2 * linux/net/sunrpc/gss_krb5_crypto.c
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
12 * Copyright (C) 1998 by the FundsXpress, INC.
14 * All rights reserved.
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
37 #include <linux/err.h>
38 #include <linux/types.h>
40 #include <linux/scatterlist.h>
41 #include <linux/crypto.h>
42 #include <linux/highmem.h>
43 #include <linux/pagemap.h>
44 #include <linux/random.h>
45 #include <linux/sunrpc/gss_krb5.h>
46 #include <linux/sunrpc/xdr.h>
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY RPCDBG_AUTH
54 struct crypto_blkcipher *tfm,
61 struct scatterlist sg[1];
62 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
63 struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
65 if (length % crypto_blkcipher_blocksize(tfm) != 0)
68 if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
69 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
70 crypto_blkcipher_ivsize(tfm));
75 memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
77 memcpy(out, in, length);
78 sg_init_one(sg, out, length);
80 ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
82 dprintk("RPC: krb5_encrypt returns %d\n", ret);
88 struct crypto_blkcipher *tfm,
95 struct scatterlist sg[1];
96 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
97 struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
99 if (length % crypto_blkcipher_blocksize(tfm) != 0)
102 if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
103 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
104 crypto_blkcipher_ivsize(tfm));
108 memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
110 memcpy(out, in, length);
111 sg_init_one(sg, out, length);
113 ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
115 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
120 checksummer(struct scatterlist *sg, void *data)
122 struct hash_desc *desc = data;
124 return crypto_hash_update(desc, sg, sg->length);
128 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
130 unsigned int ms_usage;
142 salt[0] = (ms_usage >> 0) & 0xff;
143 salt[1] = (ms_usage >> 8) & 0xff;
144 salt[2] = (ms_usage >> 16) & 0xff;
145 salt[3] = (ms_usage >> 24) & 0xff;
151 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
152 struct xdr_buf *body, int body_offset, u8 *cksumkey,
153 unsigned int usage, struct xdr_netobj *cksumout)
155 struct hash_desc desc;
156 struct scatterlist sg[1];
158 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
160 struct crypto_hash *md5;
161 struct crypto_hash *hmac_md5;
163 if (cksumkey == NULL)
164 return GSS_S_FAILURE;
166 if (cksumout->len < kctx->gk5e->cksumlength) {
167 dprintk("%s: checksum buffer length, %u, too small for %s\n",
168 __func__, cksumout->len, kctx->gk5e->name);
169 return GSS_S_FAILURE;
172 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
173 dprintk("%s: invalid usage value %u\n", __func__, usage);
174 return GSS_S_FAILURE;
177 md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
179 return GSS_S_FAILURE;
181 hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
183 if (IS_ERR(hmac_md5)) {
184 crypto_free_hash(md5);
185 return GSS_S_FAILURE;
189 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
191 err = crypto_hash_init(&desc);
194 sg_init_one(sg, rc4salt, 4);
195 err = crypto_hash_update(&desc, sg, 4);
199 sg_init_one(sg, header, hdrlen);
200 err = crypto_hash_update(&desc, sg, hdrlen);
203 err = xdr_process_buf(body, body_offset, body->len - body_offset,
207 err = crypto_hash_final(&desc, checksumdata);
212 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
214 err = crypto_hash_init(&desc);
217 err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
221 sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
222 err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
227 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
228 cksumout->len = kctx->gk5e->cksumlength;
230 crypto_free_hash(md5);
231 crypto_free_hash(hmac_md5);
232 return err ? GSS_S_FAILURE : 0;
236 * checksum the plaintext data and hdrlen bytes of the token header
237 * The checksum is performed over the first 8 bytes of the
238 * gss token header and then over the data body
241 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
242 struct xdr_buf *body, int body_offset, u8 *cksumkey,
243 unsigned int usage, struct xdr_netobj *cksumout)
245 struct hash_desc desc;
246 struct scatterlist sg[1];
248 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
249 unsigned int checksumlen;
251 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
252 return make_checksum_hmac_md5(kctx, header, hdrlen,
254 cksumkey, usage, cksumout);
256 if (cksumout->len < kctx->gk5e->cksumlength) {
257 dprintk("%s: checksum buffer length, %u, too small for %s\n",
258 __func__, cksumout->len, kctx->gk5e->name);
259 return GSS_S_FAILURE;
262 desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
263 if (IS_ERR(desc.tfm))
264 return GSS_S_FAILURE;
265 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267 checksumlen = crypto_hash_digestsize(desc.tfm);
269 if (cksumkey != NULL) {
270 err = crypto_hash_setkey(desc.tfm, cksumkey,
271 kctx->gk5e->keylength);
276 err = crypto_hash_init(&desc);
279 sg_init_one(sg, header, hdrlen);
280 err = crypto_hash_update(&desc, sg, hdrlen);
283 err = xdr_process_buf(body, body_offset, body->len - body_offset,
287 err = crypto_hash_final(&desc, checksumdata);
291 switch (kctx->gk5e->ctype) {
292 case CKSUMTYPE_RSA_MD5:
293 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
294 checksumdata, checksumlen);
297 memcpy(cksumout->data,
298 checksumdata + checksumlen - kctx->gk5e->cksumlength,
299 kctx->gk5e->cksumlength);
301 case CKSUMTYPE_HMAC_SHA1_DES3:
302 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
308 cksumout->len = kctx->gk5e->cksumlength;
310 crypto_free_hash(desc.tfm);
311 return err ? GSS_S_FAILURE : 0;
315 * checksum the plaintext data and hdrlen bytes of the token header
316 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
317 * body then over the first 16 octets of the MIC token
318 * Inclusion of the header data in the calculation of the
319 * checksum is optional.
