2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
13 - kmod support by: Cyrus Durgin
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
22 This program is free software; you can redistribute it and/or modify
23 it under the terms of the GNU General Public License as published by
24 the Free Software Foundation; either version 2, or (at your option)
27 You should have received a copy of the GNU General Public License
28 (for example /usr/src/linux/COPYING); if not, write to the Free
29 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 #include <linux/module.h>
33 #include <linux/config.h>
34 #include <linux/linkage.h>
35 #include <linux/raid/md.h>
36 #include <linux/sysctl.h>
37 #include <linux/devfs_fs_kernel.h>
38 #include <linux/buffer_head.h> /* for invalidate_bdev */
39 #include <linux/suspend.h>
41 #include <linux/init.h>
44 #include <linux/kmod.h>
47 #include <asm/unaligned.h>
49 #define MAJOR_NR MD_MAJOR
52 /* 63 partitions with the alternate major number (mdp) */
53 #define MdpMinorShift 6
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60 static void autostart_arrays (int part);
63 static mdk_personality_t *pers[MAX_PERSONALITY];
64 static DEFINE_SPINLOCK(pers_lock);
67 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
68 * is 1000 KB/sec, so the extra system load does not show up that much.
69 * Increase it if you want to have more _guaranteed_ speed. Note that
70 * the RAID driver will use the maximum available bandwith if the IO
71 * subsystem is idle. There is also an 'absolute maximum' reconstruction
72 * speed limit - in case reconstruction slows down your system despite
75 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
78 static int sysctl_speed_limit_min = 1000;
79 static int sysctl_speed_limit_max = 200000;
81 static struct ctl_table_header *raid_table_header;
83 static ctl_table raid_table[] = {
85 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
86 .procname = "speed_limit_min",
87 .data = &sysctl_speed_limit_min,
88 .maxlen = sizeof(int),
90 .proc_handler = &proc_dointvec,
93 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
94 .procname = "speed_limit_max",
95 .data = &sysctl_speed_limit_max,
96 .maxlen = sizeof(int),
98 .proc_handler = &proc_dointvec,
103 static ctl_table raid_dir_table[] = {
105 .ctl_name = DEV_RAID,
114 static ctl_table raid_root_table[] = {
120 .child = raid_dir_table,
125 static struct block_device_operations md_fops;
128 * Enables to iterate over all existing md arrays
129 * all_mddevs_lock protects this list.
131 static LIST_HEAD(all_mddevs);
132 static DEFINE_SPINLOCK(all_mddevs_lock);
136 * iterates through all used mddevs in the system.
137 * We take care to grab the all_mddevs_lock whenever navigating
138 * the list, and to always hold a refcount when unlocked.
139 * Any code which breaks out of this loop while own
140 * a reference to the current mddev and must mddev_put it.
142 #define ITERATE_MDDEV(mddev,tmp) \
144 for (({ spin_lock(&all_mddevs_lock); \
145 tmp = all_mddevs.next; \
147 ({ if (tmp != &all_mddevs) \
148 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
149 spin_unlock(&all_mddevs_lock); \
150 if (mddev) mddev_put(mddev); \
151 mddev = list_entry(tmp, mddev_t, all_mddevs); \
152 tmp != &all_mddevs;}); \
153 ({ spin_lock(&all_mddevs_lock); \
158 static int md_fail_request (request_queue_t *q, struct bio *bio)
160 bio_io_error(bio, bio->bi_size);
164 static inline mddev_t *mddev_get(mddev_t *mddev)
166 atomic_inc(&mddev->active);
170 static void mddev_put(mddev_t *mddev)
172 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
174 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
175 list_del(&mddev->all_mddevs);
176 blk_put_queue(mddev->queue);
179 spin_unlock(&all_mddevs_lock);
182 static mddev_t * mddev_find(dev_t unit)
184 mddev_t *mddev, *new = NULL;
187 spin_lock(&all_mddevs_lock);
188 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
189 if (mddev->unit == unit) {
191 spin_unlock(&all_mddevs_lock);
198 list_add(&new->all_mddevs, &all_mddevs);
199 spin_unlock(&all_mddevs_lock);
202 spin_unlock(&all_mddevs_lock);
204 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
208 memset(new, 0, sizeof(*new));
211 if (MAJOR(unit) == MD_MAJOR)
212 new->md_minor = MINOR(unit);
214 new->md_minor = MINOR(unit) >> MdpMinorShift;
216 init_MUTEX(&new->reconfig_sem);
217 INIT_LIST_HEAD(&new->disks);
218 INIT_LIST_HEAD(&new->all_mddevs);
219 init_timer(&new->safemode_timer);
220 atomic_set(&new->active, 1);
222 new->queue = blk_alloc_queue(GFP_KERNEL);
228 blk_queue_make_request(new->queue, md_fail_request);
233 static inline int mddev_lock(mddev_t * mddev)
235 return down_interruptible(&mddev->reconfig_sem);
238 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
240 down(&mddev->reconfig_sem);
243 static inline int mddev_trylock(mddev_t * mddev)
245 return down_trylock(&mddev->reconfig_sem);
248 static inline void mddev_unlock(mddev_t * mddev)
250 up(&mddev->reconfig_sem);
253 md_wakeup_thread(mddev->thread);
256 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
259 struct list_head *tmp;
261 ITERATE_RDEV(mddev,rdev,tmp) {
262 if (rdev->desc_nr == nr)
268 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
270 struct list_head *tmp;
273 ITERATE_RDEV(mddev,rdev,tmp) {
274 if (rdev->bdev->bd_dev == dev)
280 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
282 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
283 return MD_NEW_SIZE_BLOCKS(size);
286 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
290 size = rdev->sb_offset;
293 size &= ~((sector_t)chunk_size/1024 - 1);
297 static int alloc_disk_sb(mdk_rdev_t * rdev)
302 rdev->sb_page = alloc_page(GFP_KERNEL);
303 if (!rdev->sb_page) {
304 printk(KERN_ALERT "md: out of memory.\n");
311 static void free_disk_sb(mdk_rdev_t * rdev)
314 page_cache_release(rdev->sb_page);
316 rdev->sb_page = NULL;
323 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
328 complete((struct completion*)bio->bi_private);
332 static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
333 struct page *page, int rw)
335 struct bio *bio = bio_alloc(GFP_KERNEL, 1);
336 struct completion event;
339 rw |= (1 << BIO_RW_SYNC);
342 bio->bi_sector = sector;
343 bio_add_page(bio, page, size, 0);
344 init_completion(&event);
345 bio->bi_private = &event;
346 bio->bi_end_io = bi_complete;
348 wait_for_completion(&event);
350 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
355 static int read_disk_sb(mdk_rdev_t * rdev)
357 char b[BDEVNAME_SIZE];
358 if (!rdev->sb_page) {
366 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
372 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
373 bdevname(rdev->bdev,b));
377 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
379 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
380 (sb1->set_uuid1 == sb2->set_uuid1) &&
381 (sb1->set_uuid2 == sb2->set_uuid2) &&
382 (sb1->set_uuid3 == sb2->set_uuid3))
390 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
393 mdp_super_t *tmp1, *tmp2;
395 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
396 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
398 if (!tmp1 || !tmp2) {
400 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
408 * nr_disks is not constant
413 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
427 static unsigned int calc_sb_csum(mdp_super_t * sb)
429 unsigned int disk_csum, csum;
431 disk_csum = sb->sb_csum;
433 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
434 sb->sb_csum = disk_csum;
440 * Handle superblock details.
441 * We want to be able to handle multiple superblock formats
442 * so we have a common interface to them all, and an array of
443 * different handlers.
444 * We rely on user-space to write the initial superblock, and support
445 * reading and updating of superblocks.
446 * Interface methods are:
447 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
448 * loads and validates a superblock on dev.
449 * if refdev != NULL, compare superblocks on both devices
451 * 0 - dev has a superblock that is compatible with refdev
452 * 1 - dev has a superblock that is compatible and newer than refdev
453 * so dev should be used as the refdev in future
454 * -EINVAL superblock incompatible or invalid
455 * -othererror e.g. -EIO
457 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
458 * Verify that dev is acceptable into mddev.
459 * The first time, mddev->raid_disks will be 0, and data from
460 * dev should be merged in. Subsequent calls check that dev
461 * is new enough. Return 0 or -EINVAL
463 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
464 * Update the superblock for rdev with data in mddev
465 * This does not write to disc.
471 struct module *owner;
472 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
473 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
474 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
478 * load_super for 0.90.0
480 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
482 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
488 * Calculate the position of the superblock,
489 * it's at the end of the disk.
491 * It also happens to be a multiple of 4Kb.
