]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
Merge tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35
36 struct eb_vma {
37         struct i915_vma *vma;
38         unsigned int flags;
39
40         /** This vma's place in the execbuf reservation list */
41         struct drm_i915_gem_exec_object2 *exec;
42         struct list_head bind_link;
43         struct list_head reloc_link;
44
45         struct hlist_node node;
46         u32 handle;
47 };
48
49 enum {
50         FORCE_CPU_RELOC = 1,
51         FORCE_GTT_RELOC,
52         FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64
65 #define __EXEC_HAS_RELOC        BIT(31)
66 #define __EXEC_ENGINE_PINNED    BIT(30)
67 #define __EXEC_USERPTR_USED     BIT(29)
68 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
69 #define UPDATE                  PIN_OFFSET_FIXED
70
71 #define BATCH_OFFSET_BIAS (256*1024)
72
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74         (__I915_EXEC_UNKNOWN_FLAGS | \
75          I915_EXEC_CONSTANTS_MASK  | \
76          I915_EXEC_RESOURCE_STREAMER)
77
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83         22; \
84 })
85 #endif
86
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237
238 struct eb_fence {
239         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240         struct dma_fence *dma_fence;
241         u64 value;
242         struct dma_fence_chain *chain_fence;
243 };
244
245 struct i915_execbuffer {
246         struct drm_i915_private *i915; /** i915 backpointer */
247         struct drm_file *file; /** per-file lookup tables and limits */
248         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250         struct eb_vma *vma;
251
252         struct intel_gt *gt; /* gt for the execbuf */
253         struct intel_context *context; /* logical state for the request */
254         struct i915_gem_context *gem_context; /** caller's context */
255
256         /** our requests to build */
257         struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258         /** identity of the batch obj/vma */
259         struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260         struct i915_vma *trampoline; /** trampoline used for chaining */
261
262         /** used for excl fence in dma_resv objects when > 1 BB submitted */
263         struct dma_fence *composite_fence;
264
265         /** actual size of execobj[] as we may extend it for the cmdparser */
266         unsigned int buffer_count;
267
268         /* number of batches in execbuf IOCTL */
269         unsigned int num_batches;
270
271         /** list of vma not yet bound during reservation phase */
272         struct list_head unbound;
273
274         /** list of vma that have execobj.relocation_count */
275         struct list_head relocs;
276
277         struct i915_gem_ww_ctx ww;
278
279         /**
280          * Track the most recently used object for relocations, as we
281          * frequently have to perform multiple relocations within the same
282          * obj/page
283          */
284         struct reloc_cache {
285                 struct drm_mm_node node; /** temporary GTT binding */
286                 unsigned long vaddr; /** Current kmap address */
287                 unsigned long page; /** Currently mapped page index */
288                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289                 bool use_64bit_reloc : 1;
290                 bool has_llc : 1;
291                 bool has_fence : 1;
292                 bool needs_unfenced : 1;
293         } reloc_cache;
294
295         u64 invalid_flags; /** Set of execobj.flags that are invalid */
296
297         /** Length of batch within object */
298         u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299         u32 batch_start_offset; /** Location within object of batch */
300         u32 batch_flags; /** Flags composed for emit_bb_start() */
301         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302
303         /**
304          * Indicate either the size of the hastable used to resolve
305          * relocation handles, or if negative that we are using a direct
306          * index into the execobj[].
307          */
308         int lut_size;
309         struct hlist_head *buckets; /** ht for relocation handles */
310
311         struct eb_fence *fences;
312         unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314         struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325         return intel_engine_requires_cmd_parser(eb->context->engine) ||
326                 (intel_engine_using_cmd_parser(eb->context->engine) &&
327                  eb->args->batch_len);
328 }
329
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333                 unsigned int size = 1 + ilog2(eb->buffer_count);
334
335                 /*
336                  * Without a 1:1 association between relocation handles and
337                  * the execobject[] index, we instead create a hashtable.
338                  * We size it dynamically based on available memory, starting
339                  * first with 1:1 assocative hash and scaling back until
340                  * the allocation succeeds.
341                  *
342                  * Later on we use a positive lut_size to indicate we are
343                  * using this hashtable, and a negative value to indicate a
344                  * direct lookup.
