ||
2318 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2320 if (should_nocow(inode, start, end)) {
2321 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2325 if (btrfs_inode_can_compress(inode) &&
2326 inode_need_compress(inode, start, end) &&
2327 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2331 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2334 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2339 btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2344 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2345 struct extent_state *orig, u64 split)
2347 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2350 lockdep_assert_held(&inode->io_tree.lock);
2352 /* not delalloc, ignore it */
2353 if (!(orig->state & EXTENT_DELALLOC))
2356 size = orig->end - orig->start + 1;
2357 if (size > fs_info->max_extent_size) {
2362 * See the explanation in btrfs_merge_delalloc_extent, the same
2363 * applies here, just in reverse.
2365 new_size = orig->end - split + 1;
2366 num_extents = count_max_extents(fs_info, new_size);
2367 new_size = split - orig->start;
2368 num_extents += count_max_extents(fs_info, new_size);
2369 if (count_max_extents(fs_info, size) >= num_extents)
2373 spin_lock(&inode->lock);
2374 btrfs_mod_outstanding_extents(inode, 1);
2375 spin_unlock(&inode->lock);
2379 * Handle merged delayed allocation extents so we can keep track of new extents
2380 * that are just merged onto old extents, such as when we are doing sequential
2381 * writes, so we can properly account for the metadata space we'll need.
2383 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2384 struct extent_state *other)
2386 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2387 u64 new_size, old_size;
2390 lockdep_assert_held(&inode->io_tree.lock);
2392 /* not delalloc, ignore it */
2393 if (!(other->state & EXTENT_DELALLOC))
2396 if (new->start > other->start)
2397 new_size = new->end - other->start + 1;
2399 new_size = other->end - new->start + 1;
2401 /* we're not bigger than the max, unreserve the space and go */
2402 if (new_size <= fs_info->max_extent_size) {
2403 spin_lock(&inode->lock);
2404 btrfs_mod_outstanding_extents(inode, -1);
2405 spin_unlock(&inode->lock);
2410 * We have to add up either side to figure out how many extents were
2411 * accounted for before we merged into one big extent. If the number of
2412 * extents we accounted for is <= the amount we need for the new range
2413 * then we can return, otherwise drop. Think of it like this
2417 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2418 * need 2 outstanding extents, on one side we have 1 and the other side
2419 * we have 1 so they are == and we can return. But in this case
2421 * [MAX_SIZE+4k][MAX_SIZE+4k]
2423 * Each range on their own accounts for 2 extents, but merged together
2424 * they are only 3 extents worth of accounting, so we need to drop in
2427 old_size = other->end - other->start + 1;
2428 num_extents = count_max_extents(fs_info, old_size);
2429 old_size = new->end - new->start + 1;
2430 num_extents += count_max_extents(fs_info, old_size);
2431 if (count_max_extents(fs_info, new_size) >= num_extents)
2434 spin_lock(&inode->lock);
2435 btrfs_mod_outstanding_extents(inode, -1);
2436 spin_unlock(&inode->lock);
2439 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2441 struct btrfs_root *root = inode->root;
2442 struct btrfs_fs_info *fs_info = root->fs_info;
2444 spin_lock(&root->delalloc_lock);
2445 ASSERT(list_empty(&inode->delalloc_inodes));
2446 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2447 root->nr_delalloc_inodes++;
2448 if (root->nr_delalloc_inodes == 1) {
2449 spin_lock(&fs_info->delalloc_root_lock);
2450 ASSERT(list_empty(&root->delalloc_root));
2451 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2452 spin_unlock(&fs_info->delalloc_root_lock);
2454 spin_unlock(&root->delalloc_lock);
2457 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2459 struct btrfs_root *root = inode->root;
2460 struct btrfs_fs_info *fs_info = root->fs_info;
2462 lockdep_assert_held(&root->delalloc_lock);
2465 * We may be called after the inode was already deleted from the list,
2466 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2467 * and then later through btrfs_clear_delalloc_extent() while the inode
2468 * still has ->delalloc_bytes > 0.
2470 if (!list_empty(&inode->delalloc_inodes)) {
2471 list_del_init(&inode->delalloc_inodes);
2472 root->nr_delalloc_inodes--;
2473 if (!root->nr_delalloc_inodes) {
2474 ASSERT(list_empty(&root->delalloc_inodes));
2475 spin_lock(&fs_info->delalloc_root_lock);
2476 ASSERT(!list_empty(&root->delalloc_root));
2477 list_del_init(&root->delalloc_root);
2478 spin_unlock(&fs_info->delalloc_root_lock);
2484 * Properly track delayed allocation bytes in the inode and to maintain the
2485 * list of inodes that have pending delalloc work to be done.
2487 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2490 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2492 lockdep_assert_held(&inode->io_tree.lock);
2494 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2497 * set_bit and clear bit hooks normally require _irqsave/restore
2498 * but in this case, we are only testing for the DELALLOC
2499 * bit, which is only set or cleared with irqs on
2501 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2502 u64 len = state->end + 1 - state->start;
2503 u64 prev_delalloc_bytes;
2504 u32 num_extents = count_max_extents(fs_info, len);
2506 spin_lock(&inode->lock);
2507 btrfs_mod_outstanding_extents(inode, num_extents);
2508 spin_unlock(&inode->lock);
2510 /* For sanity tests */
2511 if (btrfs_is_testing(fs_info))
2514 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2515 fs_info->delalloc_batch);
2516 spin_lock(&inode->lock);
2517 prev_delalloc_bytes = inode->delalloc_bytes;
2518 inode->delalloc_bytes += len;
2519 if (bits & EXTENT_DEFRAG)
2520 inode->defrag_bytes += len;
2521 spin_unlock(&inode->lock);
2524 * We don't need to be under the protection of the inode's lock,
2525 * because we are called while holding the inode's io_tree lock
2526 * and are therefore protected against concurrent calls of this
2527 * function and btrfs_clear_delalloc_extent().
2529 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2530 btrfs_add_delalloc_inode(inode);
2533 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2534 (bits & EXTENT_DELALLOC_NEW)) {
2535 spin_lock(&inode->lock);
2536 inode->new_delalloc_bytes += state->end + 1 - state->start;
2537 spin_unlock(&inode->lock);
2542 * Once a range is no longer delalloc this function ensures that proper
2543 * accounting happens.
2545 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2546 struct extent_state *state, u32 bits)
2548 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2549 u64 len = state->end + 1 - state->start;
2550 u32 num_extents = count_max_extents(fs_info, len);
2552 lockdep_assert_held(&inode->io_tree.lock);
2554 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2555 spin_lock(&inode->lock);
2556 inode->defrag_bytes -= len;
2557 spin_unlock(&inode->lock);
2561 * set_bit and clear bit hooks normally require _irqsave/restore
2562 * but in this case, we are only testing for the DELALLOC
2563 * bit, which is only set or cleared with irqs on
2565 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2566 struct btrfs_root *root = inode->root;
2567 u64 new_delalloc_bytes;
2569 spin_lock(&inode->lock);
2570 btrfs_mod_outstanding_extents(inode, -num_extents);
2571 spin_unlock(&inode->lock);
2574 * We don't reserve metadata space for space cache inodes so we
2575 * don't need to call delalloc_release_metadata if there is an
2578 if (bits & EXTENT_CLEAR_META_RESV &&
2579 root != fs_info->tree_root)
2580 btrfs_delalloc_release_metadata(inode, len, true);
2582 /* For sanity tests. */
2583 if (btrfs_is_testing(fs_info))
2586 if (!btrfs_is_data_reloc_root(root) &&
2587 !btrfs_is_free_space_inode(inode) &&
2588 !(state->state & EXTENT_NORESERVE) &&
2589 (bits & EXTENT_CLEAR_DATA_RESV))
2590 btrfs_free_reserved_data_space_noquota(fs_info, len);
2592 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2593 fs_info->delalloc_batch);
2594 spin_lock(&inode->lock);
2595 inode->delalloc_bytes -= len;
2596 new_delalloc_bytes = inode->delalloc_bytes;
2597 spin_unlock(&inode->lock);
2600 * We don't need to be under the protection of the inode's lock,
2601 * because we are called while holding the inode's io_tree lock
2602 * and are therefore protected against concurrent calls of this
2603 * function and btrfs_set_delalloc_extent().
2605 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2606 spin_lock(&root->delalloc_lock);
2607 btrfs_del_delalloc_inode(inode);
2608 spin_unlock(&root->delalloc_lock);
2612 if ((state->state & EXTENT_DELALLOC_NEW) &&
2613 (bits & EXTENT_DELALLOC_NEW)) {
2614 spin_lock(&inode->lock);
2615 ASSERT(inode->new_delalloc_bytes >= len);
2616 inode->new_delalloc_bytes -= len;
2617 if (bits & EXTENT_ADD_INODE_BYTES)
2618 inode_add_bytes(&inode->vfs_inode, len);
2619 spin_unlock(&inode->lock);
2624 * given a list of ordered sums record them in the inode. This happens
2625 * at IO completion time based on sums calculated at bio submission time.
2627 static int add_pending_csums(struct btrfs_trans_handle *trans,
2628 struct list_head *list)
2630 struct btrfs_ordered_sum *sum;
2631 struct btrfs_root *csum_root = NULL;
2634 list_for_each_entry(sum, list, list) {
2635 trans->adding_csums = true;
2637 csum_root = btrfs_csum_root(trans->fs_info,
2639 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2640 trans->adding_csums = false;
2647 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2650 struct extent_state **cached_state)
2652 u64 search_start = start;
2653 const u64 end = start + len - 1;
2655 while (search_start < end) {
2656 const u64 search_len = end - search_start + 1;
2657 struct extent_map *em;
2661 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2665 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2669 if (em->start < search_start)
2670 em_len -= search_start - em->start;
2671 if (em_len > search_len)
2672 em_len = search_len;
2674 ret = set_extent_bit(&inode->io_tree, search_start,
2675 search_start + em_len - 1,
2676 EXTENT_DELALLOC_NEW, cached_state);
2678 search_start = extent_map_end(em);
2679 free_extent_map(em);
2686 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2687 unsigned int extra_bits,
2688 struct extent_state **cached_state)
2690 WARN_ON(PAGE_ALIGNED(end));
2692 if (start >= i_size_read(&inode->vfs_inode) &&
2693 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2695 * There can't be any extents following eof in this case so just
2696 * set the delalloc new bit for the range directly.
2698 extra_bits |= EXTENT_DELALLOC_NEW;
2702 ret = btrfs_find_new_delalloc_bytes(inode, start,
2709 return set_extent_bit(&inode->io_tree, start, end,
2710 EXTENT_DELALLOC | extra_bits, cached_state);
2713 /* see btrfs_writepage_start_hook for details on why this is required */
2714 struct btrfs_writepage_fixup {
2715 struct folio *folio;
2716 struct btrfs_inode *inode;
2717 struct btrfs_work work;
2720 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2722 struct btrfs_writepage_fixup *fixup =
2723 container_of(work, struct btrfs_writepage_fixup, work);
2724 struct btrfs_ordered_extent *ordered;
2725 struct extent_state *cached_state = NULL;
2726 struct extent_changeset *data_reserved = NULL;
2727 struct folio *folio = fixup->folio;
2728 struct btrfs_inode *inode = fixup->inode;
2729 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2730 u64 page_start = folio_pos(folio);
2731 u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2733 bool free_delalloc_space = true;
2736 * This is similar to page_mkwrite, we need to reserve the space before
2737 * we take the folio lock.
2739 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2745 * Before we queued this fixup, we took a reference on the folio.
2746 * folio->mapping may go NULL, but it shouldn't be moved to a different
2749 if (!folio->mapping || !folio_test_dirty(folio) ||
2750 !folio_test_checked(folio)) {
2752 * Unfortunately this is a little tricky, either
2754 * 1) We got here and our folio had already been dealt with and
2755 * we reserved our space, thus ret == 0, so we need to just
2756 * drop our space reservation and bail. This can happen the
2757 * first time we come into the fixup worker, or could happen
2758 * while waiting for the ordered extent.
2759 * 2) Our folio was already dealt with, but we happened to get an
2760 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2761 * this case we obviously don't have anything to release, but
2762 * because the folio was already dealt with we don't want to
2763 * mark the folio with an error, so make sure we're resetting
2764 * ret to 0. This is why we have this check _before_ the ret
2765 * check, because we do not want to have a surprise ENOSPC
2766 * when the folio was already properly dealt with.
2769 btrfs_delalloc_release_extents(inode, folio_size(folio));
2770 btrfs_delalloc_release_space(inode, data_reserved,
2771 page_start, folio_size(folio),
2779 * We can't mess with the folio state unless it is locked, so now that
2780 * it is locked bail if we failed to make our space reservation.
2785 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2787 /* already ordered? We're done */
2788 if (folio_test_ordered(folio))
2791 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2793 unlock_extent(&inode->io_tree, page_start, page_end,
2795 folio_unlock(folio);
2796 btrfs_start_ordered_extent(ordered);
2797 btrfs_put_ordered_extent(ordered);
2801 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2807 * Everything went as planned, we're now the owner of a dirty page with
2808 * delayed allocation bits set and space reserved for our COW
2811 * The page was dirty when we started, nothing should have cleaned it.
2813 BUG_ON(!folio_test_dirty(folio));
2814 free_delalloc_space = false;
2816 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2817 if (free_delalloc_space)
2818 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2820 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2824 * We hit ENOSPC or other errors. Update the mapping and page
2825 * to reflect the errors and clean the page.
2827 mapping_set_error(folio->mapping, ret);
2828 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2829 folio_size(folio), !ret);
2830 folio_clear_dirty_for_io(folio);
2832 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2833 folio_unlock(folio);
2836 extent_changeset_free(data_reserved);
2838 * As a precaution, do a delayed iput in case it would be the last iput
2839 * that could need flushing space. Recursing back to fixup worker would
2842 btrfs_add_delayed_iput(inode);
2846 * There are a few paths in the higher layers of the kernel that directly
2847 * set the folio dirty bit without asking the filesystem if it is a
2848 * good idea. This causes problems because we want to make sure COW
2849 * properly happens and the data=ordered rules are followed.
2851 * In our case any range that doesn't have the ORDERED bit set
2852 * hasn't been properly setup for IO. We kick off an async process
2853 * to fix it up. The async helper will wait for ordered extents, set
2854 * the delalloc bit and make it safe to write the folio.
2856 int btrfs_writepage_cow_fixup(struct folio *folio)
2858 struct inode *inode = folio->mapping->host;
2859 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2860 struct btrfs_writepage_fixup *fixup;
2862 /* This folio has ordered extent covering it already */
2863 if (folio_test_ordered(folio))
2867 * folio_checked is set below when we create a fixup worker for this
2868 * folio, don't try to create another one if we're already
2869 * folio_test_checked.
2871 * The extent_io writepage code will redirty the foio if we send back
2874 if (folio_test_checked(folio))
2877 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2882 * We are already holding a reference to this inode from
2883 * write_cache_pages. We need to hold it because the space reservation
2884 * takes place outside of the folio lock, and we can't trust
2885 * page->mapping outside of the folio lock.
2888 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2890 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2891 fixup->folio = folio;
2892 fixup->inode = BTRFS_I(inode);
2893 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2898 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2899 struct btrfs_inode *inode, u64 file_pos,
2900 struct btrfs_file_extent_item *stack_fi,
2901 const bool update_inode_bytes,
2902 u64 qgroup_reserved)
2904 struct btrfs_root *root = inode->root;
2905 const u64 sectorsize = root->fs_info->sectorsize;
2906 struct btrfs_path *path;
2907 struct extent_buffer *leaf;
2908 struct btrfs_key ins;
2909 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2910 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2911 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2912 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2913 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2914 struct btrfs_drop_extents_args drop_args = { 0 };
2917 path = btrfs_alloc_path();
2922 * we may be replacing one extent in the tree with another.
2923 * The new extent is pinned in the extent map, and we don't want
2924 * to drop it from the cache until it is completely in the btree.
2926 * So, tell btrfs_drop_extents to leave this extent in the cache.
2927 * the caller is expected to unpin it and allow it to be merged
2930 drop_args.path = path;
2931 drop_args.start = file_pos;
2932 drop_args.end = file_pos + num_bytes;
2933 drop_args.replace_extent = true;
2934 drop_args.extent_item_size = sizeof(*stack_fi);
2935 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2939 if (!drop_args.extent_inserted) {
2940 ins.objectid = btrfs_ino(inode);
2941 ins.offset = file_pos;
2942 ins.type = BTRFS_EXTENT_DATA_KEY;
2944 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2949 leaf = path->nodes[0];
2950 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2951 write_extent_buffer(leaf, stack_fi,
2952 btrfs_item_ptr_offset(leaf, path->slots[0]),
2953 sizeof(struct btrfs_file_extent_item));
2955 btrfs_mark_buffer_dirty(trans, leaf);
2956 btrfs_release_path(path);
2959 * If we dropped an inline extent here, we know the range where it is
2960 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2961 * number of bytes only for that range containing the inline extent.
2962 * The remaining of the range will be processed when clearning the
2963 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2965 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2966 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2968 inline_size = drop_args.bytes_found - inline_size;
2969 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2970 drop_args.bytes_found -= inline_size;
2971 num_bytes -= sectorsize;
2974 if (update_inode_bytes)
2975 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2977 ins.objectid = disk_bytenr;
2978 ins.offset = disk_num_bytes;
2979 ins.type = BTRFS_EXTENT_ITEM_KEY;
2981 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2985 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2987 qgroup_reserved, &ins);
2989 btrfs_free_path(path);
2994 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2997 struct btrfs_block_group *cache;
2999 cache = btrfs_lookup_block_group(fs_info, start);
3002 spin_lock(&cache->lock);
3003 cache->delalloc_bytes -= len;
3004 spin_unlock(&cache->lock);
3006 btrfs_put_block_group(cache);
3009 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3010 struct btrfs_ordered_extent *oe)
3012 struct btrfs_file_extent_item stack_fi;
3013 bool update_inode_bytes;
3014 u64 num_bytes = oe->num_bytes;
3015 u64 ram_bytes = oe->ram_bytes;
3017 memset(&stack_fi, 0, sizeof(stack_fi));
3018 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3019 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3020 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3021 oe->disk_num_bytes);
3022 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3023 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3024 num_bytes = oe->truncated_len;
3025 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3026 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3027 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3028 /* Encryption and other encoding is reserved and all 0 */
3031 * For delalloc, when completing an ordered extent we update the inode's
3032 * bytes when clearing the range in the inode's io tree, so pass false
3033 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3034 * except if the ordered extent was truncated.
3036 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3037 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3038 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3040 return insert_reserved_file_extent(trans, oe->inode,
3041 oe->file_offset, &stack_fi,
3042 update_inode_bytes, oe->qgroup_rsv);
3046 * As ordered data IO finishes, this gets called so we can finish
3047 * an ordered extent if the range of bytes in the file it covers are
3050 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3052 struct btrfs_inode *inode = ordered_extent->inode;
3053 struct btrfs_root *root = inode->root;
3054 struct btrfs_fs_info *fs_info = root->fs_info;
3055 struct btrfs_trans_handle *trans = NULL;
3056 struct extent_io_tree *io_tree = &inode->io_tree;
3057 struct extent_state *cached_state = NULL;
3059 int compress_type = 0;
3061 u64 logical_len = ordered_extent->num_bytes;
3062 bool freespace_inode;
3063 bool truncated = false;
3064 bool clear_reserved_extent = true;
3065 unsigned int clear_bits = EXTENT_DEFRAG;
3067 start = ordered_extent->file_offset;
3068 end = start + ordered_extent->num_bytes - 1;
3070 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3071 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3072 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3073 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3074 clear_bits |= EXTENT_DELALLOC_NEW;
3076 freespace_inode = btrfs_is_free_space_inode(inode);
3077 if (!freespace_inode)
3078 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3080 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3085 if (btrfs_is_zoned(fs_info))
3086 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3087 ordered_extent->disk_num_bytes);
3089 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3091 logical_len = ordered_extent->truncated_len;
3092 /* Truncated the entire extent, don't bother adding */
3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3098 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3100 btrfs_inode_safe_disk_i_size_write(inode, 0);
3101 if (freespace_inode)
3102 trans = btrfs_join_transaction_spacecache(root);
3104 trans = btrfs_join_transaction(root);
3105 if (IS_ERR(trans)) {
3106 ret = PTR_ERR(trans);
3110 trans->block_rsv = &inode->block_rsv;
3111 ret = btrfs_update_inode_fallback(trans, inode);
3112 if (ret) /* -ENOMEM or corruption */
3113 btrfs_abort_transaction(trans, ret);
3115 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3117 btrfs_abort_transaction(trans, ret);
3122 clear_bits |= EXTENT_LOCKED;
3123 lock_extent(io_tree, start, end, &cached_state);
3125 if (freespace_inode)
3126 trans = btrfs_join_transaction_spacecache(root);
3128 trans = btrfs_join_transaction(root);
3129 if (IS_ERR(trans)) {
3130 ret = PTR_ERR(trans);
3135 trans->block_rsv = &inode->block_rsv;
3137 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3141 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3142 compress_type = ordered_extent->compress_type;
3143 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3144 BUG_ON(compress_type);
3145 ret = btrfs_mark_extent_written(trans, inode,
3146 ordered_extent->file_offset,
3147 ordered_extent->file_offset +
3149 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3150 ordered_extent->disk_num_bytes);
3152 BUG_ON(root == fs_info->tree_root);
3153 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3155 clear_reserved_extent = false;
3156 btrfs_release_delalloc_bytes(fs_info,
3157 ordered_extent->disk_bytenr,
3158 ordered_extent->disk_num_bytes);
3162 btrfs_abort_transaction(trans, ret);
3166 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3167 ordered_extent->num_bytes, trans->transid);
3169 btrfs_abort_transaction(trans, ret);
3173 ret = add_pending_csums(trans, &ordered_extent->list);
3175 btrfs_abort_transaction(trans, ret);
3180 * If this is a new delalloc range, clear its new delalloc flag to
3181 * update the inode's number of bytes. This needs to be done first
3182 * before updating the inode item.
3184 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3185 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3186 clear_extent_bit(&inode->io_tree, start, end,
3187 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3190 btrfs_inode_safe_disk_i_size_write(inode, 0);
3191 ret = btrfs_update_inode_fallback(trans, inode);
3192 if (ret) { /* -ENOMEM or corruption */
3193 btrfs_abort_transaction(trans, ret);
3197 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3201 btrfs_end_transaction(trans);
3203 if (ret || truncated) {
3204 u64 unwritten_start = start;
3207 * If we failed to finish this ordered extent for any reason we
3208 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3209 * extent, and mark the inode with the error if it wasn't
3210 * already set. Any error during writeback would have already
3211 * set the mapping error, so we need to set it if we're the ones
3212 * marking this ordered extent as failed.