493 sb_offset = calc_dev_sboffset(rdev->bdev);
494 rdev->sb_offset = sb_offset;
496 ret = read_disk_sb(rdev);
501 bdevname(rdev->bdev, b);
502 sb = (mdp_super_t*)page_address(rdev->sb_page);
504 if (sb->md_magic != MD_SB_MAGIC) {
505 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
510 if (sb->major_version != 0 ||
511 sb->minor_version != 90) {
512 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
513 sb->major_version, sb->minor_version,
518 if (sb->raid_disks <= 0)
521 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
522 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
527 rdev->preferred_minor = sb->md_minor;
528 rdev->data_offset = 0;
530 if (sb->level == LEVEL_MULTIPATH)
533 rdev->desc_nr = sb->this_disk.number;
539 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
540 if (!uuid_equal(refsb, sb)) {
541 printk(KERN_WARNING "md: %s has different UUID to %s\n",
542 b, bdevname(refdev->bdev,b2));
545 if (!sb_equal(refsb, sb)) {
546 printk(KERN_WARNING "md: %s has same UUID"
547 " but different superblock to %s\n",
548 b, bdevname(refdev->bdev, b2));
552 ev2 = md_event(refsb);
558 rdev->size = calc_dev_size(rdev, sb->chunk_size);
565 * validate_super for 0.90.0
567 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
570 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
572 if (mddev->raid_disks == 0) {
573 mddev->major_version = 0;
574 mddev->minor_version = sb->minor_version;
575 mddev->patch_version = sb->patch_version;
576 mddev->persistent = ! sb->not_persistent;
577 mddev->chunk_size = sb->chunk_size;
578 mddev->ctime = sb->ctime;
579 mddev->utime = sb->utime;
580 mddev->level = sb->level;
581 mddev->layout = sb->layout;
582 mddev->raid_disks = sb->raid_disks;
583 mddev->size = sb->size;
584 mddev->events = md_event(sb);
586 if (sb->state & (1<<MD_SB_CLEAN))
587 mddev->recovery_cp = MaxSector;
589 if (sb->events_hi == sb->cp_events_hi &&
590 sb->events_lo == sb->cp_events_lo) {
591 mddev->recovery_cp = sb->recovery_cp;
593 mddev->recovery_cp = 0;
596 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
597 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
598 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
599 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
601 mddev->max_disks = MD_SB_DISKS;
606 if (ev1 < mddev->events)
609 if (mddev->level != LEVEL_MULTIPATH) {
610 rdev->raid_disk = -1;
611 rdev->in_sync = rdev->faulty = 0;
612 desc = sb->disks + rdev->desc_nr;
614 if (desc->state & (1<<MD_DISK_FAULTY))
616 else if (desc->state & (1<<MD_DISK_SYNC) &&
617 desc->raid_disk < mddev->raid_disks) {
619 rdev->raid_disk = desc->raid_disk;
626 * sync_super for 0.90.0
628 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
631 struct list_head *tmp;
633 int next_spare = mddev->raid_disks;
635 /* make rdev->sb match mddev data..
638 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
639 * 3/ any empty disks < next_spare become removed
641 * disks[0] gets initialised to REMOVED because
642 * we cannot be sure from other fields if it has
643 * been initialised or not.
646 int active=0, working=0,failed=0,spare=0,nr_disks=0;
648 sb = (mdp_super_t*)page_address(rdev->sb_page);
650 memset(sb, 0, sizeof(*sb));
652 sb->md_magic = MD_SB_MAGIC;
653 sb->major_version = mddev->major_version;
654 sb->minor_version = mddev->minor_version;
655 sb->patch_version = mddev->patch_version;
656 sb->gvalid_words = 0; /* ignored */
657 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
658 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
659 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
660 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
662 sb->ctime = mddev->ctime;
663 sb->level = mddev->level;
664 sb->size = mddev->size;
665 sb->raid_disks = mddev->raid_disks;
666 sb->md_minor = mddev->md_minor;
667 sb->not_persistent = !mddev->persistent;
668 sb->utime = mddev->utime;
670 sb->events_hi = (mddev->events>>32);
671 sb->events_lo = (u32)mddev->events;
675 sb->recovery_cp = mddev->recovery_cp;
676 sb->cp_events_hi = (mddev->events>>32);
677 sb->cp_events_lo = (u32)mddev->events;
678 if (mddev->recovery_cp == MaxSector)
679 sb->state = (1<< MD_SB_CLEAN);
683 sb->layout = mddev->layout;
684 sb->chunk_size = mddev->chunk_size;
686 sb->disks[0].state = (1<<MD_DISK_REMOVED);
687 ITERATE_RDEV(mddev,rdev2,tmp) {
689 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
690 rdev2->desc_nr = rdev2->raid_disk;
692 rdev2->desc_nr = next_spare++;
693 d = &sb->disks[rdev2->desc_nr];
695 d->number = rdev2->desc_nr;
696 d->major = MAJOR(rdev2->bdev->bd_dev);
697 d->minor = MINOR(rdev2->bdev->bd_dev);
698 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
699 d->raid_disk = rdev2->raid_disk;
701 d->raid_disk = rdev2->desc_nr; /* compatibility */
703 d->state = (1<<MD_DISK_FAULTY);
705 } else if (rdev2->in_sync) {
706 d->state = (1<<MD_DISK_ACTIVE);
707 d->state |= (1<<MD_DISK_SYNC);
717 /* now set the "removed" and "faulty" bits on any missing devices */
718 for (i=0 ; i < mddev->raid_disks ; i++) {
719 mdp_disk_t *d = &sb->disks[i];
720 if (d->state == 0 && d->number == 0) {
723 d->state = (1<<MD_DISK_REMOVED);
724 d->state |= (1<<MD_DISK_FAULTY);
728 sb->nr_disks = nr_disks;
729 sb->active_disks = active;
730 sb->working_disks = working;
731 sb->failed_disks = failed;
732 sb->spare_disks = spare;
734 sb->this_disk = sb->disks[rdev->desc_nr];
735 sb->sb_csum = calc_sb_csum(sb);
739 * version 1 superblock
742 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
744 unsigned int disk_csum, csum;
745 unsigned long long newcsum;
746 int size = 256 + le32_to_cpu(sb->max_dev)*2;
747 unsigned int *isuper = (unsigned int*)sb;
750 disk_csum = sb->sb_csum;
753 for (i=0; size>=4; size -= 4 )
754 newcsum += le32_to_cpu(*isuper++);
757 newcsum += le16_to_cpu(*(unsigned short*) isuper);
759 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
760 sb->sb_csum = disk_csum;
761 return cpu_to_le32(csum);
764 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
766 struct mdp_superblock_1 *sb;
769 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
772 * Calculate the position of the superblock.
773 * It is always aligned to a 4K boundary and
774 * depeding on minor_version, it can be:
775 * 0: At least 8K, but less than 12K, from end of device
776 * 1: At start of device
777 * 2: 4K from start of device.
779 switch(minor_version) {
781 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
783 sb_offset &= ~(4*2-1);
784 /* convert from sectors to K */
796 rdev->sb_offset = sb_offset;
798 ret = read_disk_sb(rdev);
802 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
804 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
805 sb->major_version != cpu_to_le32(1) ||
806 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
807 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
808 sb->feature_map != 0)
811 if (calc_sb_1_csum(sb) != sb->sb_csum) {
812 printk("md: invalid superblock checksum on %s\n",
813 bdevname(rdev->bdev,b));
816 if (le64_to_cpu(sb->data_size) < 10) {
817 printk("md: data_size too small on %s\n",
818 bdevname(rdev->bdev,b));
821 rdev->preferred_minor = 0xffff;
822 rdev->data_offset = le64_to_cpu(sb->data_offset);
828 struct mdp_superblock_1 *refsb =
829 (struct mdp_superblock_1*)page_address(refdev->sb_page);
831 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
832 sb->level != refsb->level ||
833 sb->layout != refsb->layout ||
834 sb->chunksize != refsb->chunksize) {
835 printk(KERN_WARNING "md: %s has strangely different"
836 " superblock to %s\n",
837 bdevname(rdev->bdev,b),
838 bdevname(refdev->bdev,b2));
841 ev1 = le64_to_cpu(sb->events);
842 ev2 = le64_to_cpu(refsb->events);
848 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
850 rdev->size = rdev->sb_offset;
851 if (rdev->size < le64_to_cpu(sb->data_size)/2)
853 rdev->size = le64_to_cpu(sb->data_size)/2;
854 if (le32_to_cpu(sb->chunksize))
855 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
859 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
861 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
863 if (mddev->raid_disks == 0) {
864 mddev->major_version = 1;
865 mddev->patch_version = 0;
866 mddev->persistent = 1;
867 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
868 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
869 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
870 mddev->level = le32_to_cpu(sb->level);
871 mddev->layout = le32_to_cpu(sb->layout);
872 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
873 mddev->size = le64_to_cpu(sb->size)/2;
874 mddev->events = le64_to_cpu(sb->events);
876 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
877 memcpy(mddev->uuid, sb->set_uuid, 16);
879 mddev->max_disks = (4096-256)/2;
882 ev1 = le64_to_cpu(sb->events);
884 if (ev1 < mddev->events)
888 if (mddev->level != LEVEL_MULTIPATH) {
890 rdev->desc_nr = le32_to_cpu(sb->dev_number);
891 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
893 case 0xffff: /* spare */
896 rdev->raid_disk = -1;
898 case 0xfffe: /* faulty */
901 rdev->raid_disk = -1;
906 rdev->raid_disk = role;
913 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
915 struct mdp_superblock_1 *sb;
916 struct list_head *tmp;
919 /* make rdev->sb match mddev and rdev data. */
921 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
925 memset(sb->pad1, 0, sizeof(sb->pad1));
926 memset(sb->pad2, 0, sizeof(sb->pad2));
927 memset(sb->pad3, 0, sizeof(sb->pad3));
929 sb->utime = cpu_to_le64((__u64)mddev->utime);
930 sb->events = cpu_to_le64(mddev->events);
932 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
934 sb->resync_offset = cpu_to_le64(0);
937 ITERATE_RDEV(mddev,rdev2,tmp)
938 if (rdev2->desc_nr+1 > max_dev)
939 max_dev = rdev2->desc_nr+1;
941 sb->max_dev = cpu_to_le32(max_dev);
942 for (i=0; i<max_dev;i++)
943 sb->dev_roles[i] = cpu_to_le16(0xfffe);
945 ITERATE_RDEV(mddev,rdev2,tmp) {
948 sb->dev_roles[i] = cpu_to_le16(0xfffe);
949 else if (rdev2->in_sync)
950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
952 sb->dev_roles[i] = cpu_to_le16(0xffff);
955 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
956 sb->sb_csum = calc_sb_1_csum(sb);
960 struct super_type super_types[] = {
963 .owner = THIS_MODULE,
964 .load_super = super_90_load,
965 .validate_super = super_90_validate,
966 .sync_super = super_90_sync,
970 .owner = THIS_MODULE,
971 .load_super = super_1_load,
972 .validate_super = super_1_validate,
973 .sync_super = super_1_sync,
977 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
979 struct list_head *tmp;
982 ITERATE_RDEV(mddev,rdev,tmp)
983 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
989 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
991 struct list_head *tmp;
994 ITERATE_RDEV(mddev1,rdev,tmp)
995 if (match_dev_unit(mddev2, rdev))
1001 static LIST_HEAD(pending_raid_disks);
1003 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1005 mdk_rdev_t *same_pdev;
1006 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1012 same_pdev = match_dev_unit(mddev, rdev);
1015 "%s: WARNING: %s appears to be on the same physical"
1016 " disk as %s. True\n protection against single-disk"
1017 " failure might be compromised.\n",
1018 mdname(mddev), bdevname(rdev->bdev,b),
1019 bdevname(same_pdev->bdev,b2));
1021 /* Verify rdev->desc_nr is unique.
