2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * DOC: Wireless regulatory infrastructure
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
67 #define REG_DBG_PRINT(args...)
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
74 #define REG_ENFORCE_GRACE_MS 60000
77 * enum reg_request_treatment - regulatory request treatment
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
86 enum reg_request_treatment {
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
99 .country_ie_env = ENVIRON_ANY,
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
125 static int reg_num_devs_support_basehint;
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
141 static u32 reg_crda_timeouts;
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
145 return rtnl_dereference(cfg80211_regdomain);
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
150 return rtnl_dereference(wiphy->regd);
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
155 switch (dfs_region) {
156 case NL80211_DFS_UNSET:
158 case NL80211_DFS_FCC:
160 case NL80211_DFS_ETSI:
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
170 const struct ieee80211_regdomain *regd = NULL;
171 const struct ieee80211_regdomain *wiphy_regd = NULL;
173 regd = get_cfg80211_regdom();
177 wiphy_regd = get_wiphy_regdom(wiphy);
181 if (wiphy_regd->dfs_region == regd->dfs_region)
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy->dev),
188 reg_dfs_region_str(wiphy_regd->dfs_region),
189 reg_dfs_region_str(regd->dfs_region));
192 return regd->dfs_region;
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
202 static struct regulatory_request *get_last_request(void)
204 return rcu_dereference_rtnl(last_request);
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
219 struct list_head list;
220 struct ieee80211_channel chan;
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
246 NL80211_RRF_NO_OFDM),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
265 /* IEEE 802.11ad (60gHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
280 static void reg_free_request(struct regulatory_request *request)
282 if (request != get_last_request())
286 static void reg_free_last_request(void)
288 struct regulatory_request *lr = get_last_request();
290 if (lr != &core_request_world && lr)
291 kfree_rcu(lr, rcu_head);
294 static void reg_update_last_request(struct regulatory_request *request)
296 struct regulatory_request *lr;
298 lr = get_last_request();
302 reg_free_last_request();
303 rcu_assign_pointer(last_request, request);
306 static void reset_regdomains(bool full_reset,
307 const struct ieee80211_regdomain *new_regdom)
309 const struct ieee80211_regdomain *r;
313 r = get_cfg80211_regdom();
315 /* avoid freeing static information or freeing something twice */
316 if (r == cfg80211_world_regdom)
318 if (cfg80211_world_regdom == &world_regdom)
319 cfg80211_world_regdom = NULL;
320 if (r == &world_regdom)
324 rcu_free_regdom(cfg80211_world_regdom);
326 cfg80211_world_regdom = &world_regdom;
327 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
332 reg_update_last_request(&core_request_world);
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
341 struct regulatory_request *lr;
343 lr = get_last_request();
347 reset_regdomains(false, rd);
349 cfg80211_world_regdom = rd;
352 bool is_world_regdom(const char *alpha2)
356 return alpha2[0] == '0' && alpha2[1] == '0';
359 static bool is_alpha2_set(const char *alpha2)
363 return alpha2[0] && alpha2[1];
366 static bool is_unknown_alpha2(const char *alpha2)
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
374 return alpha2[0] == '9' && alpha2[1] == '9';
377 static bool is_intersected_alpha2(const char *alpha2)
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
386 return alpha2[0] == '9' && alpha2[1] == '8';
389 static bool is_an_alpha2(const char *alpha2)
393 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
398 if (!alpha2_x || !alpha2_y)
400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
403 static bool regdom_changes(const char *alpha2)
405 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
409 return !alpha2_equal(r->alpha2, alpha2);
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
417 static bool is_user_regdom_saved(void)
419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2[0], user_alpha2[1]))
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
434 struct ieee80211_regdomain *regd;
439 sizeof(struct ieee80211_regdomain) +
440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
442 regd = kzalloc(size_of_regd, GFP_KERNEL);
444 return ERR_PTR(-ENOMEM);
446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
448 for (i = 0; i < src_regd->n_reg_rules; i++)
449 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
458 struct list_head list;
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
464 static void reg_regdb_search(struct work_struct *work)
466 struct reg_regdb_search_request *request;
467 const struct ieee80211_regdomain *curdom, *regdom = NULL;
472 mutex_lock(®_regdb_search_mutex);
473 while (!list_empty(®_regdb_search_list)) {
474 request = list_first_entry(®_regdb_search_list,
475 struct reg_regdb_search_request,
477 list_del(&request->list);
479 for (i = 0; i < reg_regdb_size; i++) {
480 curdom = reg_regdb[i];
482 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 regdom = reg_copy_regd(curdom);
490 mutex_unlock(®_regdb_search_mutex);
492 if (!IS_ERR_OR_NULL(regdom))
493 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
500 static void reg_regdb_query(const char *alpha2)
502 struct reg_regdb_search_request *request;
507 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
511 memcpy(request->alpha2, alpha2, 2);
513 mutex_lock(®_regdb_search_mutex);
514 list_add_tail(&request->list, ®_regdb_search_list);
515 mutex_unlock(®_regdb_search_mutex);
517 schedule_work(®_regdb_work);
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
523 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
535 static int call_crda(const char *alpha2)
538 char *env[] = { country, NULL };
540 snprintf(country, sizeof(country), "COUNTRY=%c%c",
541 alpha2[0], alpha2[1]);
543 /* query internal regulatory database (if it exists) */
544 reg_regdb_query(alpha2);
546 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
551 if (!is_world_regdom((char *) alpha2))
552 pr_debug("Calling CRDA for country: %c%c\n",
553 alpha2[0], alpha2[1]);
555 pr_debug("Calling CRDA to update world regulatory domain\n");
557 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
563 if (call_crda(request->alpha2))
564 return REG_REQ_IGNORE;
566 queue_delayed_work(system_power_efficient_wq,
567 ®_timeout, msecs_to_jiffies(3142));
571 bool reg_is_valid_request(const char *alpha2)
573 struct regulatory_request *lr = get_last_request();
575 if (!lr || lr->processed)
578 return alpha2_equal(lr->alpha2, alpha2);
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
583 struct regulatory_request *lr = get_last_request();
586 * Follow the driver's regulatory domain, if present, unless a country
587 * IE has been processed or a user wants to help complaince further
589 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
592 return get_wiphy_regdom(wiphy);
594 return get_cfg80211_regdom();
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599 const struct ieee80211_reg_rule *rule)
601 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602 const struct ieee80211_freq_range *freq_range_tmp;
603 const struct ieee80211_reg_rule *tmp;
604 u32 start_freq, end_freq, idx, no;
606 for (idx = 0; idx < rd->n_reg_rules; idx++)
607 if (rule == &rd->reg_rules[idx])
610 if (idx == rd->n_reg_rules)
617 tmp = &rd->reg_rules[--no];
618 freq_range_tmp = &tmp->freq_range;
620 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
623 freq_range = freq_range_tmp;
626 start_freq = freq_range->start_freq_khz;
629 freq_range = &rule->freq_range;
632 while (no < rd->n_reg_rules - 1) {
633 tmp = &rd->reg_rules[++no];
634 freq_range_tmp = &tmp->freq_range;
636 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
639 freq_range = freq_range_tmp;
642 end_freq = freq_range->end_freq_khz;
644 return end_freq - start_freq;
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648 const struct ieee80211_reg_rule *rule)
650 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
652 if (rule->flags & NL80211_RRF_NO_160MHZ)
653 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654 if (rule->flags & NL80211_RRF_NO_80MHZ)
655 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
658 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
661 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662 rule->flags & NL80211_RRF_NO_HT40PLUS)
663 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
671 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
674 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
677 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
680 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
682 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683 freq_range->max_bandwidth_khz > freq_diff)
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
691 const struct ieee80211_reg_rule *reg_rule = NULL;
694 if (!rd->n_reg_rules)
697 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
700 for (i = 0; i < rd->n_reg_rules; i++) {
701 reg_rule = &rd->reg_rules[i];
702 if (!is_valid_reg_rule(reg_rule))
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710 u32 center_freq_khz, u32 bw_khz)
712 u32 start_freq_khz, end_freq_khz;
714 start_freq_khz = center_freq_khz - (bw_khz/2);
715 end_freq_khz = center_freq_khz + (bw_khz/2);
717 if (start_freq_khz >= freq_range->start_freq_khz &&
718 end_freq_khz <= freq_range->end_freq_khz)
725 * freq_in_rule_band - tells us if a frequency is in a frequency band
726 * @freq_range: frequency rule we want to query
727 * @freq_khz: frequency we are inquiring about
729 * This lets us know if a specific frequency rule is or is not relevant to
730 * a specific frequency's band. Bands are device specific and artificial
731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732 * however it is safe for now to assume that a frequency rule should not be
733 * part of a frequency's band if the start freq or end freq are off by more
734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
736 * This resolution can be lowered and should be considered as we add
737 * regulatory rule support for other "bands".