3215 btrfs_mark_ordered_extent_error(ordered_extent);
3218 unwritten_start += logical_len;
3219 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3222 * Drop extent maps for the part of the extent we didn't write.
3224 * We have an exception here for the free_space_inode, this is
3225 * because when we do btrfs_get_extent() on the free space inode
3226 * we will search the commit root. If this is a new block group
3227 * we won't find anything, and we will trip over the assert in
3228 * writepage where we do ASSERT(em->block_start !=
3231 * Theoretically we could also skip this for any NOCOW extent as
3232 * we don't mess with the extent map tree in the NOCOW case, but
3233 * for now simply skip this if we are the free space inode.
3235 if (!btrfs_is_free_space_inode(inode))
3236 btrfs_drop_extent_map_range(inode, unwritten_start,
3240 * If the ordered extent had an IOERR or something else went
3241 * wrong we need to return the space for this ordered extent
3242 * back to the allocator. We only free the extent in the
3243 * truncated case if we didn't write out the extent at all.
3245 * If we made it past insert_reserved_file_extent before we
3246 * errored out then we don't need to do this as the accounting
3247 * has already been done.
3249 if ((ret || !logical_len) &&
3250 clear_reserved_extent &&
3251 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3252 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3254 * Discard the range before returning it back to the
3257 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3258 btrfs_discard_extent(fs_info,
3259 ordered_extent->disk_bytenr,
3260 ordered_extent->disk_num_bytes,
3262 btrfs_free_reserved_extent(fs_info,
3263 ordered_extent->disk_bytenr,
3264 ordered_extent->disk_num_bytes, 1);
3266 * Actually free the qgroup rsv which was released when
3267 * the ordered extent was created.
3269 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3270 ordered_extent->qgroup_rsv,
3271 BTRFS_QGROUP_RSV_DATA);
3276 * This needs to be done to make sure anybody waiting knows we are done
3277 * updating everything for this ordered extent.
3279 btrfs_remove_ordered_extent(inode, ordered_extent);
3282 btrfs_put_ordered_extent(ordered_extent);
3283 /* once for the tree */
3284 btrfs_put_ordered_extent(ordered_extent);
3289 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3291 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3292 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3293 list_empty(&ordered->bioc_list))
3294 btrfs_finish_ordered_zoned(ordered);
3295 return btrfs_finish_one_ordered(ordered);
3299 * Verify the checksum for a single sector without any extra action that depend
3300 * on the type of I/O.
3302 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3303 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3305 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3308 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3310 shash->tfm = fs_info->csum_shash;
3312 kaddr = kmap_local_page(page) + pgoff;
3313 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3314 kunmap_local(kaddr);
3316 if (memcmp(csum, csum_expected, fs_info->csum_size))
3322 * Verify the checksum of a single data sector.
3324 * @bbio: btrfs_io_bio which contains the csum
3325 * @dev: device the sector is on
3326 * @bio_offset: offset to the beginning of the bio (in bytes)
3327 * @bv: bio_vec to check
3329 * Check if the checksum on a data block is valid. When a checksum mismatch is
3330 * detected, report the error and fill the corrupted range with zero.
3332 * Return %true if the sector is ok or had no checksum to start with, else %false.
3334 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3335 u32 bio_offset, struct bio_vec *bv)
3337 struct btrfs_inode *inode = bbio->inode;
3338 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3339 u64 file_offset = bbio->file_offset + bio_offset;
3340 u64 end = file_offset + bv->bv_len - 1;
3342 u8 csum[BTRFS_CSUM_SIZE];
3344 ASSERT(bv->bv_len == fs_info->sectorsize);
3349 if (btrfs_is_data_reloc_root(inode->root) &&
3350 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3352 /* Skip the range without csum for data reloc inode */
3353 clear_extent_bits(&inode->io_tree, file_offset, end,
3358 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3360 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3366 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3369 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3375 * Perform a delayed iput on @inode.
3377 * @inode: The inode we want to perform iput on
3379 * This function uses the generic vfs_inode::i_count to track whether we should
3380 * just decrement it (in case it's > 1) or if this is the last iput then link
3381 * the inode to the delayed iput machinery. Delayed iputs are processed at
3382 * transaction commit time/superblock commit/cleaner kthread.
3384 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3386 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3387 unsigned long flags;
3389 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3392 atomic_inc(&fs_info->nr_delayed_iputs);
3394 * Need to be irq safe here because we can be called from either an irq
3395 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3398 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3399 ASSERT(list_empty(&inode->delayed_iput));
3400 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3401 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3402 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3403 wake_up_process(fs_info->cleaner_kthread);
3406 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3407 struct btrfs_inode *inode)
3409 list_del_init(&inode->delayed_iput);
3410 spin_unlock_irq(&fs_info->delayed_iput_lock);
3411 iput(&inode->vfs_inode);
3412 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3413 wake_up(&fs_info->delayed_iputs_wait);
3414 spin_lock_irq(&fs_info->delayed_iput_lock);
3417 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3418 struct btrfs_inode *inode)
3420 if (!list_empty(&inode->delayed_iput)) {
3421 spin_lock_irq(&fs_info->delayed_iput_lock);
3422 if (!list_empty(&inode->delayed_iput))
3423 run_delayed_iput_locked(fs_info, inode);
3424 spin_unlock_irq(&fs_info->delayed_iput_lock);
3428 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3431 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3432 * calls btrfs_add_delayed_iput() and that needs to lock
3433 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3434 * prevent a deadlock.
3436 spin_lock_irq(&fs_info->delayed_iput_lock);
3437 while (!list_empty(&fs_info->delayed_iputs)) {
3438 struct btrfs_inode *inode;
3440 inode = list_first_entry(&fs_info->delayed_iputs,
3441 struct btrfs_inode, delayed_iput);
3442 run_delayed_iput_locked(fs_info, inode);
3443 if (need_resched()) {
3444 spin_unlock_irq(&fs_info->delayed_iput_lock);
3446 spin_lock_irq(&fs_info->delayed_iput_lock);
3449 spin_unlock_irq(&fs_info->delayed_iput_lock);
3453 * Wait for flushing all delayed iputs
3455 * @fs_info: the filesystem
3457 * This will wait on any delayed iputs that are currently running with KILLABLE
3458 * set. Once they are all done running we will return, unless we are killed in
3459 * which case we return EINTR. This helps in user operations like fallocate etc
3460 * that might get blocked on the iputs.
3462 * Return EINTR if we were killed, 0 if nothing's pending
3464 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3466 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3467 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3474 * This creates an orphan entry for the given inode in case something goes wrong
3475 * in the middle of an unlink.
3477 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3478 struct btrfs_inode *inode)
3482 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3483 if (ret && ret != -EEXIST) {
3484 btrfs_abort_transaction(trans, ret);
3492 * We have done the delete so we can go ahead and remove the orphan item for
3493 * this particular inode.
3495 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3496 struct btrfs_inode *inode)
3498 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3502 * this cleans up any orphans that may be left on the list from the last use
3505 int btrfs_orphan_cleanup(struct btrfs_root *root)
3507 struct btrfs_fs_info *fs_info = root->fs_info;
3508 struct btrfs_path *path;
3509 struct extent_buffer *leaf;
3510 struct btrfs_key key, found_key;
3511 struct btrfs_trans_handle *trans;
3512 struct inode *inode;
3513 u64 last_objectid = 0;
3514 int ret = 0, nr_unlink = 0;
3516 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3519 path = btrfs_alloc_path();
3524 path->reada = READA_BACK;
3526 key.objectid = BTRFS_ORPHAN_OBJECTID;
3527 key.type = BTRFS_ORPHAN_ITEM_KEY;
3528 key.offset = (u64)-1;
3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3536 * if ret == 0 means we found what we were searching for, which
3537 * is weird, but possible, so only screw with path if we didn't
3538 * find the key and see if we have stuff that matches
3542 if (path->slots[0] == 0)
3547 /* pull out the item */
3548 leaf = path->nodes[0];
3549 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3551 /* make sure the item matches what we want */
3552 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3554 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3557 /* release the path since we're done with it */
3558 btrfs_release_path(path);
3561 * this is where we are basically btrfs_lookup, without the
3562 * crossing root thing. we store the inode number in the
3563 * offset of the orphan item.
3566 if (found_key.offset == last_objectid) {
3568 * We found the same inode as before. This means we were
3569 * not able to remove its items via eviction triggered
3570 * by an iput(). A transaction abort may have happened,
3571 * due to -ENOSPC for example, so try to grab the error
3572 * that lead to a transaction abort, if any.
3575 "Error removing orphan entry, stopping orphan cleanup");
3576 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3580 last_objectid = found_key.offset;
3582 found_key.objectid = found_key.offset;
3583 found_key.type = BTRFS_INODE_ITEM_KEY;
3584 found_key.offset = 0;
3585 inode = btrfs_iget(last_objectid, root);
3586 if (IS_ERR(inode)) {
3587 ret = PTR_ERR(inode);
3593 if (!inode && root == fs_info->tree_root) {
3594 struct btrfs_root *dead_root;
3595 int is_dead_root = 0;
3598 * This is an orphan in the tree root. Currently these
3599 * could come from 2 sources:
3600 * a) a root (snapshot/subvolume) deletion in progress
3601 * b) a free space cache inode
3602 * We need to distinguish those two, as the orphan item
3603 * for a root must not get deleted before the deletion
3604 * of the snapshot/subvolume's tree completes.
3606 * btrfs_find_orphan_roots() ran before us, which has
3607 * found all deleted roots and loaded them into
3608 * fs_info->fs_roots_radix. So here we can find if an
3609 * orphan item corresponds to a deleted root by looking
3610 * up the root from that radix tree.
3613 spin_lock(&fs_info->fs_roots_radix_lock);
3614 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3615 (unsigned long)found_key.objectid);
3616 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3618 spin_unlock(&fs_info->fs_roots_radix_lock);
3621 /* prevent this orphan from being found again */
3622 key.offset = found_key.objectid - 1;
3629 * If we have an inode with links, there are a couple of
3632 * 1. We were halfway through creating fsverity metadata for the
3633 * file. In that case, the orphan item represents incomplete
3634 * fsverity metadata which must be cleaned up with
3635 * btrfs_drop_verity_items and deleting the orphan item.
3637 * 2. Old kernels (before v3.12) used to create an
3638 * orphan item for truncate indicating that there were possibly
3639 * extent items past i_size that needed to be deleted. In v3.12,
3640 * truncate was changed to update i_size in sync with the extent
3641 * items, but the (useless) orphan item was still created. Since
3642 * v4.18, we don't create the orphan item for truncate at all.
3644 * So, this item could mean that we need to do a truncate, but
3645 * only if this filesystem was last used on a pre-v3.12 kernel
3646 * and was not cleanly unmounted. The odds of that are quite
3647 * slim, and it's a pain to do the truncate now, so just delete
3650 * It's also possible that this orphan item was supposed to be
3651 * deleted but wasn't. The inode number may have been reused,
3652 * but either way, we can delete the orphan item.
3654 if (!inode || inode->i_nlink) {
3656 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3662 trans = btrfs_start_transaction(root, 1);
3663 if (IS_ERR(trans)) {
3664 ret = PTR_ERR(trans);
3667 btrfs_debug(fs_info, "auto deleting %Lu",
3668 found_key.objectid);
3669 ret = btrfs_del_orphan_item(trans, root,
3670 found_key.objectid);
3671 btrfs_end_transaction(trans);
3679 /* this will do delete_inode and everything for us */
3682 /* release the path since we're done with it */
3683 btrfs_release_path(path);
3685 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3686 trans = btrfs_join_transaction(root);
3688 btrfs_end_transaction(trans);
3692 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3696 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3697 btrfs_free_path(path);
3702 * very simple check to peek ahead in the leaf looking for xattrs. If we
3703 * don't find any xattrs, we know there can't be any acls.
3705 * slot is the slot the inode is in, objectid is the objectid of the inode
3707 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3708 int slot, u64 objectid,
3709 int *first_xattr_slot)
3711 u32 nritems = btrfs_header_nritems(leaf);
3712 struct btrfs_key found_key;
3713 static u64 xattr_access = 0;
3714 static u64 xattr_default = 0;
3717 if (!xattr_access) {
3718 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3719 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3720 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3721 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3725 *first_xattr_slot = -1;
3726 while (slot < nritems) {
3727 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3729 /* we found a different objectid, there must not be acls */
3730 if (found_key.objectid != objectid)
3733 /* we found an xattr, assume we've got an acl */
3734 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3735 if (*first_xattr_slot == -1)
3736 *first_xattr_slot = slot;
3737 if (found_key.offset == xattr_access ||
3738 found_key.offset == xattr_default)
3743 * we found a key greater than an xattr key, there can't
3744 * be any acls later on
3746 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3753 * it goes inode, inode backrefs, xattrs, extents,
3754 * so if there are a ton of hard links to an inode there can
3755 * be a lot of backrefs. Don't waste time searching too hard,
3756 * this is just an optimization
3761 /* we hit the end of the leaf before we found an xattr or
3762 * something larger than an xattr. We have to assume the inode
3765 if (*first_xattr_slot == -1)
3766 *first_xattr_slot = slot;
3770 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3772 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3774 if (WARN_ON_ONCE(inode->file_extent_tree))
3776 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3778 if (!S_ISREG(inode->vfs_inode.i_mode))
3780 if (btrfs_is_free_space_inode(inode))
3783 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3784 if (!inode->file_extent_tree)
3787 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3788 /* Lockdep class is set only for the file extent tree. */
3789 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3795 * read an inode from the btree into the in-memory inode
3797 static int btrfs_read_locked_inode(struct inode *inode,
3798 struct btrfs_path *in_path)
3800 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3801 struct btrfs_path *path = in_path;
3802 struct extent_buffer *leaf;
3803 struct btrfs_inode_item *inode_item;
3804 struct btrfs_root *root = BTRFS_I(inode)->root;
3805 struct btrfs_key location;
3810 bool filled = false;
3811 int first_xattr_slot;
3813 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3817 ret = btrfs_fill_inode(inode, &rdev);
3822 path = btrfs_alloc_path();
3827 btrfs_get_inode_key(BTRFS_I(inode), &location);
3829 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3831 if (path != in_path)
3832 btrfs_free_path(path);
3836 leaf = path->nodes[0];
3841 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3842 struct btrfs_inode_item);
3843 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3844 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3845 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3846 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3847 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3848 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3849 round_up(i_size_read(inode), fs_info->sectorsize));
3851 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3852 btrfs_timespec_nsec(leaf, &inode_item->atime));
3854 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3855 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3857 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3858 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3860 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3861 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3863 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3864 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3865 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3867 inode_set_iversion_queried(inode,
3868 btrfs_inode_sequence(leaf, inode_item));
3869 inode->i_generation = BTRFS_I(inode)->generation;
3871 rdev = btrfs_inode_rdev(leaf, inode_item);
3873 if (S_ISDIR(inode->i_mode))
3874 BTRFS_I(inode)->index_cnt = (u64)-1;
3876 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3877 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3881 * If we were modified in the current generation and evicted from memory
3882 * and then re-read we need to do a full sync since we don't have any
3883 * idea about which extents were modified before we were evicted from
3886 * This is required for both inode re-read from disk and delayed inode
3887 * in the delayed_nodes xarray.
3889 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3890 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3891 &BTRFS_I(inode)->runtime_flags);
3894 * We don't persist the id of the transaction where an unlink operation
3895 * against the inode was last made. So here we assume the inode might
3896 * have been evicted, and therefore the exact value of last_unlink_trans
3897 * lost, and set it to last_trans to avoid metadata inconsistencies
3898 * between the inode and its parent if the inode is fsync'ed and the log
3899 * replayed. For example, in the scenario:
3902 * ln mydir/foo mydir/bar
3905 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3906 * xfs_io -c fsync mydir/foo
3908 * mount fs, triggers fsync log replay
3910 * We must make sure that when we fsync our inode foo we also log its
3911 * parent inode, otherwise after log replay the parent still has the
3912 * dentry with the "bar" name but our inode foo has a link count of 1
3913 * and doesn't have an inode ref with the name "bar" anymore.
3915 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3916 * but it guarantees correctness at the expense of occasional full
3917 * transaction commits on fsync if our inode is a directory, or if our
3918 * inode is not a directory, logging its parent unnecessarily.
3920 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3923 * Same logic as for last_unlink_trans. We don't persist the generation
3924 * of the last transaction where this inode was used for a reflink
3925 * operation, so after eviction and reloading the inode we must be
3926 * pessimistic and assume the last transaction that modified the inode.
3928 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3931 if (inode->i_nlink != 1 ||
3932 path->slots[0] >= btrfs_header_nritems(leaf))
3935 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3936 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3940 if (location.type == BTRFS_INODE_REF_KEY) {
3941 struct btrfs_inode_ref *ref;
3943 ref = (struct btrfs_inode_ref *)ptr;
3944 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3945 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3946 struct btrfs_inode_extref *extref;
3948 extref = (struct btrfs_inode_extref *)ptr;
3949 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3954 * try to precache a NULL acl entry for files that don't have
3955 * any xattrs or acls
3957 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3958 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3959 if (first_xattr_slot != -1) {
3960 path->slots[0] = first_xattr_slot;
3961 ret = btrfs_load_inode_props(inode, path);
3964 "error loading props for ino %llu (root %llu): %d",
3965 btrfs_ino(BTRFS_I(inode)),
3966 btrfs_root_id(root), ret);
3968 if (path != in_path)
3969 btrfs_free_path(path);
3972 cache_no_acl(inode);
3974 switch (inode->i_mode & S_IFMT) {
3976 inode->i_mapping->a_ops = &btrfs_aops;
3977 inode->i_fop = &btrfs_file_operations;
3978 inode->i_op = &btrfs_file_inode_operations;
3981 inode->i_fop = &btrfs_dir_file_operations;
3982 inode->i_op = &btrfs_dir_inode_operations;
3985 inode->i_op = &btrfs_symlink_inode_operations;
3986 inode_nohighmem(inode);
3987 inode->i_mapping->a_ops = &btrfs_aops;
3990 inode->i_op = &btrfs_special_inode_operations;
3991 init_special_inode(inode, inode->i_mode, rdev);
3995 btrfs_sync_inode_flags_to_i_flags(inode);
4000 * given a leaf and an inode, copy the inode fields into the leaf
4002 static void fill_inode_item(struct btrfs_trans_handle *trans,
4003 struct extent_buffer *leaf,
4004 struct btrfs_inode_item *item,
4005 struct inode *inode)
4007 struct btrfs_map_token token;
4010 btrfs_init_map_token(&token, leaf);
4012 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4013 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4014 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4015 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4016 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4018 btrfs_set_token_timespec_sec(&token, &item->atime,
4019 inode_get_atime_sec(inode));
4020 btrfs_set_token_timespec_nsec(&token, &item->atime,
4021 inode_get_atime_nsec(inode));
4023 btrfs_set_token_timespec_sec(&token, &item->mtime,
4024 inode_get_mtime_sec(inode));
4025 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4026 inode_get_mtime_nsec(inode));
4028 btrfs_set_token_timespec_sec(&token, &item->ctime,
4029 inode_get_ctime_sec(inode));
4030 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4031 inode_get_ctime_nsec(inode));
4033 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4034 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4036 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4037 btrfs_set_token_inode_generation(&token, item,
4038 BTRFS_I(inode)->generation);
4039 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4040 btrfs_set_token_inode_transid(&token, item, trans->transid);
4041 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4042 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4043 BTRFS_I(inode)->ro_flags);
4044 btrfs_set_token_inode_flags(&token, item, flags);
4045 btrfs_set_token_inode_block_group(&token, item, 0);
4049 * copy everything in the in-memory inode into the btree.
4051 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4052 struct btrfs_inode *inode)
4054 struct btrfs_inode_item *inode_item;
4055 struct btrfs_path *path;
4056 struct extent_buffer *leaf;
4057 struct btrfs_key key;
4060 path = btrfs_alloc_path();
4064 btrfs_get_inode_key(inode, &key);
4065 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4072 leaf = path->nodes[0];
4073 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4074 struct btrfs_inode_item);
4076 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4077 btrfs_mark_buffer_dirty(trans, leaf);
4078 btrfs_set_inode_last_trans(trans, inode);
4081 btrfs_free_path(path);
4086 * copy everything in the in-memory inode into the btree.
4088 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4089 struct btrfs_inode *inode)
4091 struct btrfs_root *root = inode->root;
4092 struct btrfs_fs_info *fs_info = root->fs_info;
4096 * If the inode is a free space inode, we can deadlock during commit
4097 * if we put it into the delayed code.
4099 * The data relocation inode should also be directly updated
4102 if (!btrfs_is_free_space_inode(inode)
4103 && !btrfs_is_data_reloc_root(root)
4104 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4105 btrfs_update_root_times(trans, root);
4107 ret = btrfs_delayed_update_inode(trans, inode);
4109 btrfs_set_inode_last_trans(trans, inode);
4113 return btrfs_update_inode_item(trans, inode);
4116 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4117 struct btrfs_inode *inode)
4121 ret = btrfs_update_inode(trans, inode);
4123 return btrfs_update_inode_item(trans, inode);
4128 * unlink helper that gets used here in inode.c and in the tree logging
4129 * recovery code. It remove a link in a directory with a given name, and
4130 * also drops the back refs in the inode to the directory
4132 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4133 struct btrfs_inode *dir,
4134 struct btrfs_inode *inode,
4135 const struct fscrypt_str *name,
4136 struct btrfs_rename_ctx *rename_ctx)
4138 struct btrfs_root *root = dir->root;
4139 struct btrfs_fs_info *fs_info = root->fs_info;
4140 struct btrfs_path *path;
4142 struct btrfs_dir_item *di;
4144 u64 ino = btrfs_ino(inode);
4145 u64 dir_ino = btrfs_ino(dir);
4147 path = btrfs_alloc_path();
4153 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4154 if (IS_ERR_OR_NULL(di)) {
4155 ret = di ? PTR_ERR(di) : -ENOENT;
4158 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4161 btrfs_release_path(path);
4164 * If we don't have dir index, we have to get it by looking up
4165 * the inode ref, since we get the inode ref, remove it directly,
4166 * it is unnecessary to do delayed deletion.
4168 * But if we have dir index, needn't search inode ref to get it.
4169 * Since the inode ref is close to the inode item, it is better
4170 * that we delay to delete it, and just do this deletion when
4171 * we update the inode item.
4173 if (inode->dir_index) {
4174 ret = btrfs_delayed_delete_inode_ref(inode);
4176 index = inode->dir_index;
4181 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4184 "failed to delete reference to %.*s, inode %llu parent %llu",
4185 name->len, name->name, ino, dir_ino);
4186 btrfs_abort_transaction(trans, ret);
4191 rename_ctx->index = index;
4193 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4195 btrfs_abort_transaction(trans, ret);
4200 * If we are in a rename context, we don't need to update anything in the
4201 * log. That will be done later during the rename by btrfs_log_new_name().