345                  */
346                 do {
347                         gfp_t flags;
348
349                         /* While we can still reduce the allocation size, don't
350                          * raise a warning and allow the allocation to fail.
351                          * On the last pass though, we want to try as hard
352                          * as possible to perform the allocation and warn
353                          * if it fails.
354                          */
355                         flags = GFP_KERNEL;
356                         if (size > 1)
357                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
358
359                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360                                               flags);
361                         if (eb->buckets)
362                                 break;
363                 } while (--size);
364
365                 if (unlikely(!size))
366                         return -ENOMEM;
367
368                 eb->lut_size = size;
369         } else {
370                 eb->lut_size = -eb->buffer_count;
371         }
372
373         return 0;
374 }
375
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378                  const struct i915_vma *vma,
379                  unsigned int flags)
380 {
381         if (vma->node.size < entry->pad_to_size)
382                 return true;
383
384         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385                 return true;
386
387         if (flags & EXEC_OBJECT_PINNED &&
388             vma->node.start != entry->offset)
389                 return true;
390
391         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392             vma->node.start < BATCH_OFFSET_BIAS)
393                 return true;
394
395         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396             (vma->node.start + vma->node.size + 4095) >> 32)
397                 return true;
398
399         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400             !i915_vma_is_map_and_fenceable(vma))
401                 return true;
402
403         return false;
404 }
405
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407                         unsigned int exec_flags)
408 {
409         u64 pin_flags = 0;
410
411         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412                 pin_flags |= PIN_GLOBAL;
413
414         /*
415          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416          * limit address to the first 4GBs for unflagged objects.
417          */
418         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419                 pin_flags |= PIN_ZONE_4G;
420
421         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422                 pin_flags |= PIN_MAPPABLE;
423
424         if (exec_flags & EXEC_OBJECT_PINNED)
425                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428
429         return pin_flags;
430 }
431
432 static inline int
433 eb_pin_vma(struct i915_execbuffer *eb,
434            const struct drm_i915_gem_exec_object2 *entry,
435            struct eb_vma *ev)
436 {
437         struct i915_vma *vma = ev->vma;
438         u64 pin_flags;
439         int err;
440
441         if (vma->node.size)
442                 pin_flags = vma->node.start;
443         else
444                 pin_flags = entry->offset & PIN_OFFSET_MASK;
445
446         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448                 pin_flags |= PIN_GLOBAL;
449
450         /* Attempt to reuse the current location if available */
451         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452         if (err == -EDEADLK)
453                 return err;
454
455         if (unlikely(err)) {
456                 if (entry->flags & EXEC_OBJECT_PINNED)
457                         return err;
458
459                 /* Failing that pick any _free_ space if suitable */
460                 err = i915_vma_pin_ww(vma, &eb->ww,
461                                              entry->pad_to_size,
462                                              entry->alignment,
463                                              eb_pin_flags(entry, ev->flags) |
464                                              PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
465                 if (unlikely(err))
466                         return err;
467         }
468
469         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470                 err = i915_vma_pin_fence(vma);
471                 if (unlikely(err))
472                         return err;
473
474                 if (vma->fence)
475                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476         }
477
478         ev->flags |= __EXEC_OBJECT_HAS_PIN;
479         if (eb_vma_misplaced(entry, vma, ev->flags))
480                 return -EBADSLT;
481
482         return 0;
483 }
484
485 static inline void
486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489                 __i915_vma_unpin_fence(ev->vma);
490
491         ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496                 struct drm_i915_gem_exec_object2 *entry,
497                 struct i915_vma *vma)
498 {
499         /* Relocations are disallowed for all platforms after TGL-LP.  This
500          * also covers all platforms with local memory.
501          */
502         if (entry->relocation_count &&
503             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504                 return -EINVAL;
505
506         if (unlikely(entry->flags & eb->invalid_flags))
507                 return -EINVAL;
508
509         if (unlikely(entry->alignment &&
510                      !is_power_of_2_u64(entry->alignment)))
511                 return -EINVAL;
512
513         /*
514          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515          * any non-page-aligned or non-canonical addresses.