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
742 #define ONE_GHZ_IN_KHZ 1000000
744 * From 802.11ad: directional multi-gigabit (DMG):
745 * Pertaining to operation in a frequency band containing a channel
746 * with the Channel starting frequency above 45 GHz.
748 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
752 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
755 #undef ONE_GHZ_IN_KHZ
759 * Later on we can perhaps use the more restrictive DFS
760 * region but we don't have information for that yet so
761 * for now simply disallow conflicts.
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765 const enum nl80211_dfs_regions dfs_region2)
767 if (dfs_region1 != dfs_region2)
768 return NL80211_DFS_UNSET;
773 * Helper for regdom_intersect(), this does the real
774 * mathematical intersection fun
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777 const struct ieee80211_regdomain *rd2,
778 const struct ieee80211_reg_rule *rule1,
779 const struct ieee80211_reg_rule *rule2,
780 struct ieee80211_reg_rule *intersected_rule)
782 const struct ieee80211_freq_range *freq_range1, *freq_range2;
783 struct ieee80211_freq_range *freq_range;
784 const struct ieee80211_power_rule *power_rule1, *power_rule2;
785 struct ieee80211_power_rule *power_rule;
786 u32 freq_diff, max_bandwidth1, max_bandwidth2;
788 freq_range1 = &rule1->freq_range;
789 freq_range2 = &rule2->freq_range;
790 freq_range = &intersected_rule->freq_range;
792 power_rule1 = &rule1->power_rule;
793 power_rule2 = &rule2->power_rule;
794 power_rule = &intersected_rule->power_rule;
796 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797 freq_range2->start_freq_khz);
798 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799 freq_range2->end_freq_khz);
801 max_bandwidth1 = freq_range1->max_bandwidth_khz;
802 max_bandwidth2 = freq_range2->max_bandwidth_khz;
804 if (rule1->flags & NL80211_RRF_AUTO_BW)
805 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806 if (rule2->flags & NL80211_RRF_AUTO_BW)
807 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
809 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
811 intersected_rule->flags = rule1->flags | rule2->flags;
814 * In case NL80211_RRF_AUTO_BW requested for both rules
815 * set AUTO_BW in intersected rule also. Next we will
816 * calculate BW correctly in handle_channel function.
817 * In other case remove AUTO_BW flag while we calculate
818 * maximum bandwidth correctly and auto calculation is
821 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822 (rule2->flags & NL80211_RRF_AUTO_BW))
823 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
825 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
827 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828 if (freq_range->max_bandwidth_khz > freq_diff)
829 freq_range->max_bandwidth_khz = freq_diff;
831 power_rule->max_eirp = min(power_rule1->max_eirp,
832 power_rule2->max_eirp);
833 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834 power_rule2->max_antenna_gain);
836 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
839 if (!is_valid_reg_rule(intersected_rule))
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847 struct ieee80211_reg_rule *r2)
849 /* for simplicity, currently consider only same flags */
850 if (r1->flags != r2->flags)
853 /* verify r1 is more restrictive */
854 if ((r1->power_rule.max_antenna_gain >
855 r2->power_rule.max_antenna_gain) ||
856 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
859 /* make sure r2's range is contained within r1 */
860 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
864 /* and finally verify that r1.max_bw >= r2.max_bw */
865 if (r1->freq_range.max_bandwidth_khz <
866 r2->freq_range.max_bandwidth_khz)
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
876 struct ieee80211_reg_rule *tmp_rule;
879 for (i = 0; i < *n_rules; i++) {
880 tmp_rule = ®_rules[i];
881 /* rule is already contained - do nothing */
882 if (rule_contains(tmp_rule, rule))
885 /* extend rule if possible */
886 if (rule_contains(rule, tmp_rule)) {
887 memcpy(tmp_rule, rule, sizeof(*rule));
892 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
897 * regdom_intersect - do the intersection between two regulatory domains
898 * @rd1: first regulatory domain
899 * @rd2: second regulatory domain
901 * Use this function to get the intersection between two regulatory domains.
902 * Once completed we will mark the alpha2 for the rd as intersected, "98",
903 * as no one single alpha2 can represent this regulatory domain.
905 * Returns a pointer to the regulatory domain structure which will hold the
906 * resulting intersection of rules between rd1 and rd2. We will
907 * kzalloc() this structure for you.
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911 const struct ieee80211_regdomain *rd2)
915 unsigned int num_rules = 0;
916 const struct ieee80211_reg_rule *rule1, *rule2;
917 struct ieee80211_reg_rule intersected_rule;
918 struct ieee80211_regdomain *rd;
924 * First we get a count of the rules we'll need, then we actually
925 * build them. This is to so we can malloc() and free() a
926 * regdomain once. The reason we use reg_rules_intersect() here
927 * is it will return -EINVAL if the rule computed makes no sense.
928 * All rules that do check out OK are valid.
931 for (x = 0; x < rd1->n_reg_rules; x++) {
932 rule1 = &rd1->reg_rules[x];
933 for (y = 0; y < rd2->n_reg_rules; y++) {
934 rule2 = &rd2->reg_rules[y];
935 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
944 size_of_regd = sizeof(struct ieee80211_regdomain) +
945 num_rules * sizeof(struct ieee80211_reg_rule);
947 rd = kzalloc(size_of_regd, GFP_KERNEL);
951 for (x = 0; x < rd1->n_reg_rules; x++) {
952 rule1 = &rd1->reg_rules[x];
953 for (y = 0; y < rd2->n_reg_rules; y++) {
954 rule2 = &rd2->reg_rules[y];
955 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
958 * No need to memset here the intersected rule here as
959 * we're not using the stack anymore
964 add_rule(&intersected_rule, rd->reg_rules,
971 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979 * want to just have the channel structure use these
981 static u32 map_regdom_flags(u32 rd_flags)
983 u32 channel_flags = 0;
984 if (rd_flags & NL80211_RRF_NO_IR_ALL)
985 channel_flags |= IEEE80211_CHAN_NO_IR;
986 if (rd_flags & NL80211_RRF_DFS)
987 channel_flags |= IEEE80211_CHAN_RADAR;
988 if (rd_flags & NL80211_RRF_NO_OFDM)
989 channel_flags |= IEEE80211_CHAN_NO_OFDM;
990 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998 if (rd_flags & NL80211_RRF_NO_80MHZ)
999 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000 if (rd_flags & NL80211_RRF_NO_160MHZ)
1001 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002 return channel_flags;
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007 const struct ieee80211_regdomain *regd, u32 bw)
1010 bool band_rule_found = false;
1011 bool bw_fits = false;
1014 return ERR_PTR(-EINVAL);
1016 for (i = 0; i < regd->n_reg_rules; i++) {
1017 const struct ieee80211_reg_rule *rr;
1018 const struct ieee80211_freq_range *fr = NULL;
1020 rr = ®d->reg_rules[i];
1021 fr = &rr->freq_range;
1024 * We only need to know if one frequency rule was
1025 * was in center_freq's band, that's enough, so lets
1026 * not overwrite it once found
1028 if (!band_rule_found)
1029 band_rule_found = freq_in_rule_band(fr, center_freq);
1031 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1033 if (band_rule_found && bw_fits)
1037 if (!band_rule_found)
1038 return ERR_PTR(-ERANGE);
1040 return ERR_PTR(-EINVAL);
1043 const struct ieee80211_reg_rule *__freq_reg_info(struct wiphy *wiphy,
1044 u32 center_freq, u32 min_bw)
1046 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1047 const struct ieee80211_reg_rule *reg_rule = NULL;
1050 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1051 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1052 if (!IS_ERR(reg_rule))
1059 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1062 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1064 EXPORT_SYMBOL(freq_reg_info);
1066 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1068 switch (initiator) {
1069 case NL80211_REGDOM_SET_BY_CORE:
1071 case NL80211_REGDOM_SET_BY_USER:
1073 case NL80211_REGDOM_SET_BY_DRIVER:
1075 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1076 return "country IE";
1082 EXPORT_SYMBOL(reg_initiator_name);
1084 #ifdef CONFIG_CFG80211_REG_DEBUG
1085 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1086 struct ieee80211_channel *chan,
1087 const struct ieee80211_reg_rule *reg_rule)
1089 const struct ieee80211_power_rule *power_rule;
1090 const struct ieee80211_freq_range *freq_range;
1091 char max_antenna_gain[32], bw[32];
1093 power_rule = ®_rule->power_rule;
1094 freq_range = ®_rule->freq_range;
1096 if (!power_rule->max_antenna_gain)
1097 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1099 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1100 power_rule->max_antenna_gain);
1102 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1103 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1104 freq_range->max_bandwidth_khz,
1105 reg_get_max_bandwidth(regd, reg_rule));
1107 snprintf(bw, sizeof(bw), "%d KHz",
1108 freq_range->max_bandwidth_khz);
1110 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1113 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1114 freq_range->start_freq_khz, freq_range->end_freq_khz,
1115 bw, max_antenna_gain,
1116 power_rule->max_eirp);
1119 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1120 struct ieee80211_channel *chan,
1121 const struct ieee80211_reg_rule *reg_rule)
1128 * Note that right now we assume the desired channel bandwidth
1129 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1130 * per channel, the primary and the extension channel).