4202 * Besides that, doing it here would only cause extra unnecessary btree
4203 * operations on the log tree, increasing latency for applications.
4206 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4207 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4211 * If we have a pending delayed iput we could end up with the final iput
4212 * being run in btrfs-cleaner context. If we have enough of these built
4213 * up we can end up burning a lot of time in btrfs-cleaner without any
4214 * way to throttle the unlinks. Since we're currently holding a ref on
4215 * the inode we can run the delayed iput here without any issues as the
4216 * final iput won't be done until after we drop the ref we're currently
4219 btrfs_run_delayed_iput(fs_info, inode);
4221 btrfs_free_path(path);
4225 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4226 inode_inc_iversion(&inode->vfs_inode);
4227 inode_set_ctime_current(&inode->vfs_inode);
4228 inode_inc_iversion(&dir->vfs_inode);
4229 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4230 ret = btrfs_update_inode(trans, dir);
4235 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4236 struct btrfs_inode *dir, struct btrfs_inode *inode,
4237 const struct fscrypt_str *name)
4241 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4243 drop_nlink(&inode->vfs_inode);
4244 ret = btrfs_update_inode(trans, inode);
4250 * helper to start transaction for unlink and rmdir.
4252 * unlink and rmdir are special in btrfs, they do not always free space, so
4253 * if we cannot make our reservations the normal way try and see if there is
4254 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4255 * allow the unlink to occur.
4257 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4259 struct btrfs_root *root = dir->root;
4261 return btrfs_start_transaction_fallback_global_rsv(root,
4262 BTRFS_UNLINK_METADATA_UNITS);
4265 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4267 struct btrfs_trans_handle *trans;
4268 struct inode *inode = d_inode(dentry);
4270 struct fscrypt_name fname;
4272 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4276 /* This needs to handle no-key deletions later on */
4278 trans = __unlink_start_trans(BTRFS_I(dir));
4279 if (IS_ERR(trans)) {
4280 ret = PTR_ERR(trans);
4284 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4287 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4292 if (inode->i_nlink == 0) {
4293 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4299 btrfs_end_transaction(trans);
4300 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4302 fscrypt_free_filename(&fname);
4306 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4307 struct btrfs_inode *dir, struct dentry *dentry)
4309 struct btrfs_root *root = dir->root;
4310 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4311 struct btrfs_path *path;
4312 struct extent_buffer *leaf;
4313 struct btrfs_dir_item *di;
4314 struct btrfs_key key;
4318 u64 dir_ino = btrfs_ino(dir);
4319 struct fscrypt_name fname;
4321 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4325 /* This needs to handle no-key deletions later on */
4327 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4328 objectid = btrfs_root_id(inode->root);
4329 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4330 objectid = inode->ref_root_id;
4333 fscrypt_free_filename(&fname);
4337 path = btrfs_alloc_path();
4343 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4344 &fname.disk_name, -1);
4345 if (IS_ERR_OR_NULL(di)) {
4346 ret = di ? PTR_ERR(di) : -ENOENT;
4350 leaf = path->nodes[0];
4351 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4352 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4353 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4355 btrfs_abort_transaction(trans, ret);
4358 btrfs_release_path(path);
4361 * This is a placeholder inode for a subvolume we didn't have a
4362 * reference to at the time of the snapshot creation. In the meantime
4363 * we could have renamed the real subvol link into our snapshot, so
4364 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4365 * Instead simply lookup the dir_index_item for this entry so we can
4366 * remove it. Otherwise we know we have a ref to the root and we can
4367 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4369 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4370 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4371 if (IS_ERR_OR_NULL(di)) {
4376 btrfs_abort_transaction(trans, ret);
4380 leaf = path->nodes[0];
4381 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4383 btrfs_release_path(path);
4385 ret = btrfs_del_root_ref(trans, objectid,
4386 btrfs_root_id(root), dir_ino,
4387 &index, &fname.disk_name);
4389 btrfs_abort_transaction(trans, ret);
4394 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4396 btrfs_abort_transaction(trans, ret);
4400 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4401 inode_inc_iversion(&dir->vfs_inode);
4402 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4403 ret = btrfs_update_inode_fallback(trans, dir);
4405 btrfs_abort_transaction(trans, ret);
4407 btrfs_free_path(path);
4408 fscrypt_free_filename(&fname);
4413 * Helper to check if the subvolume references other subvolumes or if it's
4416 static noinline int may_destroy_subvol(struct btrfs_root *root)
4418 struct btrfs_fs_info *fs_info = root->fs_info;
4419 struct btrfs_path *path;
4420 struct btrfs_dir_item *di;
4421 struct btrfs_key key;
4422 struct fscrypt_str name = FSTR_INIT("default", 7);
4426 path = btrfs_alloc_path();
4430 /* Make sure this root isn't set as the default subvol */
4431 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4432 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4434 if (di && !IS_ERR(di)) {
4435 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4436 if (key.objectid == btrfs_root_id(root)) {
4439 "deleting default subvolume %llu is not allowed",
4443 btrfs_release_path(path);
4446 key.objectid = btrfs_root_id(root);
4447 key.type = BTRFS_ROOT_REF_KEY;
4448 key.offset = (u64)-1;
4450 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4455 * Key with offset -1 found, there would have to exist a root
4456 * with such id, but this is out of valid range.
4463 if (path->slots[0] > 0) {
4465 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4466 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4470 btrfs_free_path(path);
4474 /* Delete all dentries for inodes belonging to the root */
4475 static void btrfs_prune_dentries(struct btrfs_root *root)
4477 struct btrfs_fs_info *fs_info = root->fs_info;
4478 struct btrfs_inode *inode;
4481 if (!BTRFS_FS_ERROR(fs_info))
4482 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4484 inode = btrfs_find_first_inode(root, min_ino);
4486 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4487 d_prune_aliases(&inode->vfs_inode);
4489 min_ino = btrfs_ino(inode) + 1;
4491 * btrfs_drop_inode() will have it removed from the inode
4492 * cache when its usage count hits zero.
4494 iput(&inode->vfs_inode);
4496 inode = btrfs_find_first_inode(root, min_ino);
4500 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4502 struct btrfs_root *root = dir->root;
4503 struct btrfs_fs_info *fs_info = root->fs_info;
4504 struct inode *inode = d_inode(dentry);
4505 struct btrfs_root *dest = BTRFS_I(inode)->root;
4506 struct btrfs_trans_handle *trans;
4507 struct btrfs_block_rsv block_rsv;
4509 u64 qgroup_reserved = 0;
4512 down_write(&fs_info->subvol_sem);
4515 * Don't allow to delete a subvolume with send in progress. This is
4516 * inside the inode lock so the error handling that has to drop the bit
4517 * again is not run concurrently.
4519 spin_lock(&dest->root_item_lock);
4520 if (dest->send_in_progress) {
4521 spin_unlock(&dest->root_item_lock);
4523 "attempt to delete subvolume %llu during send",
4524 btrfs_root_id(dest));
4528 if (atomic_read(&dest->nr_swapfiles)) {
4529 spin_unlock(&dest->root_item_lock);
4531 "attempt to delete subvolume %llu with active swapfile",
4532 btrfs_root_id(root));
4536 root_flags = btrfs_root_flags(&dest->root_item);
4537 btrfs_set_root_flags(&dest->root_item,
4538 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4539 spin_unlock(&dest->root_item_lock);
4541 ret = may_destroy_subvol(dest);
4545 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4547 * One for dir inode,
4548 * two for dir entries,
4549 * two for root ref/backref.
4551 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4554 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4556 trans = btrfs_start_transaction(root, 0);
4557 if (IS_ERR(trans)) {
4558 ret = PTR_ERR(trans);
4561 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4562 qgroup_reserved = 0;
4563 trans->block_rsv = &block_rsv;
4564 trans->bytes_reserved = block_rsv.size;
4566 btrfs_record_snapshot_destroy(trans, dir);
4568 ret = btrfs_unlink_subvol(trans, dir, dentry);
4570 btrfs_abort_transaction(trans, ret);
4574 ret = btrfs_record_root_in_trans(trans, dest);
4576 btrfs_abort_transaction(trans, ret);
4580 memset(&dest->root_item.drop_progress, 0,
4581 sizeof(dest->root_item.drop_progress));
4582 btrfs_set_root_drop_level(&dest->root_item, 0);
4583 btrfs_set_root_refs(&dest->root_item, 0);
4585 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4586 ret = btrfs_insert_orphan_item(trans,
4588 btrfs_root_id(dest));
4590 btrfs_abort_transaction(trans, ret);
4595 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4596 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4597 if (ret && ret != -ENOENT) {
4598 btrfs_abort_transaction(trans, ret);
4601 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4602 ret = btrfs_uuid_tree_remove(trans,
4603 dest->root_item.received_uuid,
4604 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4605 btrfs_root_id(dest));
4606 if (ret && ret != -ENOENT) {
4607 btrfs_abort_transaction(trans, ret);
4612 free_anon_bdev(dest->anon_dev);
4615 trans->block_rsv = NULL;
4616 trans->bytes_reserved = 0;
4617 ret = btrfs_end_transaction(trans);
4618 inode->i_flags |= S_DEAD;
4620 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4621 if (qgroup_reserved)
4622 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4625 spin_lock(&dest->root_item_lock);
4626 root_flags = btrfs_root_flags(&dest->root_item);
4627 btrfs_set_root_flags(&dest->root_item,
4628 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4629 spin_unlock(&dest->root_item_lock);
4632 up_write(&fs_info->subvol_sem);
4634 d_invalidate(dentry);
4635 btrfs_prune_dentries(dest);
4636 ASSERT(dest->send_in_progress == 0);
4642 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4644 struct inode *inode = d_inode(dentry);
4645 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4647 struct btrfs_trans_handle *trans;
4648 u64 last_unlink_trans;
4649 struct fscrypt_name fname;
4651 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4653 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4654 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4656 "extent tree v2 doesn't support snapshot deletion yet");
4659 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4662 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4666 /* This needs to handle no-key deletions later on */
4668 trans = __unlink_start_trans(BTRFS_I(dir));
4669 if (IS_ERR(trans)) {
4670 ret = PTR_ERR(trans);
4674 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4675 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4679 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4683 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4685 /* now the directory is empty */
4686 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4689 btrfs_i_size_write(BTRFS_I(inode), 0);
4691 * Propagate the last_unlink_trans value of the deleted dir to
4692 * its parent directory. This is to prevent an unrecoverable
4693 * log tree in the case we do something like this:
4695 * 2) create snapshot under dir foo
4696 * 3) delete the snapshot
4699 * 6) fsync foo or some file inside foo
4701 if (last_unlink_trans >= trans->transid)
4702 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4705 btrfs_end_transaction(trans);
4707 btrfs_btree_balance_dirty(fs_info);
4708 fscrypt_free_filename(&fname);
4714 * Read, zero a chunk and write a block.
4716 * @inode - inode that we're zeroing
4717 * @from - the offset to start zeroing
4718 * @len - the length to zero, 0 to zero the entire range respective to the
4720 * @front - zero up to the offset instead of from the offset on
4722 * This will find the block for the "from" offset and cow the block and zero the
4723 * part we want to zero. This is used with truncate and hole punching.
4725 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4728 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4729 struct address_space *mapping = inode->vfs_inode.i_mapping;
4730 struct extent_io_tree *io_tree = &inode->io_tree;
4731 struct btrfs_ordered_extent *ordered;
4732 struct extent_state *cached_state = NULL;
4733 struct extent_changeset *data_reserved = NULL;
4734 bool only_release_metadata = false;
4735 u32 blocksize = fs_info->sectorsize;
4736 pgoff_t index = from >> PAGE_SHIFT;
4737 unsigned offset = from & (blocksize - 1);
4738 struct folio *folio;
4739 gfp_t mask = btrfs_alloc_write_mask(mapping);
4740 size_t write_bytes = blocksize;
4745 if (IS_ALIGNED(offset, blocksize) &&
4746 (!len || IS_ALIGNED(len, blocksize)))
4749 block_start = round_down(from, blocksize);
4750 block_end = block_start + blocksize - 1;
4752 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4755 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4756 /* For nocow case, no need to reserve data space */
4757 only_release_metadata = true;
4762 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4764 if (!only_release_metadata)
4765 btrfs_free_reserved_data_space(inode, data_reserved,
4766 block_start, blocksize);
4770 folio = __filemap_get_folio(mapping, index,
4771 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4772 if (IS_ERR(folio)) {
4773 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4775 btrfs_delalloc_release_extents(inode, blocksize);
4780 if (!folio_test_uptodate(folio)) {
4781 ret = btrfs_read_folio(NULL, folio);
4783 if (folio->mapping != mapping) {
4784 folio_unlock(folio);
4788 if (!folio_test_uptodate(folio)) {
4795 * We unlock the page after the io is completed and then re-lock it
4796 * above. release_folio() could have come in between that and cleared
4797 * folio private, but left the page in the mapping. Set the page mapped
4798 * here to make sure it's properly set for the subpage stuff.
4800 ret = set_folio_extent_mapped(folio);
4804 folio_wait_writeback(folio);
4806 lock_extent(io_tree, block_start, block_end, &cached_state);
4808 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4810 unlock_extent(io_tree, block_start, block_end, &cached_state);
4811 folio_unlock(folio);
4813 btrfs_start_ordered_extent(ordered);
4814 btrfs_put_ordered_extent(ordered);
4818 clear_extent_bit(&inode->io_tree, block_start, block_end,
4819 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4822 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4825 unlock_extent(io_tree, block_start, block_end, &cached_state);
4829 if (offset != blocksize) {
4831 len = blocksize - offset;
4833 folio_zero_range(folio, block_start - folio_pos(folio),
4836 folio_zero_range(folio,
4837 (block_start - folio_pos(folio)) + offset,
4840 btrfs_folio_clear_checked(fs_info, folio, block_start,
4841 block_end + 1 - block_start);
4842 btrfs_folio_set_dirty(fs_info, folio, block_start,
4843 block_end + 1 - block_start);
4844 unlock_extent(io_tree, block_start, block_end, &cached_state);
4846 if (only_release_metadata)
4847 set_extent_bit(&inode->io_tree, block_start, block_end,
4848 EXTENT_NORESERVE, NULL);
4852 if (only_release_metadata)
4853 btrfs_delalloc_release_metadata(inode, blocksize, true);
4855 btrfs_delalloc_release_space(inode, data_reserved,
4856 block_start, blocksize, true);
4858 btrfs_delalloc_release_extents(inode, blocksize);
4859 folio_unlock(folio);
4862 if (only_release_metadata)
4863 btrfs_check_nocow_unlock(inode);
4864 extent_changeset_free(data_reserved);
4868 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4870 struct btrfs_root *root = inode->root;
4871 struct btrfs_fs_info *fs_info = root->fs_info;
4872 struct btrfs_trans_handle *trans;
4873 struct btrfs_drop_extents_args drop_args = { 0 };
4877 * If NO_HOLES is enabled, we don't need to do anything.
4878 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4879 * or btrfs_update_inode() will be called, which guarantee that the next
4880 * fsync will know this inode was changed and needs to be logged.
4882 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4886 * 1 - for the one we're dropping
4887 * 1 - for the one we're adding
4888 * 1 - for updating the inode.
4890 trans = btrfs_start_transaction(root, 3);
4892 return PTR_ERR(trans);
4894 drop_args.start = offset;
4895 drop_args.end = offset + len;
4896 drop_args.drop_cache = true;
4898 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4900 btrfs_abort_transaction(trans, ret);
4901 btrfs_end_transaction(trans);
4905 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4907 btrfs_abort_transaction(trans, ret);
4909 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4910 btrfs_update_inode(trans, inode);
4912 btrfs_end_transaction(trans);
4917 * This function puts in dummy file extents for the area we're creating a hole
4918 * for. So if we are truncating this file to a larger size we need to insert
4919 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4920 * the range between oldsize and size
4922 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4924 struct btrfs_root *root = inode->root;
4925 struct btrfs_fs_info *fs_info = root->fs_info;
4926 struct extent_io_tree *io_tree = &inode->io_tree;
4927 struct extent_map *em = NULL;
4928 struct extent_state *cached_state = NULL;
4929 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4930 u64 block_end = ALIGN(size, fs_info->sectorsize);
4937 * If our size started in the middle of a block we need to zero out the
4938 * rest of the block before we expand the i_size, otherwise we could
4939 * expose stale data.
4941 ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4945 if (size <= hole_start)
4948 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4950 cur_offset = hole_start;
4952 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4958 last_byte = min(extent_map_end(em), block_end);
4959 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4960 hole_size = last_byte - cur_offset;
4962 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4963 struct extent_map *hole_em;
4965 ret = maybe_insert_hole(inode, cur_offset, hole_size);
4969 ret = btrfs_inode_set_file_extent_range(inode,
4970 cur_offset, hole_size);
4974 hole_em = alloc_extent_map();
4976 btrfs_drop_extent_map_range(inode, cur_offset,
4977 cur_offset + hole_size - 1,
4979 btrfs_set_inode_full_sync(inode);
4982 hole_em->start = cur_offset;
4983 hole_em->len = hole_size;
4985 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4986 hole_em->disk_num_bytes = 0;
4987 hole_em->ram_bytes = hole_size;
4988 hole_em->generation = btrfs_get_fs_generation(fs_info);
4990 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4991 free_extent_map(hole_em);
4993 ret = btrfs_inode_set_file_extent_range(inode,
4994 cur_offset, hole_size);
4999 free_extent_map(em);
5001 cur_offset = last_byte;
5002 if (cur_offset >= block_end)
5005 free_extent_map(em);
5006 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5010 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5012 struct btrfs_root *root = BTRFS_I(inode)->root;
5013 struct btrfs_trans_handle *trans;
5014 loff_t oldsize = i_size_read(inode);
5015 loff_t newsize = attr->ia_size;
5016 int mask = attr->ia_valid;
5020 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5021 * special case where we need to update the times despite not having
5022 * these flags set. For all other operations the VFS set these flags
5023 * explicitly if it wants a timestamp update.
5025 if (newsize != oldsize) {
5026 inode_inc_iversion(inode);
5027 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5028 inode_set_mtime_to_ts(inode,
5029 inode_set_ctime_current(inode));
5033 if (newsize > oldsize) {
5035 * Don't do an expanding truncate while snapshotting is ongoing.
5036 * This is to ensure the snapshot captures a fully consistent
5037 * state of this file - if the snapshot captures this expanding
5038 * truncation, it must capture all writes that happened before
5041 btrfs_drew_write_lock(&root->snapshot_lock);
5042 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5044 btrfs_drew_write_unlock(&root->snapshot_lock);
5048 trans = btrfs_start_transaction(root, 1);
5049 if (IS_ERR(trans)) {
5050 btrfs_drew_write_unlock(&root->snapshot_lock);
5051 return PTR_ERR(trans);
5054 i_size_write(inode, newsize);
5055 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5056 pagecache_isize_extended(inode, oldsize, newsize);
5057 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5058 btrfs_drew_write_unlock(&root->snapshot_lock);
5059 btrfs_end_transaction(trans);
5061 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5063 if (btrfs_is_zoned(fs_info)) {
5064 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5065 ALIGN(newsize, fs_info->sectorsize),
5072 * We're truncating a file that used to have good data down to
5073 * zero. Make sure any new writes to the file get on disk
5077 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5078 &BTRFS_I(inode)->runtime_flags);
5080 truncate_setsize(inode, newsize);
5082 inode_dio_wait(inode);
5084 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5085 if (ret && inode->i_nlink) {
5089 * Truncate failed, so fix up the in-memory size. We
5090 * adjusted disk_i_size down as we removed extents, so
5091 * wait for disk_i_size to be stable and then update the
5092 * in-memory size to match.
5094 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5097 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5104 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5107 struct inode *inode = d_inode(dentry);
5108 struct btrfs_root *root = BTRFS_I(inode)->root;
5111 if (btrfs_root_readonly(root))
5114 err = setattr_prepare(idmap, dentry, attr);
5118 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5119 err = btrfs_setsize(inode, attr);
5124 if (attr->ia_valid) {
5125 setattr_copy(idmap, inode, attr);
5126 inode_inc_iversion(inode);
5127 err = btrfs_dirty_inode(BTRFS_I(inode));
5129 if (!err && attr->ia_valid & ATTR_MODE)
5130 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5137 * While truncating the inode pages during eviction, we get the VFS
5138 * calling btrfs_invalidate_folio() against each folio of the inode. This
5139 * is slow because the calls to btrfs_invalidate_folio() result in a
5140 * huge amount of calls to lock_extent() and clear_extent_bit(),
5141 * which keep merging and splitting extent_state structures over and over,
5142 * wasting lots of time.
5144 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5145 * skip all those expensive operations on a per folio basis and do only
5146 * the ordered io finishing, while we release here the extent_map and
5147 * extent_state structures, without the excessive merging and splitting.
5149 static void evict_inode_truncate_pages(struct inode *inode)
5151 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5152 struct rb_node *node;
5154 ASSERT(inode->i_state & I_FREEING);
5155 truncate_inode_pages_final(&inode->i_data);
5157 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5160 * Keep looping until we have no more ranges in the io tree.
5161 * We can have ongoing bios started by readahead that have
5162 * their endio callback (extent_io.c:end_bio_extent_readpage)
5163 * still in progress (unlocked the pages in the bio but did not yet
5164 * unlocked the ranges in the io tree). Therefore this means some
5165 * ranges can still be locked and eviction started because before
5166 * submitting those bios, which are executed by a separate task (work
5167 * queue kthread), inode references (inode->i_count) were not taken
5168 * (which would be dropped in the end io callback of each bio).
5169 * Therefore here we effectively end up waiting for those bios and
5170 * anyone else holding locked ranges without having bumped the inode's
5171 * reference count - if we don't do it, when they access the inode's
5172 * io_tree to unlock a range it may be too late, leading to an
5173 * use-after-free issue.
5175 spin_lock(&io_tree->lock);
5176 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5177 struct extent_state *state;
5178 struct extent_state *cached_state = NULL;
5181 unsigned state_flags;
5183 node = rb_first(&io_tree->state);
5184 state = rb_entry(node, struct extent_state, rb_node);
5185 start = state->start;
5187 state_flags = state->state;
5188 spin_unlock(&io_tree->lock);
5190 lock_extent(io_tree, start, end, &cached_state);
5193 * If still has DELALLOC flag, the extent didn't reach disk,
5194 * and its reserved space won't be freed by delayed_ref.
5195 * So we need to free its reserved space here.
5196 * (Refer to comment in btrfs_invalidate_folio, case 2)
5198 * Note, end is the bytenr of last byte, so we need + 1 here.