1022 * If it is -1, assign a free number, else
1023 * check number is not in use
1025 if (rdev->desc_nr < 0) {
1027 if (mddev->pers) choice = mddev->raid_disks;
1028 while (find_rdev_nr(mddev, choice))
1030 rdev->desc_nr = choice;
1032 if (find_rdev_nr(mddev, rdev->desc_nr))
1036 list_add(&rdev->same_set, &mddev->disks);
1037 rdev->mddev = mddev;
1038 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1042 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1044 char b[BDEVNAME_SIZE];
1049 list_del_init(&rdev->same_set);
1050 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1055 * prevent the device from being mounted, repartitioned or
1056 * otherwise reused by a RAID array (or any other kernel
1057 * subsystem), by bd_claiming the device.
1059 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1062 struct block_device *bdev;
1063 char b[BDEVNAME_SIZE];
1065 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1067 printk(KERN_ERR "md: could not open %s.\n",
1068 __bdevname(dev, b));
1069 return PTR_ERR(bdev);
1071 err = bd_claim(bdev, rdev);
1073 printk(KERN_ERR "md: could not bd_claim %s.\n",
1082 static void unlock_rdev(mdk_rdev_t *rdev)
1084 struct block_device *bdev = rdev->bdev;
1092 void md_autodetect_dev(dev_t dev);
1094 static void export_rdev(mdk_rdev_t * rdev)
1096 char b[BDEVNAME_SIZE];
1097 printk(KERN_INFO "md: export_rdev(%s)\n",
1098 bdevname(rdev->bdev,b));
1102 list_del_init(&rdev->same_set);
1104 md_autodetect_dev(rdev->bdev->bd_dev);
1110 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1112 unbind_rdev_from_array(rdev);
1116 static void export_array(mddev_t *mddev)
1118 struct list_head *tmp;
1121 ITERATE_RDEV(mddev,rdev,tmp) {
1126 kick_rdev_from_array(rdev);
1128 if (!list_empty(&mddev->disks))
1130 mddev->raid_disks = 0;
1131 mddev->major_version = 0;
1134 static void print_desc(mdp_disk_t *desc)
1136 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1137 desc->major,desc->minor,desc->raid_disk,desc->state);
1140 static void print_sb(mdp_super_t *sb)
1145 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1146 sb->major_version, sb->minor_version, sb->patch_version,
1147 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1149 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1150 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1151 sb->md_minor, sb->layout, sb->chunk_size);
1152 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1153 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1154 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1155 sb->failed_disks, sb->spare_disks,
1156 sb->sb_csum, (unsigned long)sb->events_lo);
1159 for (i = 0; i < MD_SB_DISKS; i++) {
1162 desc = sb->disks + i;
1163 if (desc->number || desc->major || desc->minor ||
1164 desc->raid_disk || (desc->state && (desc->state != 4))) {
1165 printk(" D %2d: ", i);
1169 printk(KERN_INFO "md: THIS: ");
1170 print_desc(&sb->this_disk);
1174 static void print_rdev(mdk_rdev_t *rdev)
1176 char b[BDEVNAME_SIZE];
1177 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1178 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1179 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1180 if (rdev->sb_loaded) {
1181 printk(KERN_INFO "md: rdev superblock:\n");
1182 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1184 printk(KERN_INFO "md: no rdev superblock!\n");
1187 void md_print_devices(void)
1189 struct list_head *tmp, *tmp2;
1192 char b[BDEVNAME_SIZE];
1195 printk("md: **********************************\n");
1196 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1197 printk("md: **********************************\n");
1198 ITERATE_MDDEV(mddev,tmp) {
1199 printk("%s: ", mdname(mddev));
1201 ITERATE_RDEV(mddev,rdev,tmp2)
1202 printk("<%s>", bdevname(rdev->bdev,b));
1205 ITERATE_RDEV(mddev,rdev,tmp2)
1208 printk("md: **********************************\n");
1213 static int write_disk_sb(mdk_rdev_t * rdev)
1215 char b[BDEVNAME_SIZE];
1216 if (!rdev->sb_loaded) {
1225 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1226 bdevname(rdev->bdev,b),
1227 (unsigned long long)rdev->sb_offset);
1229 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1232 printk("md: write_disk_sb failed for device %s\n",
1233 bdevname(rdev->bdev,b));
1237 static void sync_sbs(mddev_t * mddev)
1240 struct list_head *tmp;
1242 ITERATE_RDEV(mddev,rdev,tmp) {
1243 super_types[mddev->major_version].
1244 sync_super(mddev, rdev);
1245 rdev->sb_loaded = 1;
1249 static void md_update_sb(mddev_t * mddev)
1251 int err, count = 100;
1252 struct list_head *tmp;
1255 mddev->sb_dirty = 0;
1257 mddev->utime = get_seconds();
1260 if (!mddev->events) {
1262 * oops, this 64-bit counter should never wrap.
1263 * Either we are in around ~1 trillion A.C., assuming
1264 * 1 reboot per second, or we have a bug:
1272 * do not write anything to disk if using
1273 * nonpersistent superblocks
1275 if (!mddev->persistent)
1279 "md: updating %s RAID superblock on device (in sync %d)\n",
1280 mdname(mddev),mddev->in_sync);
1283 ITERATE_RDEV(mddev,rdev,tmp) {
1284 char b[BDEVNAME_SIZE];
1285 dprintk(KERN_INFO "md: ");
1287 dprintk("(skipping faulty ");
1289 dprintk("%s ", bdevname(rdev->bdev,b));
1290 if (!rdev->faulty) {
1291 err += write_disk_sb(rdev);
1294 if (!err && mddev->level == LEVEL_MULTIPATH)
1295 /* only need to write one superblock... */
1300 printk(KERN_ERR "md: errors occurred during superblock"
1301 " update, repeating\n");
1305 "md: excessive errors occurred during superblock update, exiting\n");
1310 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1312 * mark the device faulty if:
1314 * - the device is nonexistent (zero size)
1315 * - the device has no valid superblock
1317 * a faulty rdev _never_ has rdev->sb set.
1319 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1321 char b[BDEVNAME_SIZE];
1326 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1328 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1329 return ERR_PTR(-ENOMEM);
1331 memset(rdev, 0, sizeof(*rdev));
1333 if ((err = alloc_disk_sb(rdev)))
1336 err = lock_rdev(rdev, newdev);
1343 rdev->data_offset = 0;
1344 atomic_set(&rdev->nr_pending, 0);
1346 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1349 "md: %s has zero or unknown size, marking faulty!\n",
1350 bdevname(rdev->bdev,b));
1355 if (super_format >= 0) {
1356 err = super_types[super_format].
1357 load_super(rdev, NULL, super_minor);
1358 if (err == -EINVAL) {
1360 "md: %s has invalid sb, not importing!\n",
1361 bdevname(rdev->bdev,b));
1366 "md: could not read %s's sb, not importing!\n",
1367 bdevname(rdev->bdev,b));
1371 INIT_LIST_HEAD(&rdev->same_set);
1376 if (rdev->sb_page) {
1382 return ERR_PTR(err);
1386 * Check a full RAID array for plausibility
1390 static int analyze_sbs(mddev_t * mddev)
1393 struct list_head *tmp;
1394 mdk_rdev_t *rdev, *freshest;
1395 char b[BDEVNAME_SIZE];
1398 ITERATE_RDEV(mddev,rdev,tmp)
1399 switch (super_types[mddev->major_version].
1400 load_super(rdev, freshest, mddev->minor_version)) {
1408 "md: fatal superblock inconsistency in %s"
1409 " -- removing from array\n",
1410 bdevname(rdev->bdev,b));
1411 kick_rdev_from_array(rdev);
1415 super_types[mddev->major_version].
1416 validate_super(mddev, freshest);
1419 ITERATE_RDEV(mddev,rdev,tmp) {
1420 if (rdev != freshest)
1421 if (super_types[mddev->major_version].
