4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * proc base directory handling functions
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
44 * Smaps information related to shared, private, clean and dirty pages.
47 * Overall revision about smaps.
50 #include <asm/uaccess.h>
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
93 #include <trace/events/oom.h>
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
116 #define NOD(NAME, MODE, IOP, FOP, OP) { \
118 .len = sizeof(NAME) - 1, \
125 #define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_single_file_operations, \
136 { .proc_show = show } )
139 * Count the number of hardlinks for the pid_entry table, excluding the .
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
149 for (i = 0; i < n; ++i) {
150 if (S_ISDIR(entries[i].mode))
157 static int get_task_root(struct task_struct *task, struct path *root)
159 int result = -ENOENT;
163 get_fs_root(task->fs, root);
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
172 struct task_struct *task = get_proc_task(d_inode(dentry));
173 int result = -ENOENT;
178 get_fs_pwd(task->fs, path);
182 put_task_struct(task);
187 static int proc_root_link(struct dentry *dentry, struct path *path)
189 struct task_struct *task = get_proc_task(d_inode(dentry));
190 int result = -ENOENT;
193 result = get_task_root(task, path);
194 put_task_struct(task);
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 size_t _count, loff_t *pos)
202 struct task_struct *tsk;
203 struct mm_struct *mm;
205 unsigned long count = _count;
206 unsigned long arg_start, arg_end, env_start, env_end;
207 unsigned long len1, len2, len;
214 tsk = get_proc_task(file_inode(file));
217 mm = get_task_mm(tsk);
218 put_task_struct(tsk);
221 /* Check if process spawned far enough to have cmdline. */
227 page = (char *)__get_free_page(GFP_TEMPORARY);
233 down_read(&mm->mmap_sem);
234 arg_start = mm->arg_start;
235 arg_end = mm->arg_end;
236 env_start = mm->env_start;
237 env_end = mm->env_end;
238 up_read(&mm->mmap_sem);
240 BUG_ON(arg_start > arg_end);
241 BUG_ON(env_start > env_end);
243 len1 = arg_end - arg_start;
244 len2 = env_end - env_start;
252 * Inherently racy -- command line shares address space
253 * with code and data.
255 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
262 /* Command line (set of strings) occupies whole ARGV. */
266 p = arg_start + *pos;
268 while (count > 0 && len > 0) {
272 _count = min3(count, len, PAGE_SIZE);
273 nr_read = access_remote_vm(mm, p, page, _count, 0);
279 if (copy_to_user(buf, page, nr_read)) {
292 * Command line (1 string) occupies ARGV and maybe
295 if (len1 + len2 <= *pos)
300 p = arg_start + *pos;
302 while (count > 0 && len > 0) {
303 unsigned int _count, l;
307 _count = min3(count, len, PAGE_SIZE);
308 nr_read = access_remote_vm(mm, p, page, _count, 0);
315 * Command line can be shorter than whole ARGV
316 * even if last "marker" byte says it is not.
319 l = strnlen(page, nr_read);
325 if (copy_to_user(buf, page, nr_read)) {
341 * Command line (1 string) occupies ARGV and
345 p = env_start + *pos - len1;
346 len = len1 + len2 - *pos;
351 while (count > 0 && len > 0) {
352 unsigned int _count, l;
356 _count = min3(count, len, PAGE_SIZE);
357 nr_read = access_remote_vm(mm, p, page, _count, 0);
365 l = strnlen(page, nr_read);
371 if (copy_to_user(buf, page, nr_read)) {
390 free_page((unsigned long)page);
398 static const struct file_operations proc_pid_cmdline_ops = {
399 .read = proc_pid_cmdline_read,
400 .llseek = generic_file_llseek,
403 #ifdef CONFIG_KALLSYMS
405 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
406 * Returns the resolved symbol. If that fails, simply return the address.
408 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
409 struct pid *pid, struct task_struct *task)
412 char symname[KSYM_NAME_LEN];
414 wchan = get_wchan(task);
416 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
417 && !lookup_symbol_name(wchan, symname))
418 seq_printf(m, "%s", symname);
424 #endif /* CONFIG_KALLSYMS */
426 static int lock_trace(struct task_struct *task)
428 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
431 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
432 mutex_unlock(&task->signal->cred_guard_mutex);
438 static void unlock_trace(struct task_struct *task)
440 mutex_unlock(&task->signal->cred_guard_mutex);
443 #ifdef CONFIG_STACKTRACE
445 #define MAX_STACK_TRACE_DEPTH 64
447 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
448 struct pid *pid, struct task_struct *task)
450 struct stack_trace trace;
451 unsigned long *entries;
455 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
459 trace.nr_entries = 0;
460 trace.max_entries = MAX_STACK_TRACE_DEPTH;
461 trace.entries = entries;
464 err = lock_trace(task);
466 save_stack_trace_tsk(task, &trace);
468 for (i = 0; i < trace.nr_entries; i++) {
469 seq_printf(m, "[<%pK>] %pB\n",
470 (void *)entries[i], (void *)entries[i]);
480 #ifdef CONFIG_SCHED_INFO
482 * Provides /proc/PID/schedstat
484 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
485 struct pid *pid, struct task_struct *task)
487 if (unlikely(!sched_info_on()))
488 seq_printf(m, "0 0 0\n");
490 seq_printf(m, "%llu %llu %lu\n",
491 (unsigned long long)task->se.sum_exec_runtime,
492 (unsigned long long)task->sched_info.run_delay,
493 task->sched_info.pcount);
499 #ifdef CONFIG_LATENCYTOP
500 static int lstats_show_proc(struct seq_file *m, void *v)
503 struct inode *inode = m->private;
504 struct task_struct *task = get_proc_task(inode);
508 seq_puts(m, "Latency Top version : v0.1\n");
509 for (i = 0; i < 32; i++) {
510 struct latency_record *lr = &task->latency_record[i];
511 if (lr->backtrace[0]) {
513 seq_printf(m, "%i %li %li",
514 lr->count, lr->time, lr->max);
515 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
516 unsigned long bt = lr->backtrace[q];
521 seq_printf(m, " %ps", (void *)bt);
527 put_task_struct(task);
531 static int lstats_open(struct inode *inode, struct file *file)
533 return single_open(file, lstats_show_proc, inode);
536 static ssize_t lstats_write(struct file *file, const char __user *buf,
537 size_t count, loff_t *offs)
539 struct task_struct *task = get_proc_task(file_inode(file));
543 clear_all_latency_tracing(task);
544 put_task_struct(task);
549 static const struct file_operations proc_lstats_operations = {
552 .write = lstats_write,
554 .release = single_release,
559 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
560 struct pid *pid, struct task_struct *task)
562 unsigned long totalpages = totalram_pages + total_swap_pages;
563 unsigned long points = 0;
565 points = oom_badness(task, NULL, NULL, totalpages) *
567 seq_printf(m, "%lu\n", points);
577 static const struct limit_names lnames[RLIM_NLIMITS] = {
578 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
579 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
580 [RLIMIT_DATA] = {"Max data size", "bytes"},
581 [RLIMIT_STACK] = {"Max stack size", "bytes"},
582 [RLIMIT_CORE] = {"Max core file size", "bytes"},
583 [RLIMIT_RSS] = {"Max resident set", "bytes"},
584 [RLIMIT_NPROC] = {"Max processes", "processes"},
585 [RLIMIT_NOFILE] = {"Max open files", "files"},
586 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
587 [RLIMIT_AS] = {"Max address space", "bytes"},
588 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
589 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
590 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
591 [RLIMIT_NICE] = {"Max nice priority", NULL},
592 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
593 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
596 /* Display limits for a process */
597 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
598 struct pid *pid, struct task_struct *task)
603 struct rlimit rlim[RLIM_NLIMITS];
605 if (!lock_task_sighand(task, &flags))
607 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
608 unlock_task_sighand(task, &flags);
611 * print the file header
613 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
614 "Limit", "Soft Limit", "Hard Limit", "Units");
616 for (i = 0; i < RLIM_NLIMITS; i++) {
617 if (rlim[i].rlim_cur == RLIM_INFINITY)
618 seq_printf(m, "%-25s %-20s ",
619 lnames[i].name, "unlimited");
621 seq_printf(m, "%-25s %-20lu ",
622 lnames[i].name, rlim[i].rlim_cur);
624 if (rlim[i].rlim_max == RLIM_INFINITY)
625 seq_printf(m, "%-20s ", "unlimited");
627 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
630 seq_printf(m, "%-10s\n", lnames[i].unit);
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 struct pid *pid, struct task_struct *task)
643 unsigned long args[6], sp, pc;
646 res = lock_trace(task);
650 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
651 seq_puts(m, "running\n");
653 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
656 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
658 args[0], args[1], args[2], args[3], args[4], args[5],
664 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666 /************************************************************************/
667 /* Here the fs part begins */
668 /************************************************************************/
670 /* permission checks */
671 static int proc_fd_access_allowed(struct inode *inode)
673 struct task_struct *task;
675 /* Allow access to a task's file descriptors if it is us or we
676 * may use ptrace attach to the process and find out that
679 task = get_proc_task(inode);
681 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
682 put_task_struct(task);
687 int proc_setattr(struct dentry *dentry, struct iattr *attr)
690 struct inode *inode = d_inode(dentry);
692 if (attr->ia_valid & ATTR_MODE)
695 error = setattr_prepare(dentry, attr);
699 setattr_copy(inode, attr);
700 mark_inode_dirty(inode);
705 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
706 * or euid/egid (for hide_pid_min=2)?