5200 if (state_flags & EXTENT_DELALLOC)
5201 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5202 end - start + 1, NULL);
5204 clear_extent_bit(io_tree, start, end,
5205 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5209 spin_lock(&io_tree->lock);
5211 spin_unlock(&io_tree->lock);
5214 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5215 struct btrfs_block_rsv *rsv)
5217 struct btrfs_fs_info *fs_info = root->fs_info;
5218 struct btrfs_trans_handle *trans;
5219 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5223 * Eviction should be taking place at some place safe because of our
5224 * delayed iputs. However the normal flushing code will run delayed
5225 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5227 * We reserve the delayed_refs_extra here again because we can't use
5228 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5229 * above. We reserve our extra bit here because we generate a ton of
5230 * delayed refs activity by truncating.
5232 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5233 * if we fail to make this reservation we can re-try without the
5234 * delayed_refs_extra so we can make some forward progress.
5236 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5237 BTRFS_RESERVE_FLUSH_EVICT);
5239 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5240 BTRFS_RESERVE_FLUSH_EVICT);
5243 "could not allocate space for delete; will truncate on mount");
5244 return ERR_PTR(-ENOSPC);
5246 delayed_refs_extra = 0;
5249 trans = btrfs_join_transaction(root);
5253 if (delayed_refs_extra) {
5254 trans->block_rsv = &fs_info->trans_block_rsv;
5255 trans->bytes_reserved = delayed_refs_extra;
5256 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5257 delayed_refs_extra, true);
5262 void btrfs_evict_inode(struct inode *inode)
5264 struct btrfs_fs_info *fs_info;
5265 struct btrfs_trans_handle *trans;
5266 struct btrfs_root *root = BTRFS_I(inode)->root;
5267 struct btrfs_block_rsv *rsv = NULL;
5270 trace_btrfs_inode_evict(inode);
5273 fsverity_cleanup_inode(inode);
5278 fs_info = inode_to_fs_info(inode);
5279 evict_inode_truncate_pages(inode);
5281 if (inode->i_nlink &&
5282 ((btrfs_root_refs(&root->root_item) != 0 &&
5283 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5284 btrfs_is_free_space_inode(BTRFS_I(inode))))
5287 if (is_bad_inode(inode))
5290 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5293 if (inode->i_nlink > 0) {
5294 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5295 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5300 * This makes sure the inode item in tree is uptodate and the space for
5301 * the inode update is released.
5303 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5308 * This drops any pending insert or delete operations we have for this
5309 * inode. We could have a delayed dir index deletion queued up, but
5310 * we're removing the inode completely so that'll be taken care of in
5313 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5315 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5318 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5319 rsv->failfast = true;
5321 btrfs_i_size_write(BTRFS_I(inode), 0);
5324 struct btrfs_truncate_control control = {
5325 .inode = BTRFS_I(inode),
5326 .ino = btrfs_ino(BTRFS_I(inode)),
5331 trans = evict_refill_and_join(root, rsv);
5335 trans->block_rsv = rsv;
5337 ret = btrfs_truncate_inode_items(trans, root, &control);
5338 trans->block_rsv = &fs_info->trans_block_rsv;
5339 btrfs_end_transaction(trans);
5341 * We have not added new delayed items for our inode after we
5342 * have flushed its delayed items, so no need to throttle on
5343 * delayed items. However we have modified extent buffers.
5345 btrfs_btree_balance_dirty_nodelay(fs_info);
5346 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5353 * Errors here aren't a big deal, it just means we leave orphan items in
5354 * the tree. They will be cleaned up on the next mount. If the inode
5355 * number gets reused, cleanup deletes the orphan item without doing
5356 * anything, and unlink reuses the existing orphan item.
5358 * If it turns out that we are dropping too many of these, we might want
5359 * to add a mechanism for retrying these after a commit.
5361 trans = evict_refill_and_join(root, rsv);
5362 if (!IS_ERR(trans)) {
5363 trans->block_rsv = rsv;
5364 btrfs_orphan_del(trans, BTRFS_I(inode));
5365 trans->block_rsv = &fs_info->trans_block_rsv;
5366 btrfs_end_transaction(trans);
5370 btrfs_free_block_rsv(fs_info, rsv);
5372 * If we didn't successfully delete, the orphan item will still be in
5373 * the tree and we'll retry on the next mount. Again, we might also want
5374 * to retry these periodically in the future.
5376 btrfs_remove_delayed_node(BTRFS_I(inode));
5377 fsverity_cleanup_inode(inode);
5382 * Return the key found in the dir entry in the location pointer, fill @type
5383 * with BTRFS_FT_*, and return 0.
5385 * If no dir entries were found, returns -ENOENT.
5386 * If found a corrupted location in dir entry, returns -EUCLEAN.
5388 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5389 struct btrfs_key *location, u8 *type)
5391 struct btrfs_dir_item *di;
5392 struct btrfs_path *path;
5393 struct btrfs_root *root = dir->root;
5395 struct fscrypt_name fname;
5397 path = btrfs_alloc_path();
5401 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5405 * fscrypt_setup_filename() should never return a positive value, but
5406 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5410 /* This needs to handle no-key deletions later on */
5412 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5413 &fname.disk_name, 0);
5414 if (IS_ERR_OR_NULL(di)) {
5415 ret = di ? PTR_ERR(di) : -ENOENT;
5419 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5420 if (location->type != BTRFS_INODE_ITEM_KEY &&
5421 location->type != BTRFS_ROOT_ITEM_KEY) {
5423 btrfs_warn(root->fs_info,
5424 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5425 __func__, fname.disk_name.name, btrfs_ino(dir),
5426 location->objectid, location->type, location->offset);
5429 *type = btrfs_dir_ftype(path->nodes[0], di);
5431 fscrypt_free_filename(&fname);
5432 btrfs_free_path(path);
5437 * when we hit a tree root in a directory, the btrfs part of the inode
5438 * needs to be changed to reflect the root directory of the tree root. This
5439 * is kind of like crossing a mount point.
5441 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5442 struct btrfs_inode *dir,
5443 struct dentry *dentry,
5444 struct btrfs_key *location,
5445 struct btrfs_root **sub_root)
5447 struct btrfs_path *path;
5448 struct btrfs_root *new_root;
5449 struct btrfs_root_ref *ref;
5450 struct extent_buffer *leaf;
5451 struct btrfs_key key;
5454 struct fscrypt_name fname;
5456 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5460 path = btrfs_alloc_path();
5467 key.objectid = btrfs_root_id(dir->root);
5468 key.type = BTRFS_ROOT_REF_KEY;
5469 key.offset = location->objectid;
5471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5478 leaf = path->nodes[0];
5479 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5480 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5481 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5484 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5485 (unsigned long)(ref + 1), fname.disk_name.len);
5489 btrfs_release_path(path);
5491 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5492 if (IS_ERR(new_root)) {
5493 err = PTR_ERR(new_root);
5497 *sub_root = new_root;
5498 location->objectid = btrfs_root_dirid(&new_root->root_item);
5499 location->type = BTRFS_INODE_ITEM_KEY;
5500 location->offset = 0;
5503 btrfs_free_path(path);
5504 fscrypt_free_filename(&fname);
5508 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5510 struct btrfs_root *root = inode->root;
5511 struct btrfs_inode *existing;
5512 const u64 ino = btrfs_ino(inode);
5515 if (inode_unhashed(&inode->vfs_inode))
5519 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5524 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5526 if (xa_is_err(existing)) {
5527 ret = xa_err(existing);
5528 ASSERT(ret != -EINVAL);
5529 ASSERT(ret != -ENOMEM);
5531 } else if (existing) {
5532 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5538 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5540 struct btrfs_root *root = inode->root;
5541 struct btrfs_inode *entry;
5544 xa_lock(&root->inodes);
5545 entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5547 empty = xa_empty(&root->inodes);
5548 xa_unlock(&root->inodes);
5550 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5551 xa_lock(&root->inodes);
5552 empty = xa_empty(&root->inodes);
5553 xa_unlock(&root->inodes);
5555 btrfs_add_dead_root(root);
5560 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5562 struct btrfs_iget_args *args = p;
5564 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5565 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5567 if (args->root && args->root == args->root->fs_info->tree_root &&
5568 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5569 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5570 &BTRFS_I(inode)->runtime_flags);
5574 static int btrfs_find_actor(struct inode *inode, void *opaque)
5576 struct btrfs_iget_args *args = opaque;
5578 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5579 args->root == BTRFS_I(inode)->root;
5582 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5584 struct inode *inode;
5585 struct btrfs_iget_args args;
5586 unsigned long hashval = btrfs_inode_hash(ino, root);
5591 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5592 btrfs_init_locked_inode,
5598 * Get an inode object given its inode number and corresponding root.
5599 * Path can be preallocated to prevent recursing back to iget through
5600 * allocator. NULL is also valid but may require an additional allocation
5603 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5604 struct btrfs_path *path)
5606 struct inode *inode;
5609 inode = btrfs_iget_locked(ino, root);
5611 return ERR_PTR(-ENOMEM);
5613 if (!(inode->i_state & I_NEW))
5616 ret = btrfs_read_locked_inode(inode, path);
5618 * ret > 0 can come from btrfs_search_slot called by
5619 * btrfs_read_locked_inode(), this means the inode item was not found.
5626 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5630 unlock_new_inode(inode);
5635 return ERR_PTR(ret);
5638 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5640 return btrfs_iget_path(ino, root, NULL);
5643 static struct inode *new_simple_dir(struct inode *dir,
5644 struct btrfs_key *key,
5645 struct btrfs_root *root)
5647 struct timespec64 ts;
5648 struct inode *inode = new_inode(dir->i_sb);
5651 return ERR_PTR(-ENOMEM);
5653 BTRFS_I(inode)->root = btrfs_grab_root(root);
5654 BTRFS_I(inode)->ref_root_id = key->objectid;
5655 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5656 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5658 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5660 * We only need lookup, the rest is read-only and there's no inode
5661 * associated with the dentry
5663 inode->i_op = &simple_dir_inode_operations;
5664 inode->i_opflags &= ~IOP_XATTR;
5665 inode->i_fop = &simple_dir_operations;
5666 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5668 ts = inode_set_ctime_current(inode);
5669 inode_set_mtime_to_ts(inode, ts);
5670 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5671 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5672 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5674 inode->i_uid = dir->i_uid;
5675 inode->i_gid = dir->i_gid;
5680 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5681 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5682 static_assert(BTRFS_FT_DIR == FT_DIR);
5683 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5684 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5685 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5686 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5687 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5689 static inline u8 btrfs_inode_type(struct inode *inode)
5691 return fs_umode_to_ftype(inode->i_mode);
5694 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5696 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5697 struct inode *inode;
5698 struct btrfs_root *root = BTRFS_I(dir)->root;
5699 struct btrfs_root *sub_root = root;
5700 struct btrfs_key location = { 0 };
5704 if (dentry->d_name.len > BTRFS_NAME_LEN)
5705 return ERR_PTR(-ENAMETOOLONG);
5707 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5709 return ERR_PTR(ret);
5711 if (location.type == BTRFS_INODE_ITEM_KEY) {
5712 inode = btrfs_iget(location.objectid, root);
5716 /* Do extra check against inode mode with di_type */
5717 if (btrfs_inode_type(inode) != di_type) {
5719 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5720 inode->i_mode, btrfs_inode_type(inode),
5723 return ERR_PTR(-EUCLEAN);
5728 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5729 &location, &sub_root);
5732 inode = ERR_PTR(ret);
5734 inode = new_simple_dir(dir, &location, root);
5736 inode = btrfs_iget(location.objectid, sub_root);
5737 btrfs_put_root(sub_root);
5742 down_read(&fs_info->cleanup_work_sem);
5743 if (!sb_rdonly(inode->i_sb))
5744 ret = btrfs_orphan_cleanup(sub_root);
5745 up_read(&fs_info->cleanup_work_sem);
5748 inode = ERR_PTR(ret);
5755 static int btrfs_dentry_delete(const struct dentry *dentry)
5757 struct btrfs_root *root;
5758 struct inode *inode = d_inode(dentry);
5760 if (!inode && !IS_ROOT(dentry))
5761 inode = d_inode(dentry->d_parent);
5764 root = BTRFS_I(inode)->root;
5765 if (btrfs_root_refs(&root->root_item) == 0)
5768 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5774 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5777 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5779 if (inode == ERR_PTR(-ENOENT))
5781 return d_splice_alias(inode, dentry);
5785 * Find the highest existing sequence number in a directory and then set the
5786 * in-memory index_cnt variable to the first free sequence number.
5788 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5790 struct btrfs_root *root = inode->root;
5791 struct btrfs_key key, found_key;
5792 struct btrfs_path *path;
5793 struct extent_buffer *leaf;
5796 key.objectid = btrfs_ino(inode);
5797 key.type = BTRFS_DIR_INDEX_KEY;
5798 key.offset = (u64)-1;
5800 path = btrfs_alloc_path();
5804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5807 /* FIXME: we should be able to handle this */
5812 if (path->slots[0] == 0) {
5813 inode->index_cnt = BTRFS_DIR_START_INDEX;
5819 leaf = path->nodes[0];
5820 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5822 if (found_key.objectid != btrfs_ino(inode) ||
5823 found_key.type != BTRFS_DIR_INDEX_KEY) {
5824 inode->index_cnt = BTRFS_DIR_START_INDEX;
5828 inode->index_cnt = found_key.offset + 1;
5830 btrfs_free_path(path);
5834 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5838 btrfs_inode_lock(dir, 0);
5839 if (dir->index_cnt == (u64)-1) {
5840 ret = btrfs_inode_delayed_dir_index_count(dir);
5842 ret = btrfs_set_inode_index_count(dir);
5848 /* index_cnt is the index number of next new entry, so decrement it. */
5849 *index = dir->index_cnt - 1;
5851 btrfs_inode_unlock(dir, 0);
5857 * All this infrastructure exists because dir_emit can fault, and we are holding
5858 * the tree lock when doing readdir. For now just allocate a buffer and copy
5859 * our information into that, and then dir_emit from the buffer. This is
5860 * similar to what NFS does, only we don't keep the buffer around in pagecache
5861 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5862 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5865 static int btrfs_opendir(struct inode *inode, struct file *file)
5867 struct btrfs_file_private *private;
5871 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5875 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5878 private->last_index = last_index;
5879 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5880 if (!private->filldir_buf) {
5884 file->private_data = private;
5888 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5890 struct btrfs_file_private *private = file->private_data;
5893 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5894 &private->last_index);
5898 return generic_file_llseek(file, offset, whence);
5908 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5911 struct dir_entry *entry = addr;
5912 char *name = (char *)(entry + 1);
5914 ctx->pos = get_unaligned(&entry->offset);
5915 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5916 get_unaligned(&entry->ino),
5917 get_unaligned(&entry->type)))
5919 addr += sizeof(struct dir_entry) +
5920 get_unaligned(&entry->name_len);
5926 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5928 struct inode *inode = file_inode(file);
5929 struct btrfs_root *root = BTRFS_I(inode)->root;
5930 struct btrfs_file_private *private = file->private_data;
5931 struct btrfs_dir_item *di;
5932 struct btrfs_key key;
5933 struct btrfs_key found_key;
5934 struct btrfs_path *path;
5936 LIST_HEAD(ins_list);
5937 LIST_HEAD(del_list);
5944 struct btrfs_key location;
5946 if (!dir_emit_dots(file, ctx))
5949 path = btrfs_alloc_path();
5953 addr = private->filldir_buf;
5954 path->reada = READA_FORWARD;
5956 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5957 &ins_list, &del_list);
5960 key.type = BTRFS_DIR_INDEX_KEY;
5961 key.offset = ctx->pos;
5962 key.objectid = btrfs_ino(BTRFS_I(inode));
5964 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5965 struct dir_entry *entry;
5966 struct extent_buffer *leaf = path->nodes[0];
5969 if (found_key.objectid != key.objectid)
5971 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5973 if (found_key.offset < ctx->pos)
5975 if (found_key.offset > private->last_index)
5977 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5979 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5980 name_len = btrfs_dir_name_len(leaf, di);
5981 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5983 btrfs_release_path(path);
5984 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5987 addr = private->filldir_buf;
5993 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5995 name_ptr = (char *)(entry + 1);
5996 read_extent_buffer(leaf, name_ptr,
5997 (unsigned long)(di + 1), name_len);
5998 put_unaligned(name_len, &entry->name_len);
5999 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6000 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6001 put_unaligned(location.objectid, &entry->ino);
6002 put_unaligned(found_key.offset, &entry->offset);
6004 addr += sizeof(struct dir_entry) + name_len;
6005 total_len += sizeof(struct dir_entry) + name_len;
6007 /* Catch error encountered during iteration */
6011 btrfs_release_path(path);
6013 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6017 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6022 * Stop new entries from being returned after we return the last
6025 * New directory entries are assigned a strictly increasing
6026 * offset. This means that new entries created during readdir
6027 * are *guaranteed* to be seen in the future by that readdir.
6028 * This has broken buggy programs which operate on names as
6029 * they're returned by readdir. Until we re-use freed offsets
6030 * we have this hack to stop new entries from being returned
6031 * under the assumption that they'll never reach this huge
6034 * This is being careful not to overflow 32bit loff_t unless the
6035 * last entry requires it because doing so has broken 32bit apps
6038 if (ctx->pos >= INT_MAX)
6039 ctx->pos = LLONG_MAX;
6046 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6047 btrfs_free_path(path);
6052 * This is somewhat expensive, updating the tree every time the
6053 * inode changes. But, it is most likely to find the inode in cache.
6054 * FIXME, needs more benchmarking...there are no reasons other than performance
6055 * to keep or drop this code.
6057 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6059 struct btrfs_root *root = inode->root;
6060 struct btrfs_fs_info *fs_info = root->fs_info;
6061 struct btrfs_trans_handle *trans;
6064 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6067 trans = btrfs_join_transaction(root);
6069 return PTR_ERR(trans);
6071 ret = btrfs_update_inode(trans, inode);
6072 if (ret == -ENOSPC || ret == -EDQUOT) {
6073 /* whoops, lets try again with the full transaction */
6074 btrfs_end_transaction(trans);
6075 trans = btrfs_start_transaction(root, 1);
6077 return PTR_ERR(trans);
6079 ret = btrfs_update_inode(trans, inode);
6081 btrfs_end_transaction(trans);
6082 if (inode->delayed_node)
6083 btrfs_balance_delayed_items(fs_info);
6089 * This is a copy of file_update_time. We need this so we can return error on
6090 * ENOSPC for updating the inode in the case of file write and mmap writes.
6092 static int btrfs_update_time(struct inode *inode, int flags)
6094 struct btrfs_root *root = BTRFS_I(inode)->root;
6097 if (btrfs_root_readonly(root))
6100 dirty = inode_update_timestamps(inode, flags);
6101 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6105 * helper to find a free sequence number in a given directory. This current
6106 * code is very simple, later versions will do smarter things in the btree
6108 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6112 if (dir->index_cnt == (u64)-1) {
6113 ret = btrfs_inode_delayed_dir_index_count(dir);
6115 ret = btrfs_set_inode_index_count(dir);
6121 *index = dir->index_cnt;
6127 static int btrfs_insert_inode_locked(struct inode *inode)
6129 struct btrfs_iget_args args;
6131 args.ino = btrfs_ino(BTRFS_I(inode));
6132 args.root = BTRFS_I(inode)->root;
6134 return insert_inode_locked4(inode,
6135 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6136 btrfs_find_actor, &args);
6139 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6140 unsigned int *trans_num_items)
6142 struct inode *dir = args->dir;
6143 struct inode *inode = args->inode;
6146 if (!args->orphan) {
6147 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6153 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6155 fscrypt_free_filename(&args->fname);
6159 /* 1 to add inode item */
6160 *trans_num_items = 1;
6161 /* 1 to add compression property */
6162 if (BTRFS_I(dir)->prop_compress)
6163 (*trans_num_items)++;
6164 /* 1 to add default ACL xattr */
6165 if (args->default_acl)
6166 (*trans_num_items)++;
6167 /* 1 to add access ACL xattr */
6169 (*trans_num_items)++;
6170 #ifdef CONFIG_SECURITY
6171 /* 1 to add LSM xattr */
6172 if (dir->i_security)
6173 (*trans_num_items)++;
6176 /* 1 to add orphan item */
6177 (*trans_num_items)++;
6181 * 1 to add dir index
6182 * 1 to update parent inode item
6184 * No need for 1 unit for the inode ref item because it is
6185 * inserted in a batch together with the inode item at
6186 * btrfs_create_new_inode().
6188 *trans_num_items += 3;
6193 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6195 posix_acl_release(args->acl);
6196 posix_acl_release(args->default_acl);
6197 fscrypt_free_filename(&args->fname);
6201 * Inherit flags from the parent inode.
6203 * Currently only the compression flags and the cow flags are inherited.
6205 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6211 if (flags & BTRFS_INODE_NOCOMPRESS) {
6212 inode->flags &= ~BTRFS_INODE_COMPRESS;
6213 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6214 } else if (flags & BTRFS_INODE_COMPRESS) {
6215 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6216 inode->flags |= BTRFS_INODE_COMPRESS;
6219 if (flags & BTRFS_INODE_NODATACOW) {
6220 inode->flags |= BTRFS_INODE_NODATACOW;
6221 if (S_ISREG(inode->vfs_inode.i_mode))
6222 inode->flags |= BTRFS_INODE_NODATASUM;
6225 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6228 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6229 struct btrfs_new_inode_args *args)
6231 struct timespec64 ts;
6232 struct inode *dir = args->dir;
6233 struct inode *inode = args->inode;
6234 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6235 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6236 struct btrfs_root *root;
6237 struct btrfs_inode_item *inode_item;
6238 struct btrfs_path *path;
6240 struct btrfs_inode_ref *ref;
6241 struct btrfs_key key[2];
6243 struct btrfs_item_batch batch;
6246 bool xa_reserved = false;
6248 path = btrfs_alloc_path();
6253 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6254 root = BTRFS_I(inode)->root;
6256 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6260 ret = btrfs_get_free_objectid(root, &objectid);
6263 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6265 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6272 * O_TMPFILE, set link count to 0, so that after this point, we
6273 * fill in an inode item with the correct link count.
6275 set_nlink(inode, 0);
6277 trace_btrfs_inode_request(dir);
6279 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6284 if (S_ISDIR(inode->i_mode))
6285 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6287 BTRFS_I(inode)->generation = trans->transid;
6288 inode->i_generation = BTRFS_I(inode)->generation;
6291 * We don't have any capability xattrs set here yet, shortcut any
6292 * queries for the xattrs here. If we add them later via the inode
6293 * security init path or any other path this flag will be cleared.
6295 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6298 * Subvolumes don't inherit flags from their parent directory.
6299 * Originally this was probably by accident, but we probably can't
6300 * change it now without compatibility issues.
6303 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6305 if (S_ISREG(inode->i_mode)) {
6306 if (btrfs_test_opt(fs_info, NODATASUM))
6307 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6308 if (btrfs_test_opt(fs_info, NODATACOW))
6309 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6310 BTRFS_INODE_NODATASUM;
6313 ret = btrfs_insert_inode_locked(inode);
6316 BTRFS_I(dir)->index_cnt--;
6321 * We could have gotten an inode number from somebody who was fsynced
6322 * and then removed in this same transaction, so let's just set full
6323 * sync since it will be a full sync anyway and this will blow away the
6324 * old info in the log.