516          */
517         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519                 return -EINVAL;
520
521         /* pad_to_size was once a reserved field, so sanitize it */
522         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523                 if (unlikely(offset_in_page(entry->pad_to_size)))
524                         return -EINVAL;
525         } else {
526                 entry->pad_to_size = 0;
527         }
528         /*
529          * From drm_mm perspective address space is continuous,
530          * so from this point we're always using non-canonical
531          * form internally.
532          */
533         entry->offset = gen8_noncanonical_addr(entry->offset);
534
535         if (!eb->reloc_cache.has_fence) {
536                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537         } else {
538                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539                      eb->reloc_cache.needs_unfenced) &&
540                     i915_gem_object_is_tiled(vma->obj))
541                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542         }
543
544         return 0;
545 }
546
547 static inline bool
548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549 {
550         return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551                 buffer_idx < eb->num_batches :
552                 buffer_idx >= eb->args->buffer_count - eb->num_batches;
553 }
554
555 static int
556 eb_add_vma(struct i915_execbuffer *eb,
557            unsigned int *current_batch,
558            unsigned int i,
559            struct i915_vma *vma)
560 {
561         struct drm_i915_private *i915 = eb->i915;
562         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563         struct eb_vma *ev = &eb->vma[i];
564
565         ev->vma = vma;
566         ev->exec = entry;
567         ev->flags = entry->flags;
568
569         if (eb->lut_size > 0) {
570                 ev->handle = entry->handle;
571                 hlist_add_head(&ev->node,
572                                &eb->buckets[hash_32(entry->handle,
573                                                     eb->lut_size)]);
574         }
575
576         if (entry->relocation_count)
577                 list_add_tail(&ev->reloc_link, &eb->relocs);
578
579         /*
580          * SNA is doing fancy tricks with compressing batch buffers, which leads
581          * to negative relocation deltas. Usually that works out ok since the
582          * relocate address is still positive, except when the batch is placed
583          * very low in the GTT. Ensure this doesn't happen.
584          *
585          * Note that actual hangs have only been observed on gen7, but for
586          * paranoia do it everywhere.
587          */
588         if (is_batch_buffer(eb, i)) {
589                 if (entry->relocation_count &&
590                     !(ev->flags & EXEC_OBJECT_PINNED))
591                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592                 if (eb->reloc_cache.has_fence)
593                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
594
595                 eb->batches[*current_batch] = ev;
596
597                 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598                         drm_dbg(&i915->drm,
599                                 "Attempting to use self-modifying batch buffer\n");
600                         return -EINVAL;
601                 }
602
603                 if (range_overflows_t(u64,
604                                       eb->batch_start_offset,
605                                       eb->args->batch_len,
606                                       ev->vma->size)) {
607                         drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608                         return -EINVAL;
609                 }
610
611                 if (eb->args->batch_len == 0)
612                         eb->batch_len[*current_batch] = ev->vma->size -
613                                 eb->batch_start_offset;
614                 else
615                         eb->batch_len[*current_batch] = eb->args->batch_len;
616                 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617                         drm_dbg(&i915->drm, "Invalid batch length\n");
618                         return -EINVAL;
619                 }
620
621                 ++*current_batch;
622         }
623
624         return 0;
625 }
626
627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628                                 const struct drm_i915_gem_object *obj)
629 {
630         if (!i915_gem_object_has_struct_page(obj))
631                 return false;
632
633         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634                 return true;
635
636         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637                 return false;
638
639         return (cache->has_llc ||
640                 obj->cache_dirty ||
641                 obj->cache_level != I915_CACHE_NONE);
642 }
643
644 static int eb_reserve_vma(struct i915_execbuffer *eb,
645                           struct eb_vma *ev,
646                           u64 pin_flags)
647 {
648         struct drm_i915_gem_exec_object2 *entry = ev->exec;
649         struct i915_vma *vma = ev->vma;
650         int err;