1422 validate_super(mddev, rdev)) {
1423 printk(KERN_WARNING "md: kicking non-fresh %s"
1425 bdevname(rdev->bdev,b));
1426 kick_rdev_from_array(rdev);
1429 if (mddev->level == LEVEL_MULTIPATH) {
1430 rdev->desc_nr = i++;
1431 rdev->raid_disk = rdev->desc_nr;
1438 if (mddev->recovery_cp != MaxSector &&
1440 printk(KERN_ERR "md: %s: raid array is not clean"
1441 " -- starting background reconstruction\n",
1449 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1451 static DECLARE_MUTEX(disks_sem);
1452 mddev_t *mddev = mddev_find(dev);
1453 struct gendisk *disk;
1454 int partitioned = (MAJOR(dev) != MD_MAJOR);
1455 int shift = partitioned ? MdpMinorShift : 0;
1456 int unit = MINOR(dev) >> shift;
1462 if (mddev->gendisk) {
1467 disk = alloc_disk(1 << shift);
1473 disk->major = MAJOR(dev);
1474 disk->first_minor = unit << shift;
1476 sprintf(disk->disk_name, "md_d%d", unit);
1477 sprintf(disk->devfs_name, "md/d%d", unit);
1479 sprintf(disk->disk_name, "md%d", unit);
1480 sprintf(disk->devfs_name, "md/%d", unit);
1482 disk->fops = &md_fops;
1483 disk->private_data = mddev;
1484 disk->queue = mddev->queue;
1486 mddev->gendisk = disk;
1491 void md_wakeup_thread(mdk_thread_t *thread);
1493 static void md_safemode_timeout(unsigned long data)
1495 mddev_t *mddev = (mddev_t *) data;
1497 mddev->safemode = 1;
1498 md_wakeup_thread(mddev->thread);
1502 static int do_md_run(mddev_t * mddev)
1506 struct list_head *tmp;
1508 struct gendisk *disk;
1509 char b[BDEVNAME_SIZE];
1511 if (list_empty(&mddev->disks)) {
1520 * Analyze all RAID superblock(s)
1522 if (!mddev->raid_disks && analyze_sbs(mddev)) {
1527 chunk_size = mddev->chunk_size;
1528 pnum = level_to_pers(mddev->level);
1530 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1533 * 'default chunksize' in the old md code used to
1534 * be PAGE_SIZE, baaad.
1535 * we abort here to be on the safe side. We don't
1536 * want to continue the bad practice.
1539 "no chunksize specified, see 'man raidtab'\n");
1542 if (chunk_size > MAX_CHUNK_SIZE) {
1543 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1544 chunk_size, MAX_CHUNK_SIZE);
1548 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1550 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1554 if (chunk_size < PAGE_SIZE) {
1555 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1556 chunk_size, PAGE_SIZE);
1560 /* devices must have minimum size of one chunk */
1561 ITERATE_RDEV(mddev,rdev,tmp) {
1564 if (rdev->size < chunk_size / 1024) {
1566 "md: Dev %s smaller than chunk_size:"
1568 bdevname(rdev->bdev,b),
1569 (unsigned long long)rdev->size,
1576 if (pnum >= MAX_PERSONALITY) {
1584 request_module("md-personality-%d", pnum);
1589 * Drop all container device buffers, from now on
1590 * the only valid external interface is through the md
1592 * Also find largest hardsector size
1594 ITERATE_RDEV(mddev,rdev,tmp) {
1597 sync_blockdev(rdev->bdev);
1598 invalidate_bdev(rdev->bdev, 0);
1601 md_probe(mddev->unit, NULL, NULL);
1602 disk = mddev->gendisk;
1606 spin_lock(&pers_lock);
1607 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1608 spin_unlock(&pers_lock);
1609 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1614 mddev->pers = pers[pnum];
1615 spin_unlock(&pers_lock);
1617 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1619 err = mddev->pers->run(mddev);
1621 printk(KERN_ERR "md: pers->run() failed ...\n");
1622 module_put(mddev->pers->owner);
1626 atomic_set(&mddev->writes_pending,0);
1627 mddev->safemode = 0;
1628 mddev->safemode_timer.function = md_safemode_timeout;
1629 mddev->safemode_timer.data = (unsigned long) mddev;
1630 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1633 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1635 if (mddev->sb_dirty)
1636 md_update_sb(mddev);
1638 set_capacity(disk, mddev->array_size<<1);
1640 /* If we call blk_queue_make_request here, it will
1641 * re-initialise max_sectors etc which may have been
1642 * refined inside -> run. So just set the bits we need to set.
1643 * Most initialisation happended when we called
1644 * blk_queue_make_request(..., md_fail_request)
1647 mddev->queue->queuedata = mddev;
1648 mddev->queue->make_request_fn = mddev->pers->make_request;
1654 static int restart_array(mddev_t *mddev)
1656 struct gendisk *disk = mddev->gendisk;
1660 * Complain if it has no devices
1663 if (list_empty(&mddev->disks))
1671 mddev->safemode = 0;
1673 set_disk_ro(disk, 0);
1675 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1678 * Kick recovery or resync if necessary
1680 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1681 md_wakeup_thread(mddev->thread);
1684 printk(KERN_ERR "md: %s has no personality assigned.\n",
1693 static int do_md_stop(mddev_t * mddev, int ro)
1696 struct gendisk *disk = mddev->gendisk;
1699 if (atomic_read(&mddev->active)>2) {
1700 printk("md: %s still in use.\n",mdname(mddev));
1704 if (mddev->sync_thread) {
1705 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1706 md_unregister_thread(mddev->sync_thread);
1707 mddev->sync_thread = NULL;
1710 del_timer_sync(&mddev->safemode_timer);
1712 invalidate_partition(disk, 0);
1721 set_disk_ro(disk, 0);
1722 blk_queue_make_request(mddev->queue, md_fail_request);
1723 mddev->pers->stop(mddev);
1724 module_put(mddev->pers->owner);
1729 if (!mddev->in_sync) {
1730 /* mark array as shutdown cleanly */
1732 md_update_sb(mddev);
1735 set_disk_ro(disk, 1);
1738 * Free resources if final stop
1741 struct gendisk *disk;
1742 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1744 export_array(mddev);
1746 mddev->array_size = 0;
1747 disk = mddev->gendisk;
1749 set_capacity(disk, 0);
1752 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1759 static void autorun_array(mddev_t *mddev)
1762 struct list_head *tmp;
1765 if (list_empty(&mddev->disks)) {
1770 printk(KERN_INFO "md: running: ");
1772 ITERATE_RDEV(mddev,rdev,tmp) {
1773 char b[BDEVNAME_SIZE];
1774 printk("<%s>", bdevname(rdev->bdev,b));
1778 err = do_md_run (mddev);
1780 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1781 do_md_stop (mddev, 0);
1786 * lets try to run arrays based on all disks that have arrived
1787 * until now. (those are in pending_raid_disks)
1789 * the method: pick the first pending disk, collect all disks with
1790 * the same UUID, remove all from the pending list and put them into
1791 * the 'same_array' list. Then order this list based on superblock
1792 * update time (freshest comes first), kick out 'old' disks and
1793 * compare superblocks. If everything's fine then run it.
1795 * If "unit" is allocated, then bump its reference count
1797 static void autorun_devices(int part)
1799 struct list_head candidates;
1800 struct list_head *tmp;
1801 mdk_rdev_t *rdev0, *rdev;
1803 char b[BDEVNAME_SIZE];
1805 printk(KERN_INFO "md: autorun ...\n");
1806 while (!list_empty(&pending_raid_disks)) {
1808 rdev0 = list_entry(pending_raid_disks.next,
1809 mdk_rdev_t, same_set);
1811 printk(KERN_INFO "md: considering %s ...\n",
1812 bdevname(rdev0->bdev,b));
1813 INIT_LIST_HEAD(&candidates);
1814 ITERATE_RDEV_PENDING(rdev,tmp)
1815 if (super_90_load(rdev, rdev0, 0) >= 0) {
1816 printk(KERN_INFO "md: adding %s ...\n",
1817 bdevname(rdev->bdev,b));
1818 list_move(&rdev->same_set, &candidates);
1821 * now we have a set of devices, with all of them having
1822 * mostly sane superblocks. It's time to allocate the
1825 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1826 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1827 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1831 dev = MKDEV(mdp_major,
1832 rdev0->preferred_minor << MdpMinorShift);
1834 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1836 md_probe(dev, NULL, NULL);
1837 mddev = mddev_find(dev);
1840 "md: cannot allocate memory for md drive.\n");
1843 if (mddev_lock(mddev))
1844 printk(KERN_WARNING "md: %s locked, cannot run\n",
1846 else if (mddev->raid_disks || mddev->major_version
1847 || !list_empty(&mddev->disks)) {
1849 "md: %s already running, cannot run %s\n",
1850 mdname(mddev), bdevname(rdev0->bdev,b));
1851 mddev_unlock(mddev);
1853 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1854 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1855 list_del_init(&rdev->same_set);
1856 if (bind_rdev_to_array(rdev, mddev))
1859 autorun_array(mddev);
1860 mddev_unlock(mddev);
1862 /* on success, candidates will be empty, on error
1865 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1869 printk(KERN_INFO "md: ... autorun DONE.\n");
1873 * import RAID devices based on one partition
1874 * if possible, the array gets run as well.
