1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2023 Red Hat
8 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/delay.h>
12 #include <linux/device-mapper.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/lz4.h>
17 #include <linux/minmax.h>
18 #include <linux/sched.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
23 #include "memory-alloc.h"
24 #include "murmurhash3.h"
25 #include "permassert.h"
27 #include "block-map.h"
29 #include "encodings.h"
31 #include "io-submitter.h"
32 #include "logical-zone.h"
34 #include "recovery-journal.h"
35 #include "slab-depot.h"
36 #include "status-codes.h"
40 #include "wait-queue.h"
45 * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
46 * flags on our own bio(s) for that request may help underlying layers better fulfill the user
47 * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
48 * flags, as they convey incorrect information.
50 * These flags are always irrelevant if we have already finished the user bio as they are only
51 * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
52 * important finishing the finished bio was.
54 * Note that bio.c contains the complete list of flags we believe may be set; the following list
55 * explains the action taken with each of those flags VDO could receive:
57 * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
58 * completion is required for further work to be done by the issuer.
59 * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
60 * treats it as more urgent, similar to REQ_SYNC.
61 * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
63 * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
64 * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
65 * match incoming IO, so this flag is incorrect for it.
66 * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
67 * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
68 * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
69 * ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
72 static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
77 * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
78 * correctness, and in order to avoid potentially expensive or blocking memory allocations during
79 * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
80 * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
81 * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
82 * for which a data_vio or discard permit are not available will block until the necessary
83 * resources are available. The pool is also responsible for distributing resources to blocked
84 * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
85 * performing the work of actually assigning resources to blocked threads or placing data_vios back
86 * into the pool on a single cpu at a time.
88 * The pool contains two "limiters", one for tracking data_vios and one for tracking discard
89 * permits. The limiters also provide safe cross-thread access to pool statistics without the need
90 * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
91 * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
92 * are available, the incoming bio will be assigned to the acquired data_vio, and it will be
93 * launched. However, if either of these are unavailable, the arrival time of the bio is recorded
94 * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
95 * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
96 * break if jiffies are only 32 bits.)
98 * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
99 * will be called on it. This function will add the data_vio to a funnel queue, and then check the
100 * state of the pool. If the pool is not currently processing released data_vios, the pool's
101 * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
102 * hold the pool's lock, and also batches release work while avoiding starvation of the cpu
105 * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
106 * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
107 * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
108 * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
109 * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
110 * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
111 * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
112 * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
113 * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
117 #define DATA_VIO_RELEASE_BATCH_SIZE 128
119 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
120 static const u32 COMPRESSION_STATUS_MASK = 0xff;
121 static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
124 typedef void (*assigner_fn)(struct limiter *limiter);
126 /* Bookkeeping structure for a single type of resource. */
128 /* The data_vio_pool to which this limiter belongs */
129 struct data_vio_pool *pool;
130 /* The maximum number of data_vios available */
131 data_vio_count_t limit;
132 /* The number of resources in use */
133 data_vio_count_t busy;
134 /* The maximum number of resources ever simultaneously in use */
135 data_vio_count_t max_busy;
136 /* The number of resources to release */
137 data_vio_count_t release_count;
138 /* The number of waiters to wake */
139 data_vio_count_t wake_count;
140 /* The list of waiting bios which are known to process_release_callback() */
141 struct bio_list waiters;
142 /* The list of waiting bios which are not yet known to process_release_callback() */
143 struct bio_list new_waiters;
144 /* The list of waiters which have their permits */
145 struct bio_list *permitted_waiters;
146 /* The function for assigning a resource to a waiter */
147 assigner_fn assigner;
148 /* The queue of blocked threads */
149 wait_queue_head_t blocked_threads;
150 /* The arrival time of the eldest waiter */
155 * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
156 * and are released in batches.
158 struct data_vio_pool {
159 /* Completion for scheduling releases */
160 struct vdo_completion completion;
161 /* The administrative state of the pool */
162 struct admin_state state;
163 /* Lock protecting the pool */
165 /* The main limiter controlling the total data_vios in the pool. */
166 struct limiter limiter;
167 /* The limiter controlling data_vios for discard */
168 struct limiter discard_limiter;
169 /* The list of bios which have discard permits but still need a data_vio */
170 struct bio_list permitted_discards;
171 /* The list of available data_vios */
172 struct list_head available;
173 /* The queue of data_vios waiting to be returned to the pool */
174 struct funnel_queue *queue;
175 /* Whether the pool is processing, or scheduled to process releases */
177 /* The data vios in the pool */
178 struct data_vio data_vios[];
181 static const char * const ASYNC_OPERATION_NAMES[] = {
185 "attempt_logical_block_lock",
186 "lock_duplicate_pbn",
187 "check_for_duplication",
190 "find_block_map_slot",
191 "get_mapped_block_for_read",
192 "get_mapped_block_for_write",
195 "vdo_attempt_packing",
198 "update_dedupe_index",
199 "update_reference_counts",
200 "verify_duplication",
204 /* The steps taken cleaning up a VIO, in the order they are performed. */
205 enum data_vio_cleanup_stage {
207 VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
208 VIO_RELEASE_ALLOCATED,
209 VIO_RELEASE_RECOVERY_LOCKS,
214 static inline struct data_vio_pool * __must_check
215 as_data_vio_pool(struct vdo_completion *completion)
217 vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
218 return container_of(completion, struct data_vio_pool, completion);
221 static inline u64 get_arrival_time(struct bio *bio)
223 return (u64) bio->bi_private;
227 * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
228 * or waiters while holding the pool's lock.
230 static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
232 if (pool->limiter.busy > 0)
235 VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
236 "no outstanding discard permits");
238 return (bio_list_empty(&pool->limiter.new_waiters) &&
239 bio_list_empty(&pool->discard_limiter.new_waiters));
242 static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
244 struct vdo *vdo = vdo_from_data_vio(data_vio);
245 zone_count_t zone_number;
246 struct lbn_lock *lock = &data_vio->logical;
249 lock->locked = false;
250 vdo_waitq_init(&lock->waiters);
251 zone_number = vdo_compute_logical_zone(data_vio);
252 lock->zone = &vdo->logical_zones->zones[zone_number];
255 static void launch_locked_request(struct data_vio *data_vio)
257 data_vio->logical.locked = true;
258 if (data_vio->write) {
259 struct vdo *vdo = vdo_from_data_vio(data_vio);
261 if (vdo_is_read_only(vdo)) {
262 continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
267 data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
268 vdo_find_block_map_slot(data_vio);
271 static void acknowledge_data_vio(struct data_vio *data_vio)
273 struct vdo *vdo = vdo_from_data_vio(data_vio);
274 struct bio *bio = data_vio->user_bio;
275 int error = vdo_status_to_errno(data_vio->vio.completion.result);
280 VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
281 (u32) (VDO_BLOCK_SIZE - data_vio->offset)),
282 "data_vio to acknowledge is not an incomplete discard");
284 data_vio->user_bio = NULL;
285 vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
286 if (data_vio->is_partial)
287 vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
289 bio->bi_status = errno_to_blk_status(error);
293 static void copy_to_bio(struct bio *bio, char *data_ptr)
295 struct bio_vec biovec;
296 struct bvec_iter iter;
298 bio_for_each_segment(biovec, bio, iter) {
299 memcpy_to_bvec(&biovec, data_ptr);
300 data_ptr += biovec.bv_len;
304 struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
306 u32 packed = atomic_read(&data_vio->compression.status);
308 /* pairs with cmpxchg in set_data_vio_compression_status */
310 return (struct data_vio_compression_status) {
311 .stage = packed & COMPRESSION_STATUS_MASK,
312 .may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
317 * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
319 * @status: The state to convert.