1132 static void handle_channel(struct wiphy *wiphy,
1133 enum nl80211_reg_initiator initiator,
1134 struct ieee80211_channel *chan)
1136 u32 flags, bw_flags = 0;
1137 const struct ieee80211_reg_rule *reg_rule = NULL;
1138 const struct ieee80211_power_rule *power_rule = NULL;
1139 const struct ieee80211_freq_range *freq_range = NULL;
1140 struct wiphy *request_wiphy = NULL;
1141 struct regulatory_request *lr = get_last_request();
1142 const struct ieee80211_regdomain *regd;
1143 u32 max_bandwidth_khz;
1145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1147 flags = chan->orig_flags;
1149 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1150 if (IS_ERR(reg_rule)) {
1152 * We will disable all channels that do not match our
1153 * received regulatory rule unless the hint is coming
1154 * from a Country IE and the Country IE had no information
1155 * about a band. The IEEE 802.11 spec allows for an AP
1156 * to send only a subset of the regulatory rules allowed,
1157 * so an AP in the US that only supports 2.4 GHz may only send
1158 * a country IE with information for the 2.4 GHz band
1159 * while 5 GHz is still supported.
1161 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162 PTR_ERR(reg_rule) == -ERANGE)
1165 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166 request_wiphy && request_wiphy == wiphy &&
1167 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1170 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1171 chan->flags = chan->orig_flags;
1173 REG_DBG_PRINT("Disabling freq %d MHz\n",
1175 chan->flags |= IEEE80211_CHAN_DISABLED;
1180 regd = reg_get_regdomain(wiphy);
1181 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1183 power_rule = ®_rule->power_rule;
1184 freq_range = ®_rule->freq_range;
1186 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1187 /* Check if auto calculation requested */
1188 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1189 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1191 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1192 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1194 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1197 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1199 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1200 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1201 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1202 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1203 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1204 bw_flags |= IEEE80211_CHAN_NO_HT40;
1205 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1206 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1207 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1208 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1210 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1211 request_wiphy && request_wiphy == wiphy &&
1212 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1214 * This guarantees the driver's requested regulatory domain
1215 * will always be used as a base for further regulatory
1218 chan->flags = chan->orig_flags =
1219 map_regdom_flags(reg_rule->flags) | bw_flags;
1220 chan->max_antenna_gain = chan->orig_mag =
1221 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1222 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1223 (int) MBM_TO_DBM(power_rule->max_eirp);
1225 if (chan->flags & IEEE80211_CHAN_RADAR) {
1226 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1227 if (reg_rule->dfs_cac_ms)
1228 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1234 chan->dfs_state = NL80211_DFS_USABLE;
1235 chan->dfs_state_entered = jiffies;
1237 chan->beacon_found = false;
1238 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1239 chan->max_antenna_gain =
1240 min_t(int, chan->orig_mag,
1241 MBI_TO_DBI(power_rule->max_antenna_gain));
1242 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1244 if (chan->flags & IEEE80211_CHAN_RADAR) {
1245 if (reg_rule->dfs_cac_ms)
1246 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1248 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1251 if (chan->orig_mpwr) {
1253 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1254 * will always follow the passed country IE power settings.
1256 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1257 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1258 chan->max_power = chan->max_reg_power;
1260 chan->max_power = min(chan->orig_mpwr,
1261 chan->max_reg_power);
1263 chan->max_power = chan->max_reg_power;
1266 static void handle_band(struct wiphy *wiphy,
1267 enum nl80211_reg_initiator initiator,
1268 struct ieee80211_supported_band *sband)
1275 for (i = 0; i < sband->n_channels; i++)
1276 handle_channel(wiphy, initiator, &sband->channels[i]);
1279 static bool reg_request_cell_base(struct regulatory_request *request)
1281 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1283 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1286 bool reg_last_request_cell_base(void)
1288 return reg_request_cell_base(get_last_request());
1291 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1292 /* Core specific check */
1293 static enum reg_request_treatment
1294 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1296 struct regulatory_request *lr = get_last_request();
1298 if (!reg_num_devs_support_basehint)
1299 return REG_REQ_IGNORE;
1301 if (reg_request_cell_base(lr) &&
1302 !regdom_changes(pending_request->alpha2))
1303 return REG_REQ_ALREADY_SET;
1308 /* Device specific check */
1309 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1311 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1314 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1316 return REG_REQ_IGNORE;
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1325 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1327 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1328 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1333 static bool ignore_reg_update(struct wiphy *wiphy,
1334 enum nl80211_reg_initiator initiator)
1336 struct regulatory_request *lr = get_last_request();
1338 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1342 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1343 "since last_request is not set\n",
1344 reg_initiator_name(initiator));
1348 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1349 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1350 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1351 "since the driver uses its own custom "
1352 "regulatory domain\n",
1353 reg_initiator_name(initiator));
1358 * wiphy->regd will be set once the device has its own
1359 * desired regulatory domain set
1361 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1362 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363 !is_world_regdom(lr->alpha2)) {
1364 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1365 "since the driver requires its own regulatory "
1366 "domain to be set first\n",
1367 reg_initiator_name(initiator));
1371 if (reg_request_cell_base(lr))
1372 return reg_dev_ignore_cell_hint(wiphy);
1377 static bool reg_is_world_roaming(struct wiphy *wiphy)
1379 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1380 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1381 struct regulatory_request *lr = get_last_request();
1383 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1386 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1387 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1393 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1394 struct reg_beacon *reg_beacon)
1396 struct ieee80211_supported_band *sband;
1397 struct ieee80211_channel *chan;
1398 bool channel_changed = false;
1399 struct ieee80211_channel chan_before;
1401 sband = wiphy->bands[reg_beacon->chan.band];
1402 chan = &sband->channels[chan_idx];
1404 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1407 if (chan->beacon_found)
1410 chan->beacon_found = true;
1412 if (!reg_is_world_roaming(wiphy))
1415 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1418 chan_before.center_freq = chan->center_freq;
1419 chan_before.flags = chan->flags;
1421 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1422 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1423 channel_changed = true;
1426 if (channel_changed)
1427 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431 * Called when a scan on a wiphy finds a beacon on
1434 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1435 struct reg_beacon *reg_beacon)
1438 struct ieee80211_supported_band *sband;
1440 if (!wiphy->bands[reg_beacon->chan.band])
1443 sband = wiphy->bands[reg_beacon->chan.band];
1445 for (i = 0; i < sband->n_channels; i++)
1446 handle_reg_beacon(wiphy, i, reg_beacon);
1450 * Called upon reg changes or a new wiphy is added
1452 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1455 struct ieee80211_supported_band *sband;
1456 struct reg_beacon *reg_beacon;
1458 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1459 if (!wiphy->bands[reg_beacon->chan.band])
1461 sband = wiphy->bands[reg_beacon->chan.band];
1462 for (i = 0; i < sband->n_channels; i++)
1463 handle_reg_beacon(wiphy, i, reg_beacon);
1467 /* Reap the advantages of previously found beacons */
1468 static void reg_process_beacons(struct wiphy *wiphy)
1471 * Means we are just firing up cfg80211, so no beacons would
1472 * have been processed yet.