651
652         if (drm_mm_node_allocated(&vma->node) &&
653             eb_vma_misplaced(entry, vma, ev->flags)) {
654                 err = i915_vma_unbind(vma);
655                 if (err)
656                         return err;
657         }
658
659         err = i915_vma_pin_ww(vma, &eb->ww,
660                            entry->pad_to_size, entry->alignment,
661                            eb_pin_flags(entry, ev->flags) | pin_flags);
662         if (err)
663                 return err;
664
665         if (entry->offset != vma->node.start) {
666                 entry->offset = vma->node.start | UPDATE;
667                 eb->args->flags |= __EXEC_HAS_RELOC;
668         }
669
670         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671                 err = i915_vma_pin_fence(vma);
672                 if (unlikely(err))
673                         return err;
674
675                 if (vma->fence)
676                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
677         }
678
679         ev->flags |= __EXEC_OBJECT_HAS_PIN;
680         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
681
682         return 0;
683 }
684
685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
686 {
687         const unsigned int count = eb->buffer_count;
688         unsigned int i;
689         struct list_head last;
690         bool unpinned = false;
691
692         /* Resort *all* the objects into priority order */
693         INIT_LIST_HEAD(&eb->unbound);
694         INIT_LIST_HEAD(&last);
695
696         for (i = 0; i < count; i++) {
697                 struct eb_vma *ev = &eb->vma[i];
698                 unsigned int flags = ev->flags;
699
700                 if (!force && flags & EXEC_OBJECT_PINNED &&
701                     flags & __EXEC_OBJECT_HAS_PIN)
702                         continue;
703
704                 unpinned = true;
705                 eb_unreserve_vma(ev);
706
707                 if (flags & EXEC_OBJECT_PINNED)
708                         /* Pinned must have their slot */
709                         list_add(&ev->bind_link, &eb->unbound);
710                 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711                         /* Map require the lowest 256MiB (aperture) */
712                         list_add_tail(&ev->bind_link, &eb->unbound);
713                 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714                         /* Prioritise 4GiB region for restricted bo */
715                         list_add(&ev->bind_link, &last);
716                 else
717                         list_add_tail(&ev->bind_link, &last);
718         }
719
720         list_splice_tail(&last, &eb->unbound);
721         return unpinned;
722 }
723
724 static int eb_reserve(struct i915_execbuffer *eb)
725 {
726         struct eb_vma *ev;
727         unsigned int pass;
728         int err = 0;
729         bool unpinned;
730
731         /*
732          * Attempt to pin all of the buffers into the GTT.
733          * This is done in 2 phases:
734          *
735          * 1. Unbind all objects that do not match the GTT constraints for
736          *    the execbuffer (fenceable, mappable, alignment etc).
737          * 2. Bind new objects.
738          *
739          * This avoid unnecessary unbinding of later objects in order to make
740          * room for the earlier objects *unless* we need to defragment.
741          *
742          * Defragmenting is skipped if all objects are pinned at a fixed location.
743          */
744         for (pass = 0; pass <= 2; pass++) {
745                 int pin_flags = PIN_USER | PIN_VALIDATE;
746
747                 if (pass == 0)
748                         pin_flags |= PIN_NONBLOCK;
749
750                 if (pass >= 1)
751                         unpinned = eb_unbind(eb, pass == 2);
752
753                 if (pass == 2) {
754                         err = mutex_lock_interruptible(&eb->context->vm->mutex);
755                         if (!err) {
756                                 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757                                 mutex_unlock(&eb->context->vm->mutex);
758                         }
759                         if (err)
760                                 return err;
761                 }
762
763                 list_for_each_entry(ev, &eb->unbound, bind_link) {
764                         err = eb_reserve_vma(eb, ev, pin_flags);
765                         if (err)
766                                 break;
767                 }
768
769                 if (err != -ENOSPC)
770                         break;
771         }
772
773         return err;
774 }
775
776 static int eb_select_context(struct i915_execbuffer *eb)
777 {
778         struct i915_gem_context *ctx;
779
780         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781         if (unlikely(IS_ERR(ctx)))
782                 return PTR_ERR(ctx);
783
784         eb->gem_context = ctx;
785         if (i915_gem_context_has_full_ppgtt(ctx))
786                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
787
788         return 0;
789 }
790
791 static int __eb_add_lut(struct i915_execbuffer *eb,
792                         u32 handle, struct i915_vma *vma)
793 {
794         struct i915_gem_context *ctx = eb->gem_context;