321 * Return: The compression state packed into a u32.
323 static u32 __must_check pack_status(struct data_vio_compression_status status)
325 return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
329 * set_data_vio_compression_status() - Set the compression status of a data_vio.
330 * @state: The expected current status of the data_vio.
331 * @new_state: The status to set.
333 * Return: true if the new status was set, false if the data_vio's compression status did not
334 * match the expected state, and so was left unchanged.
336 static bool __must_check
337 set_data_vio_compression_status(struct data_vio *data_vio,
338 struct data_vio_compression_status status,
339 struct data_vio_compression_status new_status)
342 u32 expected = pack_status(status);
343 u32 replacement = pack_status(new_status);
346 * Extra barriers because this was original developed using a CAS operation that implicitly
349 smp_mb__before_atomic();
350 actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
351 /* same as before_atomic */
352 smp_mb__after_atomic();
353 return (expected == actual);
356 struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
359 struct data_vio_compression_status status =
360 get_data_vio_compression_status(data_vio);
361 struct data_vio_compression_status new_status = status;
363 if (status.stage == DATA_VIO_POST_PACKER) {
364 /* We're already in the last stage. */
368 if (status.may_not_compress) {
370 * Compression has been dis-allowed for this VIO, so skip the rest of the
371 * path and go to the end.
373 new_status.stage = DATA_VIO_POST_PACKER;
375 /* Go to the next state. */
379 if (set_data_vio_compression_status(data_vio, status, new_status))
382 /* Another thread changed the status out from under us so try again. */
387 * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
389 * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
391 bool cancel_data_vio_compression(struct data_vio *data_vio)
393 struct data_vio_compression_status status, new_status;
396 status = get_data_vio_compression_status(data_vio);
397 if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
398 /* This data_vio is already set up to not block in the packer. */
402 new_status.stage = status.stage;
403 new_status.may_not_compress = true;
405 if (set_data_vio_compression_status(data_vio, status, new_status))
409 return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
413 * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
414 * @completion: The data_vio for an external data request as a completion.
416 * This is the start of the path for all external requests. It is registered in launch_data_vio().
418 static void attempt_logical_block_lock(struct vdo_completion *completion)
420 struct data_vio *data_vio = as_data_vio(completion);
421 struct lbn_lock *lock = &data_vio->logical;
422 struct vdo *vdo = vdo_from_data_vio(data_vio);
423 struct data_vio *lock_holder;
426 assert_data_vio_in_logical_zone(data_vio);
428 if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
429 continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
433 result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
434 data_vio, false, (void **) &lock_holder);
435 if (result != VDO_SUCCESS) {
436 continue_data_vio_with_error(data_vio, result);
440 if (lock_holder == NULL) {
441 /* We got the lock */
442 launch_locked_request(data_vio);
446 result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
447 if (result != VDO_SUCCESS) {
448 continue_data_vio_with_error(data_vio, result);
453 * If the new request is a pure read request (not read-modify-write) and the lock_holder is
454 * writing and has received an allocation, service the read request immediately by copying
455 * data from the lock_holder to avoid having to flush the write out of the packer just to
456 * prevent the read from waiting indefinitely. If the lock_holder does not yet have an
457 * allocation, prevent it from blocking in the packer and wait on it. This is necessary in
458 * order to prevent returning data that may not have actually been written.
460 if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
461 copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
462 acknowledge_data_vio(data_vio);
463 complete_data_vio(completion);
467 data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
468 vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
471 * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
474 if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
475 data_vio->compression.lock_holder = lock_holder;
476 launch_data_vio_packer_callback(data_vio,
477 vdo_remove_lock_holder_from_packer);
482 * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
483 * same parent and other state and send it on its way.
485 static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
487 struct vdo_completion *completion = &data_vio->vio.completion;
490 * Clearing the tree lock must happen before initializing the LBN lock, which also adds
491 * information to the tree lock.
493 memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
494 initialize_lbn_lock(data_vio, lbn);
495 INIT_LIST_HEAD(&data_vio->hash_lock_entry);
496 INIT_LIST_HEAD(&data_vio->write_entry);
498 memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
500 data_vio->is_duplicate = false;
502 memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
503 memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
504 vdo_reset_completion(completion);
505 completion->error_handler = handle_data_vio_error;
506 set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
507 vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
510 static bool is_zero_block(char *block)
514 for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
515 if (*((u64 *) &block[i]))
522 static void copy_from_bio(struct bio *bio, char *data_ptr)
524 struct bio_vec biovec;
525 struct bvec_iter iter;
527 bio_for_each_segment(biovec, bio, iter) {
528 memcpy_from_bvec(data_ptr, &biovec);
529 data_ptr += biovec.bv_len;
533 static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
535 logical_block_number_t lbn;
537 * Zero out the fields which don't need to be preserved (i.e. which are not pointers to
538 * separately allocated objects).
540 memset(data_vio, 0, offsetof(struct data_vio, vio));
541 memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
543 data_vio->user_bio = bio;
544 data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
545 data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
548 * Discards behave very differently than other requests when coming in from device-mapper.
549 * We have to be able to handle any size discards and various sector offsets within a
552 if (bio_op(bio) == REQ_OP_DISCARD) {
553 data_vio->remaining_discard = bio->bi_iter.bi_size;
554 data_vio->write = true;
555 data_vio->is_discard = true;
556 if (data_vio->is_partial) {
557 vdo_count_bios(&vdo->stats.bios_in_partial, bio);
558 data_vio->read = true;
560 } else if (data_vio->is_partial) {
561 vdo_count_bios(&vdo->stats.bios_in_partial, bio);
562 data_vio->read = true;
563 if (bio_data_dir(bio) == WRITE)
564 data_vio->write = true;
565 } else if (bio_data_dir(bio) == READ) {
566 data_vio->read = true;
569 * Copy the bio data to a char array so that we can continue to use the data after
570 * we acknowledge the bio.