322 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
323 struct xdr_buf *body, int body_offset, u8 *cksumkey,
324 unsigned int usage, struct xdr_netobj *cksumout)
326 struct hash_desc desc;
327 struct scatterlist sg[1];
329 u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
330 unsigned int checksumlen;
332 if (kctx->gk5e->keyed_cksum == 0) {
333 dprintk("%s: expected keyed hash for %s\n",
334 __func__, kctx->gk5e->name);
335 return GSS_S_FAILURE;
337 if (cksumkey == NULL) {
338 dprintk("%s: no key supplied for %s\n",
339 __func__, kctx->gk5e->name);
340 return GSS_S_FAILURE;
343 desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
345 if (IS_ERR(desc.tfm))
346 return GSS_S_FAILURE;
347 checksumlen = crypto_hash_digestsize(desc.tfm);
348 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
350 err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
354 err = crypto_hash_init(&desc);
357 err = xdr_process_buf(body, body_offset, body->len - body_offset,
361 if (header != NULL) {
362 sg_init_one(sg, header, hdrlen);
363 err = crypto_hash_update(&desc, sg, hdrlen);
367 err = crypto_hash_final(&desc, checksumdata);
371 cksumout->len = kctx->gk5e->cksumlength;
373 switch (kctx->gk5e->ctype) {
374 case CKSUMTYPE_HMAC_SHA1_96_AES128:
375 case CKSUMTYPE_HMAC_SHA1_96_AES256:
376 /* note that this truncates the hash */
377 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
384 crypto_free_hash(desc.tfm);
385 return err ? GSS_S_FAILURE : 0;
388 struct encryptor_desc {
389 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
390 struct blkcipher_desc desc;
392 struct xdr_buf *outbuf;
394 struct scatterlist infrags[4];
395 struct scatterlist outfrags[4];
401 encryptor(struct scatterlist *sg, void *data)
403 struct encryptor_desc *desc = data;
404 struct xdr_buf *outbuf = desc->outbuf;
405 struct page *in_page;
406 int thislen = desc->fraglen + sg->length;
410 /* Worst case is 4 fragments: head, end of page 1, start
411 * of page 2, tail. Anything more is a bug. */
412 BUG_ON(desc->fragno > 3);
414 page_pos = desc->pos - outbuf->head[0].iov_len;
415 if (page_pos >= 0 && page_pos < outbuf->page_len) {
416 /* pages are not in place: */
417 int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
418 in_page = desc->pages[i];
420 in_page = sg_page(sg);
422 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
424 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
427 desc->fraglen += sg->length;
428 desc->pos += sg->length;
430 fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
436 sg_mark_end(&desc->infrags[desc->fragno - 1]);
437 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
439 ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
440 desc->infrags, thislen);
444 sg_init_table(desc->infrags, 4);
445 sg_init_table(desc->outfrags, 4);
448 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
449 sg->offset + sg->length - fraglen);
450 desc->infrags[0] = desc->outfrags[0];
451 sg_assign_page(&desc->infrags[0], in_page);
453 desc->fraglen = fraglen;
462 gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
463 int offset, struct page **pages)
466 struct encryptor_desc desc;
468 BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
470 memset(desc.iv, 0, sizeof(desc.iv));
472 desc.desc.info = desc.iv;
480 sg_init_table(desc.infrags, 4);
481 sg_init_table(desc.outfrags, 4);
483 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
487 struct decryptor_desc {
488 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
489 struct blkcipher_desc desc;
490 struct scatterlist frags[4];
496 decryptor(struct scatterlist *sg, void *data)
498 struct decryptor_desc *desc = data;
499 int thislen = desc->fraglen + sg->length;
502 /* Worst case is 4 fragments: head, end of page 1, start
503 * of page 2, tail. Anything more is a bug. */
504 BUG_ON(desc->fragno > 3);
505 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
508 desc->fraglen += sg->length;
510 fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
516 sg_mark_end(&desc->frags[desc->fragno - 1]);
518 ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
519 desc->frags, thislen);
523 sg_init_table(desc->frags, 4);
526 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
527 sg->offset + sg->length - fraglen);
529 desc->fraglen = fraglen;
538 gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
541 struct decryptor_desc desc;
544 BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
546 memset(desc.iv, 0, sizeof(desc.iv));
548 desc.desc.info = desc.iv;
553 sg_init_table(desc.frags, 4);
555 return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
559 * This function makes the assumption that it was ultimately called
562 * The client auth_gss code moves any existing tail data into a
563 * separate page before calling gss_wrap.