1476 wiphy_update_beacon_reg(wiphy);
1479 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483 if (chan->flags & IEEE80211_CHAN_DISABLED)
1485 /* This would happen when regulatory rules disallow HT40 completely */
1486 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1491 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1492 struct ieee80211_channel *channel)
1494 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1495 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1498 if (!is_ht40_allowed(channel)) {
1499 channel->flags |= IEEE80211_CHAN_NO_HT40;
1504 * We need to ensure the extension channels exist to
1505 * be able to use HT40- or HT40+, this finds them (or not)
1507 for (i = 0; i < sband->n_channels; i++) {
1508 struct ieee80211_channel *c = &sband->channels[i];
1510 if (c->center_freq == (channel->center_freq - 20))
1512 if (c->center_freq == (channel->center_freq + 20))
1517 * Please note that this assumes target bandwidth is 20 MHz,
1518 * if that ever changes we also need to change the below logic
1519 * to include that as well.
1521 if (!is_ht40_allowed(channel_before))
1522 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1524 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1526 if (!is_ht40_allowed(channel_after))
1527 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1529 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1532 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1533 struct ieee80211_supported_band *sband)
1540 for (i = 0; i < sband->n_channels; i++)
1541 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1544 static void reg_process_ht_flags(struct wiphy *wiphy)
1546 enum ieee80211_band band;
1551 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1552 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1555 static void reg_call_notifier(struct wiphy *wiphy,
1556 struct regulatory_request *request)
1558 if (wiphy->reg_notifier)
1559 wiphy->reg_notifier(wiphy, request);
1562 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1564 struct cfg80211_chan_def chandef;
1565 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1566 enum nl80211_iftype iftype;
1569 iftype = wdev->iftype;
1571 /* make sure the interface is active */
1572 if (!wdev->netdev || !netif_running(wdev->netdev))
1573 goto wdev_inactive_unlock;
1576 case NL80211_IFTYPE_AP:
1577 case NL80211_IFTYPE_P2P_GO:
1578 if (!wdev->beacon_interval)
1579 goto wdev_inactive_unlock;
1580 chandef = wdev->chandef;
1582 case NL80211_IFTYPE_ADHOC:
1583 if (!wdev->ssid_len)
1584 goto wdev_inactive_unlock;
1585 chandef = wdev->chandef;
1587 case NL80211_IFTYPE_STATION:
1588 case NL80211_IFTYPE_P2P_CLIENT:
1589 if (!wdev->current_bss ||
1590 !wdev->current_bss->pub.channel)
1591 goto wdev_inactive_unlock;
1593 if (!rdev->ops->get_channel ||
1594 rdev_get_channel(rdev, wdev, &chandef))
1595 cfg80211_chandef_create(&chandef,
1596 wdev->current_bss->pub.channel,
1597 NL80211_CHAN_NO_HT);
1599 case NL80211_IFTYPE_MONITOR:
1600 case NL80211_IFTYPE_AP_VLAN:
1601 case NL80211_IFTYPE_P2P_DEVICE:
1602 /* no enforcement required */
1605 /* others not implemented for now */
1613 case NL80211_IFTYPE_AP:
1614 case NL80211_IFTYPE_P2P_GO:
1615 case NL80211_IFTYPE_ADHOC:
1616 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1617 case NL80211_IFTYPE_STATION:
1618 case NL80211_IFTYPE_P2P_CLIENT:
1619 return cfg80211_chandef_usable(wiphy, &chandef,
1620 IEEE80211_CHAN_DISABLED);
1627 wdev_inactive_unlock:
1632 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1634 struct wireless_dev *wdev;
1635 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639 list_for_each_entry(wdev, &rdev->wdev_list, list)
1640 if (!reg_wdev_chan_valid(wiphy, wdev))
1641 cfg80211_leave(rdev, wdev);
1644 static void reg_check_chans_work(struct work_struct *work)
1646 struct cfg80211_registered_device *rdev;
1648 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1651 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1652 if (!(rdev->wiphy.regulatory_flags &
1653 REGULATORY_IGNORE_STALE_KICKOFF))
1654 reg_leave_invalid_chans(&rdev->wiphy);
1659 static void reg_check_channels(void)
1662 * Give usermode a chance to do something nicer (move to another
1663 * channel, orderly disconnection), before forcing a disconnection.
1665 mod_delayed_work(system_power_efficient_wq,
1667 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1670 static void wiphy_update_regulatory(struct wiphy *wiphy,
1671 enum nl80211_reg_initiator initiator)
1673 enum ieee80211_band band;
1674 struct regulatory_request *lr = get_last_request();
1676 if (ignore_reg_update(wiphy, initiator)) {
1678 * Regulatory updates set by CORE are ignored for custom
1679 * regulatory cards. Let us notify the changes to the driver,
1680 * as some drivers used this to restore its orig_* reg domain.
1682 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1683 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1684 reg_call_notifier(wiphy, lr);
1688 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1690 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1691 handle_band(wiphy, initiator, wiphy->bands[band]);
1693 reg_process_beacons(wiphy);
1694 reg_process_ht_flags(wiphy);
1695 reg_call_notifier(wiphy, lr);
1698 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1700 struct cfg80211_registered_device *rdev;
1701 struct wiphy *wiphy;
1705 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1706 wiphy = &rdev->wiphy;
1707 wiphy_update_regulatory(wiphy, initiator);
1710 reg_check_channels();
1713 static void handle_channel_custom(struct wiphy *wiphy,
1714 struct ieee80211_channel *chan,
1715 const struct ieee80211_regdomain *regd)
1718 const struct ieee80211_reg_rule *reg_rule = NULL;
1719 const struct ieee80211_power_rule *power_rule = NULL;
1720 const struct ieee80211_freq_range *freq_range = NULL;
1721 u32 max_bandwidth_khz;
1724 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1725 reg_rule = freq_reg_info_regd(wiphy,
1726 MHZ_TO_KHZ(chan->center_freq),
1728 if (!IS_ERR(reg_rule))
1732 if (IS_ERR(reg_rule)) {
1733 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 chan->flags |= IEEE80211_CHAN_DISABLED;
1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 chan->flags = chan->orig_flags;
1744 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1746 power_rule = ®_rule->power_rule;
1747 freq_range = ®_rule->freq_range;
1749 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1750 /* Check if auto calculation requested */
1751 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1752 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1754 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1755 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1760 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1763 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1765 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1767 bw_flags |= IEEE80211_CHAN_NO_HT40;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1769 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1771 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1773 chan->dfs_state_entered = jiffies;
1774 chan->dfs_state = NL80211_DFS_USABLE;
1776 chan->beacon_found = false;
1778 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1779 chan->flags = chan->orig_flags | bw_flags |
1780 map_regdom_flags(reg_rule->flags);
1782 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1784 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1785 chan->max_reg_power = chan->max_power =
1786 (int) MBM_TO_DBM(power_rule->max_eirp);
1788 if (chan->flags & IEEE80211_CHAN_RADAR) {
1789 if (reg_rule->dfs_cac_ms)
1790 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1792 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795 chan->max_power = chan->max_reg_power;
1798 static void handle_band_custom(struct wiphy *wiphy,
1799 struct ieee80211_supported_band *sband,
1800 const struct ieee80211_regdomain *regd)
1807 for (i = 0; i < sband->n_channels; i++)
1808 handle_channel_custom(wiphy, &sband->channels[i], regd);
1811 /* Used by drivers prior to wiphy registration */
1812 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1813 const struct ieee80211_regdomain *regd)
1815 enum ieee80211_band band;
1816 unsigned int bands_set = 0;
1818 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1819 "wiphy should have REGULATORY_CUSTOM_REG\n");
1820 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1822 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1823 if (!wiphy->bands[band])
1825 handle_band_custom(wiphy, wiphy->bands[band], regd);
1830 * no point in calling this if it won't have any effect
1831 * on your device's supported bands.