572 copy_from_bio(bio, data_vio->vio.data);
573 data_vio->is_zero = is_zero_block(data_vio->vio.data);
574 data_vio->write = true;
577 if (data_vio->user_bio->bi_opf & REQ_FUA)
578 data_vio->fua = true;
580 lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
581 launch_data_vio(data_vio, lbn);
584 static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
586 struct bio *bio = bio_list_pop(limiter->permitted_waiters);
588 launch_bio(limiter->pool->completion.vdo, data_vio, bio);
589 limiter->wake_count++;
591 bio = bio_list_peek(limiter->permitted_waiters);
592 limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
595 static void assign_discard_permit(struct limiter *limiter)
597 struct bio *bio = bio_list_pop(&limiter->waiters);
599 if (limiter->arrival == U64_MAX)
600 limiter->arrival = get_arrival_time(bio);
602 bio_list_add(limiter->permitted_waiters, bio);
605 static void get_waiters(struct limiter *limiter)
607 bio_list_merge(&limiter->waiters, &limiter->new_waiters);
608 bio_list_init(&limiter->new_waiters);
611 static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
613 struct data_vio *data_vio =
614 list_first_entry(&pool->available, struct data_vio, pool_entry);
616 list_del_init(&data_vio->pool_entry);
620 static void assign_data_vio_to_waiter(struct limiter *limiter)
622 assign_data_vio(limiter, get_available_data_vio(limiter->pool));
625 static void update_limiter(struct limiter *limiter)
627 struct bio_list *waiters = &limiter->waiters;
628 data_vio_count_t available = limiter->limit - limiter->busy;
630 VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
631 "Release count %u is not more than busy count %u",
632 limiter->release_count, limiter->busy);
634 get_waiters(limiter);
635 for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
636 limiter->assigner(limiter);
638 if (limiter->release_count > 0) {
639 WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
640 limiter->release_count = 0;
644 for (; (available > 0) && !bio_list_empty(waiters); available--)
645 limiter->assigner(limiter);
647 WRITE_ONCE(limiter->busy, limiter->limit - available);
648 if (limiter->max_busy < limiter->busy)
649 WRITE_ONCE(limiter->max_busy, limiter->busy);
653 * schedule_releases() - Ensure that release processing is scheduled.
655 * If this call switches the state to processing, enqueue. Otherwise, some other thread has already
658 static void schedule_releases(struct data_vio_pool *pool)
660 /* Pairs with the barrier in process_release_callback(). */
661 smp_mb__before_atomic();
662 if (atomic_cmpxchg(&pool->processing, false, true))
665 pool->completion.requeue = true;
666 vdo_launch_completion_with_priority(&pool->completion,
667 CPU_Q_COMPLETE_VIO_PRIORITY);
670 static void reuse_or_release_resources(struct data_vio_pool *pool,
671 struct data_vio *data_vio,
672 struct list_head *returned)
674 if (data_vio->remaining_discard > 0) {
675 if (bio_list_empty(&pool->discard_limiter.waiters)) {
676 /* Return the data_vio's discard permit. */
677 pool->discard_limiter.release_count++;
679 assign_discard_permit(&pool->discard_limiter);
683 if (pool->limiter.arrival < pool->discard_limiter.arrival) {
684 assign_data_vio(&pool->limiter, data_vio);
685 } else if (pool->discard_limiter.arrival < U64_MAX) {
686 assign_data_vio(&pool->discard_limiter, data_vio);
688 list_add(&data_vio->pool_entry, returned);
689 pool->limiter.release_count++;
694 * process_release_callback() - Process a batch of data_vio releases.
695 * @completion: The pool with data_vios to release.
697 static void process_release_callback(struct vdo_completion *completion)
699 struct data_vio_pool *pool = as_data_vio_pool(completion);
702 data_vio_count_t processed;
703 data_vio_count_t to_wake;
704 data_vio_count_t discards_to_wake;
707 spin_lock(&pool->lock);
708 get_waiters(&pool->discard_limiter);
709 get_waiters(&pool->limiter);
710 spin_unlock(&pool->lock);
712 if (pool->limiter.arrival == U64_MAX) {
713 struct bio *bio = bio_list_peek(&pool->limiter.waiters);
716 pool->limiter.arrival = get_arrival_time(bio);
719 for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
720 struct data_vio *data_vio;
721 struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
726 data_vio = as_data_vio(container_of(entry, struct vdo_completion,
727 work_queue_entry_link));
728 acknowledge_data_vio(data_vio);
729 reuse_or_release_resources(pool, data_vio, &returned);
732 spin_lock(&pool->lock);
734 * There is a race where waiters could be added while we are in the unlocked section above.
735 * Those waiters could not see the resources we are now about to release, so we assign
736 * those resources now as we have no guarantee of being rescheduled. This is handled in
739 update_limiter(&pool->discard_limiter);
740 list_splice(&returned, &pool->available);
741 update_limiter(&pool->limiter);
742 to_wake = pool->limiter.wake_count;
743 pool->limiter.wake_count = 0;
744 discards_to_wake = pool->discard_limiter.wake_count;
745 pool->discard_limiter.wake_count = 0;
747 atomic_set(&pool->processing, false);
748 /* Pairs with the barrier in schedule_releases(). */
751 reschedule = !vdo_is_funnel_queue_empty(pool->queue);
752 drained = (!reschedule &&
753 vdo_is_state_draining(&pool->state) &&
754 check_for_drain_complete_locked(pool));
755 spin_unlock(&pool->lock);
758 wake_up_nr(&pool->limiter.blocked_threads, to_wake);
760 if (discards_to_wake > 0)
761 wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
764 schedule_releases(pool);
766 vdo_finish_draining(&pool->state);
769 static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
770 assigner_fn assigner, data_vio_count_t limit)
772 limiter->pool = pool;
773 limiter->assigner = assigner;
774 limiter->limit = limit;
775 limiter->arrival = U64_MAX;
776 init_waitqueue_head(&limiter->blocked_threads);
780 * initialize_data_vio() - Allocate the components of a data_vio.
782 * The caller is responsible for cleaning up the data_vio on error.
784 * Return: VDO_SUCCESS or an error.