708 static bool has_pid_permissions(struct pid_namespace *pid,
709 struct task_struct *task,
712 if (pid->hide_pid < hide_pid_min)
714 if (in_group_p(pid->pid_gid))
716 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720 static int proc_pid_permission(struct inode *inode, int mask)
722 struct pid_namespace *pid = inode->i_sb->s_fs_info;
723 struct task_struct *task;
726 task = get_proc_task(inode);
729 has_perms = has_pid_permissions(pid, task, 1);
730 put_task_struct(task);
733 if (pid->hide_pid == 2) {
735 * Let's make getdents(), stat(), and open()
736 * consistent with each other. If a process
737 * may not stat() a file, it shouldn't be seen
745 return generic_permission(inode, mask);
750 static const struct inode_operations proc_def_inode_operations = {
751 .setattr = proc_setattr,
754 static int proc_single_show(struct seq_file *m, void *v)
756 struct inode *inode = m->private;
757 struct pid_namespace *ns;
759 struct task_struct *task;
762 ns = inode->i_sb->s_fs_info;
763 pid = proc_pid(inode);
764 task = get_pid_task(pid, PIDTYPE_PID);
768 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
770 put_task_struct(task);
774 static int proc_single_open(struct inode *inode, struct file *filp)
776 return single_open(filp, proc_single_show, inode);
779 static const struct file_operations proc_single_file_operations = {
780 .open = proc_single_open,
783 .release = single_release,
787 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
789 struct task_struct *task = get_proc_task(inode);
790 struct mm_struct *mm = ERR_PTR(-ESRCH);
793 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
794 put_task_struct(task);
796 if (!IS_ERR_OR_NULL(mm)) {
797 /* ensure this mm_struct can't be freed */
798 atomic_inc(&mm->mm_count);
799 /* but do not pin its memory */
807 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
809 struct mm_struct *mm = proc_mem_open(inode, mode);
814 file->private_data = mm;
818 static int mem_open(struct inode *inode, struct file *file)
820 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
822 /* OK to pass negative loff_t, we can catch out-of-range */
823 file->f_mode |= FMODE_UNSIGNED_OFFSET;
828 static ssize_t mem_rw(struct file *file, char __user *buf,
829 size_t count, loff_t *ppos, int write)
831 struct mm_struct *mm = file->private_data;
832 unsigned long addr = *ppos;
840 page = (char *)__get_free_page(GFP_TEMPORARY);
845 if (!atomic_inc_not_zero(&mm->mm_users))
848 /* Maybe we should limit FOLL_FORCE to actual ptrace users? */
854 int this_len = min_t(int, count, PAGE_SIZE);
856 if (write && copy_from_user(page, buf, this_len)) {
861 this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 if (!write && copy_to_user(buf, page, this_len)) {
882 free_page((unsigned long) page);
886 static ssize_t mem_read(struct file *file, char __user *buf,
887 size_t count, loff_t *ppos)
889 return mem_rw(file, buf, count, ppos, 0);
892 static ssize_t mem_write(struct file *file, const char __user *buf,
893 size_t count, loff_t *ppos)
895 return mem_rw(file, (char __user*)buf, count, ppos, 1);
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
902 file->f_pos = offset;
905 file->f_pos += offset;
910 force_successful_syscall_return();
914 static int mem_release(struct inode *inode, struct file *file)
916 struct mm_struct *mm = file->private_data;
922 static const struct file_operations proc_mem_operations = {
927 .release = mem_release,
930 static int environ_open(struct inode *inode, struct file *file)
932 return __mem_open(inode, file, PTRACE_MODE_READ);
935 static ssize_t environ_read(struct file *file, char __user *buf,
936 size_t count, loff_t *ppos)
939 unsigned long src = *ppos;
941 struct mm_struct *mm = file->private_data;
942 unsigned long env_start, env_end;
944 /* Ensure the process spawned far enough to have an environment. */
945 if (!mm || !mm->env_end)
948 page = (char *)__get_free_page(GFP_TEMPORARY);
953 if (!atomic_inc_not_zero(&mm->mm_users))
956 down_read(&mm->mmap_sem);
957 env_start = mm->env_start;
958 env_end = mm->env_end;
959 up_read(&mm->mmap_sem);
962 size_t this_len, max_len;
965 if (src >= (env_end - env_start))
968 this_len = env_end - (env_start + src);
970 max_len = min_t(size_t, PAGE_SIZE, count);
971 this_len = min(max_len, this_len);
973 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
980 if (copy_to_user(buf, page, retval)) {
994 free_page((unsigned long) page);
998 static const struct file_operations proc_environ_operations = {
999 .open = environ_open,
1000 .read = environ_read,
1001 .llseek = generic_file_llseek,
1002 .release = mem_release,
1005 static int auxv_open(struct inode *inode, struct file *file)
1007 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1010 static ssize_t auxv_read(struct file *file, char __user *buf,
1011 size_t count, loff_t *ppos)
1013 struct mm_struct *mm = file->private_data;
1014 unsigned int nwords = 0;
1020 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1021 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1022 nwords * sizeof(mm->saved_auxv[0]));
1025 static const struct file_operations proc_auxv_operations = {
1028 .llseek = generic_file_llseek,
1029 .release = mem_release,
1032 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1035 struct task_struct *task = get_proc_task(file_inode(file));
1036 char buffer[PROC_NUMBUF];
1037 int oom_adj = OOM_ADJUST_MIN;
1042 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1043 oom_adj = OOM_ADJUST_MAX;
1045 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1047 put_task_struct(task);
1048 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1049 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1052 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1054 static DEFINE_MUTEX(oom_adj_mutex);
1055 struct mm_struct *mm = NULL;
1056 struct task_struct *task;
1059 task = get_proc_task(file_inode(file));
1063 mutex_lock(&oom_adj_mutex);
1065 if (oom_adj < task->signal->oom_score_adj &&
1066 !capable(CAP_SYS_RESOURCE)) {
1071 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1072 * /proc/pid/oom_score_adj instead.
1074 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1075 current->comm, task_pid_nr(current), task_pid_nr(task),
1078 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1079 !capable(CAP_SYS_RESOURCE)) {
1086 * Make sure we will check other processes sharing the mm if this is
1087 * not vfrok which wants its own oom_score_adj.