795         struct i915_lut_handle *lut;
796         int err;
797
798         lut = i915_lut_handle_alloc();
799         if (unlikely(!lut))
800                 return -ENOMEM;
801
802         i915_vma_get(vma);
803         if (!atomic_fetch_inc(&vma->open_count))
804                 i915_vma_reopen(vma);
805         lut->handle = handle;
806         lut->ctx = ctx;
807
808         /* Check that the context hasn't been closed in the meantime */
809         err = -EINTR;
810         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811                 if (likely(!i915_gem_context_is_closed(ctx)))
812                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813                 else
814                         err = -ENOENT;
815                 if (err == 0) { /* And nor has this handle */
816                         struct drm_i915_gem_object *obj = vma->obj;
817
818                         spin_lock(&obj->lut_lock);
819                         if (idr_find(&eb->file->object_idr, handle) == obj) {
820                                 list_add(&lut->obj_link, &obj->lut_list);
821                         } else {
822                                 radix_tree_delete(&ctx->handles_vma, handle);
823                                 err = -ENOENT;
824                         }
825                         spin_unlock(&obj->lut_lock);
826                 }
827                 mutex_unlock(&ctx->lut_mutex);
828         }
829         if (unlikely(err))
830                 goto err;
831
832         return 0;
833
834 err:
835         i915_vma_close(vma);
836         i915_vma_put(vma);
837         i915_lut_handle_free(lut);
838         return err;
839 }
840
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843         struct i915_address_space *vm = eb->context->vm;
844
845         do {
846                 struct drm_i915_gem_object *obj;
847                 struct i915_vma *vma;
848                 int err;
849
850                 rcu_read_lock();
851                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852                 if (likely(vma && vma->vm == vm))
853                         vma = i915_vma_tryget(vma);
854                 rcu_read_unlock();
855                 if (likely(vma))
856                         return vma;
857
858                 obj = i915_gem_object_lookup(eb->file, handle);
859                 if (unlikely(!obj))
860                         return ERR_PTR(-ENOENT);
861
862                 /*
863                  * If the user has opted-in for protected-object tracking, make
864                  * sure the object encryption can be used.
865                  * We only need to do this when the object is first used with
866                  * this context, because the context itself will be banned when
867                  * the protected objects become invalid.
868                  */
869                 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870                     i915_gem_object_is_protected(obj)) {
871                         err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
872                         if (err) {
873                                 i915_gem_object_put(obj);
874                                 return ERR_PTR(err);
875                         }
876                 }
877
878                 vma = i915_vma_instance(obj, vm, NULL);
879                 if (IS_ERR(vma)) {
880                         i915_gem_object_put(obj);
881                         return vma;
882                 }
883
884                 err = __eb_add_lut(eb, handle, vma);
885                 if (likely(!err))
886                         return vma;
887
888                 i915_gem_object_put(obj);
889                 if (err != -EEXIST)
890                         return ERR_PTR(err);
891         } while (1);
892 }
893
894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
895 {
896         unsigned int i, current_batch = 0;
897         int err = 0;
898
899         INIT_LIST_HEAD(&eb->relocs);
900
901         for (i = 0; i < eb->buffer_count; i++) {
902                 struct i915_vma *vma;
903
904                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
905                 if (IS_ERR(vma)) {
906                         err = PTR_ERR(vma);
907                         goto err;
908                 }
909
910                 err = eb_validate_vma(eb, &eb->exec[i], vma);
911                 if (unlikely(err)) {
912                         i915_vma_put(vma);
913                         goto err;
914                 }
915
916                 err = eb_add_vma(eb, &current_batch, i, vma);
917                 if (err)
918                         return err;
919
920                 if (i915_gem_object_is_userptr(vma->obj)) {
921                         err = i915_gem_object_userptr_submit_init(vma->obj);
922                         if (err) {
923                                 if (i + 1 < eb->buffer_count) {
924                                         /*
925                                          * Execbuffer code expects last vma entry to be NULL,
926                                          * since we already initialized this entry,
927                                          * set the next value to NULL or we mess up
928                                          * cleanup handling.