1833 WARN_ON(!bands_set);
1835 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1837 static void reg_set_request_processed(void)
1839 bool need_more_processing = false;
1840 struct regulatory_request *lr = get_last_request();
1842 lr->processed = true;
1844 spin_lock(®_requests_lock);
1845 if (!list_empty(®_requests_list))
1846 need_more_processing = true;
1847 spin_unlock(®_requests_lock);
1849 cancel_delayed_work(®_timeout);
1851 if (need_more_processing)
1852 schedule_work(®_work);
1856 * reg_process_hint_core - process core regulatory requests
1857 * @pending_request: a pending core regulatory request
1859 * The wireless subsystem can use this function to process
1860 * a regulatory request issued by the regulatory core.
1862 * Returns one of the different reg request treatment values.
1864 static enum reg_request_treatment
1865 reg_process_hint_core(struct regulatory_request *core_request)
1868 core_request->intersect = false;
1869 core_request->processed = false;
1871 reg_update_last_request(core_request);
1873 return reg_call_crda(core_request);
1876 static enum reg_request_treatment
1877 __reg_process_hint_user(struct regulatory_request *user_request)
1879 struct regulatory_request *lr = get_last_request();
1881 if (reg_request_cell_base(user_request))
1882 return reg_ignore_cell_hint(user_request);
1884 if (reg_request_cell_base(lr))
1885 return REG_REQ_IGNORE;
1887 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1888 return REG_REQ_INTERSECT;
1890 * If the user knows better the user should set the regdom
1891 * to their country before the IE is picked up
1893 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1895 return REG_REQ_IGNORE;
1897 * Process user requests only after previous user/driver/core
1898 * requests have been processed
1900 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1901 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1902 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1903 regdom_changes(lr->alpha2))
1904 return REG_REQ_IGNORE;
1906 if (!regdom_changes(user_request->alpha2))
1907 return REG_REQ_ALREADY_SET;
1913 * reg_process_hint_user - process user regulatory requests
1914 * @user_request: a pending user regulatory request
1916 * The wireless subsystem can use this function to process
1917 * a regulatory request initiated by userspace.
1919 * Returns one of the different reg request treatment values.
1921 static enum reg_request_treatment
1922 reg_process_hint_user(struct regulatory_request *user_request)
1924 enum reg_request_treatment treatment;
1926 treatment = __reg_process_hint_user(user_request);
1927 if (treatment == REG_REQ_IGNORE ||
1928 treatment == REG_REQ_ALREADY_SET) {
1929 reg_free_request(user_request);
1933 user_request->intersect = treatment == REG_REQ_INTERSECT;
1934 user_request->processed = false;
1936 reg_update_last_request(user_request);
1938 user_alpha2[0] = user_request->alpha2[0];
1939 user_alpha2[1] = user_request->alpha2[1];
1941 return reg_call_crda(user_request);
1944 static enum reg_request_treatment
1945 __reg_process_hint_driver(struct regulatory_request *driver_request)
1947 struct regulatory_request *lr = get_last_request();
1949 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1950 if (regdom_changes(driver_request->alpha2))
1952 return REG_REQ_ALREADY_SET;
1956 * This would happen if you unplug and plug your card
1957 * back in or if you add a new device for which the previously
1958 * loaded card also agrees on the regulatory domain.
1960 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1961 !regdom_changes(driver_request->alpha2))
1962 return REG_REQ_ALREADY_SET;
1964 return REG_REQ_INTERSECT;
1968 * reg_process_hint_driver - process driver regulatory requests
1969 * @driver_request: a pending driver regulatory request
1971 * The wireless subsystem can use this function to process
1972 * a regulatory request issued by an 802.11 driver.
1974 * Returns one of the different reg request treatment values.
1976 static enum reg_request_treatment
1977 reg_process_hint_driver(struct wiphy *wiphy,
1978 struct regulatory_request *driver_request)
1980 const struct ieee80211_regdomain *regd, *tmp;
1981 enum reg_request_treatment treatment;
1983 treatment = __reg_process_hint_driver(driver_request);
1985 switch (treatment) {
1988 case REG_REQ_IGNORE:
1989 reg_free_request(driver_request);
1991 case REG_REQ_INTERSECT:
1993 case REG_REQ_ALREADY_SET:
1994 regd = reg_copy_regd(get_cfg80211_regdom());
1996 reg_free_request(driver_request);
1997 return REG_REQ_IGNORE;
2000 tmp = get_wiphy_regdom(wiphy);
2001 rcu_assign_pointer(wiphy->regd, regd);
2002 rcu_free_regdom(tmp);
2006 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2007 driver_request->processed = false;
2009 reg_update_last_request(driver_request);
2012 * Since CRDA will not be called in this case as we already
2013 * have applied the requested regulatory domain before we just
2014 * inform userspace we have processed the request
2016 if (treatment == REG_REQ_ALREADY_SET) {
2017 nl80211_send_reg_change_event(driver_request);
2018 reg_set_request_processed();
2022 return reg_call_crda(driver_request);
2025 static enum reg_request_treatment
2026 __reg_process_hint_country_ie(struct wiphy *wiphy,
2027 struct regulatory_request *country_ie_request)
2029 struct wiphy *last_wiphy = NULL;
2030 struct regulatory_request *lr = get_last_request();
2032 if (reg_request_cell_base(lr)) {
2033 /* Trust a Cell base station over the AP's country IE */
2034 if (regdom_changes(country_ie_request->alpha2))
2035 return REG_REQ_IGNORE;
2036 return REG_REQ_ALREADY_SET;
2038 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2039 return REG_REQ_IGNORE;
2042 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2045 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2048 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2050 if (last_wiphy != wiphy) {
2052 * Two cards with two APs claiming different
2053 * Country IE alpha2s. We could
2054 * intersect them, but that seems unlikely
2055 * to be correct. Reject second one for now.
2057 if (regdom_changes(country_ie_request->alpha2))
2058 return REG_REQ_IGNORE;
2059 return REG_REQ_ALREADY_SET;
2062 if (regdom_changes(country_ie_request->alpha2))
2064 return REG_REQ_ALREADY_SET;
2068 * reg_process_hint_country_ie - process regulatory requests from country IEs
2069 * @country_ie_request: a regulatory request from a country IE
2071 * The wireless subsystem can use this function to process
2072 * a regulatory request issued by a country Information Element.
2074 * Returns one of the different reg request treatment values.
2076 static enum reg_request_treatment
2077 reg_process_hint_country_ie(struct wiphy *wiphy,
2078 struct regulatory_request *country_ie_request)
2080 enum reg_request_treatment treatment;
2082 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2084 switch (treatment) {
2087 case REG_REQ_IGNORE:
2089 case REG_REQ_ALREADY_SET:
2090 reg_free_request(country_ie_request);
2092 case REG_REQ_INTERSECT:
2093 reg_free_request(country_ie_request);
2095 * This doesn't happen yet, not sure we
2096 * ever want to support it for this case.
2098 WARN_ONCE(1, "Unexpected intersection for country IEs");
2099 return REG_REQ_IGNORE;
2102 country_ie_request->intersect = false;
2103 country_ie_request->processed = false;
2105 reg_update_last_request(country_ie_request);
2107 return reg_call_crda(country_ie_request);
2110 /* This processes *all* regulatory hints */
2111 static void reg_process_hint(struct regulatory_request *reg_request)
2113 struct wiphy *wiphy = NULL;
2114 enum reg_request_treatment treatment;
2116 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2117 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2119 switch (reg_request->initiator) {
2120 case NL80211_REGDOM_SET_BY_CORE:
2121 reg_process_hint_core(reg_request);
2123 case NL80211_REGDOM_SET_BY_USER:
2124 reg_process_hint_user(reg_request);
2126 case NL80211_REGDOM_SET_BY_DRIVER:
2129 treatment = reg_process_hint_driver(wiphy, reg_request);
2131 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2134 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2137 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2141 /* This is required so that the orig_* parameters are saved.
2142 * NOTE: treatment must be set for any case that reaches here!