564 * The server svcauth_gss code ensures that both the head and the
565 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
567 * Even with that guarantee, this function may be called more than
568 * once in the processing of gss_wrap(). The best we can do is
569 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
570 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
571 * At run-time we can verify that a single invocation of this
572 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
576 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
583 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
584 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
586 p = buf->head[0].iov_base + base;
588 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
590 buf->head[0].iov_len += shiftlen;
591 buf->len += shiftlen;
597 gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
598 u32 offset, u8 *iv, struct page **pages, int encrypt)
601 struct scatterlist sg[1];
602 struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
603 u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
604 struct page **save_pages;
605 u32 len = buf->len - offset;
607 if (len > ARRAY_SIZE(data)) {
613 * For encryption, we want to read from the cleartext
614 * page cache pages, and write the encrypted data to
615 * the supplied xdr_buf pages.
617 save_pages = buf->pages;
621 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
622 buf->pages = save_pages;
626 sg_init_one(sg, data, len);
629 ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
631 ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
636 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
643 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
644 struct xdr_buf *buf, struct page **pages)
647 struct xdr_netobj hmac;
650 struct crypto_blkcipher *cipher, *aux_cipher;
652 struct page **save_pages;
654 struct encryptor_desc desc;
658 if (kctx->initiate) {
659 cipher = kctx->initiator_enc;
660 aux_cipher = kctx->initiator_enc_aux;
661 cksumkey = kctx->initiator_integ;
662 usage = KG_USAGE_INITIATOR_SEAL;
664 cipher = kctx->acceptor_enc;
665 aux_cipher = kctx->acceptor_enc_aux;
666 cksumkey = kctx->acceptor_integ;
667 usage = KG_USAGE_ACCEPTOR_SEAL;
669 blocksize = crypto_blkcipher_blocksize(cipher);
671 /* hide the gss token header and insert the confounder */
672 offset += GSS_KRB5_TOK_HDR_LEN;
673 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
674 return GSS_S_FAILURE;
675 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
676 offset -= GSS_KRB5_TOK_HDR_LEN;
678 if (buf->tail[0].iov_base != NULL) {
679 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
681 buf->tail[0].iov_base = buf->head[0].iov_base
682 + buf->head[0].iov_len;
683 buf->tail[0].iov_len = 0;
684 ecptr = buf->tail[0].iov_base;
687 /* copy plaintext gss token header after filler (if any) */
688 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
689 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
690 buf->len += GSS_KRB5_TOK_HDR_LEN;
693 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
694 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
697 * When we are called, pages points to the real page cache
698 * data -- which we can't go and encrypt! buf->pages points
699 * to scratch pages which we are going to send off to the
700 * client/server. Swap in the plaintext pages to calculate
703 save_pages = buf->pages;
706 err = make_checksum_v2(kctx, NULL, 0, buf,
707 offset + GSS_KRB5_TOK_HDR_LEN,
708 cksumkey, usage, &hmac);
709 buf->pages = save_pages;
711 return GSS_S_FAILURE;
713 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
714 nblocks = (nbytes + blocksize - 1) / blocksize;
717 cbcbytes = (nblocks - 2) * blocksize;
719 memset(desc.iv, 0, sizeof(desc.iv));
722 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
727 desc.desc.info = desc.iv;
729 desc.desc.tfm = aux_cipher;
731 sg_init_table(desc.infrags, 4);
732 sg_init_table(desc.outfrags, 4);
734 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
735 cbcbytes, encryptor, &desc);
740 /* Make sure IV carries forward from any CBC results. */
741 err = gss_krb5_cts_crypt(cipher, buf,
742 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
749 /* Now update buf to account for HMAC */
750 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
751 buf->len += kctx->gk5e->cksumlength;
760 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
761 u32 *headskip, u32 *tailskip)
763 struct xdr_buf subbuf;
766 struct crypto_blkcipher *cipher, *aux_cipher;