1877 static int autostart_array(dev_t startdev)
1879 char b[BDEVNAME_SIZE];
1880 int err = -EINVAL, i;
1881 mdp_super_t *sb = NULL;
1882 mdk_rdev_t *start_rdev = NULL, *rdev;
1884 start_rdev = md_import_device(startdev, 0, 0);
1885 if (IS_ERR(start_rdev))
1889 /* NOTE: this can only work for 0.90.0 superblocks */
1890 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1891 if (sb->major_version != 0 ||
1892 sb->minor_version != 90 ) {
1893 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1894 export_rdev(start_rdev);
1898 if (start_rdev->faulty) {
1900 "md: can not autostart based on faulty %s!\n",
1901 bdevname(start_rdev->bdev,b));
1902 export_rdev(start_rdev);
1905 list_add(&start_rdev->same_set, &pending_raid_disks);
1907 for (i = 0; i < MD_SB_DISKS; i++) {
1908 mdp_disk_t *desc = sb->disks + i;
1909 dev_t dev = MKDEV(desc->major, desc->minor);
1913 if (dev == startdev)
1915 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1917 rdev = md_import_device(dev, 0, 0);
1921 list_add(&rdev->same_set, &pending_raid_disks);
1925 * possibly return codes
1933 static int get_version(void __user * arg)
1937 ver.major = MD_MAJOR_VERSION;
1938 ver.minor = MD_MINOR_VERSION;
1939 ver.patchlevel = MD_PATCHLEVEL_VERSION;
1941 if (copy_to_user(arg, &ver, sizeof(ver)))
1947 static int get_array_info(mddev_t * mddev, void __user * arg)
1949 mdu_array_info_t info;
1950 int nr,working,active,failed,spare;
1952 struct list_head *tmp;
1954 nr=working=active=failed=spare=0;
1955 ITERATE_RDEV(mddev,rdev,tmp) {
1968 info.major_version = mddev->major_version;
1969 info.minor_version = mddev->minor_version;
1970 info.patch_version = MD_PATCHLEVEL_VERSION;
1971 info.ctime = mddev->ctime;
1972 info.level = mddev->level;
1973 info.size = mddev->size;
1975 info.raid_disks = mddev->raid_disks;
1976 info.md_minor = mddev->md_minor;
1977 info.not_persistent= !mddev->persistent;
1979 info.utime = mddev->utime;
1982 info.state = (1<<MD_SB_CLEAN);
1983 info.active_disks = active;
1984 info.working_disks = working;
1985 info.failed_disks = failed;
1986 info.spare_disks = spare;
1988 info.layout = mddev->layout;
1989 info.chunk_size = mddev->chunk_size;
1991 if (copy_to_user(arg, &info, sizeof(info)))
1997 static int get_disk_info(mddev_t * mddev, void __user * arg)
1999 mdu_disk_info_t info;
2003 if (copy_from_user(&info, arg, sizeof(info)))
2008 rdev = find_rdev_nr(mddev, nr);
2010 info.major = MAJOR(rdev->bdev->bd_dev);
2011 info.minor = MINOR(rdev->bdev->bd_dev);
2012 info.raid_disk = rdev->raid_disk;
2015 info.state |= (1<<MD_DISK_FAULTY);
2016 else if (rdev->in_sync) {
2017 info.state |= (1<<MD_DISK_ACTIVE);
2018 info.state |= (1<<MD_DISK_SYNC);
2021 info.major = info.minor = 0;
2022 info.raid_disk = -1;
2023 info.state = (1<<MD_DISK_REMOVED);
2026 if (copy_to_user(arg, &info, sizeof(info)))
2032 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2034 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2036 dev_t dev = MKDEV(info->major,info->minor);
2038 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2041 if (!mddev->raid_disks) {
2043 /* expecting a device which has a superblock */
2044 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2047 "md: md_import_device returned %ld\n",
2049 return PTR_ERR(rdev);
2051 if (!list_empty(&mddev->disks)) {
2052 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2053 mdk_rdev_t, same_set);
2054 int err = super_types[mddev->major_version]
2055 .load_super(rdev, rdev0, mddev->minor_version);
2058 "md: %s has different UUID to %s\n",
2059 bdevname(rdev->bdev,b),
2060 bdevname(rdev0->bdev,b2));
2065 err = bind_rdev_to_array(rdev, mddev);
2072 * add_new_disk can be used once the array is assembled
2073 * to add "hot spares". They must already have a superblock
2078 if (!mddev->pers->hot_add_disk) {
2080 "%s: personality does not support diskops!\n",
2084 rdev = md_import_device(dev, mddev->major_version,
2085 mddev->minor_version);
2088 "md: md_import_device returned %ld\n",
2090 return PTR_ERR(rdev);
2092 rdev->in_sync = 0; /* just to be sure */
2093 rdev->raid_disk = -1;
2094 err = bind_rdev_to_array(rdev, mddev);
2098 md_wakeup_thread(mddev->thread);
2102 /* otherwise, add_new_disk is only allowed
2103 * for major_version==0 superblocks
2105 if (mddev->major_version != 0) {
2106 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2111 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2113 rdev = md_import_device (dev, -1, 0);
2116 "md: error, md_import_device() returned %ld\n",
2118 return PTR_ERR(rdev);
2120 rdev->desc_nr = info->number;
2121 if (info->raid_disk < mddev->raid_disks)
2122 rdev->raid_disk = info->raid_disk;
2124 rdev->raid_disk = -1;
2127 if (rdev->raid_disk < mddev->raid_disks)
2128 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2132 err = bind_rdev_to_array(rdev, mddev);
2138 if (!mddev->persistent) {
2139 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2140 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2142 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2143 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2145 if (!mddev->size || (mddev->size > rdev->size))
2146 mddev->size = rdev->size;
2152 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2154 char b[BDEVNAME_SIZE];
2160 rdev = find_rdev(mddev, dev);
2164 if (rdev->raid_disk >= 0)
2167 kick_rdev_from_array(rdev);
2168 md_update_sb(mddev);
2172 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2173 bdevname(rdev->bdev,b), mdname(mddev));
2177 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2179 char b[BDEVNAME_SIZE];
2187 if (mddev->major_version != 0) {
2188 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2189 " version-0 superblocks.\n",
2193 if (!mddev->pers->hot_add_disk) {
2195 "%s: personality does not support diskops!\n",
2200 rdev = md_import_device (dev, -1, 0);
2203 "md: error, md_import_device() returned %ld\n",
2208 if (mddev->persistent)
2209 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2212 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2214 size = calc_dev_size(rdev, mddev->chunk_size);
2217 if (size < mddev->size) {
2219 "%s: disk size %llu blocks < array size %llu\n",
2220 mdname(mddev), (unsigned long long)size,
2221 (unsigned long long)mddev->size);
2228 "md: can not hot-add faulty %s disk to %s!\n",
2229 bdevname(rdev->bdev,b), mdname(mddev));
2235 bind_rdev_to_array(rdev, mddev);
2238 * The rest should better be atomic, we can have disk failures
2239 * noticed in interrupt contexts ...
2242 if (rdev->desc_nr == mddev->max_disks) {
2243 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2246 goto abort_unbind_export;
2249 rdev->raid_disk = -1;
2251 md_update_sb(mddev);
2254 * Kick recovery, maybe this spare has to be added to the
2255 * array immediately.
2257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2258 md_wakeup_thread(mddev->thread);
2262 abort_unbind_export:
2263 unbind_rdev_from_array(rdev);
2271 * set_array_info is used two different ways
2272 * The original usage is when creating a new array.
2273 * In this usage, raid_disks is > 0 and it together with
2274 * level, size, not_persistent,layout,chunksize determine the
2275 * shape of the array.
2276 * This will always create an array with a type-0.90.0 superblock.
2277 * The newer usage is when assembling an array.
2278 * In this case raid_disks will be 0, and the major_version field is
2279 * use to determine which style super-blocks are to be found on the devices.
2280 * The minor and patch _version numbers are also kept incase the
2281 * super_block handler wishes to interpret them.
2283 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2286 if (info->raid_disks == 0) {
2287 /* just setting version number for superblock loading */
2288 if (info->major_version < 0 ||
2289 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2290 super_types[info->major_version].name == NULL) {
2291 /* maybe try to auto-load a module? */
2293 "md: superblock version %d not known\n",
2294 info->major_version);
2297 mddev->major_version = info->major_version;
2298 mddev->minor_version = info->minor_version;
2299 mddev->patch_version = info->patch_version;
2302 mddev->major_version = MD_MAJOR_VERSION;
2303 mddev->minor_version = MD_MINOR_VERSION;
2304 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2305 mddev->ctime = get_seconds();
2307 mddev->level = info->level;
2308 mddev->size = info->size;
2309 mddev->raid_disks = info->raid_disks;
2310 /* don't set md_minor, it is determined by which /dev/md* was
2313 if (info->state & (1<<MD_SB_CLEAN))
2314 mddev->recovery_cp = MaxSector;
2316 mddev->recovery_cp = 0;
2317 mddev->persistent = ! info->not_persistent;
2319 mddev->layout = info->layout;
2320 mddev->chunk_size = info->chunk_size;
2322 mddev->max_disks = MD_SB_DISKS;
2324 mddev->sb_dirty = 1;
2327 * Generate a 128 bit UUID
2329 get_random_bytes(mddev->uuid, 16);
2335 * update_array_info is used to change the configuration of an
2337 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2338 * fields in the info are checked against the array.
2339 * Any differences that cannot be handled will cause an error.
2340 * Normally, only one change can be managed at a time.
2342 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2347 if (mddev->major_version != info->major_version ||
2348 mddev->minor_version != info->minor_version ||
2349 /* mddev->patch_version != info->patch_version || */
2350 mddev->ctime != info->ctime ||
2351 mddev->level != info->level ||
2352 /* mddev->layout != info->layout || */
2353 !mddev->persistent != info->not_persistent||
2354 mddev->chunk_size != info->chunk_size )
2356 /* Check there is only one change */
2357 if (mddev->size != info->size) cnt++;
2358 if (mddev->raid_disks != info->raid_disks) cnt++;
2359 if (mddev->layout != info->layout) cnt++;
2360 if (cnt == 0) return 0;
2361 if (cnt > 1) return -EINVAL;
2363 if (mddev->layout != info->layout) {
2365 * we don't need to do anything at the md level, the
2366 * personality will take care of it all.
2368 if (mddev->pers->reconfig == NULL)
2371 return mddev->pers->reconfig(mddev, info->layout, -1);
2373 if (mddev->size != info->size) {
2375 struct list_head *tmp;
2376 if (mddev->pers->resize == NULL)
2378 /* The "size" is the amount of each device that is used.
2379 * This can only make sense for arrays with redundancy.