1088 * pin the mm so it doesn't go away and get reused after task_unlock
1090 if (!task->vfork_done) {
1091 struct task_struct *p = find_lock_task_mm(task);
1094 if (atomic_read(&p->mm->mm_users) > 1) {
1096 atomic_inc(&mm->mm_count);
1102 task->signal->oom_score_adj = oom_adj;
1103 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1104 task->signal->oom_score_adj_min = (short)oom_adj;
1105 trace_oom_score_adj_update(task);
1108 struct task_struct *p;
1111 for_each_process(p) {
1112 if (same_thread_group(task, p))
1115 /* do not touch kernel threads or the global init */
1116 if (p->flags & PF_KTHREAD || is_global_init(p))
1120 if (!p->vfork_done && process_shares_mm(p, mm)) {
1121 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1122 task_pid_nr(p), p->comm,
1123 p->signal->oom_score_adj, oom_adj,
1124 task_pid_nr(task), task->comm);
1125 p->signal->oom_score_adj = oom_adj;
1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 p->signal->oom_score_adj_min = (short)oom_adj;
1135 mutex_unlock(&oom_adj_mutex);
1136 put_task_struct(task);
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels. The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 size_t count, loff_t *ppos)
1153 char buffer[PROC_NUMBUF];
1157 memset(buffer, 0, sizeof(buffer));
1158 if (count > sizeof(buffer) - 1)
1159 count = sizeof(buffer) - 1;
1160 if (copy_from_user(buffer, buf, count)) {
1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 oom_adj != OOM_DISABLE) {
1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 * value is always attainable.
1178 if (oom_adj == OOM_ADJUST_MAX)
1179 oom_adj = OOM_SCORE_ADJ_MAX;
1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1183 err = __set_oom_adj(file, oom_adj, true);
1185 return err < 0 ? err : count;
1188 static const struct file_operations proc_oom_adj_operations = {
1189 .read = oom_adj_read,
1190 .write = oom_adj_write,
1191 .llseek = generic_file_llseek,
1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 size_t count, loff_t *ppos)
1197 struct task_struct *task = get_proc_task(file_inode(file));
1198 char buffer[PROC_NUMBUF];
1199 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1204 oom_score_adj = task->signal->oom_score_adj;
1205 put_task_struct(task);
1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 size_t count, loff_t *ppos)
1213 char buffer[PROC_NUMBUF];
1217 memset(buffer, 0, sizeof(buffer));
1218 if (count > sizeof(buffer) - 1)
1219 count = sizeof(buffer) - 1;
1220 if (copy_from_user(buffer, buf, count)) {
1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1234 err = __set_oom_adj(file, oom_score_adj, false);
1236 return err < 0 ? err : count;
1239 static const struct file_operations proc_oom_score_adj_operations = {
1240 .read = oom_score_adj_read,
1241 .write = oom_score_adj_write,
1242 .llseek = default_llseek,
1245 #ifdef CONFIG_AUDITSYSCALL
1246 #define TMPBUFLEN 21
1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 size_t count, loff_t *ppos)
1250 struct inode * inode = file_inode(file);
1251 struct task_struct *task = get_proc_task(inode);
1253 char tmpbuf[TMPBUFLEN];
1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 from_kuid(file->f_cred->user_ns,
1259 audit_get_loginuid(task)));
1260 put_task_struct(task);
1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 size_t count, loff_t *ppos)
1267 struct inode * inode = file_inode(file);
1273 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1280 /* No partial writes. */
1284 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288 /* is userspace tring to explicitly UNSET the loginuid? */
1289 if (loginuid == AUDIT_UID_UNSET) {
1290 kloginuid = INVALID_UID;
1292 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293 if (!uid_valid(kloginuid))
1297 rv = audit_set_loginuid(kloginuid);
1303 static const struct file_operations proc_loginuid_operations = {
1304 .read = proc_loginuid_read,
1305 .write = proc_loginuid_write,
1306 .llseek = generic_file_llseek,
1309 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310 size_t count, loff_t *ppos)
1312 struct inode * inode = file_inode(file);
1313 struct task_struct *task = get_proc_task(inode);
1315 char tmpbuf[TMPBUFLEN];
1319 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320 audit_get_sessionid(task));
1321 put_task_struct(task);
1322 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1325 static const struct file_operations proc_sessionid_operations = {
1326 .read = proc_sessionid_read,
1327 .llseek = generic_file_llseek,
1331 #ifdef CONFIG_FAULT_INJECTION
1332 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333 size_t count, loff_t *ppos)
1335 struct task_struct *task = get_proc_task(file_inode(file));
1336 char buffer[PROC_NUMBUF];
1342 make_it_fail = task->make_it_fail;
1343 put_task_struct(task);
1345 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1347 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1350 static ssize_t proc_fault_inject_write(struct file * file,
1351 const char __user * buf, size_t count, loff_t *ppos)
1353 struct task_struct *task;
1354 char buffer[PROC_NUMBUF];
1358 if (!capable(CAP_SYS_RESOURCE))
1360 memset(buffer, 0, sizeof(buffer));
1361 if (count > sizeof(buffer) - 1)
1362 count = sizeof(buffer) - 1;
1363 if (copy_from_user(buffer, buf, count))
1365 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1368 if (make_it_fail < 0 || make_it_fail > 1)
1371 task = get_proc_task(file_inode(file));
1374 task->make_it_fail = make_it_fail;
1375 put_task_struct(task);
1380 static const struct file_operations proc_fault_inject_operations = {
1381 .read = proc_fault_inject_read,
1382 .write = proc_fault_inject_write,
1383 .llseek = generic_file_llseek,
1388 #ifdef CONFIG_SCHED_DEBUG
1390 * Print out various scheduling related per-task fields:
1392 static int sched_show(struct seq_file *m, void *v)
1394 struct inode *inode = m->private;
1395 struct task_struct *p;
1397 p = get_proc_task(inode);
1400 proc_sched_show_task(p, m);
1408 sched_write(struct file *file, const char __user *buf,
1409 size_t count, loff_t *offset)
1411 struct inode *inode = file_inode(file);
1412 struct task_struct *p;
1414 p = get_proc_task(inode);
1417 proc_sched_set_task(p);
1424 static int sched_open(struct inode *inode, struct file *filp)
1426 return single_open(filp, sched_show, inode);
1429 static const struct file_operations proc_pid_sched_operations = {
1432 .write = sched_write,
1433 .llseek = seq_lseek,
1434 .release = single_release,
1439 #ifdef CONFIG_SCHED_AUTOGROUP
1441 * Print out autogroup related information:
1443 static int sched_autogroup_show(struct seq_file *m, void *v)
1445 struct inode *inode = m->private;
1446 struct task_struct *p;
1448 p = get_proc_task(inode);
1451 proc_sched_autogroup_show_task(p, m);
1459 sched_autogroup_write(struct file *file, const char __user *buf,
1460 size_t count, loff_t *offset)
1462 struct inode *inode = file_inode(file);
1463 struct task_struct *p;
1464 char buffer[PROC_NUMBUF];
1468 memset(buffer, 0, sizeof(buffer));
1469 if (count > sizeof(buffer) - 1)
1470 count = sizeof(buffer) - 1;
1471 if (copy_from_user(buffer, buf, count))
1474 err = kstrtoint(strstrip(buffer), 0, &nice);
1478 p = get_proc_task(inode);
1482 err = proc_sched_autogroup_set_nice(p, nice);
1491 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495 ret = single_open(filp, sched_autogroup_show, NULL);
1497 struct seq_file *m = filp->private_data;
1504 static const struct file_operations proc_pid_sched_autogroup_operations = {
1505 .open = sched_autogroup_open,
1507 .write = sched_autogroup_write,
1508 .llseek = seq_lseek,
1509 .release = single_release,
1512 #endif /* CONFIG_SCHED_AUTOGROUP */
1514 static ssize_t comm_write(struct file *file, const char __user *buf,
1515 size_t count, loff_t *offset)
1517 struct inode *inode = file_inode(file);
1518 struct task_struct *p;
1519 char buffer[TASK_COMM_LEN];
1520 const size_t maxlen = sizeof(buffer) - 1;
1522 memset(buffer, 0, sizeof(buffer));
1523 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1526 p = get_proc_task(inode);
1530 if (same_thread_group(current, p))
1531 set_task_comm(p, buffer);
1540 static int comm_show(struct seq_file *m, void *v)
1542 struct inode *inode = m->private;
1543 struct task_struct *p;
1545 p = get_proc_task(inode);