2144 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2145 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2146 wiphy_update_regulatory(wiphy, reg_request->initiator);
2147 reg_check_channels();
2153 reg_free_request(reg_request);
2156 static bool reg_only_self_managed_wiphys(void)
2158 struct cfg80211_registered_device *rdev;
2159 struct wiphy *wiphy;
2160 bool self_managed_found = false;
2164 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2165 wiphy = &rdev->wiphy;
2166 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2167 self_managed_found = true;
2172 /* make sure at least one self-managed wiphy exists */
2173 return self_managed_found;
2177 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2178 * Regulatory hints come on a first come first serve basis and we
2179 * must process each one atomically.
2181 static void reg_process_pending_hints(void)
2183 struct regulatory_request *reg_request, *lr;
2185 lr = get_last_request();
2187 /* When last_request->processed becomes true this will be rescheduled */
2188 if (lr && !lr->processed) {
2189 reg_process_hint(lr);
2193 spin_lock(®_requests_lock);
2195 if (list_empty(®_requests_list)) {
2196 spin_unlock(®_requests_lock);
2200 reg_request = list_first_entry(®_requests_list,
2201 struct regulatory_request,
2203 list_del_init(®_request->list);
2205 spin_unlock(®_requests_lock);
2207 if (reg_only_self_managed_wiphys()) {
2208 reg_free_request(reg_request);
2212 reg_process_hint(reg_request);
2214 lr = get_last_request();
2216 spin_lock(®_requests_lock);
2217 if (!list_empty(®_requests_list) && lr && lr->processed)
2218 schedule_work(®_work);
2219 spin_unlock(®_requests_lock);
2222 /* Processes beacon hints -- this has nothing to do with country IEs */
2223 static void reg_process_pending_beacon_hints(void)
2225 struct cfg80211_registered_device *rdev;
2226 struct reg_beacon *pending_beacon, *tmp;
2228 /* This goes through the _pending_ beacon list */
2229 spin_lock_bh(®_pending_beacons_lock);
2231 list_for_each_entry_safe(pending_beacon, tmp,
2232 ®_pending_beacons, list) {
2233 list_del_init(&pending_beacon->list);
2235 /* Applies the beacon hint to current wiphys */
2236 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2237 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2239 /* Remembers the beacon hint for new wiphys or reg changes */
2240 list_add_tail(&pending_beacon->list, ®_beacon_list);
2243 spin_unlock_bh(®_pending_beacons_lock);
2246 static void reg_process_self_managed_hints(void)
2248 struct cfg80211_registered_device *rdev;
2249 struct wiphy *wiphy;
2250 const struct ieee80211_regdomain *tmp;
2251 const struct ieee80211_regdomain *regd;
2252 enum ieee80211_band band;
2253 struct regulatory_request request = {};
2255 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2256 wiphy = &rdev->wiphy;
2258 spin_lock(®_requests_lock);
2259 regd = rdev->requested_regd;
2260 rdev->requested_regd = NULL;
2261 spin_unlock(®_requests_lock);
2266 tmp = get_wiphy_regdom(wiphy);
2267 rcu_assign_pointer(wiphy->regd, regd);
2268 rcu_free_regdom(tmp);
2270 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2271 handle_band_custom(wiphy, wiphy->bands[band], regd);
2273 reg_process_ht_flags(wiphy);
2275 request.wiphy_idx = get_wiphy_idx(wiphy);
2276 request.alpha2[0] = regd->alpha2[0];
2277 request.alpha2[1] = regd->alpha2[1];
2278 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2280 nl80211_send_wiphy_reg_change_event(&request);
2283 reg_check_channels();
2286 static void reg_todo(struct work_struct *work)
2289 reg_process_pending_hints();
2290 reg_process_pending_beacon_hints();
2291 reg_process_self_managed_hints();
2295 static void queue_regulatory_request(struct regulatory_request *request)
2297 request->alpha2[0] = toupper(request->alpha2[0]);
2298 request->alpha2[1] = toupper(request->alpha2[1]);
2300 spin_lock(®_requests_lock);
2301 list_add_tail(&request->list, ®_requests_list);
2302 spin_unlock(®_requests_lock);
2304 schedule_work(®_work);
2308 * Core regulatory hint -- happens during cfg80211_init()
2309 * and when we restore regulatory settings.
2311 static int regulatory_hint_core(const char *alpha2)
2313 struct regulatory_request *request;
2315 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2319 request->alpha2[0] = alpha2[0];
2320 request->alpha2[1] = alpha2[1];
2321 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2323 queue_regulatory_request(request);
2329 int regulatory_hint_user(const char *alpha2,
2330 enum nl80211_user_reg_hint_type user_reg_hint_type)
2332 struct regulatory_request *request;
2334 if (WARN_ON(!alpha2))
2337 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2341 request->wiphy_idx = WIPHY_IDX_INVALID;
2342 request->alpha2[0] = alpha2[0];
2343 request->alpha2[1] = alpha2[1];
2344 request->initiator = NL80211_REGDOM_SET_BY_USER;
2345 request->user_reg_hint_type = user_reg_hint_type;
2347 /* Allow calling CRDA again */
2348 reg_crda_timeouts = 0;
2350 queue_regulatory_request(request);
2355 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2357 spin_lock(®_indoor_lock);
2359 /* It is possible that more than one user space process is trying to
2360 * configure the indoor setting. To handle such cases, clear the indoor
2361 * setting in case that some process does not think that the device
2362 * is operating in an indoor environment. In addition, if a user space
2363 * process indicates that it is controlling the indoor setting, save its
2364 * portid, i.e., make it the owner.
2366 reg_is_indoor = is_indoor;
2367 if (reg_is_indoor) {
2368 if (!reg_is_indoor_portid)
2369 reg_is_indoor_portid = portid;
2371 reg_is_indoor_portid = 0;
2374 spin_unlock(®_indoor_lock);
2377 reg_check_channels();
2382 void regulatory_netlink_notify(u32 portid)
2384 spin_lock(®_indoor_lock);
2386 if (reg_is_indoor_portid != portid) {
2387 spin_unlock(®_indoor_lock);
2391 reg_is_indoor = false;
2392 reg_is_indoor_portid = 0;
2394 spin_unlock(®_indoor_lock);
2396 reg_check_channels();
2400 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2402 struct regulatory_request *request;
2404 if (WARN_ON(!alpha2 || !wiphy))
2407 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2409 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2413 request->wiphy_idx = get_wiphy_idx(wiphy);
2415 request->alpha2[0] = alpha2[0];
2416 request->alpha2[1] = alpha2[1];
2417 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2419 /* Allow calling CRDA again */
2420 reg_crda_timeouts = 0;
2422 queue_regulatory_request(request);
2426 EXPORT_SYMBOL(regulatory_hint);
2428 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2429 const u8 *country_ie, u8 country_ie_len)
2432 enum environment_cap env = ENVIRON_ANY;
2433 struct regulatory_request *request = NULL, *lr;
2435 /* IE len must be evenly divisible by 2 */
2436 if (country_ie_len & 0x01)
2439 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2442 request = kzalloc(sizeof(*request), GFP_KERNEL);
2446 alpha2[0] = country_ie[0];
2447 alpha2[1] = country_ie[1];
2449 if (country_ie[2] == 'I')
2450 env = ENVIRON_INDOOR;
2451 else if (country_ie[2] == 'O')
2452 env = ENVIRON_OUTDOOR;
2455 lr = get_last_request();
2461 * We will run this only upon a successful connection on cfg80211.
2462 * We leave conflict resolution to the workqueue, where can hold
2465 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2466 lr->wiphy_idx != WIPHY_IDX_INVALID)
2469 request->wiphy_idx = get_wiphy_idx(wiphy);
2470 request->alpha2[0] = alpha2[0];
2471 request->alpha2[1] = alpha2[1];
2472 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2473 request->country_ie_env = env;
2475 /* Allow calling CRDA again */
2476 reg_crda_timeouts = 0;
2478 queue_regulatory_request(request);
2485 static void restore_alpha2(char *alpha2, bool reset_user)
2487 /* indicates there is no alpha2 to consider for restoration */
2491 /* The user setting has precedence over the module parameter */
2492 if (is_user_regdom_saved()) {
2493 /* Unless we're asked to ignore it and reset it */
2495 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2496 user_alpha2[0] = '9';
2497 user_alpha2[1] = '7';
2500 * If we're ignoring user settings, we still need to
2501 * check the module parameter to ensure we put things
2502 * back as they were for a full restore.