6326 btrfs_set_inode_full_sync(BTRFS_I(inode));
6328 key[0].objectid = objectid;
6329 key[0].type = BTRFS_INODE_ITEM_KEY;
6332 sizes[0] = sizeof(struct btrfs_inode_item);
6334 if (!args->orphan) {
6336 * Start new inodes with an inode_ref. This is slightly more
6337 * efficient for small numbers of hard links since they will
6338 * be packed into one item. Extended refs will kick in if we
6339 * add more hard links than can fit in the ref item.
6341 key[1].objectid = objectid;
6342 key[1].type = BTRFS_INODE_REF_KEY;
6344 key[1].offset = objectid;
6345 sizes[1] = 2 + sizeof(*ref);
6347 key[1].offset = btrfs_ino(BTRFS_I(dir));
6348 sizes[1] = name->len + sizeof(*ref);
6352 batch.keys = &key[0];
6353 batch.data_sizes = &sizes[0];
6354 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6355 batch.nr = args->orphan ? 1 : 2;
6356 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6358 btrfs_abort_transaction(trans, ret);
6362 ts = simple_inode_init_ts(inode);
6363 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6364 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6367 * We're going to fill the inode item now, so at this point the inode
6368 * must be fully initialized.
6371 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6372 struct btrfs_inode_item);
6373 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6374 sizeof(*inode_item));
6375 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6377 if (!args->orphan) {
6378 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6379 struct btrfs_inode_ref);
6380 ptr = (unsigned long)(ref + 1);
6382 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6383 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6384 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6386 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6388 btrfs_set_inode_ref_index(path->nodes[0], ref,
6389 BTRFS_I(inode)->dir_index);
6390 write_extent_buffer(path->nodes[0], name->name, ptr,
6395 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6397 * We don't need the path anymore, plus inheriting properties, adding
6398 * ACLs, security xattrs, orphan item or adding the link, will result in
6399 * allocating yet another path. So just free our path.
6401 btrfs_free_path(path);
6405 struct inode *parent;
6408 * Subvolumes inherit properties from their parent subvolume,
6409 * not the directory they were created in.
6411 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6412 if (IS_ERR(parent)) {
6413 ret = PTR_ERR(parent);
6415 ret = btrfs_inode_inherit_props(trans, inode, parent);
6419 ret = btrfs_inode_inherit_props(trans, inode, dir);
6423 "error inheriting props for ino %llu (root %llu): %d",
6424 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6428 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6431 if (!args->subvol) {
6432 ret = btrfs_init_inode_security(trans, args);
6434 btrfs_abort_transaction(trans, ret);
6439 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6441 /* Shouldn't happen, we used xa_reserve() before. */
6442 btrfs_abort_transaction(trans, ret);
6446 trace_btrfs_inode_new(inode);
6447 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6449 btrfs_update_root_times(trans, root);
6452 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6454 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6455 0, BTRFS_I(inode)->dir_index);
6458 btrfs_abort_transaction(trans, ret);
6466 * discard_new_inode() calls iput(), but the caller owns the reference
6470 discard_new_inode(inode);
6473 xa_release(&root->inodes, objectid);
6475 btrfs_free_path(path);
6480 * utility function to add 'inode' into 'parent_inode' with
6481 * a give name and a given sequence number.
6482 * if 'add_backref' is true, also insert a backref from the
6483 * inode to the parent directory.
6485 int btrfs_add_link(struct btrfs_trans_handle *trans,
6486 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6487 const struct fscrypt_str *name, int add_backref, u64 index)
6490 struct btrfs_key key;
6491 struct btrfs_root *root = parent_inode->root;
6492 u64 ino = btrfs_ino(inode);
6493 u64 parent_ino = btrfs_ino(parent_inode);
6495 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6496 memcpy(&key, &inode->root->root_key, sizeof(key));
6499 key.type = BTRFS_INODE_ITEM_KEY;
6503 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6504 ret = btrfs_add_root_ref(trans, key.objectid,
6505 btrfs_root_id(root), parent_ino,
6507 } else if (add_backref) {
6508 ret = btrfs_insert_inode_ref(trans, root, name,
6509 ino, parent_ino, index);
6512 /* Nothing to clean up yet */
6516 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6517 btrfs_inode_type(&inode->vfs_inode), index);
6518 if (ret == -EEXIST || ret == -EOVERFLOW)
6521 btrfs_abort_transaction(trans, ret);
6525 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6527 inode_inc_iversion(&parent_inode->vfs_inode);
6529 * If we are replaying a log tree, we do not want to update the mtime
6530 * and ctime of the parent directory with the current time, since the
6531 * log replay procedure is responsible for setting them to their correct
6532 * values (the ones it had when the fsync was done).
6534 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6535 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6536 inode_set_ctime_current(&parent_inode->vfs_inode));
6538 ret = btrfs_update_inode(trans, parent_inode);
6540 btrfs_abort_transaction(trans, ret);
6544 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6547 err = btrfs_del_root_ref(trans, key.objectid,
6548 btrfs_root_id(root), parent_ino,
6549 &local_index, name);
6551 btrfs_abort_transaction(trans, err);
6552 } else if (add_backref) {
6556 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6559 btrfs_abort_transaction(trans, err);
6562 /* Return the original error code */
6566 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6567 struct inode *inode)
6569 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6570 struct btrfs_root *root = BTRFS_I(dir)->root;
6571 struct btrfs_new_inode_args new_inode_args = {
6576 unsigned int trans_num_items;
6577 struct btrfs_trans_handle *trans;
6580 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6584 trans = btrfs_start_transaction(root, trans_num_items);
6585 if (IS_ERR(trans)) {
6586 err = PTR_ERR(trans);
6587 goto out_new_inode_args;
6590 err = btrfs_create_new_inode(trans, &new_inode_args);
6592 d_instantiate_new(dentry, inode);
6594 btrfs_end_transaction(trans);
6595 btrfs_btree_balance_dirty(fs_info);
6597 btrfs_new_inode_args_destroy(&new_inode_args);
6604 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6605 struct dentry *dentry, umode_t mode, dev_t rdev)
6607 struct inode *inode;
6609 inode = new_inode(dir->i_sb);
6612 inode_init_owner(idmap, inode, dir, mode);
6613 inode->i_op = &btrfs_special_inode_operations;
6614 init_special_inode(inode, inode->i_mode, rdev);
6615 return btrfs_create_common(dir, dentry, inode);
6618 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6619 struct dentry *dentry, umode_t mode, bool excl)
6621 struct inode *inode;
6623 inode = new_inode(dir->i_sb);
6626 inode_init_owner(idmap, inode, dir, mode);
6627 inode->i_fop = &btrfs_file_operations;
6628 inode->i_op = &btrfs_file_inode_operations;
6629 inode->i_mapping->a_ops = &btrfs_aops;
6630 return btrfs_create_common(dir, dentry, inode);
6633 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6634 struct dentry *dentry)
6636 struct btrfs_trans_handle *trans = NULL;
6637 struct btrfs_root *root = BTRFS_I(dir)->root;
6638 struct inode *inode = d_inode(old_dentry);
6639 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6640 struct fscrypt_name fname;
6645 /* do not allow sys_link's with other subvols of the same device */
6646 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6649 if (inode->i_nlink >= BTRFS_LINK_MAX)
6652 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6656 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6661 * 2 items for inode and inode ref
6662 * 2 items for dir items
6663 * 1 item for parent inode
6664 * 1 item for orphan item deletion if O_TMPFILE
6666 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6667 if (IS_ERR(trans)) {
6668 err = PTR_ERR(trans);
6673 /* There are several dir indexes for this inode, clear the cache. */
6674 BTRFS_I(inode)->dir_index = 0ULL;
6676 inode_inc_iversion(inode);
6677 inode_set_ctime_current(inode);
6679 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6681 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6682 &fname.disk_name, 1, index);
6687 struct dentry *parent = dentry->d_parent;
6689 err = btrfs_update_inode(trans, BTRFS_I(inode));
6692 if (inode->i_nlink == 1) {
6694 * If new hard link count is 1, it's a file created
6695 * with open(2) O_TMPFILE flag.
6697 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6701 d_instantiate(dentry, inode);
6702 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6706 fscrypt_free_filename(&fname);
6708 btrfs_end_transaction(trans);
6710 inode_dec_link_count(inode);
6713 btrfs_btree_balance_dirty(fs_info);
6717 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6718 struct dentry *dentry, umode_t mode)
6720 struct inode *inode;
6722 inode = new_inode(dir->i_sb);
6725 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6726 inode->i_op = &btrfs_dir_inode_operations;
6727 inode->i_fop = &btrfs_dir_file_operations;
6728 return btrfs_create_common(dir, dentry, inode);
6731 static noinline int uncompress_inline(struct btrfs_path *path,
6732 struct folio *folio,
6733 struct btrfs_file_extent_item *item)
6736 struct extent_buffer *leaf = path->nodes[0];
6739 unsigned long inline_size;
6743 compress_type = btrfs_file_extent_compression(leaf, item);
6744 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6745 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6746 tmp = kmalloc(inline_size, GFP_NOFS);
6749 ptr = btrfs_file_extent_inline_start(item);
6751 read_extent_buffer(leaf, tmp, ptr, inline_size);
6753 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6754 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6758 * decompression code contains a memset to fill in any space between the end
6759 * of the uncompressed data and the end of max_size in case the decompressed
6760 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6761 * the end of an inline extent and the beginning of the next block, so we
6762 * cover that region here.
6765 if (max_size < PAGE_SIZE)
6766 folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6771 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6772 struct folio *folio)
6774 struct btrfs_file_extent_item *fi;
6778 if (!folio || folio_test_uptodate(folio))
6781 ASSERT(folio_pos(folio) == 0);
6783 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6784 struct btrfs_file_extent_item);
6785 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6786 return uncompress_inline(path, folio, fi);
6788 copy_size = min_t(u64, PAGE_SIZE,
6789 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6790 kaddr = kmap_local_folio(folio, 0);
6791 read_extent_buffer(path->nodes[0], kaddr,
6792 btrfs_file_extent_inline_start(fi), copy_size);
6793 kunmap_local(kaddr);
6794 if (copy_size < PAGE_SIZE)
6795 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6800 * Lookup the first extent overlapping a range in a file.
6802 * @inode: file to search in
6803 * @page: page to read extent data into if the extent is inline
6804 * @start: file offset
6805 * @len: length of range starting at @start
6807 * Return the first &struct extent_map which overlaps the given range, reading
6808 * it from the B-tree and caching it if necessary. Note that there may be more
6809 * extents which overlap the given range after the returned extent_map.
6811 * If @page is not NULL and the extent is inline, this also reads the extent
6812 * data directly into the page and marks the extent up to date in the io_tree.
6814 * Return: ERR_PTR on error, non-NULL extent_map on success.
6816 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6817 struct folio *folio, u64 start, u64 len)
6819 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6821 u64 extent_start = 0;
6823 u64 objectid = btrfs_ino(inode);
6824 int extent_type = -1;
6825 struct btrfs_path *path = NULL;
6826 struct btrfs_root *root = inode->root;
6827 struct btrfs_file_extent_item *item;
6828 struct extent_buffer *leaf;
6829 struct btrfs_key found_key;
6830 struct extent_map *em = NULL;
6831 struct extent_map_tree *em_tree = &inode->extent_tree;
6833 read_lock(&em_tree->lock);
6834 em = lookup_extent_mapping(em_tree, start, len);
6835 read_unlock(&em_tree->lock);
6838 if (em->start > start || em->start + em->len <= start)
6839 free_extent_map(em);
6840 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6841 free_extent_map(em);
6845 em = alloc_extent_map();
6850 em->start = EXTENT_MAP_HOLE;
6851 em->disk_bytenr = EXTENT_MAP_HOLE;
6854 path = btrfs_alloc_path();
6860 /* Chances are we'll be called again, so go ahead and do readahead */
6861 path->reada = READA_FORWARD;
6864 * The same explanation in load_free_space_cache applies here as well,
6865 * we only read when we're loading the free space cache, and at that
6866 * point the commit_root has everything we need.
6868 if (btrfs_is_free_space_inode(inode)) {
6869 path->search_commit_root = 1;
6870 path->skip_locking = 1;
6873 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6876 } else if (ret > 0) {
6877 if (path->slots[0] == 0)
6883 leaf = path->nodes[0];
6884 item = btrfs_item_ptr(leaf, path->slots[0],
6885 struct btrfs_file_extent_item);
6886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6887 if (found_key.objectid != objectid ||
6888 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6890 * If we backup past the first extent we want to move forward
6891 * and see if there is an extent in front of us, otherwise we'll
6892 * say there is a hole for our whole search range which can
6899 extent_type = btrfs_file_extent_type(leaf, item);
6900 extent_start = found_key.offset;
6901 extent_end = btrfs_file_extent_end(path);
6902 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6903 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6904 /* Only regular file could have regular/prealloc extent */
6905 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6908 "regular/prealloc extent found for non-regular inode %llu",
6912 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6915 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6920 if (start >= extent_end) {
6922 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6923 ret = btrfs_next_leaf(root, path);
6929 leaf = path->nodes[0];
6931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6932 if (found_key.objectid != objectid ||
6933 found_key.type != BTRFS_EXTENT_DATA_KEY)
6935 if (start + len <= found_key.offset)
6937 if (start > found_key.offset)
6940 /* New extent overlaps with existing one */
6942 em->len = found_key.offset - start;
6943 em->disk_bytenr = EXTENT_MAP_HOLE;
6947 btrfs_extent_item_to_extent_map(inode, path, item, em);
6949 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6950 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6952 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6954 * Inline extent can only exist at file offset 0. This is
6955 * ensured by tree-checker and inline extent creation path.
6956 * Thus all members representing file offsets should be zero.
6958 ASSERT(extent_start == 0);
6959 ASSERT(em->start == 0);
6962 * btrfs_extent_item_to_extent_map() should have properly
6963 * initialized em members already.
6965 * Other members are not utilized for inline extents.
6967 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6968 ASSERT(em->len == fs_info->sectorsize);
6970 ret = read_inline_extent(inode, path, folio);
6978 em->disk_bytenr = EXTENT_MAP_HOLE;
6981 btrfs_release_path(path);
6982 if (em->start > start || extent_map_end(em) <= start) {
6984 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6985 em->start, em->len, start, len);
6990 write_lock(&em_tree->lock);
6991 ret = btrfs_add_extent_mapping(inode, &em, start, len);
6992 write_unlock(&em_tree->lock);
6994 btrfs_free_path(path);
6996 trace_btrfs_get_extent(root, inode, em);
6999 free_extent_map(em);
7000 return ERR_PTR(ret);
7005 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7007 struct btrfs_block_group *block_group;
7008 bool readonly = false;
7010 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7011 if (!block_group || block_group->ro)
7014 btrfs_put_block_group(block_group);
7019 * Check if we can do nocow write into the range [@offset, @offset + @len)
7021 * @offset: File offset
7022 * @len: The length to write, will be updated to the nocow writeable
7024 * @orig_start: (optional) Return the original file offset of the file extent
7025 * @orig_len: (optional) Return the original on-disk length of the file extent
7026 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7027 * @strict: if true, omit optimizations that might force us into unnecessary
7028 * cow. e.g., don't trust generation number.
7031 * >0 and update @len if we can do nocow write
7032 * 0 if we can't do nocow write
7033 * <0 if error happened
7035 * NOTE: This only checks the file extents, caller is responsible to wait for
7036 * any ordered extents.
7038 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7039 struct btrfs_file_extent *file_extent,
7040 bool nowait, bool strict)
7042 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7043 struct can_nocow_file_extent_args nocow_args = { 0 };
7044 struct btrfs_path *path;
7046 struct extent_buffer *leaf;
7047 struct btrfs_root *root = BTRFS_I(inode)->root;
7048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7049 struct btrfs_file_extent_item *fi;
7050 struct btrfs_key key;
7053 path = btrfs_alloc_path();
7056 path->nowait = nowait;
7058 ret = btrfs_lookup_file_extent(NULL, root, path,
7059 btrfs_ino(BTRFS_I(inode)), offset, 0);
7064 if (path->slots[0] == 0) {
7065 /* can't find the item, must cow */
7072 leaf = path->nodes[0];
7073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7074 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7075 key.type != BTRFS_EXTENT_DATA_KEY) {
7076 /* not our file or wrong item type, must cow */
7080 if (key.offset > offset) {
7081 /* Wrong offset, must cow */
7085 if (btrfs_file_extent_end(path) <= offset)
7088 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7089 found_type = btrfs_file_extent_type(leaf, fi);
7091 nocow_args.start = offset;
7092 nocow_args.end = offset + *len - 1;
7093 nocow_args.strict = strict;
7094 nocow_args.free_path = true;
7096 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7097 /* can_nocow_file_extent() has freed the path. */
7101 /* Treat errors as not being able to NOCOW. */
7107 if (btrfs_extent_readonly(fs_info,
7108 nocow_args.file_extent.disk_bytenr +
7109 nocow_args.file_extent.offset))
7112 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7113 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7116 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7117 root->fs_info->sectorsize) - 1;
7118 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7126 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7128 *len = nocow_args.file_extent.num_bytes;
7131 btrfs_free_path(path);
7135 /* The callers of this must take lock_extent() */
7136 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7137 const struct btrfs_file_extent *file_extent,
7140 struct extent_map *em;
7144 * Note the missing NOCOW type.
7146 * For pure NOCOW writes, we should not create an io extent map, but
7147 * just reusing the existing one.
7148 * Only PREALLOC writes (NOCOW write into preallocated range) can
7149 * create an io extent map.
7151 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7152 type == BTRFS_ORDERED_COMPRESSED ||
7153 type == BTRFS_ORDERED_REGULAR);
7156 case BTRFS_ORDERED_PREALLOC:
7157 /* We're only referring part of a larger preallocated extent. */
7158 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7160 case BTRFS_ORDERED_REGULAR:
7161 /* COW results a new extent matching our file extent size. */
7162 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7163 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7165 /* Since it's a new extent, we should not have any offset. */
7166 ASSERT(file_extent->offset == 0);
7168 case BTRFS_ORDERED_COMPRESSED:
7169 /* Must be compressed. */
7170 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7173 * Encoded write can make us to refer to part of the
7174 * uncompressed extent.
7176 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7180 em = alloc_extent_map();
7182 return ERR_PTR(-ENOMEM);
7185 em->len = file_extent->num_bytes;
7186 em->disk_bytenr = file_extent->disk_bytenr;
7187 em->disk_num_bytes = file_extent->disk_num_bytes;
7188 em->ram_bytes = file_extent->ram_bytes;
7189 em->generation = -1;
7190 em->offset = file_extent->offset;
7191 em->flags |= EXTENT_FLAG_PINNED;
7192 if (type == BTRFS_ORDERED_COMPRESSED)
7193 extent_map_set_compression(em, file_extent->compression);
7195 ret = btrfs_replace_extent_map_range(inode, em, true);
7197 free_extent_map(em);
7198 return ERR_PTR(ret);
7201 /* em got 2 refs now, callers needs to do free_extent_map once. */
7206 * For release_folio() and invalidate_folio() we have a race window where
7207 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7208 * If we continue to release/invalidate the page, we could cause use-after-free
7209 * for subpage spinlock. So this function is to spin and wait for subpage
7212 static void wait_subpage_spinlock(struct folio *folio)
7214 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7215 struct btrfs_subpage *subpage;
7217 if (!btrfs_is_subpage(fs_info, folio->mapping))
7220 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7221 subpage = folio_get_private(folio);
7224 * This may look insane as we just acquire the spinlock and release it,
7225 * without doing anything. But we just want to make sure no one is
7226 * still holding the subpage spinlock.
7227 * And since the page is not dirty nor writeback, and we have page
7228 * locked, the only possible way to hold a spinlock is from the endio
7229 * function to clear page writeback.
7231 * Here we just acquire the spinlock so that all existing callers
7232 * should exit and we're safe to release/invalidate the page.
7234 spin_lock_irq(&subpage->lock);
7235 spin_unlock_irq(&subpage->lock);
7238 static int btrfs_launder_folio(struct folio *folio)
7240 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7244 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7246 if (try_release_extent_mapping(folio, gfp_flags)) {
7247 wait_subpage_spinlock(folio);
7248 clear_folio_extent_mapped(folio);
7254 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7256 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7258 return __btrfs_release_folio(folio, gfp_flags);
7261 #ifdef CONFIG_MIGRATION
7262 static int btrfs_migrate_folio(struct address_space *mapping,
7263 struct folio *dst, struct folio *src,
7264 enum migrate_mode mode)
7266 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7268 if (ret != MIGRATEPAGE_SUCCESS)
7271 if (folio_test_ordered(src)) {
7272 folio_clear_ordered(src);
7273 folio_set_ordered(dst);
7276 return MIGRATEPAGE_SUCCESS;
7279 #define btrfs_migrate_folio NULL
7282 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7285 struct btrfs_inode *inode = folio_to_inode(folio);
7286 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7287 struct extent_io_tree *tree = &inode->io_tree;
7288 struct extent_state *cached_state = NULL;
7289 u64 page_start = folio_pos(folio);
7290 u64 page_end = page_start + folio_size(folio) - 1;
7292 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7295 * We have folio locked so no new ordered extent can be created on this
7296 * page, nor bio can be submitted for this folio.
7298 * But already submitted bio can still be finished on this folio.
7299 * Furthermore, endio function won't skip folio which has Ordered
7300 * (Private2) already cleared, so it's possible for endio and
7301 * invalidate_folio to do the same ordered extent accounting twice
7304 * So here we wait for any submitted bios to finish, so that we won't
7305 * do double ordered extent accounting on the same folio.
7307 folio_wait_writeback(folio);
7308 wait_subpage_spinlock(folio);
7311 * For subpage case, we have call sites like
7312 * btrfs_punch_hole_lock_range() which passes range not aligned to
7314 * If the range doesn't cover the full folio, we don't need to and
7315 * shouldn't clear page extent mapped, as folio->private can still
7316 * record subpage dirty bits for other part of the range.
7318 * For cases that invalidate the full folio even the range doesn't
7319 * cover the full folio, like invalidating the last folio, we're
7320 * still safe to wait for ordered extent to finish.
7322 if (!(offset == 0 && length == folio_size(folio))) {
7323 btrfs_release_folio(folio, GFP_NOFS);
7327 if (!inode_evicting)
7328 lock_extent(tree, page_start, page_end, &cached_state);
7331 while (cur < page_end) {
7332 struct btrfs_ordered_extent *ordered;
7335 u32 extra_flags = 0;
7337 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7338 page_end + 1 - cur);
7340 range_end = page_end;
7342 * No ordered extent covering this range, we are safe
7343 * to delete all extent states in the range.