1550 seq_printf(m, "%s\n", p->comm);
1558 static int comm_open(struct inode *inode, struct file *filp)
1560 return single_open(filp, comm_show, inode);
1563 static const struct file_operations proc_pid_set_comm_operations = {
1566 .write = comm_write,
1567 .llseek = seq_lseek,
1568 .release = single_release,
1571 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1573 struct task_struct *task;
1574 struct file *exe_file;
1576 task = get_proc_task(d_inode(dentry));
1579 exe_file = get_task_exe_file(task);
1580 put_task_struct(task);
1582 *exe_path = exe_file->f_path;
1583 path_get(&exe_file->f_path);
1590 static const char *proc_pid_get_link(struct dentry *dentry,
1591 struct inode *inode,
1592 struct delayed_call *done)
1595 int error = -EACCES;
1598 return ERR_PTR(-ECHILD);
1600 /* Are we allowed to snoop on the tasks file descriptors? */
1601 if (!proc_fd_access_allowed(inode))
1604 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608 nd_jump_link(&path);
1611 return ERR_PTR(error);
1614 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1616 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1623 pathname = d_path(path, tmp, PAGE_SIZE);
1624 len = PTR_ERR(pathname);
1625 if (IS_ERR(pathname))
1627 len = tmp + PAGE_SIZE - 1 - pathname;
1631 if (copy_to_user(buffer, pathname, len))
1634 free_page((unsigned long)tmp);
1638 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1640 int error = -EACCES;
1641 struct inode *inode = d_inode(dentry);
1644 /* Are we allowed to snoop on the tasks file descriptors? */
1645 if (!proc_fd_access_allowed(inode))
1648 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652 error = do_proc_readlink(&path, buffer, buflen);
1658 const struct inode_operations proc_pid_link_inode_operations = {
1659 .readlink = proc_pid_readlink,
1660 .get_link = proc_pid_get_link,
1661 .setattr = proc_setattr,
1665 /* building an inode */
1667 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1669 struct inode * inode;
1670 struct proc_inode *ei;
1671 const struct cred *cred;
1673 /* We need a new inode */
1675 inode = new_inode(sb);
1681 inode->i_ino = get_next_ino();
1682 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1683 inode->i_op = &proc_def_inode_operations;
1686 * grab the reference to task.
1688 ei->pid = get_task_pid(task, PIDTYPE_PID);
1692 if (task_dumpable(task)) {
1694 cred = __task_cred(task);
1695 inode->i_uid = cred->euid;
1696 inode->i_gid = cred->egid;
1699 security_task_to_inode(task, inode);
1709 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1711 struct inode *inode = d_inode(dentry);
1712 struct task_struct *task;
1713 const struct cred *cred;
1714 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1716 generic_fillattr(inode, stat);
1719 stat->uid = GLOBAL_ROOT_UID;
1720 stat->gid = GLOBAL_ROOT_GID;
1721 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1723 if (!has_pid_permissions(pid, task, 2)) {
1726 * This doesn't prevent learning whether PID exists,
1727 * it only makes getattr() consistent with readdir().
1731 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1732 task_dumpable(task)) {
1733 cred = __task_cred(task);
1734 stat->uid = cred->euid;
1735 stat->gid = cred->egid;
1745 * Exceptional case: normally we are not allowed to unhash a busy
1746 * directory. In this case, however, we can do it - no aliasing problems
1747 * due to the way we treat inodes.
1749 * Rewrite the inode's ownerships here because the owning task may have
1750 * performed a setuid(), etc.
1752 * Before the /proc/pid/status file was created the only way to read
1753 * the effective uid of a /process was to stat /proc/pid. Reading
1754 * /proc/pid/status is slow enough that procps and other packages
1755 * kept stating /proc/pid. To keep the rules in /proc simple I have
1756 * made this apply to all per process world readable and executable
1759 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1761 struct inode *inode;
1762 struct task_struct *task;
1763 const struct cred *cred;
1765 if (flags & LOOKUP_RCU)
1768 inode = d_inode(dentry);
1769 task = get_proc_task(inode);
1772 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1773 task_dumpable(task)) {
1775 cred = __task_cred(task);
1776 inode->i_uid = cred->euid;
1777 inode->i_gid = cred->egid;
1780 inode->i_uid = GLOBAL_ROOT_UID;
1781 inode->i_gid = GLOBAL_ROOT_GID;
1783 inode->i_mode &= ~(S_ISUID | S_ISGID);
1784 security_task_to_inode(task, inode);
1785 put_task_struct(task);
1791 static inline bool proc_inode_is_dead(struct inode *inode)
1793 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1796 int pid_delete_dentry(const struct dentry *dentry)
1798 /* Is the task we represent dead?
1799 * If so, then don't put the dentry on the lru list,
1800 * kill it immediately.
1802 return proc_inode_is_dead(d_inode(dentry));
1805 const struct dentry_operations pid_dentry_operations =
1807 .d_revalidate = pid_revalidate,
1808 .d_delete = pid_delete_dentry,
1814 * Fill a directory entry.
1816 * If possible create the dcache entry and derive our inode number and
1817 * file type from dcache entry.
1819 * Since all of the proc inode numbers are dynamically generated, the inode
1820 * numbers do not exist until the inode is cache. This means creating the
1821 * the dcache entry in readdir is necessary to keep the inode numbers
1822 * reported by readdir in sync with the inode numbers reported
1825 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1826 const char *name, int len,
1827 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1829 struct dentry *child, *dir = file->f_path.dentry;
1830 struct qstr qname = QSTR_INIT(name, len);
1831 struct inode *inode;
1835 child = d_hash_and_lookup(dir, &qname);
1837 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1838 child = d_alloc_parallel(dir, &qname, &wq);
1840 goto end_instantiate;
1841 if (d_in_lookup(child)) {
1842 int err = instantiate(d_inode(dir), child, task, ptr);
1843 d_lookup_done(child);
1846 goto end_instantiate;
1850 inode = d_inode(child);
1852 type = inode->i_mode >> 12;
1854 return dir_emit(ctx, name, len, ino, type);
1857 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1861 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1862 * which represent vma start and end addresses.
1864 static int dname_to_vma_addr(struct dentry *dentry,
1865 unsigned long *start, unsigned long *end)
1867 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1873 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1875 unsigned long vm_start, vm_end;
1876 bool exact_vma_exists = false;
1877 struct mm_struct *mm = NULL;
1878 struct task_struct *task;
1879 const struct cred *cred;
1880 struct inode *inode;
1883 if (flags & LOOKUP_RCU)
1886 inode = d_inode(dentry);
1887 task = get_proc_task(inode);
1891 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1892 if (IS_ERR_OR_NULL(mm))
1895 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1896 down_read(&mm->mmap_sem);
1897 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1898 up_read(&mm->mmap_sem);
1903 if (exact_vma_exists) {
1904 if (task_dumpable(task)) {
1906 cred = __task_cred(task);
1907 inode->i_uid = cred->euid;
1908 inode->i_gid = cred->egid;
1911 inode->i_uid = GLOBAL_ROOT_UID;
1912 inode->i_gid = GLOBAL_ROOT_GID;
1914 security_task_to_inode(task, inode);
1919 put_task_struct(task);
1925 static const struct dentry_operations tid_map_files_dentry_operations = {
1926 .d_revalidate = map_files_d_revalidate,
1927 .d_delete = pid_delete_dentry,
1930 static int map_files_get_link(struct dentry *dentry, struct path *path)
1932 unsigned long vm_start, vm_end;
1933 struct vm_area_struct *vma;
1934 struct task_struct *task;
1935 struct mm_struct *mm;
1939 task = get_proc_task(d_inode(dentry));
1943 mm = get_task_mm(task);
1944 put_task_struct(task);
1948 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1953 down_read(&mm->mmap_sem);
1954 vma = find_exact_vma(mm, vm_start, vm_end);
1955 if (vma && vma->vm_file) {
1956 *path = vma->vm_file->f_path;
1960 up_read(&mm->mmap_sem);
1968 struct map_files_info {
1971 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1975 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1976 * symlinks may be used to bypass permissions on ancestor directories in the
1977 * path to the file in question.