786 static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
791 BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
792 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
793 &data_vio->vio.data);
794 if (result != VDO_SUCCESS)
795 return vdo_log_error_strerror(result,
796 "data_vio data allocation failure");
798 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
799 &data_vio->compression.block);
800 if (result != VDO_SUCCESS) {
801 return vdo_log_error_strerror(result,
802 "data_vio compressed block allocation failure");
805 result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
806 &data_vio->scratch_block);
807 if (result != VDO_SUCCESS)
808 return vdo_log_error_strerror(result,
809 "data_vio scratch allocation failure");
811 result = vdo_create_bio(&bio);
812 if (result != VDO_SUCCESS)
813 return vdo_log_error_strerror(result,
814 "data_vio data bio allocation failure");
816 vdo_initialize_completion(&data_vio->decrement_completion, vdo,
817 VDO_DECREMENT_COMPLETION);
818 initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
823 static void destroy_data_vio(struct data_vio *data_vio)
825 if (data_vio == NULL)
828 vdo_free_bio(vdo_forget(data_vio->vio.bio));
829 vdo_free(vdo_forget(data_vio->vio.data));
830 vdo_free(vdo_forget(data_vio->compression.block));
831 vdo_free(vdo_forget(data_vio->scratch_block));
835 * make_data_vio_pool() - Initialize a data_vio pool.
836 * @vdo: The vdo to which the pool will belong.
837 * @pool_size: The number of data_vios in the pool.
838 * @discard_limit: The maximum number of data_vios which may be used for discards.
839 * @pool: A pointer to hold the newly allocated pool.
841 int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
842 data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
845 struct data_vio_pool *pool;
848 result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
850 if (result != VDO_SUCCESS)
853 VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
854 "discard limit does not exceed pool size");
855 initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
857 pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
858 initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
859 pool->limiter.permitted_waiters = &pool->limiter.waiters;
860 INIT_LIST_HEAD(&pool->available);
861 spin_lock_init(&pool->lock);
862 vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
863 vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
864 vdo_prepare_completion(&pool->completion, process_release_callback,
865 process_release_callback, vdo->thread_config.cpu_thread,
868 result = vdo_make_funnel_queue(&pool->queue);
869 if (result != VDO_SUCCESS) {
870 free_data_vio_pool(vdo_forget(pool));
874 for (i = 0; i < pool_size; i++) {
875 struct data_vio *data_vio = &pool->data_vios[i];
877 result = initialize_data_vio(data_vio, vdo);
878 if (result != VDO_SUCCESS) {
879 destroy_data_vio(data_vio);
880 free_data_vio_pool(pool);
884 list_add(&data_vio->pool_entry, &pool->available);
892 * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
894 * All data_vios must be returned to the pool before calling this function.
896 void free_data_vio_pool(struct data_vio_pool *pool)
898 struct data_vio *data_vio, *tmp;
904 * Pairs with the barrier in process_release_callback(). Possibly not needed since it
905 * caters to an enqueue vs. free race.
908 BUG_ON(atomic_read(&pool->processing));
910 spin_lock(&pool->lock);
911 VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
912 "data_vio pool must not have %u busy entries when being freed",
914 VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
915 bio_list_empty(&pool->limiter.new_waiters)),
916 "data_vio pool must not have threads waiting to read or write when being freed");
917 VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
918 bio_list_empty(&pool->discard_limiter.new_waiters)),
919 "data_vio pool must not have threads waiting to discard when being freed");
920 spin_unlock(&pool->lock);
922 list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
923 list_del_init(&data_vio->pool_entry);
924 destroy_data_vio(data_vio);
927 vdo_free_funnel_queue(vdo_forget(pool->queue));
931 static bool acquire_permit(struct limiter *limiter)
933 if (limiter->busy >= limiter->limit)
936 WRITE_ONCE(limiter->busy, limiter->busy + 1);
937 if (limiter->max_busy < limiter->busy)
938 WRITE_ONCE(limiter->max_busy, limiter->busy);
942 static void wait_permit(struct limiter *limiter, struct bio *bio)
943 __releases(&limiter->pool->lock)
947 bio_list_add(&limiter->new_waiters, bio);
948 prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
949 TASK_UNINTERRUPTIBLE);
950 spin_unlock(&limiter->pool->lock);
952 finish_wait(&limiter->blocked_threads, &wait);
956 * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
958 * This will block if data_vios or discard permits are not available.
960 void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
962 struct data_vio *data_vio;
964 VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
965 "data_vio_pool not quiescent on acquire");
967 bio->bi_private = (void *) jiffies;
968 spin_lock(&pool->lock);
969 if ((bio_op(bio) == REQ_OP_DISCARD) &&
970 !acquire_permit(&pool->discard_limiter)) {
971 wait_permit(&pool->discard_limiter, bio);
975 if (!acquire_permit(&pool->limiter)) {
976 wait_permit(&pool->limiter, bio);
980 data_vio = get_available_data_vio(pool);
981 spin_unlock(&pool->lock);
982 launch_bio(pool->completion.vdo, data_vio, bio);
985 /* Implements vdo_admin_initiator_fn. */
986 static void initiate_drain(struct admin_state *state)
989 struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
991 spin_lock(&pool->lock);
992 drained = check_for_drain_complete_locked(pool);
993 spin_unlock(&pool->lock);
996 vdo_finish_draining(state);
999 static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
1001 VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
1002 "%s called on cpu thread", name);
1006 * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
1007 * @completion: The completion to notify when the pool has drained.
1009 void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1011 assert_on_vdo_cpu_thread(completion->vdo, __func__);
1012 vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
1017 * resume_data_vio_pool() - Resume a data_vio pool.
1018 * @completion: The completion to notify when the pool has resumed.
1020 void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1022 assert_on_vdo_cpu_thread(completion->vdo, __func__);
1023 vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
1026 static void dump_limiter(const char *name, struct limiter *limiter)
1028 vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
1029 limiter->limit, limiter->max_busy,
1030 ((bio_list_empty(&limiter->waiters) &&
1031 bio_list_empty(&limiter->new_waiters)) ?
1032 "no waiters" : "has waiters"));
1036 * dump_data_vio_pool() - Dump a data_vio pool to the log.
1037 * @dump_vios: Whether to dump the details of each busy data_vio as well.
1039 void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
1042 * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
1043 * second clock tick). These numbers were picked based on experiments with lab machines.