7345 extra_flags = EXTENT_CLEAR_ALL_BITS;
7348 if (ordered->file_offset > cur) {
7350 * There is a range between [cur, oe->file_offset) not
7351 * covered by any ordered extent.
7352 * We are safe to delete all extent states, and handle
7353 * the ordered extent in the next iteration.
7355 range_end = ordered->file_offset - 1;
7356 extra_flags = EXTENT_CLEAR_ALL_BITS;
7360 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7362 ASSERT(range_end + 1 - cur < U32_MAX);
7363 range_len = range_end + 1 - cur;
7364 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7366 * If Ordered (Private2) is cleared, it means endio has
7367 * already been executed for the range.
7368 * We can't delete the extent states as
7369 * btrfs_finish_ordered_io() may still use some of them.
7373 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7376 * IO on this page will never be started, so we need to account
7377 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7378 * here, must leave that up for the ordered extent completion.
7380 * This will also unlock the range for incoming
7381 * btrfs_finish_ordered_io().
7383 if (!inode_evicting)
7384 clear_extent_bit(tree, cur, range_end,
7386 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7387 EXTENT_DEFRAG, &cached_state);
7389 spin_lock_irq(&inode->ordered_tree_lock);
7390 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7391 ordered->truncated_len = min(ordered->truncated_len,
7392 cur - ordered->file_offset);
7393 spin_unlock_irq(&inode->ordered_tree_lock);
7396 * If the ordered extent has finished, we're safe to delete all
7397 * the extent states of the range, otherwise
7398 * btrfs_finish_ordered_io() will get executed by endio for
7399 * other pages, so we can't delete extent states.
7401 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7402 cur, range_end + 1 - cur)) {
7403 btrfs_finish_ordered_io(ordered);
7405 * The ordered extent has finished, now we're again
7406 * safe to delete all extent states of the range.
7408 extra_flags = EXTENT_CLEAR_ALL_BITS;
7412 btrfs_put_ordered_extent(ordered);
7414 * Qgroup reserved space handler
7415 * Sector(s) here will be either:
7417 * 1) Already written to disk or bio already finished
7418 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7419 * Qgroup will be handled by its qgroup_record then.
7420 * btrfs_qgroup_free_data() call will do nothing here.
7422 * 2) Not written to disk yet
7423 * Then btrfs_qgroup_free_data() call will clear the
7424 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7425 * reserved data space.
7426 * Since the IO will never happen for this page.
7428 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7429 if (!inode_evicting) {
7430 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7431 EXTENT_DELALLOC | EXTENT_UPTODATE |
7432 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7433 extra_flags, &cached_state);
7435 cur = range_end + 1;
7438 * We have iterated through all ordered extents of the page, the page
7439 * should not have Ordered (Private2) anymore, or the above iteration
7440 * did something wrong.
7442 ASSERT(!folio_test_ordered(folio));
7443 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7444 if (!inode_evicting)
7445 __btrfs_release_folio(folio, GFP_NOFS);
7446 clear_folio_extent_mapped(folio);
7449 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7451 struct btrfs_truncate_control control = {
7453 .ino = btrfs_ino(inode),
7454 .min_type = BTRFS_EXTENT_DATA_KEY,
7455 .clear_extent_range = true,
7457 struct btrfs_root *root = inode->root;
7458 struct btrfs_fs_info *fs_info = root->fs_info;
7459 struct btrfs_block_rsv *rsv;
7461 struct btrfs_trans_handle *trans;
7462 u64 mask = fs_info->sectorsize - 1;
7463 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7465 if (!skip_writeback) {
7466 ret = btrfs_wait_ordered_range(inode,
7467 inode->vfs_inode.i_size & (~mask),
7474 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7475 * things going on here:
7477 * 1) We need to reserve space to update our inode.
7479 * 2) We need to have something to cache all the space that is going to
7480 * be free'd up by the truncate operation, but also have some slack
7481 * space reserved in case it uses space during the truncate (thank you
7482 * very much snapshotting).
7484 * And we need these to be separate. The fact is we can use a lot of
7485 * space doing the truncate, and we have no earthly idea how much space
7486 * we will use, so we need the truncate reservation to be separate so it
7487 * doesn't end up using space reserved for updating the inode. We also
7488 * need to be able to stop the transaction and start a new one, which
7489 * means we need to be able to update the inode several times, and we
7490 * have no idea of knowing how many times that will be, so we can't just
7491 * reserve 1 item for the entirety of the operation, so that has to be
7492 * done separately as well.
7494 * So that leaves us with
7496 * 1) rsv - for the truncate reservation, which we will steal from the
7497 * transaction reservation.
7498 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7499 * updating the inode.
7501 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7504 rsv->size = min_size;
7505 rsv->failfast = true;
7508 * 1 for the truncate slack space
7509 * 1 for updating the inode.
7511 trans = btrfs_start_transaction(root, 2);
7512 if (IS_ERR(trans)) {
7513 ret = PTR_ERR(trans);
7517 /* Migrate the slack space for the truncate to our reserve */
7518 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7521 * We have reserved 2 metadata units when we started the transaction and
7522 * min_size matches 1 unit, so this should never fail, but if it does,
7523 * it's not critical we just fail truncation.
7526 btrfs_end_transaction(trans);
7530 trans->block_rsv = rsv;
7533 struct extent_state *cached_state = NULL;
7534 const u64 new_size = inode->vfs_inode.i_size;
7535 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7537 control.new_size = new_size;
7538 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7540 * We want to drop from the next block forward in case this new
7541 * size is not block aligned since we will be keeping the last
7542 * block of the extent just the way it is.
7544 btrfs_drop_extent_map_range(inode,
7545 ALIGN(new_size, fs_info->sectorsize),
7548 ret = btrfs_truncate_inode_items(trans, root, &control);
7550 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7551 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7553 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7555 trans->block_rsv = &fs_info->trans_block_rsv;
7556 if (ret != -ENOSPC && ret != -EAGAIN)
7559 ret = btrfs_update_inode(trans, inode);
7563 btrfs_end_transaction(trans);
7564 btrfs_btree_balance_dirty(fs_info);
7566 trans = btrfs_start_transaction(root, 2);
7567 if (IS_ERR(trans)) {
7568 ret = PTR_ERR(trans);
7573 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7574 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7575 rsv, min_size, false);
7577 * We have reserved 2 metadata units when we started the
7578 * transaction and min_size matches 1 unit, so this should never
7579 * fail, but if it does, it's not critical we just fail truncation.
7584 trans->block_rsv = rsv;
7588 * We can't call btrfs_truncate_block inside a trans handle as we could
7589 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7590 * know we've truncated everything except the last little bit, and can
7591 * do btrfs_truncate_block and then update the disk_i_size.
7593 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7594 btrfs_end_transaction(trans);
7595 btrfs_btree_balance_dirty(fs_info);
7597 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7600 trans = btrfs_start_transaction(root, 1);
7601 if (IS_ERR(trans)) {
7602 ret = PTR_ERR(trans);
7605 btrfs_inode_safe_disk_i_size_write(inode, 0);
7611 trans->block_rsv = &fs_info->trans_block_rsv;
7612 ret2 = btrfs_update_inode(trans, inode);
7616 ret2 = btrfs_end_transaction(trans);
7619 btrfs_btree_balance_dirty(fs_info);
7622 btrfs_free_block_rsv(fs_info, rsv);
7624 * So if we truncate and then write and fsync we normally would just
7625 * write the extents that changed, which is a problem if we need to
7626 * first truncate that entire inode. So set this flag so we write out
7627 * all of the extents in the inode to the sync log so we're completely
7630 * If no extents were dropped or trimmed we don't need to force the next
7631 * fsync to truncate all the inode's items from the log and re-log them
7632 * all. This means the truncate operation did not change the file size,
7633 * or changed it to a smaller size but there was only an implicit hole
7634 * between the old i_size and the new i_size, and there were no prealloc
7635 * extents beyond i_size to drop.
7637 if (control.extents_found > 0)
7638 btrfs_set_inode_full_sync(inode);
7643 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7646 struct inode *inode;
7648 inode = new_inode(dir->i_sb);
7651 * Subvolumes don't inherit the sgid bit or the parent's gid if
7652 * the parent's sgid bit is set. This is probably a bug.
7654 inode_init_owner(idmap, inode, NULL,
7655 S_IFDIR | (~current_umask() & S_IRWXUGO));
7656 inode->i_op = &btrfs_dir_inode_operations;
7657 inode->i_fop = &btrfs_dir_file_operations;
7662 struct inode *btrfs_alloc_inode(struct super_block *sb)
7664 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7665 struct btrfs_inode *ei;
7666 struct inode *inode;
7668 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7675 ei->last_sub_trans = 0;
7676 ei->logged_trans = 0;
7677 ei->delalloc_bytes = 0;
7678 ei->new_delalloc_bytes = 0;
7679 ei->defrag_bytes = 0;
7680 ei->disk_i_size = 0;
7684 * ->index_cnt will be properly initialized later when creating a new
7685 * inode (btrfs_create_new_inode()) or when reading an existing inode
7686 * from disk (btrfs_read_locked_inode()).
7690 ei->last_unlink_trans = 0;
7691 ei->last_reflink_trans = 0;
7692 ei->last_log_commit = 0;
7694 spin_lock_init(&ei->lock);
7695 ei->outstanding_extents = 0;
7696 if (sb->s_magic != BTRFS_TEST_MAGIC)
7697 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7698 BTRFS_BLOCK_RSV_DELALLOC);
7699 ei->runtime_flags = 0;
7700 ei->prop_compress = BTRFS_COMPRESS_NONE;
7701 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7703 ei->delayed_node = NULL;
7705 ei->i_otime_sec = 0;
7706 ei->i_otime_nsec = 0;
7708 inode = &ei->vfs_inode;
7709 extent_map_tree_init(&ei->extent_tree);
7711 /* This io tree sets the valid inode. */
7712 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7713 ei->io_tree.inode = ei;
7715 ei->file_extent_tree = NULL;
7717 mutex_init(&ei->log_mutex);
7718 spin_lock_init(&ei->ordered_tree_lock);
7719 ei->ordered_tree = RB_ROOT;
7720 ei->ordered_tree_last = NULL;
7721 INIT_LIST_HEAD(&ei->delalloc_inodes);
7722 INIT_LIST_HEAD(&ei->delayed_iput);
7723 init_rwsem(&ei->i_mmap_lock);
7728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7729 void btrfs_test_destroy_inode(struct inode *inode)
7731 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7732 kfree(BTRFS_I(inode)->file_extent_tree);
7733 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7737 void btrfs_free_inode(struct inode *inode)
7739 kfree(BTRFS_I(inode)->file_extent_tree);
7740 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7743 void btrfs_destroy_inode(struct inode *vfs_inode)
7745 struct btrfs_ordered_extent *ordered;
7746 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7747 struct btrfs_root *root = inode->root;
7748 bool freespace_inode;
7750 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7751 WARN_ON(vfs_inode->i_data.nrpages);
7752 WARN_ON(inode->block_rsv.reserved);
7753 WARN_ON(inode->block_rsv.size);
7754 WARN_ON(inode->outstanding_extents);
7755 if (!S_ISDIR(vfs_inode->i_mode)) {
7756 WARN_ON(inode->delalloc_bytes);
7757 WARN_ON(inode->new_delalloc_bytes);
7758 WARN_ON(inode->csum_bytes);
7760 if (!root || !btrfs_is_data_reloc_root(root))
7761 WARN_ON(inode->defrag_bytes);
7764 * This can happen where we create an inode, but somebody else also
7765 * created the same inode and we need to destroy the one we already
7772 * If this is a free space inode do not take the ordered extents lockdep
7775 freespace_inode = btrfs_is_free_space_inode(inode);
7778 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7782 btrfs_err(root->fs_info,
7783 "found ordered extent %llu %llu on inode cleanup",
7784 ordered->file_offset, ordered->num_bytes);
7786 if (!freespace_inode)
7787 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7789 btrfs_remove_ordered_extent(inode, ordered);
7790 btrfs_put_ordered_extent(ordered);
7791 btrfs_put_ordered_extent(ordered);
7794 btrfs_qgroup_check_reserved_leak(inode);
7795 btrfs_del_inode_from_root(inode);
7796 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7797 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7798 btrfs_put_root(inode->root);
7801 int btrfs_drop_inode(struct inode *inode)
7803 struct btrfs_root *root = BTRFS_I(inode)->root;
7808 /* the snap/subvol tree is on deleting */
7809 if (btrfs_root_refs(&root->root_item) == 0)
7812 return generic_drop_inode(inode);
7815 static void init_once(void *foo)
7817 struct btrfs_inode *ei = foo;
7819 inode_init_once(&ei->vfs_inode);
7822 void __cold btrfs_destroy_cachep(void)
7825 * Make sure all delayed rcu free inodes are flushed before we
7829 kmem_cache_destroy(btrfs_inode_cachep);
7832 int __init btrfs_init_cachep(void)
7834 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7835 sizeof(struct btrfs_inode), 0,
7836 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7838 if (!btrfs_inode_cachep)
7844 static int btrfs_getattr(struct mnt_idmap *idmap,
7845 const struct path *path, struct kstat *stat,
7846 u32 request_mask, unsigned int flags)
7850 struct inode *inode = d_inode(path->dentry);
7851 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7852 u32 bi_flags = BTRFS_I(inode)->flags;
7853 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7855 stat->result_mask |= STATX_BTIME;
7856 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7857 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7858 if (bi_flags & BTRFS_INODE_APPEND)
7859 stat->attributes |= STATX_ATTR_APPEND;
7860 if (bi_flags & BTRFS_INODE_COMPRESS)
7861 stat->attributes |= STATX_ATTR_COMPRESSED;
7862 if (bi_flags & BTRFS_INODE_IMMUTABLE)
7863 stat->attributes |= STATX_ATTR_IMMUTABLE;
7864 if (bi_flags & BTRFS_INODE_NODUMP)
7865 stat->attributes |= STATX_ATTR_NODUMP;
7866 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7867 stat->attributes |= STATX_ATTR_VERITY;
7869 stat->attributes_mask |= (STATX_ATTR_APPEND |
7870 STATX_ATTR_COMPRESSED |
7871 STATX_ATTR_IMMUTABLE |
7874 generic_fillattr(idmap, request_mask, inode, stat);
7875 stat->dev = BTRFS_I(inode)->root->anon_dev;
7877 stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7878 stat->result_mask |= STATX_SUBVOL;
7880 spin_lock(&BTRFS_I(inode)->lock);
7881 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7882 inode_bytes = inode_get_bytes(inode);
7883 spin_unlock(&BTRFS_I(inode)->lock);
7884 stat->blocks = (ALIGN(inode_bytes, blocksize) +
7885 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7889 static int btrfs_rename_exchange(struct inode *old_dir,
7890 struct dentry *old_dentry,
7891 struct inode *new_dir,
7892 struct dentry *new_dentry)
7894 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7895 struct btrfs_trans_handle *trans;
7896 unsigned int trans_num_items;
7897 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7898 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7899 struct inode *new_inode = new_dentry->d_inode;
7900 struct inode *old_inode = old_dentry->d_inode;
7901 struct btrfs_rename_ctx old_rename_ctx;
7902 struct btrfs_rename_ctx new_rename_ctx;
7903 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7904 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7909 bool need_abort = false;
7910 struct fscrypt_name old_fname, new_fname;
7911 struct fscrypt_str *old_name, *new_name;
7914 * For non-subvolumes allow exchange only within one subvolume, in the
7915 * same inode namespace. Two subvolumes (represented as directory) can
7916 * be exchanged as they're a logical link and have a fixed inode number.
7919 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7920 new_ino != BTRFS_FIRST_FREE_OBJECTID))
7923 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7927 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7929 fscrypt_free_filename(&old_fname);
7933 old_name = &old_fname.disk_name;
7934 new_name = &new_fname.disk_name;
7936 /* close the race window with snapshot create/destroy ioctl */
7937 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7938 new_ino == BTRFS_FIRST_FREE_OBJECTID)
7939 down_read(&fs_info->subvol_sem);
7943 * 1 to remove old dir item
7944 * 1 to remove old dir index
7945 * 1 to add new dir item
7946 * 1 to add new dir index
7947 * 1 to update parent inode
7949 * If the parents are the same, we only need to account for one
7951 trans_num_items = (old_dir == new_dir ? 9 : 10);
7952 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7954 * 1 to remove old root ref
7955 * 1 to remove old root backref
7956 * 1 to add new root ref
7957 * 1 to add new root backref
7959 trans_num_items += 4;
7962 * 1 to update inode item
7963 * 1 to remove old inode ref
7964 * 1 to add new inode ref
7966 trans_num_items += 3;
7968 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7969 trans_num_items += 4;
7971 trans_num_items += 3;
7972 trans = btrfs_start_transaction(root, trans_num_items);
7973 if (IS_ERR(trans)) {
7974 ret = PTR_ERR(trans);
7979 ret = btrfs_record_root_in_trans(trans, dest);
7985 * We need to find a free sequence number both in the source and
7986 * in the destination directory for the exchange.
7988 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7991 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7995 BTRFS_I(old_inode)->dir_index = 0ULL;
7996 BTRFS_I(new_inode)->dir_index = 0ULL;
7998 /* Reference for the source. */
7999 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8000 /* force full log commit if subvolume involved. */
8001 btrfs_set_log_full_commit(trans);
8003 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8004 btrfs_ino(BTRFS_I(new_dir)),
8011 /* And now for the dest. */
8012 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8013 /* force full log commit if subvolume involved. */
8014 btrfs_set_log_full_commit(trans);
8016 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8017 btrfs_ino(BTRFS_I(old_dir)),
8021 btrfs_abort_transaction(trans, ret);
8026 /* Update inode version and ctime/mtime. */
8027 inode_inc_iversion(old_dir);
8028 inode_inc_iversion(new_dir);
8029 inode_inc_iversion(old_inode);
8030 inode_inc_iversion(new_inode);
8031 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8033 if (old_dentry->d_parent != new_dentry->d_parent) {
8034 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8035 BTRFS_I(old_inode), true);
8036 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8037 BTRFS_I(new_inode), true);
8040 /* src is a subvolume */
8041 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8042 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8043 } else { /* src is an inode */
8044 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8045 BTRFS_I(old_dentry->d_inode),
8046 old_name, &old_rename_ctx);
8048 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8051 btrfs_abort_transaction(trans, ret);
8055 /* dest is a subvolume */
8056 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8057 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8058 } else { /* dest is an inode */
8059 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8060 BTRFS_I(new_dentry->d_inode),
8061 new_name, &new_rename_ctx);
8063 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8066 btrfs_abort_transaction(trans, ret);
8070 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8071 new_name, 0, old_idx);
8073 btrfs_abort_transaction(trans, ret);
8077 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8078 old_name, 0, new_idx);
8080 btrfs_abort_transaction(trans, ret);
8084 if (old_inode->i_nlink == 1)
8085 BTRFS_I(old_inode)->dir_index = old_idx;
8086 if (new_inode->i_nlink == 1)
8087 BTRFS_I(new_inode)->dir_index = new_idx;
8090 * Now pin the logs of the roots. We do it to ensure that no other task
8091 * can sync the logs while we are in progress with the rename, because
8092 * that could result in an inconsistency in case any of the inodes that
8093 * are part of this rename operation were logged before.