2380 * linear and raid0 always use whatever space is available
2381 * We can only consider changing the size if no resync
2382 * or reconstruction is happening, and if the new size
2383 * is acceptable. It must fit before the sb_offset or,
2384 * if that is <data_offset, it must fit before the
2385 * size of each device.
2386 * If size is zero, we find the largest size that fits.
2388 if (mddev->sync_thread)
2390 ITERATE_RDEV(mddev,rdev,tmp) {
2392 int fit = (info->size == 0);
2393 if (rdev->sb_offset > rdev->data_offset)
2394 avail = (rdev->sb_offset*2) - rdev->data_offset;
2396 avail = get_capacity(rdev->bdev->bd_disk)
2397 - rdev->data_offset;
2398 if (fit && (info->size == 0 || info->size > avail/2))
2399 info->size = avail/2;
2400 if (avail < ((sector_t)info->size << 1))
2403 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2405 struct block_device *bdev;
2407 bdev = bdget_disk(mddev->gendisk, 0);
2409 down(&bdev->bd_inode->i_sem);
2410 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2411 up(&bdev->bd_inode->i_sem);
2416 if (mddev->raid_disks != info->raid_disks) {
2417 /* change the number of raid disks */
2418 if (mddev->pers->reshape == NULL)
2420 if (info->raid_disks <= 0 ||
2421 info->raid_disks >= mddev->max_disks)
2423 if (mddev->sync_thread)
2425 rv = mddev->pers->reshape(mddev, info->raid_disks);
2427 struct block_device *bdev;
2429 bdev = bdget_disk(mddev->gendisk, 0);
2431 down(&bdev->bd_inode->i_sem);
2432 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2433 up(&bdev->bd_inode->i_sem);
2438 md_update_sb(mddev);
2442 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2446 if (mddev->pers == NULL)
2449 rdev = find_rdev(mddev, dev);
2453 md_error(mddev, rdev);
2457 static int md_ioctl(struct inode *inode, struct file *file,
2458 unsigned int cmd, unsigned long arg)
2461 void __user *argp = (void __user *)arg;
2462 struct hd_geometry __user *loc = argp;
2463 mddev_t *mddev = NULL;
2465 if (!capable(CAP_SYS_ADMIN))
2469 * Commands dealing with the RAID driver but not any
2475 err = get_version(argp);
2478 case PRINT_RAID_DEBUG:
2486 autostart_arrays(arg);
2493 * Commands creating/starting a new array:
2496 mddev = inode->i_bdev->bd_disk->private_data;
2504 if (cmd == START_ARRAY) {
2505 /* START_ARRAY doesn't need to lock the array as autostart_array
2506 * does the locking, and it could even be a different array
2511 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2512 "This will not be supported beyond 2.6\n",
2513 current->comm, current->pid);
2516 err = autostart_array(new_decode_dev(arg));
2518 printk(KERN_WARNING "md: autostart failed!\n");
2524 err = mddev_lock(mddev);
2527 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2534 case SET_ARRAY_INFO:
2536 mdu_array_info_t info;
2538 memset(&info, 0, sizeof(info));
2539 else if (copy_from_user(&info, argp, sizeof(info))) {
2544 err = update_array_info(mddev, &info);
2546 printk(KERN_WARNING "md: couldn't update"
2547 " array info. %d\n", err);
2552 if (!list_empty(&mddev->disks)) {
2554 "md: array %s already has disks!\n",
2559 if (mddev->raid_disks) {
2561 "md: array %s already initialised!\n",
2566 err = set_array_info(mddev, &info);
2568 printk(KERN_WARNING "md: couldn't set"
2569 " array info. %d\n", err);
2579 * Commands querying/configuring an existing array:
2581 /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2582 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
2588 * Commands even a read-only array can execute:
2592 case GET_ARRAY_INFO:
2593 err = get_array_info(mddev, argp);
2597 err = get_disk_info(mddev, argp);
2600 case RESTART_ARRAY_RW:
2601 err = restart_array(mddev);
2605 err = do_md_stop (mddev, 0);
2609 err = do_md_stop (mddev, 1);
2613 * We have a problem here : there is no easy way to give a CHS
2614 * virtual geometry. We currently pretend that we have a 2 heads
2615 * 4 sectors (with a BIG number of cylinders...). This drives
2616 * dosfs just mad... ;-)
2623 err = put_user (2, (char __user *) &loc->heads);
2626 err = put_user (4, (char __user *) &loc->sectors);
2629 err = put_user(get_capacity(mddev->gendisk)/8,
2630 (short __user *) &loc->cylinders);
2633 err = put_user (get_start_sect(inode->i_bdev),
2634 (long __user *) &loc->start);
2639 * The remaining ioctls are changing the state of the
2640 * superblock, so we do not allow read-only arrays
2652 mdu_disk_info_t info;
2653 if (copy_from_user(&info, argp, sizeof(info)))
2656 err = add_new_disk(mddev, &info);
2660 case HOT_REMOVE_DISK:
2661 err = hot_remove_disk(mddev, new_decode_dev(arg));
2665 err = hot_add_disk(mddev, new_decode_dev(arg));
2668 case SET_DISK_FAULTY:
2669 err = set_disk_faulty(mddev, new_decode_dev(arg));
2673 err = do_md_run (mddev);
2677 if (_IOC_TYPE(cmd) == MD_MAJOR)
2678 printk(KERN_WARNING "md: %s(pid %d) used"
2679 " obsolete MD ioctl, upgrade your"
2680 " software to use new ictls.\n",
2681 current->comm, current->pid);
2688 mddev_unlock(mddev);
2698 static int md_open(struct inode *inode, struct file *file)
2701 * Succeed if we can lock the mddev, which confirms that
2702 * it isn't being stopped right now.
2704 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2707 if ((err = mddev_lock(mddev)))
2712 mddev_unlock(mddev);
2714 check_disk_change(inode->i_bdev);
2719 static int md_release(struct inode *inode, struct file * file)
2721 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2730 static int md_media_changed(struct gendisk *disk)
2732 mddev_t *mddev = disk->private_data;
2734 return mddev->changed;
2737 static int md_revalidate(struct gendisk *disk)
2739 mddev_t *mddev = disk->private_data;
2744 static struct block_device_operations md_fops =
2746 .owner = THIS_MODULE,
2748 .release = md_release,
2750 .media_changed = md_media_changed,
2751 .revalidate_disk= md_revalidate,
2754 int md_thread(void * arg)
2756 mdk_thread_t *thread = arg;
2764 daemonize(thread->name, mdname(thread->mddev));
2766 current->exit_signal = SIGCHLD;
2767 allow_signal(SIGKILL);
2768 thread->tsk = current;
2771 * md_thread is a 'system-thread', it's priority should be very
2772 * high. We avoid resource deadlocks individually in each
2773 * raid personality. (RAID5 does preallocation) We also use RR and
2774 * the very same RT priority as kswapd, thus we will never get
2775 * into a priority inversion deadlock.
2777 * we definitely have to have equal or higher priority than
2778 * bdflush, otherwise bdflush will deadlock if there are too
2779 * many dirty RAID5 blocks.
2783 complete(thread->event);
2784 while (thread->run) {
2785 void (*run)(mddev_t *);
2787 wait_event_interruptible(thread->wqueue,
2788 test_bit(THREAD_WAKEUP, &thread->flags));
2789 if (current->flags & PF_FREEZE)
2790 refrigerator(PF_FREEZE);
2792 clear_bit(THREAD_WAKEUP, &thread->flags);
2798 if (signal_pending(current))
2799 flush_signals(current);
2801 complete(thread->event);
2805 void md_wakeup_thread(mdk_thread_t *thread)
2808 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2809 set_bit(THREAD_WAKEUP, &thread->flags);
2810 wake_up(&thread->wqueue);
2814 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2817 mdk_thread_t *thread;
2819 struct completion event;
2821 thread = (mdk_thread_t *) kmalloc
2822 (sizeof(mdk_thread_t), GFP_KERNEL);
2826 memset(thread, 0, sizeof(mdk_thread_t));
2827 init_waitqueue_head(&thread->wqueue);
2829 init_completion(&event);
2830 thread->event = &event;
2832 thread->mddev = mddev;
2833 thread->name = name;
2834 ret = kernel_thread(md_thread, thread, 0);
2839 wait_for_completion(&event);
2843 static void md_interrupt_thread(mdk_thread_t *thread)
2849 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2850 send_sig(SIGKILL, thread->tsk, 1);
2853 void md_unregister_thread(mdk_thread_t *thread)
2855 struct completion event;
2857 init_completion(&event);
2859 thread->event = &event;
2861 thread->name = NULL;
2862 md_interrupt_thread(thread);
2863 wait_for_completion(&event);
2867 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2874 if (!rdev || rdev->faulty)
2877 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2879 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2880 __builtin_return_address(0),__builtin_return_address(1),
2881 __builtin_return_address(2),__builtin_return_address(3));
2883 if (!mddev->pers->error_handler)
2885 mddev->pers->error_handler(mddev,rdev);
2886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2887 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2888 md_wakeup_thread(mddev->thread);
2891 /* seq_file implementation /proc/mdstat */
2893 static void status_unused(struct seq_file *seq)
2897 struct list_head *tmp;
2899 seq_printf(seq, "unused devices: ");
2901 ITERATE_RDEV_PENDING(rdev,tmp) {
2902 char b[BDEVNAME_SIZE];
2904 seq_printf(seq, "%s ",
2905 bdevname(rdev->bdev,b));
2908 seq_printf(seq, "<none>");
2910 seq_printf(seq, "\n");
2914 static void status_resync(struct seq_file *seq, mddev_t * mddev)
2916 unsigned long max_blocks, resync, res, dt, db, rt;
2918 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
2920 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2921 max_blocks = mddev->resync_max_sectors >> 1;
2923 max_blocks = mddev->size;
2926 * Should not happen.