2504 if (!is_world_regdom(ieee80211_regdom)) {
2505 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2506 ieee80211_regdom[0], ieee80211_regdom[1]);
2507 alpha2[0] = ieee80211_regdom[0];
2508 alpha2[1] = ieee80211_regdom[1];
2511 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2512 user_alpha2[0], user_alpha2[1]);
2513 alpha2[0] = user_alpha2[0];
2514 alpha2[1] = user_alpha2[1];
2516 } else if (!is_world_regdom(ieee80211_regdom)) {
2517 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2518 ieee80211_regdom[0], ieee80211_regdom[1]);
2519 alpha2[0] = ieee80211_regdom[0];
2520 alpha2[1] = ieee80211_regdom[1];
2522 REG_DBG_PRINT("Restoring regulatory settings\n");
2525 static void restore_custom_reg_settings(struct wiphy *wiphy)
2527 struct ieee80211_supported_band *sband;
2528 enum ieee80211_band band;
2529 struct ieee80211_channel *chan;
2532 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2533 sband = wiphy->bands[band];
2536 for (i = 0; i < sband->n_channels; i++) {
2537 chan = &sband->channels[i];
2538 chan->flags = chan->orig_flags;
2539 chan->max_antenna_gain = chan->orig_mag;
2540 chan->max_power = chan->orig_mpwr;
2541 chan->beacon_found = false;
2547 * Restoring regulatory settings involves ingoring any
2548 * possibly stale country IE information and user regulatory
2549 * settings if so desired, this includes any beacon hints
2550 * learned as we could have traveled outside to another country
2551 * after disconnection. To restore regulatory settings we do
2552 * exactly what we did at bootup:
2554 * - send a core regulatory hint
2555 * - send a user regulatory hint if applicable
2557 * Device drivers that send a regulatory hint for a specific country
2558 * keep their own regulatory domain on wiphy->regd so that does does
2559 * not need to be remembered.
2561 static void restore_regulatory_settings(bool reset_user)
2564 char world_alpha2[2];
2565 struct reg_beacon *reg_beacon, *btmp;
2566 LIST_HEAD(tmp_reg_req_list);
2567 struct cfg80211_registered_device *rdev;
2572 * Clear the indoor setting in case that it is not controlled by user
2573 * space, as otherwise there is no guarantee that the device is still
2574 * operating in an indoor environment.
2576 spin_lock(®_indoor_lock);
2577 if (reg_is_indoor && !reg_is_indoor_portid) {
2578 reg_is_indoor = false;
2579 reg_check_channels();
2581 spin_unlock(®_indoor_lock);
2583 reset_regdomains(true, &world_regdom);
2584 restore_alpha2(alpha2, reset_user);
2587 * If there's any pending requests we simply
2588 * stash them to a temporary pending queue and
2589 * add then after we've restored regulatory
2592 spin_lock(®_requests_lock);
2593 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
2594 spin_unlock(®_requests_lock);
2596 /* Clear beacon hints */
2597 spin_lock_bh(®_pending_beacons_lock);
2598 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
2599 list_del(®_beacon->list);
2602 spin_unlock_bh(®_pending_beacons_lock);
2604 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
2605 list_del(®_beacon->list);
2609 /* First restore to the basic regulatory settings */
2610 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2611 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2613 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2614 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2616 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2617 restore_custom_reg_settings(&rdev->wiphy);
2620 regulatory_hint_core(world_alpha2);
2623 * This restores the ieee80211_regdom module parameter
2624 * preference or the last user requested regulatory
2625 * settings, user regulatory settings takes precedence.
2627 if (is_an_alpha2(alpha2))
2628 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2630 spin_lock(®_requests_lock);
2631 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
2632 spin_unlock(®_requests_lock);
2634 REG_DBG_PRINT("Kicking the queue\n");
2636 schedule_work(®_work);
2639 void regulatory_hint_disconnect(void)
2641 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2642 restore_regulatory_settings(false);
2645 static bool freq_is_chan_12_13_14(u16 freq)
2647 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2648 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2649 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2656 struct reg_beacon *pending_beacon;
2658 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
2659 if (beacon_chan->center_freq ==
2660 pending_beacon->chan.center_freq)
2665 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2666 struct ieee80211_channel *beacon_chan,
2669 struct reg_beacon *reg_beacon;
2672 if (beacon_chan->beacon_found ||
2673 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2674 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2675 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2678 spin_lock_bh(®_pending_beacons_lock);
2679 processing = pending_reg_beacon(beacon_chan);
2680 spin_unlock_bh(®_pending_beacons_lock);
2685 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2689 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2690 beacon_chan->center_freq,
2691 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2694 memcpy(®_beacon->chan, beacon_chan,
2695 sizeof(struct ieee80211_channel));
2698 * Since we can be called from BH or and non-BH context
2699 * we must use spin_lock_bh()
2701 spin_lock_bh(®_pending_beacons_lock);
2702 list_add_tail(®_beacon->list, ®_pending_beacons);
2703 spin_unlock_bh(®_pending_beacons_lock);
2705 schedule_work(®_work);
2710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2713 const struct ieee80211_reg_rule *reg_rule = NULL;
2714 const struct ieee80211_freq_range *freq_range = NULL;
2715 const struct ieee80211_power_rule *power_rule = NULL;
2716 char bw[32], cac_time[32];
2718 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2720 for (i = 0; i < rd->n_reg_rules; i++) {
2721 reg_rule = &rd->reg_rules[i];
2722 freq_range = ®_rule->freq_range;
2723 power_rule = ®_rule->power_rule;
2725 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2726 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2727 freq_range->max_bandwidth_khz,
2728 reg_get_max_bandwidth(rd, reg_rule));
2730 snprintf(bw, sizeof(bw), "%d KHz",
2731 freq_range->max_bandwidth_khz);
2733 if (reg_rule->flags & NL80211_RRF_DFS)
2734 scnprintf(cac_time, sizeof(cac_time), "%u s",
2735 reg_rule->dfs_cac_ms/1000);
2737 scnprintf(cac_time, sizeof(cac_time), "N/A");
2741 * There may not be documentation for max antenna gain
2742 * in certain regions
2744 if (power_rule->max_antenna_gain)
2745 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2746 freq_range->start_freq_khz,
2747 freq_range->end_freq_khz,
2749 power_rule->max_antenna_gain,
2750 power_rule->max_eirp,
2753 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2754 freq_range->start_freq_khz,
2755 freq_range->end_freq_khz,
2757 power_rule->max_eirp,
2762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2764 switch (dfs_region) {
2765 case NL80211_DFS_UNSET:
2766 case NL80211_DFS_FCC:
2767 case NL80211_DFS_ETSI:
2768 case NL80211_DFS_JP:
2771 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2777 static void print_regdomain(const struct ieee80211_regdomain *rd)
2779 struct regulatory_request *lr = get_last_request();
2781 if (is_intersected_alpha2(rd->alpha2)) {
2782 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2783 struct cfg80211_registered_device *rdev;
2784 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2786 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2787 rdev->country_ie_alpha2[0],
2788 rdev->country_ie_alpha2[1]);
2790 pr_info("Current regulatory domain intersected:\n");
2792 pr_info("Current regulatory domain intersected:\n");
2793 } else if (is_world_regdom(rd->alpha2)) {
2794 pr_info("World regulatory domain updated:\n");
2796 if (is_unknown_alpha2(rd->alpha2))
2797 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2799 if (reg_request_cell_base(lr))
2800 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2801 rd->alpha2[0], rd->alpha2[1]);
2803 pr_info("Regulatory domain changed to country: %c%c\n",
2804 rd->alpha2[0], rd->alpha2[1]);
2808 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2812 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2814 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2820 if (!is_world_regdom(rd->alpha2))
2822 update_world_regdomain(rd);
2826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2827 struct regulatory_request *user_request)
2829 const struct ieee80211_regdomain *intersected_rd = NULL;
2831 if (!regdom_changes(rd->alpha2))
2834 if (!is_valid_rd(rd)) {
2835 pr_err("Invalid regulatory domain detected:\n");
2836 print_regdomain_info(rd);
2840 if (!user_request->intersect) {
2841 reset_regdomains(false, rd);
2845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2846 if (!intersected_rd)
2851 reset_regdomains(false, intersected_rd);
2856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2857 struct regulatory_request *driver_request)
2859 const struct ieee80211_regdomain *regd;
2860 const struct ieee80211_regdomain *intersected_rd = NULL;
2861 const struct ieee80211_regdomain *tmp;
2862 struct wiphy *request_wiphy;
2864 if (is_world_regdom(rd->alpha2))
2867 if (!regdom_changes(rd->alpha2))
2870 if (!is_valid_rd(rd)) {
2871 pr_err("Invalid regulatory domain detected:\n");
2872 print_regdomain_info(rd);
2876 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2877 if (!request_wiphy) {
2878 queue_delayed_work(system_power_efficient_wq,
2883 if (!driver_request->intersect) {
2884 if (request_wiphy->regd)
2887 regd = reg_copy_regd(rd);
2889 return PTR_ERR(regd);
2891 rcu_assign_pointer(request_wiphy->regd, regd);
2892 reset_regdomains(false, rd);
2896 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2897 if (!intersected_rd)
2901 * We can trash what CRDA provided now.