929                                          */
930                                         eb->vma[i + 1].vma = NULL;
931                                 }
932
933                                 return err;
934                         }
935
936                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937                         eb->args->flags |= __EXEC_USERPTR_USED;
938                 }
939         }
940
941         return 0;
942
943 err:
944         eb->vma[i].vma = NULL;
945         return err;
946 }
947
948 static int eb_lock_vmas(struct i915_execbuffer *eb)
949 {
950         unsigned int i;
951         int err;
952
953         for (i = 0; i < eb->buffer_count; i++) {
954                 struct eb_vma *ev = &eb->vma[i];
955                 struct i915_vma *vma = ev->vma;
956
957                 err = i915_gem_object_lock(vma->obj, &eb->ww);
958                 if (err)
959                         return err;
960         }
961
962         return 0;
963 }
964
965 static int eb_validate_vmas(struct i915_execbuffer *eb)
966 {
967         unsigned int i;
968         int err;
969
970         INIT_LIST_HEAD(&eb->unbound);
971
972         err = eb_lock_vmas(eb);
973         if (err)
974                 return err;
975
976         for (i = 0; i < eb->buffer_count; i++) {
977                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978                 struct eb_vma *ev = &eb->vma[i];
979                 struct i915_vma *vma = ev->vma;
980
981                 err = eb_pin_vma(eb, entry, ev);
982                 if (err == -EDEADLK)
983                         return err;
984
985                 if (!err) {
986                         if (entry->offset != vma->node.start) {
987                                 entry->offset = vma->node.start | UPDATE;
988                                 eb->args->flags |= __EXEC_HAS_RELOC;
989                         }
990                 } else {
991                         eb_unreserve_vma(ev);
992
993                         list_add_tail(&ev->bind_link, &eb->unbound);
994                         if (drm_mm_node_allocated(&vma->node)) {
995                                 err = i915_vma_unbind(vma);
996                                 if (err)
997                                         return err;
998                         }
999                 }
1000
1001                 /* Reserve enough slots to accommodate composite fences */
1002                 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1003                 if (err)
1004                         return err;
1005
1006                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1007                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1008         }
1009
1010         if (!list_empty(&eb->unbound))
1011                 return eb_reserve(eb);
1012
1013         return 0;
1014 }
1015
1016 static struct eb_vma *
1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1018 {
1019         if (eb->lut_size < 0) {
1020                 if (handle >= -eb->lut_size)
1021                         return NULL;
1022                 return &eb->vma[handle];
1023         } else {
1024                 struct hlist_head *head;
1025                 struct eb_vma *ev;
1026
1027                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1028                 hlist_for_each_entry(ev, head, node) {
1029                         if (ev->handle == handle)
1030                                 return ev;
1031                 }
1032                 return NULL;
1033         }
1034 }
1035
1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1037 {
1038         const unsigned int count = eb->buffer_count;
1039         unsigned int i;
1040
1041         for (i = 0; i < count; i++) {
1042                 struct eb_vma *ev = &eb->vma[i];
1043                 struct i915_vma *vma = ev->vma;
1044
1045                 if (!vma)
1046                         break;
1047
1048                 eb_unreserve_vma(ev);
1049
1050                 if (final)
1051                         i915_vma_put(vma);
1052         }
1053
1054         eb_capture_release(eb);
1055         eb_unpin_engine(eb);
1056 }
1057
1058 static void eb_destroy(const struct i915_execbuffer *eb)
1059 {
1060         if (eb->lut_size > 0)
1061                 kfree(eb->buckets);
1062 }
1063
1064 static inline u64
1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1066                   const struct i915_vma *target)
1067 {
1068         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1069 }
1070
1071 static void reloc_cache_init(struct reloc_cache *cache,
1072                              struct drm_i915_private *i915)
1073 {
1074         cache->page = -1;
1075         cache->vaddr = 0;
1076         /* Must be a variable in the struct to allow GCC to unroll. */
1077         cache->graphics_ver = GRAPHICS_VER(i915);
1078         cache->has_llc = HAS_LLC(i915);
1079         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1080         cache->has_fence = cache->graphics_ver < 4;
1081         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1082         cache->node.flags = 0;
1083 }
1084
1085 static inline void *unmask_page(unsigned long p)
1086 {
1087         return (void *)(uintptr_t)(p & PAGE_MASK);
1088 }
1089
1090 static inline unsigned int unmask_flags(unsigned long p)
1091 {
1092         return p & ~PAGE_MASK;
1093 }
1094
1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1096
1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1098 {
1099         struct drm_i915_private *i915 =