2932 res = (resync/1024)*1000/(max_blocks/1024 + 1);
2934 int i, x = res/50, y = 20-x;
2935 seq_printf(seq, "[");
2936 for (i = 0; i < x; i++)
2937 seq_printf(seq, "=");
2938 seq_printf(seq, ">");
2939 for (i = 0; i < y; i++)
2940 seq_printf(seq, ".");
2941 seq_printf(seq, "] ");
2943 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
2944 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
2945 "resync" : "recovery"),
2946 res/10, res % 10, resync, max_blocks);
2949 * We do not want to overflow, so the order of operands and
2950 * the * 100 / 100 trick are important. We do a +1 to be
2951 * safe against division by zero. We only estimate anyway.
2953 * dt: time from mark until now
2954 * db: blocks written from mark until now
2955 * rt: remaining time
2957 dt = ((jiffies - mddev->resync_mark) / HZ);
2959 db = resync - (mddev->resync_mark_cnt/2);
2960 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
2962 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
2964 seq_printf(seq, " speed=%ldK/sec", db/dt);
2967 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
2969 struct list_head *tmp;
2979 spin_lock(&all_mddevs_lock);
2980 list_for_each(tmp,&all_mddevs)
2982 mddev = list_entry(tmp, mddev_t, all_mddevs);
2984 spin_unlock(&all_mddevs_lock);
2987 spin_unlock(&all_mddevs_lock);
2989 return (void*)2;/* tail */
2993 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2995 struct list_head *tmp;
2996 mddev_t *next_mddev, *mddev = v;
3002 spin_lock(&all_mddevs_lock);
3004 tmp = all_mddevs.next;
3006 tmp = mddev->all_mddevs.next;
3007 if (tmp != &all_mddevs)
3008 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3010 next_mddev = (void*)2;
3013 spin_unlock(&all_mddevs_lock);
3021 static void md_seq_stop(struct seq_file *seq, void *v)
3025 if (mddev && v != (void*)1 && v != (void*)2)
3029 static int md_seq_show(struct seq_file *seq, void *v)
3033 struct list_head *tmp2;
3037 if (v == (void*)1) {
3038 seq_printf(seq, "Personalities : ");
3039 spin_lock(&pers_lock);
3040 for (i = 0; i < MAX_PERSONALITY; i++)
3042 seq_printf(seq, "[%s] ", pers[i]->name);
3044 spin_unlock(&pers_lock);
3045 seq_printf(seq, "\n");
3048 if (v == (void*)2) {
3053 if (mddev_lock(mddev)!=0)
3055 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3056 seq_printf(seq, "%s : %sactive", mdname(mddev),
3057 mddev->pers ? "" : "in");
3060 seq_printf(seq, " (read-only)");
3061 seq_printf(seq, " %s", mddev->pers->name);
3065 ITERATE_RDEV(mddev,rdev,tmp2) {
3066 char b[BDEVNAME_SIZE];
3067 seq_printf(seq, " %s[%d]",
3068 bdevname(rdev->bdev,b), rdev->desc_nr);
3070 seq_printf(seq, "(F)");
3076 if (!list_empty(&mddev->disks)) {
3078 seq_printf(seq, "\n %llu blocks",
3079 (unsigned long long)mddev->array_size);
3081 seq_printf(seq, "\n %llu blocks",
3082 (unsigned long long)size);
3086 mddev->pers->status (seq, mddev);
3087 seq_printf(seq, "\n ");
3088 if (mddev->curr_resync > 2)
3089 status_resync (seq, mddev);
3090 else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3091 seq_printf(seq, " resync=DELAYED");
3094 seq_printf(seq, "\n");
3096 mddev_unlock(mddev);
3101 static struct seq_operations md_seq_ops = {
3102 .start = md_seq_start,
3103 .next = md_seq_next,
3104 .stop = md_seq_stop,
3105 .show = md_seq_show,
3108 static int md_seq_open(struct inode *inode, struct file *file)
3112 error = seq_open(file, &md_seq_ops);
3116 static struct file_operations md_seq_fops = {
3117 .open = md_seq_open,
3119 .llseek = seq_lseek,
3120 .release = seq_release,
3123 int register_md_personality(int pnum, mdk_personality_t *p)
3125 if (pnum >= MAX_PERSONALITY) {
3127 "md: tried to install personality %s as nr %d, but max is %lu\n",
3128 p->name, pnum, MAX_PERSONALITY-1);
3132 spin_lock(&pers_lock);
3134 spin_unlock(&pers_lock);
3140 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3141 spin_unlock(&pers_lock);
3145 int unregister_md_personality(int pnum)
3147 if (pnum >= MAX_PERSONALITY) {
3152 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3153 spin_lock(&pers_lock);
3155 spin_unlock(&pers_lock);
3159 static int is_mddev_idle(mddev_t *mddev)
3162 struct list_head *tmp;
3164 unsigned long curr_events;
3167 ITERATE_RDEV(mddev,rdev,tmp) {
3168 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3169 curr_events = disk_stat_read(disk, read_sectors) +
3170 disk_stat_read(disk, write_sectors) -
3171 atomic_read(&disk->sync_io);
3172 /* Allow some slack between valud of curr_events and last_events,
3173 * as there are some uninteresting races.
3174 * Note: the following is an unsigned comparison.
3176 if ((curr_events - rdev->last_events + 32) > 64) {
3177 rdev->last_events = curr_events;
3184 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3186 /* another "blocks" (512byte) blocks have been synced */
3187 atomic_sub(blocks, &mddev->recovery_active);
3188 wake_up(&mddev->recovery_wait);
3190 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3191 md_wakeup_thread(mddev->thread);
3192 // stop recovery, signal do_sync ....
3197 void md_write_start(mddev_t *mddev)
3199 if (!atomic_read(&mddev->writes_pending)) {
3200 mddev_lock_uninterruptible(mddev);
3201 if (mddev->in_sync) {
3203 del_timer(&mddev->safemode_timer);
3204 md_update_sb(mddev);
3206 atomic_inc(&mddev->writes_pending);
3207 mddev_unlock(mddev);
3209 atomic_inc(&mddev->writes_pending);
3212 void md_write_end(mddev_t *mddev)
3214 if (atomic_dec_and_test(&mddev->writes_pending)) {
3215 if (mddev->safemode == 2)
3216 md_wakeup_thread(mddev->thread);
3218 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3222 static inline void md_enter_safemode(mddev_t *mddev)
3224 if (!mddev->safemode) return;
3225 if (mddev->safemode == 2 &&
3226 (atomic_read(&mddev->writes_pending) || mddev->in_sync ||
3227 mddev->recovery_cp != MaxSector))
3228 return; /* avoid the lock */
3229 mddev_lock_uninterruptible(mddev);
3230 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3231 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3233 md_update_sb(mddev);
3235 mddev_unlock(mddev);
3237 if (mddev->safemode == 1)
3238 mddev->safemode = 0;
3241 void md_handle_safemode(mddev_t *mddev)
3243 if (signal_pending(current)) {
3244 printk(KERN_INFO "md: %s in immediate safe mode\n",
3246 mddev->safemode = 2;
3247 flush_signals(current);
3249 md_enter_safemode(mddev);
3253 DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3255 #define SYNC_MARKS 10
3256 #define SYNC_MARK_STEP (3*HZ)
3257 static void md_do_sync(mddev_t *mddev)
3260 unsigned int currspeed = 0,
3262 sector_t max_sectors,j;
3263 unsigned long mark[SYNC_MARKS];
3264 sector_t mark_cnt[SYNC_MARKS];
3266 struct list_head *tmp;
3267 sector_t last_check;
3269 /* just incase thread restarts... */
3270 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3273 /* we overload curr_resync somewhat here.
3274 * 0 == not engaged in resync at all
3275 * 2 == checking that there is no conflict with another sync
3276 * 1 == like 2, but have yielded to allow conflicting resync to
3278 * other == active in resync - this many blocks
3280 * Before starting a resync we must have set curr_resync to
3281 * 2, and then checked that every "conflicting" array has curr_resync
3282 * less than ours. When we find one that is the same or higher
3283 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3284 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3285 * This will mean we have to start checking from the beginning again.
3290 mddev->curr_resync = 2;
3293 if (signal_pending(current)) {
3294 flush_signals(current);
3297 ITERATE_MDDEV(mddev2,tmp) {
3299 if (mddev2 == mddev)
3301 if (mddev2->curr_resync &&
3302 match_mddev_units(mddev,mddev2)) {
3304 if (mddev < mddev2 && mddev->curr_resync == 2) {
3305 /* arbitrarily yield */
3306 mddev->curr_resync = 1;
3307 wake_up(&resync_wait);
3309 if (mddev > mddev2 && mddev->curr_resync == 1)
3310 /* no need to wait here, we can wait the next
3311 * time 'round when curr_resync == 2
3314 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3315 if (!signal_pending(current)
3316 && mddev2->curr_resync >= mddev->curr_resync) {
3317 printk(KERN_INFO "md: delaying resync of %s"
3318 " until %s has finished resync (they"
3319 " share one or more physical units)\n",
3320 mdname(mddev), mdname(mddev2));
3323 finish_wait(&resync_wait, &wq);
3326 finish_wait(&resync_wait, &wq);
3329 } while (mddev->curr_resync < 2);
3331 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3332 /* resync follows the size requested by the personality,
3333 * which default to physical size, but can be virtual size
3335 max_sectors = mddev->resync_max_sectors;
3337 /* recovery follows the physical size of devices */
3338 max_sectors = mddev->size << 1;
3340 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3341 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3342 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3343 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3344 "(but not more than %d KB/sec) for reconstruction.\n",
3345 sysctl_speed_limit_max);
3347 is_mddev_idle(mddev); /* this also initializes IO event counters */
3348 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3349 j = mddev->recovery_cp;
3352 for (m = 0; m < SYNC_MARKS; m++) {
3357 mddev->resync_mark = mark[last_mark];
3358 mddev->resync_mark_cnt = mark_cnt[last_mark];
3361 * Tune reconstruction:
3363 window = 32*(PAGE_SIZE/512);
3364 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3365 window/2,(unsigned long long) max_sectors/2);
3367 atomic_set(&mddev->recovery_active, 0);
3368 init_waitqueue_head(&mddev->recovery_wait);
3373 "md: resuming recovery of %s from checkpoint.\n",
3375 mddev->curr_resync = j;
3378 while (j < max_sectors) {
3381 sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
3383 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3386 atomic_add(sectors, &mddev->recovery_active);
3388 if (j>1) mddev->curr_resync = j;
3390 if (last_check + window > j || j == max_sectors)
3395 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3396 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3400 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3402 int next = (last_mark+1) % SYNC_MARKS;
3404 mddev->resync_mark = mark[next];
3405 mddev->resync_mark_cnt = mark_cnt[next];
3406 mark[next] = jiffies;
3407 mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
3412 if (signal_pending(current)) {
3414 * got a signal, exit.