1045 static const int ELEMENTS_PER_BATCH = 35;
1046 static const int SLEEP_FOR_SYSLOG = 4000;
1051 spin_lock(&pool->lock);
1052 dump_limiter("data_vios", &pool->limiter);
1053 dump_limiter("discard permits", &pool->discard_limiter);
1058 for (i = 0; i < pool->limiter.limit; i++) {
1059 struct data_vio *data_vio = &pool->data_vios[i];
1061 if (!list_empty(&data_vio->pool_entry))
1064 dump_data_vio(data_vio);
1065 if (++dumped >= ELEMENTS_PER_BATCH) {
1066 spin_unlock(&pool->lock);
1068 fsleep(SLEEP_FOR_SYSLOG);
1069 spin_lock(&pool->lock);
1074 spin_unlock(&pool->lock);
1077 data_vio_count_t get_data_vio_pool_active_discards(struct data_vio_pool *pool)
1079 return READ_ONCE(pool->discard_limiter.busy);
1082 data_vio_count_t get_data_vio_pool_discard_limit(struct data_vio_pool *pool)
1084 return READ_ONCE(pool->discard_limiter.limit);
1087 data_vio_count_t get_data_vio_pool_maximum_discards(struct data_vio_pool *pool)
1089 return READ_ONCE(pool->discard_limiter.max_busy);
1092 int set_data_vio_pool_discard_limit(struct data_vio_pool *pool, data_vio_count_t limit)
1094 if (get_data_vio_pool_request_limit(pool) < limit) {
1095 // The discard limit may not be higher than the data_vio limit.
1099 spin_lock(&pool->lock);
1100 pool->discard_limiter.limit = limit;
1101 spin_unlock(&pool->lock);
1106 data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
1108 return READ_ONCE(pool->limiter.busy);
1111 data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
1113 return READ_ONCE(pool->limiter.limit);
1116 data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
1118 return READ_ONCE(pool->limiter.max_busy);
1121 static void update_data_vio_error_stats(struct data_vio *data_vio)
1124 static const char * const operations[] = {
1128 [3] = "read-modify-write",
1131 [7] = "read-modify-write+fua",
1137 if (data_vio->write)
1143 update_vio_error_stats(&data_vio->vio,
1144 "Completing %s vio for LBN %llu with error after %s",
1146 (unsigned long long) data_vio->logical.lbn,
1147 get_data_vio_operation_name(data_vio));
1150 static void perform_cleanup_stage(struct data_vio *data_vio,
1151 enum data_vio_cleanup_stage stage);
1154 * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
1155 * the end of processing a data_vio.
1157 static void release_allocated_lock(struct vdo_completion *completion)
1159 struct data_vio *data_vio = as_data_vio(completion);
1161 assert_data_vio_in_allocated_zone(data_vio);
1162 release_data_vio_allocation_lock(data_vio, false);
1163 perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
1166 /** release_lock() - Release an uncontended LBN lock. */
1167 static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1169 struct int_map *lock_map = lock->zone->lbn_operations;
1170 struct data_vio *lock_holder;
1172 if (!lock->locked) {
1173 /* The lock is not locked, so it had better not be registered in the lock map. */
1174 struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
1176 VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
1177 "no logical block lock held for block %llu",
1178 (unsigned long long) lock->lbn);
1182 /* Release the lock by removing the lock from the map. */
1183 lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
1184 VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
1185 "logical block lock mismatch for block %llu",
1186 (unsigned long long) lock->lbn);
1187 lock->locked = false;
1190 /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
1191 static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1193 struct data_vio *lock_holder, *next_lock_holder;
1196 VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
1198 /* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
1200 vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
1202 /* Transfer the remaining lock waiters to the next lock holder. */
1203 vdo_waitq_transfer_all_waiters(&lock->waiters,
1204 &next_lock_holder->logical.waiters);
1206 result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
1207 next_lock_holder, true, (void **) &lock_holder);
1208 if (result != VDO_SUCCESS) {
1209 continue_data_vio_with_error(next_lock_holder, result);
1213 VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
1214 "logical block lock mismatch for block %llu",
1215 (unsigned long long) lock->lbn);
1216 lock->locked = false;
1219 * If there are still waiters, other data_vios must be trying to get the lock we just
1220 * transferred. We must ensure that the new lock holder doesn't block in the packer.
1222 if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
1223 cancel_data_vio_compression(next_lock_holder);
1226 * Avoid stack overflow on lock transfer.
1227 * FIXME: this is only an issue in the 1 thread config.
1229 next_lock_holder->vio.completion.requeue = true;
1230 launch_locked_request(next_lock_holder);
1234 * release_logical_lock() - Release the logical block lock and flush generation lock at the end of
1235 * processing a data_vio.
1237 static void release_logical_lock(struct vdo_completion *completion)
1239 struct data_vio *data_vio = as_data_vio(completion);
1240 struct lbn_lock *lock = &data_vio->logical;
1242 assert_data_vio_in_logical_zone(data_vio);
1244 if (vdo_waitq_has_waiters(&lock->waiters))
1245 transfer_lock(data_vio, lock);
1247 release_lock(data_vio, lock);
1249 vdo_release_flush_generation_lock(data_vio);
1250 perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
1253 /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
1254 static void clean_hash_lock(struct vdo_completion *completion)
1256 struct data_vio *data_vio = as_data_vio(completion);
1258 assert_data_vio_in_hash_zone(data_vio);
1259 if (completion->result != VDO_SUCCESS) {
1260 vdo_clean_failed_hash_lock(data_vio);
1264 vdo_release_hash_lock(data_vio);
1265 perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
1269 * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
1271 * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
1274 static void finish_cleanup(struct data_vio *data_vio)
1276 struct vdo_completion *completion = &data_vio->vio.completion;
1278 VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
1279 "complete data_vio has no allocation lock");
1280 VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
1281 "complete data_vio has no hash lock");
1282 if ((data_vio->remaining_discard <= VDO_BLOCK_SIZE) ||
1283 (completion->result != VDO_SUCCESS)) {
1284 struct data_vio_pool *pool = completion->vdo->data_vio_pool;
1286 vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
1287 schedule_releases(pool);
1291 data_vio->remaining_discard -= min_t(u32, data_vio->remaining_discard,
1292 VDO_BLOCK_SIZE - data_vio->offset);
1293 data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
1294 data_vio->read = data_vio->is_partial;
1295 data_vio->offset = 0;
1296 completion->requeue = true;
1297 launch_data_vio(data_vio, data_vio->logical.lbn + 1);
1300 /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
1301 static void perform_cleanup_stage(struct data_vio *data_vio,
1302 enum data_vio_cleanup_stage stage)
1304 struct vdo *vdo = vdo_from_data_vio(data_vio);
1307 case VIO_RELEASE_HASH_LOCK:
1308 if (data_vio->hash_lock != NULL) {
1309 launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
1314 case VIO_RELEASE_ALLOCATED:
1315 if (data_vio_has_allocation(data_vio)) {
1316 launch_data_vio_allocated_zone_callback(data_vio,
1317 release_allocated_lock);
1322 case VIO_RELEASE_RECOVERY_LOCKS:
1323 if ((data_vio->recovery_sequence_number > 0) &&
1324 (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
1325 (data_vio->vio.completion.result != VDO_READ_ONLY))
1326 vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
1329 case VIO_RELEASE_LOGICAL:
1330 launch_data_vio_logical_callback(data_vio, release_logical_lock);
1334 finish_cleanup(data_vio);
1338 void complete_data_vio(struct vdo_completion *completion)
1340 struct data_vio *data_vio = as_data_vio(completion);
1342 completion->error_handler = NULL;
1343 data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
1344 perform_cleanup_stage(data_vio,
1345 (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
1348 static void enter_read_only_mode(struct vdo_completion *completion)
1350 if (vdo_is_read_only(completion->vdo))
1353 if (completion->result != VDO_READ_ONLY) {
1354 struct data_vio *data_vio = as_data_vio(completion);
1356 vdo_log_error_strerror(completion->result,
1357 "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
1358 (unsigned long long) data_vio->logical.lbn,
1359 (unsigned long long) data_vio->new_mapped.pbn,
1360 (unsigned long long) data_vio->mapped.pbn,
1361 (unsigned long long) data_vio->allocation.pbn,
1362 get_data_vio_operation_name(data_vio));
1365 vdo_enter_read_only_mode(completion->vdo, completion->result);
1368 void handle_data_vio_error(struct vdo_completion *completion)
1370 struct data_vio *data_vio = as_data_vio(completion);
1372 if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
1373 enter_read_only_mode(completion);
1375 update_data_vio_error_stats(data_vio);
1376 complete_data_vio(completion);
1380 * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
1383 const char *get_data_vio_operation_name(struct data_vio *data_vio)
1385 BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
1386 ARRAY_SIZE(ASYNC_OPERATION_NAMES));
1388 return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
1389 ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
1390 "unknown async operation");
1394 * data_vio_allocate_data_block() - Allocate a data block.