2902 * However if a driver requested this specific regulatory
2903 * domain we keep it for its private use
2905 tmp = get_wiphy_regdom(request_wiphy);
2906 rcu_assign_pointer(request_wiphy->regd, rd);
2907 rcu_free_regdom(tmp);
2911 reset_regdomains(false, intersected_rd);
2916 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2917 struct regulatory_request *country_ie_request)
2919 struct wiphy *request_wiphy;
2921 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2922 !is_unknown_alpha2(rd->alpha2))
2926 * Lets only bother proceeding on the same alpha2 if the current
2927 * rd is non static (it means CRDA was present and was used last)
2928 * and the pending request came in from a country IE
2931 if (!is_valid_rd(rd)) {
2932 pr_err("Invalid regulatory domain detected:\n");
2933 print_regdomain_info(rd);
2937 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2938 if (!request_wiphy) {
2939 queue_delayed_work(system_power_efficient_wq,
2944 if (country_ie_request->intersect)
2947 reset_regdomains(false, rd);
2952 * Use this call to set the current regulatory domain. Conflicts with
2953 * multiple drivers can be ironed out later. Caller must've already
2954 * kmalloc'd the rd structure.
2956 int set_regdom(const struct ieee80211_regdomain *rd,
2957 enum ieee80211_regd_source regd_src)
2959 struct regulatory_request *lr;
2960 bool user_reset = false;
2963 if (!reg_is_valid_request(rd->alpha2)) {
2968 if (regd_src == REGD_SOURCE_CRDA)
2969 reg_crda_timeouts = 0;
2971 lr = get_last_request();
2973 /* Note that this doesn't update the wiphys, this is done below */
2974 switch (lr->initiator) {
2975 case NL80211_REGDOM_SET_BY_CORE:
2976 r = reg_set_rd_core(rd);
2978 case NL80211_REGDOM_SET_BY_USER:
2979 r = reg_set_rd_user(rd, lr);
2982 case NL80211_REGDOM_SET_BY_DRIVER:
2983 r = reg_set_rd_driver(rd, lr);
2985 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2986 r = reg_set_rd_country_ie(rd, lr);
2989 WARN(1, "invalid initiator %d\n", lr->initiator);
2996 reg_set_request_processed();
2999 /* Back to world regulatory in case of errors */
3000 restore_regulatory_settings(user_reset);
3007 /* This would make this whole thing pointless */
3008 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3011 /* update all wiphys now with the new established regulatory domain */
3012 update_all_wiphy_regulatory(lr->initiator);
3014 print_regdomain(get_cfg80211_regdom());
3016 nl80211_send_reg_change_event(lr);
3018 reg_set_request_processed();
3023 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3024 struct ieee80211_regdomain *rd)
3026 const struct ieee80211_regdomain *regd;
3027 const struct ieee80211_regdomain *prev_regd;
3028 struct cfg80211_registered_device *rdev;
3030 if (WARN_ON(!wiphy || !rd))
3033 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3034 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3037 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3038 print_regdomain_info(rd);
3042 regd = reg_copy_regd(rd);
3044 return PTR_ERR(regd);
3046 rdev = wiphy_to_rdev(wiphy);
3048 spin_lock(®_requests_lock);
3049 prev_regd = rdev->requested_regd;
3050 rdev->requested_regd = regd;
3051 spin_unlock(®_requests_lock);
3057 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3058 struct ieee80211_regdomain *rd)
3060 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3065 schedule_work(®_work);
3068 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3070 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3071 struct ieee80211_regdomain *rd)
3077 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3081 /* process the request immediately */
3082 reg_process_self_managed_hints();
3085 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3087 void wiphy_regulatory_register(struct wiphy *wiphy)
3089 struct regulatory_request *lr;
3091 /* self-managed devices ignore external hints */
3092 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3093 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3094 REGULATORY_COUNTRY_IE_IGNORE;
3096 if (!reg_dev_ignore_cell_hint(wiphy))
3097 reg_num_devs_support_basehint++;
3099 lr = get_last_request();
3100 wiphy_update_regulatory(wiphy, lr->initiator);
3103 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3105 struct wiphy *request_wiphy = NULL;
3106 struct regulatory_request *lr;
3108 lr = get_last_request();
3110 if (!reg_dev_ignore_cell_hint(wiphy))
3111 reg_num_devs_support_basehint--;
3113 rcu_free_regdom(get_wiphy_regdom(wiphy));
3114 RCU_INIT_POINTER(wiphy->regd, NULL);
3117 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3119 if (!request_wiphy || request_wiphy != wiphy)
3122 lr->wiphy_idx = WIPHY_IDX_INVALID;
3123 lr->country_ie_env = ENVIRON_ANY;
3126 static void reg_timeout_work(struct work_struct *work)
3128 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3130 reg_crda_timeouts++;
3131 restore_regulatory_settings(true);
3136 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3137 * UNII band definitions
3139 int cfg80211_get_unii(int freq)
3142 if (freq >= 5150 && freq <= 5250)
3146 if (freq > 5250 && freq <= 5350)
3150 if (freq > 5350 && freq <= 5470)
3154 if (freq > 5470 && freq <= 5725)
3158 if (freq > 5725 && freq <= 5825)
3164 bool regulatory_indoor_allowed(void)
3166 return reg_is_indoor;
3169 int __init regulatory_init(void)
3173 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3174 if (IS_ERR(reg_pdev))
3175 return PTR_ERR(reg_pdev);
3177 spin_lock_init(®_requests_lock);
3178 spin_lock_init(®_pending_beacons_lock);
3179 spin_lock_init(®_indoor_lock);
3181 reg_regdb_size_check();
3183 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3185 user_alpha2[0] = '9';
3186 user_alpha2[1] = '7';
3188 /* We always try to get an update for the static regdomain */
3189 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3194 * N.B. kobject_uevent_env() can fail mainly for when we're out
3195 * memory which is handled and propagated appropriately above
3196 * but it can also fail during a netlink_broadcast() or during
3197 * early boot for call_usermodehelper(). For now treat these
3198 * errors as non-fatal.
3200 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3204 * Finally, if the user set the module parameter treat it
3207 if (!is_world_regdom(ieee80211_regdom))
3208 regulatory_hint_user(ieee80211_regdom,
3209 NL80211_USER_REG_HINT_USER);
3214 void regulatory_exit(void)
3216 struct regulatory_request *reg_request, *tmp;
3217 struct reg_beacon *reg_beacon, *btmp;
3219 cancel_work_sync(®_work);
3220 cancel_delayed_work_sync(®_timeout);
3221 cancel_delayed_work_sync(®_check_chans);
3223 /* Lock to suppress warnings */
3225 reset_regdomains(true, NULL);
3228 dev_set_uevent_suppress(®_pdev->dev, true);
3230 platform_device_unregister(reg_pdev);
3232 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3233 list_del(®_beacon->list);
3237 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3238 list_del(®_beacon->list);
3242 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
3243 list_del(®_request->list);