1980 proc_map_files_get_link(struct dentry *dentry,
1981 struct inode *inode,
1982 struct delayed_call *done)
1984 if (!capable(CAP_SYS_ADMIN))
1985 return ERR_PTR(-EPERM);
1987 return proc_pid_get_link(dentry, inode, done);
1991 * Identical to proc_pid_link_inode_operations except for get_link()
1993 static const struct inode_operations proc_map_files_link_inode_operations = {
1994 .readlink = proc_pid_readlink,
1995 .get_link = proc_map_files_get_link,
1996 .setattr = proc_setattr,
2000 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2001 struct task_struct *task, const void *ptr)
2003 fmode_t mode = (fmode_t)(unsigned long)ptr;
2004 struct proc_inode *ei;
2005 struct inode *inode;
2007 inode = proc_pid_make_inode(dir->i_sb, task);
2012 ei->op.proc_get_link = map_files_get_link;
2014 inode->i_op = &proc_map_files_link_inode_operations;
2016 inode->i_mode = S_IFLNK;
2018 if (mode & FMODE_READ)
2019 inode->i_mode |= S_IRUSR;
2020 if (mode & FMODE_WRITE)
2021 inode->i_mode |= S_IWUSR;
2023 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2024 d_add(dentry, inode);
2029 static struct dentry *proc_map_files_lookup(struct inode *dir,
2030 struct dentry *dentry, unsigned int flags)
2032 unsigned long vm_start, vm_end;
2033 struct vm_area_struct *vma;
2034 struct task_struct *task;
2036 struct mm_struct *mm;
2039 task = get_proc_task(dir);
2044 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2048 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2051 mm = get_task_mm(task);
2055 down_read(&mm->mmap_sem);
2056 vma = find_exact_vma(mm, vm_start, vm_end);
2061 result = proc_map_files_instantiate(dir, dentry, task,
2062 (void *)(unsigned long)vma->vm_file->f_mode);
2065 up_read(&mm->mmap_sem);
2068 put_task_struct(task);
2070 return ERR_PTR(result);
2073 static const struct inode_operations proc_map_files_inode_operations = {
2074 .lookup = proc_map_files_lookup,
2075 .permission = proc_fd_permission,
2076 .setattr = proc_setattr,
2080 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082 struct vm_area_struct *vma;
2083 struct task_struct *task;
2084 struct mm_struct *mm;
2085 unsigned long nr_files, pos, i;
2086 struct flex_array *fa = NULL;
2087 struct map_files_info info;
2088 struct map_files_info *p;
2092 task = get_proc_task(file_inode(file));
2097 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2101 if (!dir_emit_dots(file, ctx))
2104 mm = get_task_mm(task);
2107 down_read(&mm->mmap_sem);
2112 * We need two passes here:
2114 * 1) Collect vmas of mapped files with mmap_sem taken
2115 * 2) Release mmap_sem and instantiate entries
2117 * otherwise we get lockdep complained, since filldir()
2118 * routine might require mmap_sem taken in might_fault().
2121 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2122 if (vma->vm_file && ++pos > ctx->pos)
2127 fa = flex_array_alloc(sizeof(info), nr_files,
2129 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2133 flex_array_free(fa);
2134 up_read(&mm->mmap_sem);
2138 for (i = 0, vma = mm->mmap, pos = 2; vma;
2139 vma = vma->vm_next) {
2142 if (++pos <= ctx->pos)
2145 info.mode = vma->vm_file->f_mode;
2146 info.len = snprintf(info.name,
2147 sizeof(info.name), "%lx-%lx",
2148 vma->vm_start, vma->vm_end);
2149 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2153 up_read(&mm->mmap_sem);
2155 for (i = 0; i < nr_files; i++) {
2156 p = flex_array_get(fa, i);
2157 if (!proc_fill_cache(file, ctx,
2159 proc_map_files_instantiate,
2161 (void *)(unsigned long)p->mode))
2166 flex_array_free(fa);
2170 put_task_struct(task);
2175 static const struct file_operations proc_map_files_operations = {
2176 .read = generic_read_dir,
2177 .iterate_shared = proc_map_files_readdir,
2178 .llseek = generic_file_llseek,
2181 #ifdef CONFIG_CHECKPOINT_RESTORE
2182 struct timers_private {
2184 struct task_struct *task;
2185 struct sighand_struct *sighand;
2186 struct pid_namespace *ns;
2187 unsigned long flags;
2190 static void *timers_start(struct seq_file *m, loff_t *pos)
2192 struct timers_private *tp = m->private;
2194 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196 return ERR_PTR(-ESRCH);
2198 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200 return ERR_PTR(-ESRCH);
2202 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2205 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207 struct timers_private *tp = m->private;
2208 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2211 static void timers_stop(struct seq_file *m, void *v)
2213 struct timers_private *tp = m->private;
2216 unlock_task_sighand(tp->task, &tp->flags);
2221 put_task_struct(tp->task);
2226 static int show_timer(struct seq_file *m, void *v)
2228 struct k_itimer *timer;
2229 struct timers_private *tp = m->private;
2231 static const char * const nstr[] = {
2232 [SIGEV_SIGNAL] = "signal",
2233 [SIGEV_NONE] = "none",
2234 [SIGEV_THREAD] = "thread",
2237 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2238 notify = timer->it_sigev_notify;
2240 seq_printf(m, "ID: %d\n", timer->it_id);
2241 seq_printf(m, "signal: %d/%p\n",
2242 timer->sigq->info.si_signo,
2243 timer->sigq->info.si_value.sival_ptr);
2244 seq_printf(m, "notify: %s/%s.%d\n",
2245 nstr[notify & ~SIGEV_THREAD_ID],
2246 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2247 pid_nr_ns(timer->it_pid, tp->ns));
2248 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2253 static const struct seq_operations proc_timers_seq_ops = {
2254 .start = timers_start,
2255 .next = timers_next,
2256 .stop = timers_stop,
2260 static int proc_timers_open(struct inode *inode, struct file *file)
2262 struct timers_private *tp;
2264 tp = __seq_open_private(file, &proc_timers_seq_ops,
2265 sizeof(struct timers_private));
2269 tp->pid = proc_pid(inode);
2270 tp->ns = inode->i_sb->s_fs_info;
2274 static const struct file_operations proc_timers_operations = {
2275 .open = proc_timers_open,
2277 .llseek = seq_lseek,
2278 .release = seq_release_private,
2282 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2283 size_t count, loff_t *offset)
2285 struct inode *inode = file_inode(file);
2286 struct task_struct *p;
2290 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2294 p = get_proc_task(inode);
2299 if (!capable(CAP_SYS_NICE)) {
2304 err = security_task_setscheduler(p);
2313 p->timer_slack_ns = p->default_timer_slack_ns;
2315 p->timer_slack_ns = slack_ns;
2324 static int timerslack_ns_show(struct seq_file *m, void *v)
2326 struct inode *inode = m->private;
2327 struct task_struct *p;
2330 p = get_proc_task(inode);
2336 if (!capable(CAP_SYS_NICE)) {
2340 err = security_task_getscheduler(p);
2346 seq_printf(m, "%llu\n", p->timer_slack_ns);
2355 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357 return single_open(filp, timerslack_ns_show, inode);
2360 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2361 .open = timerslack_ns_open,
2363 .write = timerslack_ns_write,
2364 .llseek = seq_lseek,
2365 .release = single_release,
2368 static int proc_pident_instantiate(struct inode *dir,
2369 struct dentry *dentry, struct task_struct *task, const void *ptr)
2371 const struct pid_entry *p = ptr;
2372 struct inode *inode;
2373 struct proc_inode *ei;
2375 inode = proc_pid_make_inode(dir->i_sb, task);
2380 inode->i_mode = p->mode;
2381 if (S_ISDIR(inode->i_mode))
2382 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2384 inode->i_op = p->iop;
2386 inode->i_fop = p->fop;
2388 d_set_d_op(dentry, &pid_dentry_operations);
2389 d_add(dentry, inode);
2390 /* Close the race of the process dying before we return the dentry */
2391 if (pid_revalidate(dentry, 0))
2397 static struct dentry *proc_pident_lookup(struct inode *dir,
2398 struct dentry *dentry,
2399 const struct pid_entry *ents,
2403 struct task_struct *task = get_proc_task(dir);
2404 const struct pid_entry *p, *last;
2412 * Yes, it does not scale. And it should not. Don't add
2413 * new entries into /proc/<tgid>/ without very good reasons.