1396 * @write_lock_type: The type of write lock to obtain on the block.
1397 * @callback: The callback which will attempt an allocation in the current zone and continue if it
1399 * @error_handler: The handler for errors while allocating.
1401 void data_vio_allocate_data_block(struct data_vio *data_vio,
1402 enum pbn_lock_type write_lock_type,
1403 vdo_action_fn callback, vdo_action_fn error_handler)
1405 struct allocation *allocation = &data_vio->allocation;
1407 VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
1408 "data_vio does not have an allocation");
1409 allocation->write_lock_type = write_lock_type;
1410 allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
1411 allocation->first_allocation_zone = allocation->zone->zone_number;
1413 data_vio->vio.completion.error_handler = error_handler;
1414 launch_data_vio_allocated_zone_callback(data_vio, callback);
1418 * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
1419 * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
1421 * If the reference to the locked block is still provisional, it will be released as well.
1423 void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
1425 struct allocation *allocation = &data_vio->allocation;
1426 physical_block_number_t locked_pbn = allocation->pbn;
1428 assert_data_vio_in_allocated_zone(data_vio);
1430 if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
1431 allocation->pbn = VDO_ZERO_BLOCK;
1433 vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
1434 vdo_forget(allocation->lock));
1438 * uncompress_data_vio() - Uncompress the data a data_vio has just read.
1439 * @mapping_state: The mapping state indicating which fragment to decompress.
1440 * @buffer: The buffer to receive the uncompressed data.
1442 int uncompress_data_vio(struct data_vio *data_vio,
1443 enum block_mapping_state mapping_state, char *buffer)
1446 u16 fragment_offset, fragment_size;
1447 struct compressed_block *block = data_vio->compression.block;
1448 int result = vdo_get_compressed_block_fragment(mapping_state, block,
1449 &fragment_offset, &fragment_size);
1451 if (result != VDO_SUCCESS) {
1452 vdo_log_debug("%s: compressed fragment error %d", __func__, result);
1456 size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
1457 fragment_size, VDO_BLOCK_SIZE);
1458 if (size != VDO_BLOCK_SIZE) {
1459 vdo_log_debug("%s: lz4 error", __func__);
1460 return VDO_INVALID_FRAGMENT;
1467 * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
1468 * @completion: The data_vio which has just finished its read.
1470 * This callback is registered in read_block().
1472 static void modify_for_partial_write(struct vdo_completion *completion)
1474 struct data_vio *data_vio = as_data_vio(completion);
1475 char *data = data_vio->vio.data;
1476 struct bio *bio = data_vio->user_bio;
1478 assert_data_vio_on_cpu_thread(data_vio);
1480 if (bio_op(bio) == REQ_OP_DISCARD) {
1481 memset(data + data_vio->offset, '\0', min_t(u32,
1482 data_vio->remaining_discard,
1483 VDO_BLOCK_SIZE - data_vio->offset));
1485 copy_from_bio(bio, data + data_vio->offset);
1488 data_vio->is_zero = is_zero_block(data);
1489 data_vio->read = false;
1490 launch_data_vio_logical_callback(data_vio,
1491 continue_data_vio_with_block_map_slot);
1494 static void complete_read(struct vdo_completion *completion)
1496 struct data_vio *data_vio = as_data_vio(completion);
1497 char *data = data_vio->vio.data;
1498 bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
1500 assert_data_vio_on_cpu_thread(data_vio);
1503 int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
1505 if (result != VDO_SUCCESS) {
1506 continue_data_vio_with_error(data_vio, result);
1511 if (data_vio->write) {
1512 modify_for_partial_write(completion);
1516 if (compressed || data_vio->is_partial)
1517 copy_to_bio(data_vio->user_bio, data + data_vio->offset);
1519 acknowledge_data_vio(data_vio);
1520 complete_data_vio(completion);
1523 static void read_endio(struct bio *bio)
1525 struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
1526 int result = blk_status_to_errno(bio->bi_status);
1528 vdo_count_completed_bios(bio);
1529 if (result != VDO_SUCCESS) {
1530 continue_data_vio_with_error(data_vio, result);
1534 launch_data_vio_cpu_callback(data_vio, complete_read,
1535 CPU_Q_COMPLETE_READ_PRIORITY);
1538 static void complete_zero_read(struct vdo_completion *completion)
1540 struct data_vio *data_vio = as_data_vio(completion);
1542 assert_data_vio_on_cpu_thread(data_vio);
1544 if (data_vio->is_partial) {
1545 memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
1546 if (data_vio->write) {
1547 modify_for_partial_write(completion);
1551 zero_fill_bio(data_vio->user_bio);
1554 complete_read(completion);
1558 * read_block() - Read a block asynchronously.
1560 * This is the callback registered in read_block_mapping().