3417 "md: md_do_sync() got signal ... exiting\n");
3418 flush_signals(current);
3419 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3424 * this loop exits only if either when we are slower than
3425 * the 'hard' speed limit, or the system was IO-idle for
3427 * the system might be non-idle CPU-wise, but we only care
3428 * about not overloading the IO subsystem. (things like an
3429 * e2fsck being done on the RAID array should execute fast)
3431 mddev->queue->unplug_fn(mddev->queue);
3434 currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
3436 if (currspeed > sysctl_speed_limit_min) {
3437 if ((currspeed > sysctl_speed_limit_max) ||
3438 !is_mddev_idle(mddev)) {
3439 msleep_interruptible(250);
3444 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3446 * this also signals 'finished resyncing' to md_stop
3449 mddev->queue->unplug_fn(mddev->queue);
3451 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3453 /* tell personality that we are finished */
3454 mddev->pers->sync_request(mddev, max_sectors, 1);
3456 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3457 mddev->curr_resync > 2 &&
3458 mddev->curr_resync >= mddev->recovery_cp) {
3459 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3461 "md: checkpointing recovery of %s.\n",
3463 mddev->recovery_cp = mddev->curr_resync;
3465 mddev->recovery_cp = MaxSector;
3468 md_enter_safemode(mddev);
3470 mddev->curr_resync = 0;
3471 wake_up(&resync_wait);
3472 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3473 md_wakeup_thread(mddev->thread);
3478 * This routine is regularly called by all per-raid-array threads to
3479 * deal with generic issues like resync and super-block update.
3480 * Raid personalities that don't have a thread (linear/raid0) do not
3481 * need this as they never do any recovery or update the superblock.
3483 * It does not do any resync itself, but rather "forks" off other threads
3484 * to do that as needed.
3485 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3486 * "->recovery" and create a thread at ->sync_thread.
3487 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3488 * and wakeups up this thread which will reap the thread and finish up.
3489 * This thread also removes any faulty devices (with nr_pending == 0).
3491 * The overall approach is:
3492 * 1/ if the superblock needs updating, update it.
3493 * 2/ If a recovery thread is running, don't do anything else.
3494 * 3/ If recovery has finished, clean up, possibly marking spares active.
3495 * 4/ If there are any faulty devices, remove them.
3496 * 5/ If array is degraded, try to add spares devices
3497 * 6/ If array has spares or is not in-sync, start a resync thread.
3499 void md_check_recovery(mddev_t *mddev)
3502 struct list_head *rtmp;
3505 dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
3511 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3512 test_bit(MD_RECOVERY_DONE, &mddev->recovery)
3515 if (mddev_trylock(mddev)==0) {
3517 if (mddev->sb_dirty)
3518 md_update_sb(mddev);
3519 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3520 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3521 /* resync/recovery still happening */
3522 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3525 if (mddev->sync_thread) {
3526 /* resync has finished, collect result */
3527 md_unregister_thread(mddev->sync_thread);
3528 mddev->sync_thread = NULL;
3529 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3530 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3532 /* activate any spares */
3533 mddev->pers->spare_active(mddev);
3535 md_update_sb(mddev);
3536 mddev->recovery = 0;
3537 /* flag recovery needed just to double check */
3538 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3541 if (mddev->recovery)
3542 /* probably just the RECOVERY_NEEDED flag */
3543 mddev->recovery = 0;
3545 /* no recovery is running.
3546 * remove any failed drives, then
3547 * add spares if possible.
3548 * Spare are also removed and re-added, to allow
3549 * the personality to fail the re-add.
3551 ITERATE_RDEV(mddev,rdev,rtmp)
3552 if (rdev->raid_disk >= 0 &&
3553 (rdev->faulty || ! rdev->in_sync) &&
3554 atomic_read(&rdev->nr_pending)==0) {
3555 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3556 rdev->raid_disk = -1;
3559 if (mddev->degraded) {
3560 ITERATE_RDEV(mddev,rdev,rtmp)
3561 if (rdev->raid_disk < 0
3563 if (mddev->pers->hot_add_disk(mddev,rdev))
3570 if (!spares && (mddev->recovery_cp == MaxSector )) {
3571 /* nothing we can do ... */
3574 if (mddev->pers->sync_request) {
3575 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3577 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3578 mddev->sync_thread = md_register_thread(md_do_sync,
3581 if (!mddev->sync_thread) {
3582 printk(KERN_ERR "%s: could not start resync"
3585 /* leave the spares where they are, it shouldn't hurt */
3586 mddev->recovery = 0;
3588 md_wakeup_thread(mddev->sync_thread);
3592 mddev_unlock(mddev);
3596 int md_notify_reboot(struct notifier_block *this,
3597 unsigned long code, void *x)
3599 struct list_head *tmp;
3602 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3604 printk(KERN_INFO "md: stopping all md devices.\n");
3606 ITERATE_MDDEV(mddev,tmp)
3607 if (mddev_trylock(mddev)==0)
3608 do_md_stop (mddev, 1);
3610 * certain more exotic SCSI devices are known to be
3611 * volatile wrt too early system reboots. While the
3612 * right place to handle this issue is the given
3613 * driver, we do want to have a safe RAID driver ...
3620 struct notifier_block md_notifier = {
3621 .notifier_call = md_notify_reboot,
3623 .priority = INT_MAX, /* before any real devices */
3626 static void md_geninit(void)
3628 struct proc_dir_entry *p;
3630 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3632 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3634 p->proc_fops = &md_seq_fops;
3637 int __init md_init(void)
3641 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3642 " MD_SB_DISKS=%d\n",
3643 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3644 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3646 if (register_blkdev(MAJOR_NR, "md"))
3648 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3649 unregister_blkdev(MAJOR_NR, "md");
3653 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3654 md_probe, NULL, NULL);
3655 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3656 md_probe, NULL, NULL);
3658 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3659 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3660 S_IFBLK|S_IRUSR|S_IWUSR,
3663 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3664 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3665 S_IFBLK|S_IRUSR|S_IWUSR,
3669 register_reboot_notifier(&md_notifier);
3670 raid_table_header = register_sysctl_table(raid_root_table, 1);
3680 * Searches all registered partitions for autorun RAID arrays
3683 static dev_t detected_devices[128];
3686 void md_autodetect_dev(dev_t dev)
3688 if (dev_cnt >= 0 && dev_cnt < 127)
3689 detected_devices[dev_cnt++] = dev;
3693 static void autostart_arrays(int part)
3698 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3700 for (i = 0; i < dev_cnt; i++) {
3701 dev_t dev = detected_devices[i];
3703 rdev = md_import_device(dev,0, 0);
3711 list_add(&rdev->same_set, &pending_raid_disks);
3715 autorun_devices(part);
3720 static __exit void md_exit(void)
3723 struct list_head *tmp;
3725 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3726 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3727 for (i=0; i < MAX_MD_DEVS; i++)
3728 devfs_remove("md/%d", i);
3729 for (i=0; i < MAX_MD_DEVS; i++)
3730 devfs_remove("md/d%d", i);
3734 unregister_blkdev(MAJOR_NR,"md");
3735 unregister_blkdev(mdp_major, "mdp");
3736 unregister_reboot_notifier(&md_notifier);
3737 unregister_sysctl_table(raid_table_header);
3738 remove_proc_entry("mdstat", NULL);
3739 ITERATE_MDDEV(mddev,tmp) {
3740 struct gendisk *disk = mddev->gendisk;
3743 export_array(mddev);
3746 mddev->gendisk = NULL;
3751 module_init(md_init)
3752 module_exit(md_exit)
3754 EXPORT_SYMBOL(register_md_personality);
3755 EXPORT_SYMBOL(unregister_md_personality);
3756 EXPORT_SYMBOL(md_error);
3757 EXPORT_SYMBOL(md_done_sync);
3758 EXPORT_SYMBOL(md_write_start);
3759 EXPORT_SYMBOL(md_write_end);
3760 EXPORT_SYMBOL(md_handle_safemode);
3761 EXPORT_SYMBOL(md_register_thread);
3762 EXPORT_SYMBOL(md_unregister_thread);
3763 EXPORT_SYMBOL(md_wakeup_thread);
3764 EXPORT_SYMBOL(md_print_devices);
3765 EXPORT_SYMBOL(md_check_recovery);
3766 MODULE_LICENSE("GPL");