8095 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8096 btrfs_pin_log_trans(root);
8097 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8098 btrfs_pin_log_trans(dest);
8100 /* Do the log updates for all inodes. */
8101 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8102 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8103 old_rename_ctx.index, new_dentry->d_parent);
8104 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8105 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8106 new_rename_ctx.index, old_dentry->d_parent);
8108 /* Now unpin the logs. */
8109 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8110 btrfs_end_log_trans(root);
8111 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8112 btrfs_end_log_trans(dest);
8114 ret2 = btrfs_end_transaction(trans);
8115 ret = ret ? ret : ret2;
8117 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8118 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8119 up_read(&fs_info->subvol_sem);
8121 fscrypt_free_filename(&new_fname);
8122 fscrypt_free_filename(&old_fname);
8126 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8129 struct inode *inode;
8131 inode = new_inode(dir->i_sb);
8133 inode_init_owner(idmap, inode, dir,
8134 S_IFCHR | WHITEOUT_MODE);
8135 inode->i_op = &btrfs_special_inode_operations;
8136 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8141 static int btrfs_rename(struct mnt_idmap *idmap,
8142 struct inode *old_dir, struct dentry *old_dentry,
8143 struct inode *new_dir, struct dentry *new_dentry,
8146 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8147 struct btrfs_new_inode_args whiteout_args = {
8149 .dentry = old_dentry,
8151 struct btrfs_trans_handle *trans;
8152 unsigned int trans_num_items;
8153 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8154 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8155 struct inode *new_inode = d_inode(new_dentry);
8156 struct inode *old_inode = d_inode(old_dentry);
8157 struct btrfs_rename_ctx rename_ctx;
8161 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8162 struct fscrypt_name old_fname, new_fname;
8164 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8167 /* we only allow rename subvolume link between subvolumes */
8168 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8171 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8172 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8175 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8176 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8179 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8183 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8185 fscrypt_free_filename(&old_fname);
8189 /* check for collisions, even if the name isn't there */
8190 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8192 if (ret == -EEXIST) {
8194 * eexist without a new_inode */
8195 if (WARN_ON(!new_inode)) {
8196 goto out_fscrypt_names;
8199 /* maybe -EOVERFLOW */
8200 goto out_fscrypt_names;
8206 * we're using rename to replace one file with another. Start IO on it
8207 * now so we don't add too much work to the end of the transaction
8209 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8210 filemap_flush(old_inode->i_mapping);
8212 if (flags & RENAME_WHITEOUT) {
8213 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8214 if (!whiteout_args.inode) {
8216 goto out_fscrypt_names;
8218 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8220 goto out_whiteout_inode;
8222 /* 1 to update the old parent inode. */
8223 trans_num_items = 1;
8226 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8227 /* Close the race window with snapshot create/destroy ioctl */
8228 down_read(&fs_info->subvol_sem);
8230 * 1 to remove old root ref
8231 * 1 to remove old root backref
8232 * 1 to add new root ref
8233 * 1 to add new root backref
8235 trans_num_items += 4;
8239 * 1 to remove old inode ref
8240 * 1 to add new inode ref
8242 trans_num_items += 3;
8245 * 1 to remove old dir item
8246 * 1 to remove old dir index
8247 * 1 to add new dir item
8248 * 1 to add new dir index
8250 trans_num_items += 4;
8251 /* 1 to update new parent inode if it's not the same as the old parent */
8252 if (new_dir != old_dir)
8257 * 1 to remove inode ref
8258 * 1 to remove dir item
8259 * 1 to remove dir index
8260 * 1 to possibly add orphan item
8262 trans_num_items += 5;
8264 trans = btrfs_start_transaction(root, trans_num_items);
8265 if (IS_ERR(trans)) {
8266 ret = PTR_ERR(trans);
8271 ret = btrfs_record_root_in_trans(trans, dest);
8276 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8280 BTRFS_I(old_inode)->dir_index = 0ULL;
8281 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8282 /* force full log commit if subvolume involved. */
8283 btrfs_set_log_full_commit(trans);
8285 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8286 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8292 inode_inc_iversion(old_dir);
8293 inode_inc_iversion(new_dir);
8294 inode_inc_iversion(old_inode);
8295 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8297 if (old_dentry->d_parent != new_dentry->d_parent)
8298 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8299 BTRFS_I(old_inode), true);
8301 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8302 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8304 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8305 BTRFS_I(d_inode(old_dentry)),
8306 &old_fname.disk_name, &rename_ctx);
8308 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8311 btrfs_abort_transaction(trans, ret);
8316 inode_inc_iversion(new_inode);
8317 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8318 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8319 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8320 BUG_ON(new_inode->i_nlink == 0);
8322 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8323 BTRFS_I(d_inode(new_dentry)),
8324 &new_fname.disk_name);
8326 if (!ret && new_inode->i_nlink == 0)
8327 ret = btrfs_orphan_add(trans,
8328 BTRFS_I(d_inode(new_dentry)));
8330 btrfs_abort_transaction(trans, ret);
8335 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8336 &new_fname.disk_name, 0, index);
8338 btrfs_abort_transaction(trans, ret);
8342 if (old_inode->i_nlink == 1)
8343 BTRFS_I(old_inode)->dir_index = index;
8345 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8346 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8347 rename_ctx.index, new_dentry->d_parent);
8349 if (flags & RENAME_WHITEOUT) {
8350 ret = btrfs_create_new_inode(trans, &whiteout_args);
8352 btrfs_abort_transaction(trans, ret);
8355 unlock_new_inode(whiteout_args.inode);
8356 iput(whiteout_args.inode);
8357 whiteout_args.inode = NULL;
8361 ret2 = btrfs_end_transaction(trans);
8362 ret = ret ? ret : ret2;
8364 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8365 up_read(&fs_info->subvol_sem);
8366 if (flags & RENAME_WHITEOUT)
8367 btrfs_new_inode_args_destroy(&whiteout_args);
8369 if (flags & RENAME_WHITEOUT)
8370 iput(whiteout_args.inode);
8372 fscrypt_free_filename(&old_fname);
8373 fscrypt_free_filename(&new_fname);
8377 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8378 struct dentry *old_dentry, struct inode *new_dir,
8379 struct dentry *new_dentry, unsigned int flags)
8383 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8386 if (flags & RENAME_EXCHANGE)
8387 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8390 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8393 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8398 struct btrfs_delalloc_work {
8399 struct inode *inode;
8400 struct completion completion;
8401 struct list_head list;
8402 struct btrfs_work work;
8405 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8407 struct btrfs_delalloc_work *delalloc_work;
8408 struct inode *inode;
8410 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8412 inode = delalloc_work->inode;
8413 filemap_flush(inode->i_mapping);
8414 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8415 &BTRFS_I(inode)->runtime_flags))
8416 filemap_flush(inode->i_mapping);
8419 complete(&delalloc_work->completion);
8422 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8424 struct btrfs_delalloc_work *work;
8426 work = kmalloc(sizeof(*work), GFP_NOFS);
8430 init_completion(&work->completion);
8431 INIT_LIST_HEAD(&work->list);
8432 work->inode = inode;
8433 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8439 * some fairly slow code that needs optimization. This walks the list
8440 * of all the inodes with pending delalloc and forces them to disk.
8442 static int start_delalloc_inodes(struct btrfs_root *root,
8443 struct writeback_control *wbc, bool snapshot,
8444 bool in_reclaim_context)
8446 struct btrfs_inode *binode;
8447 struct inode *inode;
8448 struct btrfs_delalloc_work *work, *next;
8452 bool full_flush = wbc->nr_to_write == LONG_MAX;
8454 mutex_lock(&root->delalloc_mutex);
8455 spin_lock(&root->delalloc_lock);
8456 list_splice_init(&root->delalloc_inodes, &splice);
8457 while (!list_empty(&splice)) {
8458 binode = list_entry(splice.next, struct btrfs_inode,
8461 list_move_tail(&binode->delalloc_inodes,
8462 &root->delalloc_inodes);
8464 if (in_reclaim_context &&
8465 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8468 inode = igrab(&binode->vfs_inode);
8470 cond_resched_lock(&root->delalloc_lock);
8473 spin_unlock(&root->delalloc_lock);
8476 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8477 &binode->runtime_flags);
8479 work = btrfs_alloc_delalloc_work(inode);
8485 list_add_tail(&work->list, &works);
8486 btrfs_queue_work(root->fs_info->flush_workers,
8489 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8490 btrfs_add_delayed_iput(BTRFS_I(inode));
8491 if (ret || wbc->nr_to_write <= 0)
8495 spin_lock(&root->delalloc_lock);
8497 spin_unlock(&root->delalloc_lock);
8500 list_for_each_entry_safe(work, next, &works, list) {
8501 list_del_init(&work->list);
8502 wait_for_completion(&work->completion);
8506 if (!list_empty(&splice)) {
8507 spin_lock(&root->delalloc_lock);
8508 list_splice_tail(&splice, &root->delalloc_inodes);
8509 spin_unlock(&root->delalloc_lock);
8511 mutex_unlock(&root->delalloc_mutex);
8515 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8517 struct writeback_control wbc = {
8518 .nr_to_write = LONG_MAX,
8519 .sync_mode = WB_SYNC_NONE,
8521 .range_end = LLONG_MAX,
8523 struct btrfs_fs_info *fs_info = root->fs_info;
8525 if (BTRFS_FS_ERROR(fs_info))
8528 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8531 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8532 bool in_reclaim_context)
8534 struct writeback_control wbc = {
8536 .sync_mode = WB_SYNC_NONE,
8538 .range_end = LLONG_MAX,
8540 struct btrfs_root *root;
8544 if (BTRFS_FS_ERROR(fs_info))
8547 mutex_lock(&fs_info->delalloc_root_mutex);
8548 spin_lock(&fs_info->delalloc_root_lock);
8549 list_splice_init(&fs_info->delalloc_roots, &splice);
8550 while (!list_empty(&splice)) {
8552 * Reset nr_to_write here so we know that we're doing a full
8556 wbc.nr_to_write = LONG_MAX;
8558 root = list_first_entry(&splice, struct btrfs_root,
8560 root = btrfs_grab_root(root);
8562 list_move_tail(&root->delalloc_root,
8563 &fs_info->delalloc_roots);
8564 spin_unlock(&fs_info->delalloc_root_lock);
8566 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8567 btrfs_put_root(root);
8568 if (ret < 0 || wbc.nr_to_write <= 0)
8570 spin_lock(&fs_info->delalloc_root_lock);
8572 spin_unlock(&fs_info->delalloc_root_lock);
8576 if (!list_empty(&splice)) {
8577 spin_lock(&fs_info->delalloc_root_lock);
8578 list_splice_tail(&splice, &fs_info->delalloc_roots);
8579 spin_unlock(&fs_info->delalloc_root_lock);
8581 mutex_unlock(&fs_info->delalloc_root_mutex);
8585 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8586 struct dentry *dentry, const char *symname)
8588 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8589 struct btrfs_trans_handle *trans;
8590 struct btrfs_root *root = BTRFS_I(dir)->root;
8591 struct btrfs_path *path;
8592 struct btrfs_key key;
8593 struct inode *inode;
8594 struct btrfs_new_inode_args new_inode_args = {
8598 unsigned int trans_num_items;
8603 struct btrfs_file_extent_item *ei;
8604 struct extent_buffer *leaf;
8606 name_len = strlen(symname);
8607 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8608 return -ENAMETOOLONG;
8610 inode = new_inode(dir->i_sb);
8613 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8614 inode->i_op = &btrfs_symlink_inode_operations;
8615 inode_nohighmem(inode);
8616 inode->i_mapping->a_ops = &btrfs_aops;
8617 btrfs_i_size_write(BTRFS_I(inode), name_len);
8618 inode_set_bytes(inode, name_len);
8620 new_inode_args.inode = inode;
8621 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8624 /* 1 additional item for the inline extent */
8627 trans = btrfs_start_transaction(root, trans_num_items);
8628 if (IS_ERR(trans)) {
8629 err = PTR_ERR(trans);
8630 goto out_new_inode_args;
8633 err = btrfs_create_new_inode(trans, &new_inode_args);
8637 path = btrfs_alloc_path();
8640 btrfs_abort_transaction(trans, err);
8641 discard_new_inode(inode);
8645 key.objectid = btrfs_ino(BTRFS_I(inode));
8647 key.type = BTRFS_EXTENT_DATA_KEY;
8648 datasize = btrfs_file_extent_calc_inline_size(name_len);
8649 err = btrfs_insert_empty_item(trans, root, path, &key,
8652 btrfs_abort_transaction(trans, err);
8653 btrfs_free_path(path);
8654 discard_new_inode(inode);
8658 leaf = path->nodes[0];
8659 ei = btrfs_item_ptr(leaf, path->slots[0],
8660 struct btrfs_file_extent_item);
8661 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8662 btrfs_set_file_extent_type(leaf, ei,
8663 BTRFS_FILE_EXTENT_INLINE);
8664 btrfs_set_file_extent_encryption(leaf, ei, 0);
8665 btrfs_set_file_extent_compression(leaf, ei, 0);
8666 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8667 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8669 ptr = btrfs_file_extent_inline_start(ei);
8670 write_extent_buffer(leaf, symname, ptr, name_len);
8671 btrfs_mark_buffer_dirty(trans, leaf);
8672 btrfs_free_path(path);
8674 d_instantiate_new(dentry, inode);
8677 btrfs_end_transaction(trans);
8678 btrfs_btree_balance_dirty(fs_info);
8680 btrfs_new_inode_args_destroy(&new_inode_args);
8687 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8688 struct btrfs_trans_handle *trans_in,
8689 struct btrfs_inode *inode,
8690 struct btrfs_key *ins,
8693 struct btrfs_file_extent_item stack_fi;
8694 struct btrfs_replace_extent_info extent_info;
8695 struct btrfs_trans_handle *trans = trans_in;
8696 struct btrfs_path *path;
8697 u64 start = ins->objectid;
8698 u64 len = ins->offset;
8699 u64 qgroup_released = 0;
8702 memset(&stack_fi, 0, sizeof(stack_fi));
8704 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8705 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8706 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8707 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8708 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8709 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8710 /* Encryption and other encoding is reserved and all 0 */
8712 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8714 return ERR_PTR(ret);
8717 ret = insert_reserved_file_extent(trans, inode,
8718 file_offset, &stack_fi,
8719 true, qgroup_released);
8725 extent_info.disk_offset = start;
8726 extent_info.disk_len = len;
8727 extent_info.data_offset = 0;
8728 extent_info.data_len = len;
8729 extent_info.file_offset = file_offset;
8730 extent_info.extent_buf = (char *)&stack_fi;
8731 extent_info.is_new_extent = true;
8732 extent_info.update_times = true;
8733 extent_info.qgroup_reserved = qgroup_released;
8734 extent_info.insertions = 0;
8736 path = btrfs_alloc_path();
8742 ret = btrfs_replace_file_extents(inode, path, file_offset,
8743 file_offset + len - 1, &extent_info,
8745 btrfs_free_path(path);
8752 * We have released qgroup data range at the beginning of the function,
8753 * and normally qgroup_released bytes will be freed when committing
8755 * But if we error out early, we have to free what we have released
8756 * or we leak qgroup data reservation.
8758 btrfs_qgroup_free_refroot(inode->root->fs_info,
8759 btrfs_root_id(inode->root), qgroup_released,
8760 BTRFS_QGROUP_RSV_DATA);
8761 return ERR_PTR(ret);
8764 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8765 u64 start, u64 num_bytes, u64 min_size,
8766 loff_t actual_len, u64 *alloc_hint,
8767 struct btrfs_trans_handle *trans)
8769 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8770 struct extent_map *em;
8771 struct btrfs_root *root = BTRFS_I(inode)->root;
8772 struct btrfs_key ins;
8773 u64 cur_offset = start;
8774 u64 clear_offset = start;
8777 u64 last_alloc = (u64)-1;
8779 bool own_trans = true;
8780 u64 end = start + num_bytes - 1;
8784 while (num_bytes > 0) {
8785 cur_bytes = min_t(u64, num_bytes, SZ_256M);
8786 cur_bytes = max(cur_bytes, min_size);
8788 * If we are severely fragmented we could end up with really
8789 * small allocations, so if the allocator is returning small
8790 * chunks lets make its job easier by only searching for those
8793 cur_bytes = min(cur_bytes, last_alloc);
8794 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8795 min_size, 0, *alloc_hint, &ins, 1, 0);
8800 * We've reserved this space, and thus converted it from
8801 * ->bytes_may_use to ->bytes_reserved. Any error that happens
8802 * from here on out we will only need to clear our reservation
8803 * for the remaining unreserved area, so advance our
8804 * clear_offset by our extent size.
8806 clear_offset += ins.offset;
8808 last_alloc = ins.offset;
8809 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8812 * Now that we inserted the prealloc extent we can finally
8813 * decrement the number of reservations in the block group.
8814 * If we did it before, we could race with relocation and have
8815 * relocation miss the reserved extent, making it fail later.
8817 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8818 if (IS_ERR(trans)) {
8819 ret = PTR_ERR(trans);
8820 btrfs_free_reserved_extent(fs_info, ins.objectid,
8825 em = alloc_extent_map();
8827 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8828 cur_offset + ins.offset - 1, false);
8829 btrfs_set_inode_full_sync(BTRFS_I(inode));
8833 em->start = cur_offset;
8834 em->len = ins.offset;
8835 em->disk_bytenr = ins.objectid;
8837 em->disk_num_bytes = ins.offset;
8838 em->ram_bytes = ins.offset;
8839 em->flags |= EXTENT_FLAG_PREALLOC;
8840 em->generation = trans->transid;
8842 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8843 free_extent_map(em);
8845 num_bytes -= ins.offset;
8846 cur_offset += ins.offset;
8847 *alloc_hint = ins.objectid + ins.offset;
8849 inode_inc_iversion(inode);
8850 inode_set_ctime_current(inode);
8851 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8852 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8853 (actual_len > inode->i_size) &&
8854 (cur_offset > inode->i_size)) {
8855 if (cur_offset > actual_len)
8856 i_size = actual_len;
8858 i_size = cur_offset;
8859 i_size_write(inode, i_size);
8860 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8863 ret = btrfs_update_inode(trans, BTRFS_I(inode));
8866 btrfs_abort_transaction(trans, ret);
8868 btrfs_end_transaction(trans);
8873 btrfs_end_transaction(trans);
8877 if (clear_offset < end)
8878 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8879 end - clear_offset + 1);
8883 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8884 u64 start, u64 num_bytes, u64 min_size,
8885 loff_t actual_len, u64 *alloc_hint)
8887 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8888 min_size, actual_len, alloc_hint,
8892 int btrfs_prealloc_file_range_trans(struct inode *inode,
8893 struct btrfs_trans_handle *trans, int mode,
8894 u64 start, u64 num_bytes, u64 min_size,
8895 loff_t actual_len, u64 *alloc_hint)
8897 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8898 min_size, actual_len, alloc_hint, trans);
8901 static int btrfs_permission(struct mnt_idmap *idmap,
8902 struct inode *inode, int mask)
8904 struct btrfs_root *root = BTRFS_I(inode)->root;
8905 umode_t mode = inode->i_mode;
8907 if (mask & MAY_WRITE &&
8908 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8909 if (btrfs_root_readonly(root))
8911 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8914 return generic_permission(idmap, inode, mask);
8917 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8918 struct file *file, umode_t mode)
8920 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8921 struct btrfs_trans_handle *trans;
8922 struct btrfs_root *root = BTRFS_I(dir)->root;
8923 struct inode *inode;
8924 struct btrfs_new_inode_args new_inode_args = {
8926 .dentry = file->f_path.dentry,
8929 unsigned int trans_num_items;
8932 inode = new_inode(dir->i_sb);
8935 inode_init_owner(idmap, inode, dir, mode);
8936 inode->i_fop = &btrfs_file_operations;
8937 inode->i_op = &btrfs_file_inode_operations;
8938 inode->i_mapping->a_ops = &btrfs_aops;
8940 new_inode_args.inode = inode;
8941 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8945 trans = btrfs_start_transaction(root, trans_num_items);
8946 if (IS_ERR(trans)) {
8947 ret = PTR_ERR(trans);
8948 goto out_new_inode_args;
8951 ret = btrfs_create_new_inode(trans, &new_inode_args);
8954 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8955 * set it to 1 because d_tmpfile() will issue a warning if the count is
8958 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8960 set_nlink(inode, 1);
8963 d_tmpfile(file, inode);
8964 unlock_new_inode(inode);
8965 mark_inode_dirty(inode);
8968 btrfs_end_transaction(trans);
8969 btrfs_btree_balance_dirty(fs_info);
8971 btrfs_new_inode_args_destroy(&new_inode_args);
8975 return finish_open_simple(file, ret);
8978 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8980 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8981 unsigned long index = start >> PAGE_SHIFT;
8982 unsigned long end_index = end >> PAGE_SHIFT;
8983 struct folio *folio;
8986 ASSERT(end + 1 - start <= U32_MAX);
8987 len = end + 1 - start;
8988 while (index <= end_index) {
8989 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
8990 ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */
8992 /* This is for data, which doesn't yet support larger folio. */
8993 ASSERT(folio_order(folio) == 0);
8994 btrfs_folio_set_writeback(fs_info, folio, start, len);
9000 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9003 switch (compress_type) {
9004 case BTRFS_COMPRESS_NONE:
9005 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9006 case BTRFS_COMPRESS_ZLIB:
9007 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9008 case BTRFS_COMPRESS_LZO:
9010 * The LZO format depends on the sector size. 64K is the maximum
9011 * sector size that we support.
9013 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9015 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9016 (fs_info->sectorsize_bits - 12);
9017 case BTRFS_COMPRESS_ZSTD:
9018 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9024 static ssize_t btrfs_encoded_read_inline(
9026 struct iov_iter *iter, u64 start,
9028 struct extent_state **cached_state,
9029 u64 extent_start, size_t count,
9030 struct btrfs_ioctl_encoded_io_args *encoded,
9033 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9034 struct btrfs_root *root = inode->root;
9035 struct btrfs_fs_info *fs_info = root->fs_info;
9036 struct extent_io_tree *io_tree = &inode->io_tree;
9037 struct btrfs_path *path;
9038 struct extent_buffer *leaf;
9039 struct btrfs_file_extent_item *item;
9045 path = btrfs_alloc_path();
9050 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9054 /* The extent item disappeared? */
9059 leaf = path->nodes[0];
9060 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9062 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9063 ptr = btrfs_file_extent_inline_start(item);
9065 encoded->len = min_t(u64, extent_start + ram_bytes,
9066 inode->vfs_inode.i_size) - iocb->ki_pos;
9067 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9068 btrfs_file_extent_compression(leaf, item));
9071 encoded->compression = ret;
9072 if (encoded->compression) {
9075 inline_size = btrfs_file_extent_inline_item_len(leaf,
9077 if (inline_size > count) {
9081 count = inline_size;
9082 encoded->unencoded_len = ram_bytes;
9083 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9085 count = min_t(u64, count, encoded->len);
9086 encoded->len = count;
9087 encoded->unencoded_len = count;
9088 ptr += iocb->ki_pos - extent_start;
9091 tmp = kmalloc(count, GFP_NOFS);
9096 read_extent_buffer(leaf, tmp, ptr, count);
9097 btrfs_release_path(path);
9098 unlock_extent(io_tree, start, lockend, cached_state);
9099 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9102 ret = copy_to_iter(tmp, count, iter);
9107 btrfs_free_path(path);
9111 struct btrfs_encoded_read_private {
9112 wait_queue_head_t wait;
9114 blk_status_t status;
9117 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9119 struct btrfs_encoded_read_private *priv = bbio->private;
9121 if (bbio->bio.bi_status) {
9123 * The memory barrier implied by the atomic_dec_return() here
9124 * pairs with the memory barrier implied by the
9125 * atomic_dec_return() or io_wait_event() in
9126 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9127 * write is observed before the load of status in
9128 * btrfs_encoded_read_regular_fill_pages().
9130 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9132 if (!atomic_dec_return(&priv->pending))
9133 wake_up(&priv->wait);
9134 bio_put(&bbio->bio);
9137 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9138 u64 file_offset, u64 disk_bytenr,
9139 u64 disk_io_size, struct page **pages)
9141 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9142 struct btrfs_encoded_read_private priv = {
9143 .pending = ATOMIC_INIT(1),
9145 unsigned long i = 0;
9146 struct btrfs_bio *bbio;
9148 init_waitqueue_head(&priv.wait);
9150 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9151 btrfs_encoded_read_endio, &priv);
9152 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9153 bbio->inode = inode;
9156 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9158 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9159 atomic_inc(&priv.pending);
9160 btrfs_submit_bbio(bbio, 0);
9162 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9163 btrfs_encoded_read_endio, &priv);
9164 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9165 bbio->inode = inode;
9170 disk_bytenr += bytes;
9171 disk_io_size -= bytes;
9172 } while (disk_io_size);
9174 atomic_inc(&priv.pending);
9175 btrfs_submit_bbio(bbio, 0);
9177 if (atomic_dec_return(&priv.pending))
9178 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9179 /* See btrfs_encoded_read_endio() for ordering. */
9180 return blk_status_to_errno(READ_ONCE(priv.status));
9183 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9184 struct iov_iter *iter,
9185 u64 start, u64 lockend,
9186 struct extent_state **cached_state,
9187 u64 disk_bytenr, u64 disk_io_size,
9188 size_t count, bool compressed,
9191 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9192 struct extent_io_tree *io_tree = &inode->io_tree;
9193 struct page **pages;
9194 unsigned long nr_pages, i;
9199 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9200 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9203 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9209 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9210 disk_io_size, pages);
9214 unlock_extent(io_tree, start, lockend, cached_state);
9215 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9222 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9223 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9226 while (cur < count) {
9227 size_t bytes = min_t(size_t, count - cur,
9228 PAGE_SIZE - page_offset);
9230 if (copy_page_to_iter(pages[i], page_offset, bytes,
9241 for (i = 0; i < nr_pages; i++) {
9243 __free_page(pages[i]);
9249 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9250 struct btrfs_ioctl_encoded_io_args *encoded)
9252 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9253 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9254 struct extent_io_tree *io_tree = &inode->io_tree;
9256 size_t count = iov_iter_count(iter);
9257 u64 start, lockend, disk_bytenr, disk_io_size;
9258 struct extent_state *cached_state = NULL;
9259 struct extent_map *em;
9260 bool unlocked = false;
9262 file_accessed(iocb->ki_filp);
9264 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9266 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9267 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9270 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9272 * We don't know how long the extent containing iocb->ki_pos is, but if
9273 * it's compressed we know that it won't be longer than this.