2415 last = &ents[nents - 1];
2416 for (p = ents; p <= last; p++) {
2417 if (p->len != dentry->d_name.len)
2419 if (!memcmp(dentry->d_name.name, p->name, p->len))
2425 error = proc_pident_instantiate(dir, dentry, task, p);
2427 put_task_struct(task);
2429 return ERR_PTR(error);
2432 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433 const struct pid_entry *ents, unsigned int nents)
2435 struct task_struct *task = get_proc_task(file_inode(file));
2436 const struct pid_entry *p;
2441 if (!dir_emit_dots(file, ctx))
2444 if (ctx->pos >= nents + 2)
2447 for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2448 if (!proc_fill_cache(file, ctx, p->name, p->len,
2449 proc_pident_instantiate, task, p))
2454 put_task_struct(task);
2458 #ifdef CONFIG_SECURITY
2459 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460 size_t count, loff_t *ppos)
2462 struct inode * inode = file_inode(file);
2465 struct task_struct *task = get_proc_task(inode);
2470 length = security_getprocattr(task,
2471 (char*)file->f_path.dentry->d_name.name,
2473 put_task_struct(task);
2475 length = simple_read_from_buffer(buf, count, ppos, p, length);
2480 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481 size_t count, loff_t *ppos)
2483 struct inode * inode = file_inode(file);
2486 struct task_struct *task = get_proc_task(inode);
2491 if (count > PAGE_SIZE)
2494 /* No partial writes. */
2499 page = memdup_user(buf, count);
2501 length = PTR_ERR(page);
2505 /* Guard against adverse ptrace interaction */
2506 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2510 length = security_setprocattr(task,
2511 (char*)file->f_path.dentry->d_name.name,
2513 mutex_unlock(&task->signal->cred_guard_mutex);
2517 put_task_struct(task);
2522 static const struct file_operations proc_pid_attr_operations = {
2523 .read = proc_pid_attr_read,
2524 .write = proc_pid_attr_write,
2525 .llseek = generic_file_llseek,
2528 static const struct pid_entry attr_dir_stuff[] = {
2529 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530 REG("prev", S_IRUGO, proc_pid_attr_operations),
2531 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2537 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2539 return proc_pident_readdir(file, ctx,
2540 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2543 static const struct file_operations proc_attr_dir_operations = {
2544 .read = generic_read_dir,
2545 .iterate_shared = proc_attr_dir_readdir,
2546 .llseek = generic_file_llseek,
2549 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550 struct dentry *dentry, unsigned int flags)
2552 return proc_pident_lookup(dir, dentry,
2553 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2556 static const struct inode_operations proc_attr_dir_inode_operations = {
2557 .lookup = proc_attr_dir_lookup,
2558 .getattr = pid_getattr,
2559 .setattr = proc_setattr,
2564 #ifdef CONFIG_ELF_CORE
2565 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566 size_t count, loff_t *ppos)
2568 struct task_struct *task = get_proc_task(file_inode(file));
2569 struct mm_struct *mm;
2570 char buffer[PROC_NUMBUF];
2578 mm = get_task_mm(task);
2580 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582 MMF_DUMP_FILTER_SHIFT));
2584 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2587 put_task_struct(task);
2592 static ssize_t proc_coredump_filter_write(struct file *file,
2593 const char __user *buf,
2597 struct task_struct *task;
2598 struct mm_struct *mm;
2604 ret = kstrtouint_from_user(buf, count, 0, &val);
2609 task = get_proc_task(file_inode(file));
2613 mm = get_task_mm(task);
2618 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2620 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2622 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2627 put_task_struct(task);
2634 static const struct file_operations proc_coredump_filter_operations = {
2635 .read = proc_coredump_filter_read,
2636 .write = proc_coredump_filter_write,
2637 .llseek = generic_file_llseek,
2641 #ifdef CONFIG_TASK_IO_ACCOUNTING
2642 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2644 struct task_io_accounting acct = task->ioac;
2645 unsigned long flags;
2648 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2652 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2657 if (whole && lock_task_sighand(task, &flags)) {
2658 struct task_struct *t = task;
2660 task_io_accounting_add(&acct, &task->signal->ioac);
2661 while_each_thread(task, t)
2662 task_io_accounting_add(&acct, &t->ioac);
2664 unlock_task_sighand(task, &flags);
2671 "read_bytes: %llu\n"
2672 "write_bytes: %llu\n"
2673 "cancelled_write_bytes: %llu\n",
2674 (unsigned long long)acct.rchar,
2675 (unsigned long long)acct.wchar,
2676 (unsigned long long)acct.syscr,
2677 (unsigned long long)acct.syscw,
2678 (unsigned long long)acct.read_bytes,
2679 (unsigned long long)acct.write_bytes,
2680 (unsigned long long)acct.cancelled_write_bytes);
2684 mutex_unlock(&task->signal->cred_guard_mutex);
2688 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689 struct pid *pid, struct task_struct *task)
2691 return do_io_accounting(task, m, 0);
2694 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695 struct pid *pid, struct task_struct *task)
2697 return do_io_accounting(task, m, 1);
2699 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2701 #ifdef CONFIG_USER_NS
2702 static int proc_id_map_open(struct inode *inode, struct file *file,
2703 const struct seq_operations *seq_ops)
2705 struct user_namespace *ns = NULL;
2706 struct task_struct *task;
2707 struct seq_file *seq;
2710 task = get_proc_task(inode);
2713 ns = get_user_ns(task_cred_xxx(task, user_ns));
2715 put_task_struct(task);
2720 ret = seq_open(file, seq_ops);
2724 seq = file->private_data;
2734 static int proc_id_map_release(struct inode *inode, struct file *file)
2736 struct seq_file *seq = file->private_data;
2737 struct user_namespace *ns = seq->private;
2739 return seq_release(inode, file);
2742 static int proc_uid_map_open(struct inode *inode, struct file *file)
2744 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2747 static int proc_gid_map_open(struct inode *inode, struct file *file)
2749 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2752 static int proc_projid_map_open(struct inode *inode, struct file *file)
2754 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2757 static const struct file_operations proc_uid_map_operations = {
2758 .open = proc_uid_map_open,
2759 .write = proc_uid_map_write,
2761 .llseek = seq_lseek,
2762 .release = proc_id_map_release,
2765 static const struct file_operations proc_gid_map_operations = {
2766 .open = proc_gid_map_open,
2767 .write = proc_gid_map_write,
2769 .llseek = seq_lseek,
2770 .release = proc_id_map_release,
2773 static const struct file_operations proc_projid_map_operations = {
2774 .open = proc_projid_map_open,
2775 .write = proc_projid_map_write,
2777 .llseek = seq_lseek,
2778 .release = proc_id_map_release,
2781 static int proc_setgroups_open(struct inode *inode, struct file *file)
2783 struct user_namespace *ns = NULL;
2784 struct task_struct *task;
2788 task = get_proc_task(inode);
2791 ns = get_user_ns(task_cred_xxx(task, user_ns));
2793 put_task_struct(task);
2798 if (file->f_mode & FMODE_WRITE) {
2800 if (!ns_capable(ns, CAP_SYS_ADMIN))
2804 ret = single_open(file, &proc_setgroups_show, ns);
2815 static int proc_setgroups_release(struct inode *inode, struct file *file)