1562 static void read_block(struct vdo_completion *completion)
1564 struct data_vio *data_vio = as_data_vio(completion);
1565 struct vio *vio = as_vio(completion);
1566 int result = VDO_SUCCESS;
1568 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1569 launch_data_vio_cpu_callback(data_vio, complete_zero_read,
1570 CPU_Q_COMPLETE_VIO_PRIORITY);
1574 data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
1575 if (vdo_is_state_compressed(data_vio->mapped.state)) {
1576 result = vio_reset_bio(vio, (char *) data_vio->compression.block,
1577 read_endio, REQ_OP_READ, data_vio->mapped.pbn);
1579 blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
1581 if (data_vio->is_partial) {
1582 result = vio_reset_bio(vio, vio->data, read_endio, opf,
1583 data_vio->mapped.pbn);
1585 /* A full 4k read. Use the incoming bio to avoid having to copy the data */
1586 bio_reset(vio->bio, vio->bio->bi_bdev, opf);
1587 bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
1588 data_vio->user_bio, GFP_KERNEL);
1590 /* Copy over the original bio iovec and opflags. */
1591 vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
1592 data_vio->mapped.pbn);
1596 if (result != VDO_SUCCESS) {
1597 continue_data_vio_with_error(data_vio, result);
1601 vdo_submit_data_vio(data_vio);
1604 static inline struct data_vio *
1605 reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
1607 if (completion->type == VIO_COMPLETION)
1608 return as_data_vio(completion);
1610 return container_of(completion, struct data_vio, decrement_completion);
1614 * update_block_map() - Rendezvous of the data_vio and decrement completions after each has
1615 * made its reference updates. Handle any error from either, or proceed
1616 * to updating the block map.
1617 * @completion: The completion of the write in progress.
1619 static void update_block_map(struct vdo_completion *completion)
1621 struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
1623 assert_data_vio_in_logical_zone(data_vio);
1625 if (!data_vio->first_reference_operation_complete) {
1626 /* Rendezvous, we're first */
1627 data_vio->first_reference_operation_complete = true;
1631 completion = &data_vio->vio.completion;
1632 vdo_set_completion_result(completion, data_vio->decrement_completion.result);
1633 if (completion->result != VDO_SUCCESS) {
1634 handle_data_vio_error(completion);
1638 completion->error_handler = handle_data_vio_error;
1639 if (data_vio->hash_lock != NULL)
1640 set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
1642 completion->callback = complete_data_vio;
1644 data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
1645 vdo_put_mapped_block(data_vio);
1648 static void decrement_reference_count(struct vdo_completion *completion)
1650 struct data_vio *data_vio = container_of(completion, struct data_vio,
1651 decrement_completion);
1653 assert_data_vio_in_mapped_zone(data_vio);
1655 vdo_set_completion_callback(completion, update_block_map,
1656 data_vio->logical.zone->thread_id);
1657 completion->error_handler = update_block_map;
1658 vdo_modify_reference_count(completion, &data_vio->decrement_updater);
1661 static void increment_reference_count(struct vdo_completion *completion)
1663 struct data_vio *data_vio = as_data_vio(completion);
1665 assert_data_vio_in_new_mapped_zone(data_vio);
1667 if (data_vio->downgrade_allocation_lock) {
1669 * Now that the data has been written, it's safe to deduplicate against the
1670 * block. Downgrade the allocation lock to a read lock so it can be used later by
1671 * the hash lock. This is done here since it needs to happen sometime before we
1672 * return to the hash zone, and we are currently on the correct thread. For
1673 * compressed blocks, the downgrade will have already been done.
1675 vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
1678 set_data_vio_logical_callback(data_vio, update_block_map);
1679 completion->error_handler = update_block_map;
1680 vdo_modify_reference_count(completion, &data_vio->increment_updater);
1683 /** journal_remapping() - Add a recovery journal entry for a data remapping. */
1684 static void journal_remapping(struct vdo_completion *completion)
1686 struct data_vio *data_vio = as_data_vio(completion);
1688 assert_data_vio_in_journal_zone(data_vio);
1690 data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
1691 data_vio->decrement_updater.zpbn = data_vio->mapped;
1692 if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1693 data_vio->first_reference_operation_complete = true;
1694 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
1695 set_data_vio_logical_callback(data_vio, update_block_map);
1697 set_data_vio_new_mapped_zone_callback(data_vio,
1698 increment_reference_count);
1701 if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1702 data_vio->first_reference_operation_complete = true;
1704 vdo_set_completion_callback(&data_vio->decrement_completion,
1705 decrement_reference_count,
1706 data_vio->mapped.zone->thread_id);
1709 data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
1710 vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
1714 * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
1716 * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
1717 * journal entry referencing the removal of this LBN->PBN mapping.
1719 static void read_old_block_mapping(struct vdo_completion *completion)
1721 struct data_vio *data_vio = as_data_vio(completion);
1723 assert_data_vio_in_logical_zone(data_vio);
1725 data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
1726 set_data_vio_journal_callback(data_vio, journal_remapping);
1727 vdo_get_mapped_block(data_vio);
1730 void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
1732 data_vio->increment_updater = (struct reference_updater) {
1733 .operation = VDO_JOURNAL_DATA_REMAPPING,
1735 .zpbn = data_vio->new_mapped,
1739 launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
1743 * pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
1745 * This is the callback registered in launch_compress_data_vio().
1747 static void pack_compressed_data(struct vdo_completion *completion)
1749 struct data_vio *data_vio = as_data_vio(completion);
1751 assert_data_vio_in_packer_zone(data_vio);
1753 if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1754 get_data_vio_compression_status(data_vio).may_not_compress) {
1755 write_data_vio(data_vio);
1759 data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
1760 vdo_attempt_packing(data_vio);
1764 * compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
1766 * This callback is registered in launch_compress_data_vio().
1768 static void compress_data_vio(struct vdo_completion *completion)
1770 struct data_vio *data_vio = as_data_vio(completion);
1773 assert_data_vio_on_cpu_thread(data_vio);
1776 * By putting the compressed data at the start of the compressed block data field, we won't
1777 * need to copy it if this data_vio becomes a compressed write agent.
1779 size = LZ4_compress_default(data_vio->vio.data,
1780 data_vio->compression.block->data, VDO_BLOCK_SIZE,
1781 VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
1782 (char *) vdo_get_work_queue_private_data());
1783 if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
1784 data_vio->compression.size = size;
1785 launch_data_vio_packer_callback(data_vio, pack_compressed_data);
1789 write_data_vio(data_vio);
1793 * launch_compress_data_vio() - Continue a write by attempting to compress the data.
1795 * This is a re-entry point to vio_write used by hash locks.