9275 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9278 struct btrfs_ordered_extent *ordered;
9280 ret = btrfs_wait_ordered_range(inode, start,
9281 lockend - start + 1);
9283 goto out_unlock_inode;
9284 lock_extent(io_tree, start, lockend, &cached_state);
9285 ordered = btrfs_lookup_ordered_range(inode, start,
9286 lockend - start + 1);
9289 btrfs_put_ordered_extent(ordered);
9290 unlock_extent(io_tree, start, lockend, &cached_state);
9294 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9297 goto out_unlock_extent;
9300 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9301 u64 extent_start = em->start;
9304 * For inline extents we get everything we need out of the
9307 free_extent_map(em);
9309 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9310 &cached_state, extent_start,
9311 count, encoded, &unlocked);
9316 * We only want to return up to EOF even if the extent extends beyond
9319 encoded->len = min_t(u64, extent_map_end(em),
9320 inode->vfs_inode.i_size) - iocb->ki_pos;
9321 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9322 (em->flags & EXTENT_FLAG_PREALLOC)) {
9323 disk_bytenr = EXTENT_MAP_HOLE;
9324 count = min_t(u64, count, encoded->len);
9325 encoded->len = count;
9326 encoded->unencoded_len = count;
9327 } else if (extent_map_is_compressed(em)) {
9328 disk_bytenr = em->disk_bytenr;
9330 * Bail if the buffer isn't large enough to return the whole
9331 * compressed extent.
9333 if (em->disk_num_bytes > count) {
9337 disk_io_size = em->disk_num_bytes;
9338 count = em->disk_num_bytes;
9339 encoded->unencoded_len = em->ram_bytes;
9340 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9341 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9342 extent_map_compression(em));
9345 encoded->compression = ret;
9347 disk_bytenr = extent_map_block_start(em) + (start - em->start);
9348 if (encoded->len > count)
9349 encoded->len = count;
9351 * Don't read beyond what we locked. This also limits the page
9352 * allocations that we'll do.
9354 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9355 count = start + disk_io_size - iocb->ki_pos;
9356 encoded->len = count;
9357 encoded->unencoded_len = count;
9358 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9360 free_extent_map(em);
9363 if (disk_bytenr == EXTENT_MAP_HOLE) {
9364 unlock_extent(io_tree, start, lockend, &cached_state);
9365 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9367 ret = iov_iter_zero(count, iter);
9371 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9372 &cached_state, disk_bytenr,
9373 disk_io_size, count,
9374 encoded->compression,
9380 iocb->ki_pos += encoded->len;
9382 free_extent_map(em);
9385 unlock_extent(io_tree, start, lockend, &cached_state);
9388 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9392 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9393 const struct btrfs_ioctl_encoded_io_args *encoded)
9395 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9396 struct btrfs_root *root = inode->root;
9397 struct btrfs_fs_info *fs_info = root->fs_info;
9398 struct extent_io_tree *io_tree = &inode->io_tree;
9399 struct extent_changeset *data_reserved = NULL;
9400 struct extent_state *cached_state = NULL;
9401 struct btrfs_ordered_extent *ordered;
9402 struct btrfs_file_extent file_extent;
9406 u64 num_bytes, ram_bytes, disk_num_bytes;
9407 unsigned long nr_folios, i;
9408 struct folio **folios;
9409 struct btrfs_key ins;
9410 bool extent_reserved = false;
9411 struct extent_map *em;
9414 switch (encoded->compression) {
9415 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9416 compression = BTRFS_COMPRESS_ZLIB;
9418 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9419 compression = BTRFS_COMPRESS_ZSTD;
9421 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9422 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9423 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9424 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9425 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9426 /* The sector size must match for LZO. */
9427 if (encoded->compression -
9428 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9429 fs_info->sectorsize_bits)
9431 compression = BTRFS_COMPRESS_LZO;
9436 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9440 * Compressed extents should always have checksums, so error out if we
9441 * have a NOCOW file or inode was created while mounted with NODATASUM.
9443 if (inode->flags & BTRFS_INODE_NODATASUM)
9446 orig_count = iov_iter_count(from);
9448 /* The extent size must be sane. */
9449 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9450 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9454 * The compressed data must be smaller than the decompressed data.
9456 * It's of course possible for data to compress to larger or the same
9457 * size, but the buffered I/O path falls back to no compression for such
9458 * data, and we don't want to break any assumptions by creating these
9461 * Note that this is less strict than the current check we have that the
9462 * compressed data must be at least one sector smaller than the
9463 * decompressed data. We only want to enforce the weaker requirement
9464 * from old kernels that it is at least one byte smaller.
9466 if (orig_count >= encoded->unencoded_len)
9469 /* The extent must start on a sector boundary. */
9470 start = iocb->ki_pos;
9471 if (!IS_ALIGNED(start, fs_info->sectorsize))
9475 * The extent must end on a sector boundary. However, we allow a write
9476 * which ends at or extends i_size to have an unaligned length; we round
9477 * up the extent size and set i_size to the unaligned end.
9479 if (start + encoded->len < inode->vfs_inode.i_size &&
9480 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9483 /* Finally, the offset in the unencoded data must be sector-aligned. */
9484 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9487 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9488 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9489 end = start + num_bytes - 1;
9492 * If the extent cannot be inline, the compressed data on disk must be
9493 * sector-aligned. For convenience, we extend it with zeroes if it
9496 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9497 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9498 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9501 for (i = 0; i < nr_folios; i++) {
9502 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9505 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9510 kaddr = kmap_local_folio(folios[i], 0);
9511 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9512 kunmap_local(kaddr);
9516 if (bytes < PAGE_SIZE)
9517 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9518 kunmap_local(kaddr);
9522 struct btrfs_ordered_extent *ordered;
9524 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9527 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9528 start >> PAGE_SHIFT,
9532 lock_extent(io_tree, start, end, &cached_state);
9533 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9535 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9538 btrfs_put_ordered_extent(ordered);
9539 unlock_extent(io_tree, start, end, &cached_state);
9544 * We don't use the higher-level delalloc space functions because our
9545 * num_bytes and disk_num_bytes are different.
9547 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9550 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9552 goto out_free_data_space;
9553 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9556 goto out_qgroup_free_data;
9558 /* Try an inline extent first. */
9559 if (encoded->unencoded_len == encoded->len &&
9560 encoded->unencoded_offset == 0 &&
9561 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9562 ret = __cow_file_range_inline(inode, start, encoded->len,
9563 orig_count, compression, folios[0],
9568 goto out_delalloc_release;
9572 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9573 disk_num_bytes, 0, 0, &ins, 1, 1);
9575 goto out_delalloc_release;
9576 extent_reserved = true;
9578 file_extent.disk_bytenr = ins.objectid;
9579 file_extent.disk_num_bytes = ins.offset;
9580 file_extent.num_bytes = num_bytes;
9581 file_extent.ram_bytes = ram_bytes;
9582 file_extent.offset = encoded->unencoded_offset;
9583 file_extent.compression = compression;
9584 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9587 goto out_free_reserved;
9589 free_extent_map(em);
9591 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9592 (1 << BTRFS_ORDERED_ENCODED) |
9593 (1 << BTRFS_ORDERED_COMPRESSED));
9594 if (IS_ERR(ordered)) {
9595 btrfs_drop_extent_map_range(inode, start, end, false);
9596 ret = PTR_ERR(ordered);
9597 goto out_free_reserved;
9599 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9601 if (start + encoded->len > inode->vfs_inode.i_size)
9602 i_size_write(&inode->vfs_inode, start + encoded->len);
9604 unlock_extent(io_tree, start, end, &cached_state);
9606 btrfs_delalloc_release_extents(inode, num_bytes);
9608 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9613 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9614 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9615 out_delalloc_release:
9616 btrfs_delalloc_release_extents(inode, num_bytes);
9617 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9618 out_qgroup_free_data:
9620 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9621 out_free_data_space:
9623 * If btrfs_reserve_extent() succeeded, then we already decremented
9626 if (!extent_reserved)
9627 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9629 unlock_extent(io_tree, start, end, &cached_state);
9631 for (i = 0; i < nr_folios; i++) {
9633 folio_put(folios[i]);
9638 iocb->ki_pos += encoded->len;
9644 * Add an entry indicating a block group or device which is pinned by a
9645 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9646 * negative errno on failure.
9648 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9649 bool is_block_group)
9651 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9652 struct btrfs_swapfile_pin *sp, *entry;
9654 struct rb_node *parent = NULL;
9656 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9661 sp->is_block_group = is_block_group;
9662 sp->bg_extent_count = 1;
9664 spin_lock(&fs_info->swapfile_pins_lock);
9665 p = &fs_info->swapfile_pins.rb_node;
9668 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9669 if (sp->ptr < entry->ptr ||
9670 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9672 } else if (sp->ptr > entry->ptr ||
9673 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9674 p = &(*p)->rb_right;
9677 entry->bg_extent_count++;
9678 spin_unlock(&fs_info->swapfile_pins_lock);
9683 rb_link_node(&sp->node, parent, p);
9684 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9685 spin_unlock(&fs_info->swapfile_pins_lock);
9689 /* Free all of the entries pinned by this swapfile. */
9690 static void btrfs_free_swapfile_pins(struct inode *inode)
9692 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9693 struct btrfs_swapfile_pin *sp;
9694 struct rb_node *node, *next;
9696 spin_lock(&fs_info->swapfile_pins_lock);
9697 node = rb_first(&fs_info->swapfile_pins);
9699 next = rb_next(node);
9700 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9701 if (sp->inode == inode) {
9702 rb_erase(&sp->node, &fs_info->swapfile_pins);
9703 if (sp->is_block_group) {
9704 btrfs_dec_block_group_swap_extents(sp->ptr,
9705 sp->bg_extent_count);
9706 btrfs_put_block_group(sp->ptr);
9712 spin_unlock(&fs_info->swapfile_pins_lock);
9715 struct btrfs_swap_info {
9721 unsigned long nr_pages;
9725 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9726 struct btrfs_swap_info *bsi)
9728 unsigned long nr_pages;
9729 unsigned long max_pages;
9730 u64 first_ppage, first_ppage_reported, next_ppage;
9734 * Our swapfile may have had its size extended after the swap header was
9735 * written. In that case activating the swapfile should not go beyond
9736 * the max size set in the swap header.
9738 if (bsi->nr_pages >= sis->max)
9741 max_pages = sis->max - bsi->nr_pages;
9742 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9743 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9745 if (first_ppage >= next_ppage)
9747 nr_pages = next_ppage - first_ppage;
9748 nr_pages = min(nr_pages, max_pages);
9750 first_ppage_reported = first_ppage;
9751 if (bsi->start == 0)
9752 first_ppage_reported++;
9753 if (bsi->lowest_ppage > first_ppage_reported)
9754 bsi->lowest_ppage = first_ppage_reported;
9755 if (bsi->highest_ppage < (next_ppage - 1))
9756 bsi->highest_ppage = next_ppage - 1;
9758 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9761 bsi->nr_extents += ret;
9762 bsi->nr_pages += nr_pages;
9766 static void btrfs_swap_deactivate(struct file *file)
9768 struct inode *inode = file_inode(file);
9770 btrfs_free_swapfile_pins(inode);
9771 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9774 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9777 struct inode *inode = file_inode(file);
9778 struct btrfs_root *root = BTRFS_I(inode)->root;
9779 struct btrfs_fs_info *fs_info = root->fs_info;
9780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9781 struct extent_state *cached_state = NULL;
9782 struct extent_map *em = NULL;
9783 struct btrfs_chunk_map *map = NULL;
9784 struct btrfs_device *device = NULL;
9785 struct btrfs_swap_info bsi = {
9786 .lowest_ppage = (sector_t)-1ULL,
9793 * If the swap file was just created, make sure delalloc is done. If the
9794 * file changes again after this, the user is doing something stupid and
9795 * we don't really care.
9797 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9802 * The inode is locked, so these flags won't change after we check them.
9804 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9805 btrfs_warn(fs_info, "swapfile must not be compressed");
9808 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9809 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9812 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9813 btrfs_warn(fs_info, "swapfile must not be checksummed");
9818 * Balance or device remove/replace/resize can move stuff around from
9819 * under us. The exclop protection makes sure they aren't running/won't
9820 * run concurrently while we are mapping the swap extents, and
9821 * fs_info->swapfile_pins prevents them from running while the swap
9822 * file is active and moving the extents. Note that this also prevents
9823 * a concurrent device add which isn't actually necessary, but it's not
9824 * really worth the trouble to allow it.
9826 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9828 "cannot activate swapfile while exclusive operation is running");
9833 * Prevent snapshot creation while we are activating the swap file.
9834 * We do not want to race with snapshot creation. If snapshot creation
9835 * already started before we bumped nr_swapfiles from 0 to 1 and
9836 * completes before the first write into the swap file after it is
9837 * activated, than that write would fallback to COW.
9839 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9840 btrfs_exclop_finish(fs_info);
9842 "cannot activate swapfile because snapshot creation is in progress");
9846 * Snapshots can create extents which require COW even if NODATACOW is
9847 * set. We use this counter to prevent snapshots. We must increment it
9848 * before walking the extents because we don't want a concurrent
9849 * snapshot to run after we've already checked the extents.
9851 * It is possible that subvolume is marked for deletion but still not
9852 * removed yet. To prevent this race, we check the root status before
9853 * activating the swapfile.
9855 spin_lock(&root->root_item_lock);
9856 if (btrfs_root_dead(root)) {
9857 spin_unlock(&root->root_item_lock);
9859 btrfs_exclop_finish(fs_info);
9861 "cannot activate swapfile because subvolume %llu is being deleted",
9862 btrfs_root_id(root));
9865 atomic_inc(&root->nr_swapfiles);
9866 spin_unlock(&root->root_item_lock);
9868 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9870 lock_extent(io_tree, 0, isize - 1, &cached_state);
9872 while (start < isize) {
9873 u64 logical_block_start, physical_block_start;
9874 struct btrfs_block_group *bg;
9875 u64 len = isize - start;
9877 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9883 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9884 btrfs_warn(fs_info, "swapfile must not have holes");
9888 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9890 * It's unlikely we'll ever actually find ourselves
9891 * here, as a file small enough to fit inline won't be
9892 * big enough to store more than the swap header, but in
9893 * case something changes in the future, let's catch it
9894 * here rather than later.
9896 btrfs_warn(fs_info, "swapfile must not be inline");
9900 if (extent_map_is_compressed(em)) {
9901 btrfs_warn(fs_info, "swapfile must not be compressed");
9906 logical_block_start = extent_map_block_start(em) + (start - em->start);
9907 len = min(len, em->len - (start - em->start));
9908 free_extent_map(em);
9911 ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9918 "swapfile must not be copy-on-write");
9923 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9929 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9931 "swapfile must have single data profile");
9936 if (device == NULL) {
9937 device = map->stripes[0].dev;
9938 ret = btrfs_add_swapfile_pin(inode, device, false);
9943 } else if (device != map->stripes[0].dev) {
9944 btrfs_warn(fs_info, "swapfile must be on one device");
9949 physical_block_start = (map->stripes[0].physical +
9950 (logical_block_start - map->start));
9951 len = min(len, map->chunk_len - (logical_block_start - map->start));
9952 btrfs_free_chunk_map(map);
9955 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9958 "could not find block group containing swapfile");
9963 if (!btrfs_inc_block_group_swap_extents(bg)) {
9965 "block group for swapfile at %llu is read-only%s",
9967 atomic_read(&fs_info->scrubs_running) ?
9968 " (scrub running)" : "");
9969 btrfs_put_block_group(bg);
9974 ret = btrfs_add_swapfile_pin(inode, bg, true);
9976 btrfs_put_block_group(bg);
9983 if (bsi.block_len &&
9984 bsi.block_start + bsi.block_len == physical_block_start) {
9985 bsi.block_len += len;
9987 if (bsi.block_len) {
9988 ret = btrfs_add_swap_extent(sis, &bsi);
9993 bsi.block_start = physical_block_start;
9994 bsi.block_len = len;
10001 ret = btrfs_add_swap_extent(sis, &bsi);
10004 if (!IS_ERR_OR_NULL(em))
10005 free_extent_map(em);
10006 if (!IS_ERR_OR_NULL(map))
10007 btrfs_free_chunk_map(map);
10009 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10012 btrfs_swap_deactivate(file);
10014 btrfs_drew_write_unlock(&root->snapshot_lock);
10016 btrfs_exclop_finish(fs_info);
10022 sis->bdev = device->bdev;
10023 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10024 sis->max = bsi.nr_pages;
10025 sis->pages = bsi.nr_pages - 1;
10026 sis->highest_bit = bsi.nr_pages - 1;
10027 return bsi.nr_extents;
10030 static void btrfs_swap_deactivate(struct file *file)
10034 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10037 return -EOPNOTSUPP;
10042 * Update the number of bytes used in the VFS' inode. When we replace extents in
10043 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10044 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10045 * always get a correct value.
10047 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10048 const u64 add_bytes,
10049 const u64 del_bytes)
10051 if (add_bytes == del_bytes)
10054 spin_lock(&inode->lock);
10056 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10058 inode_add_bytes(&inode->vfs_inode, add_bytes);
10059 spin_unlock(&inode->lock);
10063 * Verify that there are no ordered extents for a given file range.
10065 * @inode: The target inode.
10066 * @start: Start offset of the file range, should be sector size aligned.
10067 * @end: End offset (inclusive) of the file range, its value +1 should be
10068 * sector size aligned.
10070 * This should typically be used for cases where we locked an inode's VFS lock in
10071 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10072 * we have flushed all delalloc in the range, we have waited for all ordered
10073 * extents in the range to complete and finally we have locked the file range in
10074 * the inode's io_tree.
10076 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10078 struct btrfs_root *root = inode->root;
10079 struct btrfs_ordered_extent *ordered;
10081 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10084 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10086 btrfs_err(root->fs_info,
10087 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10088 start, end, btrfs_ino(inode), btrfs_root_id(root),
10089 ordered->file_offset,
10090 ordered->file_offset + ordered->num_bytes - 1);
10091 btrfs_put_ordered_extent(ordered);
10094 ASSERT(ordered == NULL);
10098 * Find the first inode with a minimum number.
10100 * @root: The root to search for.
10101 * @min_ino: The minimum inode number.
10103 * Find the first inode in the @root with a number >= @min_ino and return it.
10104 * Returns NULL if no such inode found.
10106 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10108 struct btrfs_inode *inode;
10109 unsigned long from = min_ino;
10111 xa_lock(&root->inodes);
10113 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10116 if (igrab(&inode->vfs_inode))
10119 from = btrfs_ino(inode) + 1;
10120 cond_resched_lock(&root->inodes.xa_lock);
10122 xa_unlock(&root->inodes);
10127 static const struct inode_operations btrfs_dir_inode_operations = {
10128 .getattr = btrfs_getattr,
10129 .lookup = btrfs_lookup,
10130 .create = btrfs_create,
10131 .unlink = btrfs_unlink,
10132 .link = btrfs_link,
10133 .mkdir = btrfs_mkdir,
10134 .rmdir = btrfs_rmdir,
10135 .rename = btrfs_rename2,
10136 .symlink = btrfs_symlink,
10137 .setattr = btrfs_setattr,
10138 .mknod = btrfs_mknod,
10139 .listxattr = btrfs_listxattr,
10140 .permission = btrfs_permission,
10141 .get_inode_acl = btrfs_get_acl,
10142 .set_acl = btrfs_set_acl,
10143 .update_time = btrfs_update_time,
10144 .tmpfile = btrfs_tmpfile,
10145 .fileattr_get = btrfs_fileattr_get,
10146 .fileattr_set = btrfs_fileattr_set,
10149 static const struct file_operations btrfs_dir_file_operations = {
10150 .llseek = btrfs_dir_llseek,
10151 .read = generic_read_dir,
10152 .iterate_shared = btrfs_real_readdir,
10153 .open = btrfs_opendir,
10154 .unlocked_ioctl = btrfs_ioctl,
10155 #ifdef CONFIG_COMPAT
10156 .compat_ioctl = btrfs_compat_ioctl,
10158 .release = btrfs_release_file,
10159 .fsync = btrfs_sync_file,
10163 * btrfs doesn't support the bmap operation because swapfiles
10164 * use bmap to make a mapping of extents in the file. They assume
10165 * these extents won't change over the life of the file and they
10166 * use the bmap result to do IO directly to the drive.
10168 * the btrfs bmap call would return logical addresses that aren't
10169 * suitable for IO and they also will change frequently as COW
10170 * operations happen. So, swapfile + btrfs == corruption.
10172 * For now we're avoiding this by dropping bmap.
10174 static const struct address_space_operations btrfs_aops = {
10175 .read_folio = btrfs_read_folio,
10176 .writepages = btrfs_writepages,
10177 .readahead = btrfs_readahead,
10178 .invalidate_folio = btrfs_invalidate_folio,
10179 .launder_folio = btrfs_launder_folio,
10180 .release_folio = btrfs_release_folio,
10181 .migrate_folio = btrfs_migrate_folio,
10182 .dirty_folio = filemap_dirty_folio,
10183 .error_remove_folio = generic_error_remove_folio,
10184 .swap_activate = btrfs_swap_activate,
10185 .swap_deactivate = btrfs_swap_deactivate,
10188 static const struct inode_operations btrfs_file_inode_operations = {
10189 .getattr = btrfs_getattr,
10190 .setattr = btrfs_setattr,
10191 .listxattr = btrfs_listxattr,
10192 .permission = btrfs_permission,
10193 .fiemap = btrfs_fiemap,
10194 .get_inode_acl = btrfs_get_acl,
10195 .set_acl = btrfs_set_acl,
10196 .update_time = btrfs_update_time,
10197 .fileattr_get = btrfs_fileattr_get,
10198 .fileattr_set = btrfs_fileattr_set,
10200 static const struct inode_operations btrfs_special_inode_operations = {
10201 .getattr = btrfs_getattr,
10202 .setattr = btrfs_setattr,
10203 .permission = btrfs_permission,
10204 .listxattr = btrfs_listxattr,
10205 .get_inode_acl = btrfs_get_acl,
10206 .set_acl = btrfs_set_acl,
10207 .update_time = btrfs_update_time,
10209 static const struct inode_operations btrfs_symlink_inode_operations = {
10210 .get_link = page_get_link,
10211 .getattr = btrfs_getattr,
10212 .setattr = btrfs_setattr,
10213 .permission = btrfs_permission,
10214 .listxattr = btrfs_listxattr,
10215 .update_time = btrfs_update_time,
10218 const struct dentry_operations btrfs_dentry_operations = {
10219 .d_delete = btrfs_dentry_delete,