2817 struct seq_file *seq = file->private_data;
2818 struct user_namespace *ns = seq->private;
2819 int ret = single_release(inode, file);
2824 static const struct file_operations proc_setgroups_operations = {
2825 .open = proc_setgroups_open,
2826 .write = proc_setgroups_write,
2828 .llseek = seq_lseek,
2829 .release = proc_setgroups_release,
2831 #endif /* CONFIG_USER_NS */
2833 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834 struct pid *pid, struct task_struct *task)
2836 int err = lock_trace(task);
2838 seq_printf(m, "%08x\n", task->personality);
2847 static const struct file_operations proc_task_operations;
2848 static const struct inode_operations proc_task_inode_operations;
2850 static const struct pid_entry tgid_base_stuff[] = {
2851 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2857 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2859 REG("environ", S_IRUSR, proc_environ_operations),
2860 REG("auxv", S_IRUSR, proc_auxv_operations),
2861 ONE("status", S_IRUGO, proc_pid_status),
2862 ONE("personality", S_IRUSR, proc_pid_personality),
2863 ONE("limits", S_IRUGO, proc_pid_limits),
2864 #ifdef CONFIG_SCHED_DEBUG
2865 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2867 #ifdef CONFIG_SCHED_AUTOGROUP
2868 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2870 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872 ONE("syscall", S_IRUSR, proc_pid_syscall),
2874 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2875 ONE("stat", S_IRUGO, proc_tgid_stat),
2876 ONE("statm", S_IRUGO, proc_pid_statm),
2877 REG("maps", S_IRUGO, proc_pid_maps_operations),
2879 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2881 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2882 LNK("cwd", proc_cwd_link),
2883 LNK("root", proc_root_link),
2884 LNK("exe", proc_exe_link),
2885 REG("mounts", S_IRUGO, proc_mounts_operations),
2886 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2887 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888 #ifdef CONFIG_PROC_PAGE_MONITOR
2889 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2891 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2893 #ifdef CONFIG_SECURITY
2894 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2896 #ifdef CONFIG_KALLSYMS
2897 ONE("wchan", S_IRUGO, proc_pid_wchan),
2899 #ifdef CONFIG_STACKTRACE
2900 ONE("stack", S_IRUSR, proc_pid_stack),
2902 #ifdef CONFIG_SCHED_INFO
2903 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2905 #ifdef CONFIG_LATENCYTOP
2906 REG("latency", S_IRUGO, proc_lstats_operations),
2908 #ifdef CONFIG_PROC_PID_CPUSET
2909 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2911 #ifdef CONFIG_CGROUPS
2912 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2914 ONE("oom_score", S_IRUGO, proc_oom_score),
2915 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917 #ifdef CONFIG_AUDITSYSCALL
2918 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2921 #ifdef CONFIG_FAULT_INJECTION
2922 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2924 #ifdef CONFIG_ELF_CORE
2925 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2927 #ifdef CONFIG_TASK_IO_ACCOUNTING
2928 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2930 #ifdef CONFIG_HARDWALL
2931 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2933 #ifdef CONFIG_USER_NS
2934 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
2939 #ifdef CONFIG_CHECKPOINT_RESTORE
2940 REG("timers", S_IRUGO, proc_timers_operations),
2942 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2945 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2947 return proc_pident_readdir(file, ctx,
2948 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2951 static const struct file_operations proc_tgid_base_operations = {
2952 .read = generic_read_dir,
2953 .iterate_shared = proc_tgid_base_readdir,
2954 .llseek = generic_file_llseek,
2957 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2959 return proc_pident_lookup(dir, dentry,
2960 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2963 static const struct inode_operations proc_tgid_base_inode_operations = {
2964 .lookup = proc_tgid_base_lookup,
2965 .getattr = pid_getattr,
2966 .setattr = proc_setattr,
2967 .permission = proc_pid_permission,
2970 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2972 struct dentry *dentry, *leader, *dir;
2973 char buf[PROC_NUMBUF];
2977 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978 /* no ->d_hash() rejects on procfs */
2979 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2981 d_invalidate(dentry);
2989 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2995 name.len = strlen(name.name);
2996 dir = d_hash_and_lookup(leader, &name);
2998 goto out_put_leader;
3001 name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002 dentry = d_hash_and_lookup(dir, &name);
3004 d_invalidate(dentry);
3016 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3023 * Looks in the dcache for
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits. After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead. This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 * that no dcache entries will exist at process exit time it
3037 * just makes it very unlikely that any will persist.
3040 void proc_flush_task(struct task_struct *task)
3043 struct pid *pid, *tgid;
3046 pid = task_pid(task);
3047 tgid = task_tgid(task);
3049 for (i = 0; i <= pid->level; i++) {
3050 upid = &pid->numbers[i];
3051 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052 tgid->numbers[i].nr);
3056 static int proc_pid_instantiate(struct inode *dir,
3057 struct dentry * dentry,
3058 struct task_struct *task, const void *ptr)
3060 struct inode *inode;
3062 inode = proc_pid_make_inode(dir->i_sb, task);
3066 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3067 inode->i_op = &proc_tgid_base_inode_operations;
3068 inode->i_fop = &proc_tgid_base_operations;
3069 inode->i_flags|=S_IMMUTABLE;
3071 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3072 ARRAY_SIZE(tgid_base_stuff)));
3074 d_set_d_op(dentry, &pid_dentry_operations);
3076 d_add(dentry, inode);
3077 /* Close the race of the process dying before we return the dentry */
3078 if (pid_revalidate(dentry, 0))
3084 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3086 int result = -ENOENT;
3087 struct task_struct *task;
3089 struct pid_namespace *ns;
3091 tgid = name_to_int(&dentry->d_name);
3095 ns = dentry->d_sb->s_fs_info;
3097 task = find_task_by_pid_ns(tgid, ns);
3099 get_task_struct(task);
3104 result = proc_pid_instantiate(dir, dentry, task, NULL);
3105 put_task_struct(task);
3107 return ERR_PTR(result);
3111 * Find the first task with tgid >= tgid
3116 struct task_struct *task;
3118 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3123 put_task_struct(iter.task);
3127 pid = find_ge_pid(iter.tgid, ns);
3129 iter.tgid = pid_nr_ns(pid, ns);
3130 iter.task = pid_task(pid, PIDTYPE_PID);
3131 /* What we to know is if the pid we have find is the
3132 * pid of a thread_group_leader. Testing for task
3133 * being a thread_group_leader is the obvious thing
3134 * todo but there is a window when it fails, due to
3135 * the pid transfer logic in de_thread.
3137 * So we perform the straight forward test of seeing
3138 * if the pid we have found is the pid of a thread
3139 * group leader, and don't worry if the task we have
3140 * found doesn't happen to be a thread group leader.
3141 * As we don't care in the case of readdir.