1100                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1101         return to_gt(i915)->ggtt;
1102 }
1103
1104 static void reloc_cache_unmap(struct reloc_cache *cache)
1105 {
1106         void *vaddr;
1107
1108         if (!cache->vaddr)
1109                 return;
1110
1111         vaddr = unmask_page(cache->vaddr);
1112         if (cache->vaddr & KMAP)
1113                 kunmap_atomic(vaddr);
1114         else
1115                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1116 }
1117
1118 static void reloc_cache_remap(struct reloc_cache *cache,
1119                               struct drm_i915_gem_object *obj)
1120 {
1121         void *vaddr;
1122
1123         if (!cache->vaddr)
1124                 return;
1125
1126         if (cache->vaddr & KMAP) {
1127                 struct page *page = i915_gem_object_get_page(obj, cache->page);
1128
1129                 vaddr = kmap_atomic(page);
1130                 cache->vaddr = unmask_flags(cache->vaddr) |
1131                         (unsigned long)vaddr;
1132         } else {
1133                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134                 unsigned long offset;
1135
1136                 offset = cache->node.start;
1137                 if (!drm_mm_node_allocated(&cache->node))
1138                         offset += cache->page << PAGE_SHIFT;
1139
1140                 cache->vaddr = (unsigned long)
1141                         io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1142         }
1143 }
1144
1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1146 {
1147         void *vaddr;
1148
1149         if (!cache->vaddr)
1150                 return;
1151
1152         vaddr = unmask_page(cache->vaddr);
1153         if (cache->vaddr & KMAP) {
1154                 struct drm_i915_gem_object *obj =
1155                         (struct drm_i915_gem_object *)cache->node.mm;
1156                 if (cache->vaddr & CLFLUSH_AFTER)
1157                         mb();
1158
1159                 kunmap_atomic(vaddr);
1160                 i915_gem_object_finish_access(obj);
1161         } else {
1162                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1163
1164                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1165                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1166
1167                 if (drm_mm_node_allocated(&cache->node)) {
1168                         ggtt->vm.clear_range(&ggtt->vm,
1169                                              cache->node.start,
1170                                              cache->node.size);
1171                         mutex_lock(&ggtt->vm.mutex);
1172                         drm_mm_remove_node(&cache->node);
1173                         mutex_unlock(&ggtt->vm.mutex);
1174                 } else {
1175                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1176                 }
1177         }
1178
1179         cache->vaddr = 0;
1180         cache->page = -1;
1181 }
1182
1183 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1184                         struct reloc_cache *cache,
1185                         unsigned long pageno)
1186 {
1187         void *vaddr;
1188         struct page *page;
1189
1190         if (cache->vaddr) {
1191                 kunmap_atomic(unmask_page(cache->vaddr));
1192         } else {
1193                 unsigned int flushes;
1194                 int err;
1195
1196                 err = i915_gem_object_prepare_write(obj, &flushes);
1197                 if (err)
1198                         return ERR_PTR(err);
1199
1200                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1201                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1202
1203                 cache->vaddr = flushes | KMAP;
1204                 cache->node.mm = (void *)obj;
1205                 if (flushes)
1206                         mb();
1207         }
1208
1209         page = i915_gem_object_get_page(obj, pageno);
1210         if (!obj->mm.dirty)
1211                 set_page_dirty(page);
1212
1213         vaddr = kmap_atomic(page);
1214         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1215         cache->page = pageno;
1216
1217         return vaddr;
1218 }
1219
1220 static void *reloc_iomap(struct i915_vma *batch,
1221                          struct i915_execbuffer *eb,
1222                          unsigned long page)
1223 {
1224         struct drm_i915_gem_object *obj = batch->obj;
1225         struct reloc_cache *cache = &eb->reloc_cache;
1226         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1227         unsigned long offset;
1228         void *vaddr;
1229
1230         if (cache->vaddr) {
1231                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1232                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1233         } else {
1234                 struct i915_vma *vma = ERR_PTR(-ENODEV);
1235                 int err;
1236
1237                 if (i915_gem_object_is_tiled(obj))
1238                         return ERR_PTR(-EINVAL);
1239
1240                 if (use_cpu_reloc(cache, obj))
1241                         return NULL;
1242
1243                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1244                 if (err)
1245                         return ERR_PTR(err);
1246
1247                 /*
1248                  * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1249                  * VMA from the object list because we no longer pin.