767 struct xdr_netobj our_hmac_obj;
768 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
769 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
770 int nblocks, blocksize, cbcbytes;
771 struct decryptor_desc desc;
774 if (kctx->initiate) {
775 cipher = kctx->acceptor_enc;
776 aux_cipher = kctx->acceptor_enc_aux;
777 cksum_key = kctx->acceptor_integ;
778 usage = KG_USAGE_ACCEPTOR_SEAL;
780 cipher = kctx->initiator_enc;
781 aux_cipher = kctx->initiator_enc_aux;
782 cksum_key = kctx->initiator_integ;
783 usage = KG_USAGE_INITIATOR_SEAL;
785 blocksize = crypto_blkcipher_blocksize(cipher);
788 /* create a segment skipping the header and leaving out the checksum */
789 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
790 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
791 kctx->gk5e->cksumlength));
793 nblocks = (subbuf.len + blocksize - 1) / blocksize;
797 cbcbytes = (nblocks - 2) * blocksize;
799 memset(desc.iv, 0, sizeof(desc.iv));
804 desc.desc.info = desc.iv;
806 desc.desc.tfm = aux_cipher;
808 sg_init_table(desc.frags, 4);
810 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
815 /* Make sure IV carries forward from any CBC results. */
816 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
821 /* Calculate our hmac over the plaintext data */
822 our_hmac_obj.len = sizeof(our_hmac);
823 our_hmac_obj.data = our_hmac;
825 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
826 cksum_key, usage, &our_hmac_obj);
830 /* Get the packet's hmac value */
831 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
832 pkt_hmac, kctx->gk5e->cksumlength);
836 if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
840 *headskip = kctx->gk5e->conflen;
841 *tailskip = kctx->gk5e->cksumlength;
843 if (ret && ret != GSS_S_BAD_SIG)
849 * Compute Kseq given the initial session key and the checksum.
850 * Set the key of the given cipher.
853 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
854 unsigned char *cksum)
856 struct crypto_hash *hmac;
857 struct hash_desc desc;
858 struct scatterlist sg[1];
859 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
860 u32 zeroconstant = 0;
863 dprintk("%s: entered\n", __func__);
865 hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
867 dprintk("%s: error %ld, allocating hash '%s'\n",
868 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
869 return PTR_ERR(hmac);
875 err = crypto_hash_init(&desc);
879 /* Compute intermediate Kseq from session key */
880 err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
884 sg_init_one(sg, &zeroconstant, 4);
885 err = crypto_hash_digest(&desc, sg, 4, Kseq);
889 /* Compute final Kseq from the checksum and intermediate Kseq */
890 err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
894 sg_set_buf(sg, cksum, 8);
896 err = crypto_hash_digest(&desc, sg, 8, Kseq);
900 err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
907 crypto_free_hash(hmac);
908 dprintk("%s: returning %d\n", __func__, err);
913 * Compute Kcrypt given the initial session key and the plaintext seqnum.
914 * Set the key of cipher kctx->enc.
917 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
920 struct crypto_hash *hmac;
921 struct hash_desc desc;
922 struct scatterlist sg[1];
923 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
924 u8 zeroconstant[4] = {0};
928 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
930 hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
932 dprintk("%s: error %ld, allocating hash '%s'\n",
933 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
934 return PTR_ERR(hmac);
940 err = crypto_hash_init(&desc);
944 /* Compute intermediate Kcrypt from session key */
945 for (i = 0; i < kctx->gk5e->keylength; i++)
946 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
948 err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
952 sg_init_one(sg, zeroconstant, 4);
953 err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
957 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
958 err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
962 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
963 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
964 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
965 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
967 sg_set_buf(sg, seqnumarray, 4);
969 err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
973 err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
980 crypto_free_hash(hmac);
981 dprintk("%s: returning %d\n", __func__, err);