3143 if (!iter.task || !has_group_leader_pid(iter.task)) {
3147 get_task_struct(iter.task);
3153 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3155 /* for the /proc/ directory itself, after non-process stuff has been done */
3156 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3158 struct tgid_iter iter;
3159 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3160 loff_t pos = ctx->pos;
3162 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3165 if (pos == TGID_OFFSET - 2) {
3166 struct inode *inode = d_inode(ns->proc_self);
3167 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3169 ctx->pos = pos = pos + 1;
3171 if (pos == TGID_OFFSET - 1) {
3172 struct inode *inode = d_inode(ns->proc_thread_self);
3173 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3175 ctx->pos = pos = pos + 1;
3177 iter.tgid = pos - TGID_OFFSET;
3179 for (iter = next_tgid(ns, iter);
3181 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3182 char name[PROC_NUMBUF];
3184 if (!has_pid_permissions(ns, iter.task, 2))
3187 len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188 ctx->pos = iter.tgid + TGID_OFFSET;
3189 if (!proc_fill_cache(file, ctx, name, len,
3190 proc_pid_instantiate, iter.task, NULL)) {
3191 put_task_struct(iter.task);
3195 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3211 static int proc_tid_comm_permission(struct inode *inode, int mask)
3213 bool is_same_tgroup;
3214 struct task_struct *task;
3216 task = get_proc_task(inode);
3219 is_same_tgroup = same_thread_group(current, task);
3220 put_task_struct(task);
3222 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3224 * read or written by the members of the corresponding
3230 return generic_permission(inode, mask);
3233 static const struct inode_operations proc_tid_comm_inode_operations = {
3234 .permission = proc_tid_comm_permission,
3240 static const struct pid_entry tid_base_stuff[] = {
3241 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3245 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3247 REG("environ", S_IRUSR, proc_environ_operations),
3248 REG("auxv", S_IRUSR, proc_auxv_operations),
3249 ONE("status", S_IRUGO, proc_pid_status),
3250 ONE("personality", S_IRUSR, proc_pid_personality),
3251 ONE("limits", S_IRUGO, proc_pid_limits),
3252 #ifdef CONFIG_SCHED_DEBUG
3253 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3255 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3256 &proc_tid_comm_inode_operations,
3257 &proc_pid_set_comm_operations, {}),
3258 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259 ONE("syscall", S_IRUSR, proc_pid_syscall),
3261 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3262 ONE("stat", S_IRUGO, proc_tid_stat),
3263 ONE("statm", S_IRUGO, proc_pid_statm),
3264 REG("maps", S_IRUGO, proc_tid_maps_operations),
3265 #ifdef CONFIG_PROC_CHILDREN
3266 REG("children", S_IRUGO, proc_tid_children_operations),
3269 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3271 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3272 LNK("cwd", proc_cwd_link),
3273 LNK("root", proc_root_link),
3274 LNK("exe", proc_exe_link),
3275 REG("mounts", S_IRUGO, proc_mounts_operations),
3276 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3277 #ifdef CONFIG_PROC_PAGE_MONITOR
3278 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3280 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3282 #ifdef CONFIG_SECURITY
3283 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3285 #ifdef CONFIG_KALLSYMS
3286 ONE("wchan", S_IRUGO, proc_pid_wchan),
3288 #ifdef CONFIG_STACKTRACE
3289 ONE("stack", S_IRUSR, proc_pid_stack),
3291 #ifdef CONFIG_SCHED_INFO
3292 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3294 #ifdef CONFIG_LATENCYTOP
3295 REG("latency", S_IRUGO, proc_lstats_operations),
3297 #ifdef CONFIG_PROC_PID_CPUSET
3298 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3300 #ifdef CONFIG_CGROUPS
3301 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3303 ONE("oom_score", S_IRUGO, proc_oom_score),
3304 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306 #ifdef CONFIG_AUDITSYSCALL
3307 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3310 #ifdef CONFIG_FAULT_INJECTION
3311 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3313 #ifdef CONFIG_TASK_IO_ACCOUNTING
3314 ONE("io", S_IRUSR, proc_tid_io_accounting),
3316 #ifdef CONFIG_HARDWALL
3317 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
3319 #ifdef CONFIG_USER_NS
3320 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3327 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3329 return proc_pident_readdir(file, ctx,
3330 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3333 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3335 return proc_pident_lookup(dir, dentry,
3336 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3339 static const struct file_operations proc_tid_base_operations = {
3340 .read = generic_read_dir,
3341 .iterate_shared = proc_tid_base_readdir,
3342 .llseek = generic_file_llseek,
3345 static const struct inode_operations proc_tid_base_inode_operations = {
3346 .lookup = proc_tid_base_lookup,
3347 .getattr = pid_getattr,
3348 .setattr = proc_setattr,
3351 static int proc_task_instantiate(struct inode *dir,
3352 struct dentry *dentry, struct task_struct *task, const void *ptr)
3354 struct inode *inode;
3355 inode = proc_pid_make_inode(dir->i_sb, task);
3359 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3360 inode->i_op = &proc_tid_base_inode_operations;
3361 inode->i_fop = &proc_tid_base_operations;
3362 inode->i_flags|=S_IMMUTABLE;
3364 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3365 ARRAY_SIZE(tid_base_stuff)));
3367 d_set_d_op(dentry, &pid_dentry_operations);
3369 d_add(dentry, inode);
3370 /* Close the race of the process dying before we return the dentry */
3371 if (pid_revalidate(dentry, 0))
3377 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3379 int result = -ENOENT;
3380 struct task_struct *task;
3381 struct task_struct *leader = get_proc_task(dir);
3383 struct pid_namespace *ns;
3388 tid = name_to_int(&dentry->d_name);
3392 ns = dentry->d_sb->s_fs_info;
3394 task = find_task_by_pid_ns(tid, ns);
3396 get_task_struct(task);
3400 if (!same_thread_group(leader, task))
3403 result = proc_task_instantiate(dir, dentry, task, NULL);
3405 put_task_struct(task);
3407 put_task_struct(leader);
3409 return ERR_PTR(result);
3413 * Find the first tid of a thread group to return to user space.
3415 * Usually this is just the thread group leader, but if the users
3416 * buffer was too small or there was a seek into the middle of the
3417 * directory we have more work todo.
3419 * In the case of a short read we start with find_task_by_pid.
3421 * In the case of a seek we start with the leader and walk nr
3424 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3425 struct pid_namespace *ns)
3427 struct task_struct *pos, *task;
3428 unsigned long nr = f_pos;
3430 if (nr != f_pos) /* 32bit overflow? */
3434 task = pid_task(pid, PIDTYPE_PID);
3438 /* Attempt to start with the tid of a thread */
3440 pos = find_task_by_pid_ns(tid, ns);
3441 if (pos && same_thread_group(pos, task))
3445 /* If nr exceeds the number of threads there is nothing todo */
3446 if (nr >= get_nr_threads(task))
3449 /* If we haven't found our starting place yet start
3450 * with the leader and walk nr threads forward.
3452 pos = task = task->group_leader;
3456 } while_each_thread(task, pos);
3461 get_task_struct(pos);
3468 * Find the next thread in the thread list.
3469 * Return NULL if there is an error or no next thread.
3471 * The reference to the input task_struct is released.
3473 static struct task_struct *next_tid(struct task_struct *start)
3475 struct task_struct *pos = NULL;
3477 if (pid_alive(start)) {
3478 pos = next_thread(start);
3479 if (thread_group_leader(pos))
3482 get_task_struct(pos);
3485 put_task_struct(start);
3489 /* for the /proc/TGID/task/ directories */
3490 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3492 struct inode *inode = file_inode(file);
3493 struct task_struct *task;
3494 struct pid_namespace *ns;
3497 if (proc_inode_is_dead(inode))
3500 if (!dir_emit_dots(file, ctx))
3503 /* f_version caches the tgid value that the last readdir call couldn't
3504 * return. lseek aka telldir automagically resets f_version to 0.
3506 ns = inode->i_sb->s_fs_info;
3507 tid = (int)file->f_version;
3508 file->f_version = 0;
3509 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3511 task = next_tid(task), ctx->pos++) {
3512 char name[PROC_NUMBUF];
3514 tid = task_pid_nr_ns(task, ns);
3515 len = snprintf(name, sizeof(name), "%d", tid);
3516 if (!proc_fill_cache(file, ctx, name, len,
3517 proc_task_instantiate, task, NULL)) {
3518 /* returning this tgid failed, save it as the first
3519 * pid for the next readir call */
3520 file->f_version = (u64)tid;
3521 put_task_struct(task);
3529 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3531 struct inode *inode = d_inode(dentry);
3532 struct task_struct *p = get_proc_task(inode);
3533 generic_fillattr(inode, stat);
3536 stat->nlink += get_nr_threads(p);
3543 static const struct inode_operations proc_task_inode_operations = {
3544 .lookup = proc_task_lookup,
3545 .getattr = proc_task_getattr,
3546 .setattr = proc_setattr,
3547 .permission = proc_pid_permission,
3550 static const struct file_operations proc_task_operations = {
3551 .read = generic_read_dir,
3552 .iterate_shared = proc_task_readdir,
3553 .llseek = generic_file_llseek,