1797 void launch_compress_data_vio(struct data_vio *data_vio)
1799 VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
1800 VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
1801 "data_vio to compress has a hash_lock");
1802 VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
1803 "data_vio to compress has an allocation");
1806 * There are 4 reasons why a data_vio which has reached this point will not be eligible for
1809 * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
1810 * write request also requests FUA.
1812 * 2) A data_vio should not be compressed when compression is disabled for the vdo.
1814 * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
1815 * yet been acknowledged and hence blocking in the packer would be bad.
1817 * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
1818 * packer would also be bad.
1820 if (data_vio->fua ||
1821 !vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1822 ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
1823 (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
1824 write_data_vio(data_vio);
1828 data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
1829 launch_data_vio_cpu_callback(data_vio, compress_data_vio,
1830 CPU_Q_COMPRESS_BLOCK_PRIORITY);
1834 * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
1837 * This callback is registered in prepare_for_dedupe().
1839 static void hash_data_vio(struct vdo_completion *completion)
1841 struct data_vio *data_vio = as_data_vio(completion);
1843 assert_data_vio_on_cpu_thread(data_vio);
1844 VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
1846 murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
1847 &data_vio->record_name);
1849 data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
1850 &data_vio->record_name);
1851 data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
1852 launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
1855 /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
1856 static void prepare_for_dedupe(struct data_vio *data_vio)
1858 /* We don't care what thread we are on. */
1859 VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
1862 * Before we can dedupe, we need to know the record name, so the first
1863 * step is to hash the block data.
1865 data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
1866 launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
1870 * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
1871 * when a data_vio's write to the underlying storage has completed.
1873 static void write_bio_finished(struct bio *bio)
1875 struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
1877 vdo_count_completed_bios(bio);
1878 vdo_set_completion_result(&data_vio->vio.completion,
1879 blk_status_to_errno(bio->bi_status));
1880 data_vio->downgrade_allocation_lock = true;
1881 update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
1884 /** write_data_vio() - Write a data block to storage without compression. */
1885 void write_data_vio(struct data_vio *data_vio)
1887 struct data_vio_compression_status status, new_status;
1890 if (!data_vio_has_allocation(data_vio)) {
1892 * There was no space to write this block and we failed to deduplicate or compress
1895 continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
1899 new_status = (struct data_vio_compression_status) {
1900 .stage = DATA_VIO_POST_PACKER,
1901 .may_not_compress = true,
1905 status = get_data_vio_compression_status(data_vio);
1906 } while ((status.stage != DATA_VIO_POST_PACKER) &&
1907 !set_data_vio_compression_status(data_vio, status, new_status));
1909 /* Write the data from the data block buffer. */
1910 result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
1911 write_bio_finished, REQ_OP_WRITE,
1912 data_vio->allocation.pbn);
1913 if (result != VDO_SUCCESS) {
1914 continue_data_vio_with_error(data_vio, result);
1918 data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
1919 vdo_submit_data_vio(data_vio);
1923 * acknowledge_write_callback() - Acknowledge a write to the requestor.
1925 * This callback is registered in allocate_block() and continue_write_with_block_map_slot().
1927 static void acknowledge_write_callback(struct vdo_completion *completion)
1929 struct data_vio *data_vio = as_data_vio(completion);
1930 struct vdo *vdo = completion->vdo;
1932 VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
1933 (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
1934 "%s() called on bio ack queue", __func__);
1935 VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
1936 "write VIO to be acknowledged has a flush generation lock");
1937 acknowledge_data_vio(data_vio);
1938 if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1939 /* This is a zero write or discard */
1940 update_metadata_for_data_vio_write(data_vio, NULL);
1944 prepare_for_dedupe(data_vio);
1948 * allocate_block() - Attempt to allocate a block in the current allocation zone.
1950 * This callback is registered in continue_write_with_block_map_slot().
1952 static void allocate_block(struct vdo_completion *completion)
1954 struct data_vio *data_vio = as_data_vio(completion);
1956 assert_data_vio_in_allocated_zone(data_vio);
1958 if (!vdo_allocate_block_in_zone(data_vio))
1961 completion->error_handler = handle_data_vio_error;
1962 WRITE_ONCE(data_vio->allocation_succeeded, true);
1963 data_vio->new_mapped = (struct zoned_pbn) {
1964 .zone = data_vio->allocation.zone,
1965 .pbn = data_vio->allocation.pbn,
1966 .state = VDO_MAPPING_STATE_UNCOMPRESSED,
1969 if (data_vio->fua) {
1970 prepare_for_dedupe(data_vio);
1974 data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
1975 launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
1979 * handle_allocation_error() - Handle an error attempting to allocate a block.
1981 * This error handler is registered in continue_write_with_block_map_slot().
1983 static void handle_allocation_error(struct vdo_completion *completion)
1985 struct data_vio *data_vio = as_data_vio(completion);
1987 if (completion->result == VDO_NO_SPACE) {
1988 /* We failed to get an allocation, but we can try to dedupe. */
1989 vdo_reset_completion(completion);
1990 completion->error_handler = handle_data_vio_error;
1991 prepare_for_dedupe(data_vio);
1995 /* We got a "real" error, not just a failure to allocate, so fail the request. */
1996 handle_data_vio_error(completion);
1999 static int assert_is_discard(struct data_vio *data_vio)
2001 int result = VDO_ASSERT(data_vio->is_discard,
2002 "data_vio with no block map page is a discard");
2004 return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
2008 * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
2010 * This callback is registered in launch_read_data_vio().
2012 void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
2014 struct data_vio *data_vio = as_data_vio(completion);
2016 assert_data_vio_in_logical_zone(data_vio);
2017 if (data_vio->read) {
2018 set_data_vio_logical_callback(data_vio, read_block);
2019 data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
2020 vdo_get_mapped_block(data_vio);
2024 vdo_acquire_flush_generation_lock(data_vio);
2026 if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
2028 * This is a discard for a block on a block map page which has not been allocated, so
2029 * there's nothing more we need to do.
2031 completion->callback = complete_data_vio;
2032 continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
2037 * We need an allocation if this is neither a full-block discard nor a
2038 * full-block zero write.
2040 if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
2041 data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
2042 handle_allocation_error);
2048 * We don't need to write any data, so skip allocation and just update the block map and
2049 * reference counts (via the journal).
2051 data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
2052 if (data_vio->is_zero)
2053 data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
2055 if (data_vio->remaining_discard > VDO_BLOCK_SIZE) {
2056 /* This is not the final block of a discard so we can't acknowledge it yet. */
2057 update_metadata_for_data_vio_write(data_vio, NULL);
2061 data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
2062 launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);