1250                  *
1251                  * Only attempt to pin the batch buffer to ggtt if the current batch
1252                  * is not inside ggtt, or the batch buffer is not misplaced.
1253                  */
1254                 if (!i915_is_ggtt(batch->vm) ||
1255                     !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1256                         vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1257                                                           PIN_MAPPABLE |
1258                                                           PIN_NONBLOCK /* NOWARN */ |
1259                                                           PIN_NOEVICT);
1260                 }
1261
1262                 if (vma == ERR_PTR(-EDEADLK))
1263                         return vma;
1264
1265                 if (IS_ERR(vma)) {
1266                         memset(&cache->node, 0, sizeof(cache->node));
1267                         mutex_lock(&ggtt->vm.mutex);
1268                         err = drm_mm_insert_node_in_range
1269                                 (&ggtt->vm.mm, &cache->node,
1270                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1271                                  0, ggtt->mappable_end,
1272                                  DRM_MM_INSERT_LOW);
1273                         mutex_unlock(&ggtt->vm.mutex);
1274                         if (err) /* no inactive aperture space, use cpu reloc */
1275                                 return NULL;
1276                 } else {
1277                         cache->node.start = vma->node.start;
1278                         cache->node.mm = (void *)vma;
1279                 }
1280         }
1281
1282         offset = cache->node.start;
1283         if (drm_mm_node_allocated(&cache->node)) {
1284                 ggtt->vm.insert_page(&ggtt->vm,
1285                                      i915_gem_object_get_dma_address(obj, page),
1286                                      offset, I915_CACHE_NONE, 0);
1287         } else {
1288                 offset += page << PAGE_SHIFT;
1289         }
1290
1291         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1292                                                          offset);
1293         cache->page = page;
1294         cache->vaddr = (unsigned long)vaddr;
1295
1296         return vaddr;
1297 }
1298
1299 static void *reloc_vaddr(struct i915_vma *vma,
1300                          struct i915_execbuffer *eb,
1301                          unsigned long page)
1302 {
1303         struct reloc_cache *cache = &eb->reloc_cache;
1304         void *vaddr;
1305
1306         if (cache->page == page) {
1307                 vaddr = unmask_page(cache->vaddr);
1308         } else {
1309                 vaddr = NULL;
1310                 if ((cache->vaddr & KMAP) == 0)
1311                         vaddr = reloc_iomap(vma, eb, page);
1312                 if (!vaddr)
1313                         vaddr = reloc_kmap(vma->obj, cache, page);
1314         }
1315
1316         return vaddr;
1317 }
1318
1319 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1320 {
1321         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1322                 if (flushes & CLFLUSH_BEFORE)
1323                         drm_clflush_virt_range(addr, sizeof(*addr));
1324
1325                 *addr = value;
1326
1327                 /*
1328                  * Writes to the same cacheline are serialised by the CPU
1329                  * (including clflush). On the write path, we only require
1330                  * that it hits memory in an orderly fashion and place
1331                  * mb barriers at the start and end of the relocation phase
1332                  * to ensure ordering of clflush wrt to the system.
1333                  */
1334                 if (flushes & CLFLUSH_AFTER)
1335                         drm_clflush_virt_range(addr, sizeof(*addr));
1336         } else
1337                 *addr = value;
1338 }
1339
1340 static u64
1341 relocate_entry(struct i915_vma *vma,
1342                const struct drm_i915_gem_relocation_entry *reloc,
1343                struct i915_execbuffer *eb,
1344                const struct i915_vma *target)
1345 {
1346         u64 target_addr = relocation_target(reloc, target);
1347         u64 offset = reloc->offset;
1348         bool wide = eb->reloc_cache.use_64bit_reloc;
1349         void *vaddr;
1350
1351 repeat:
1352         vaddr = reloc_vaddr(vma, eb,
1353                             offset >> PAGE_SHIFT);
1354         if (IS_ERR(vaddr))
1355                 return PTR_ERR(vaddr);
1356
1357         GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1358         clflush_write32(vaddr + offset_in_page(offset),
1359                         lower_32_bits(target_addr),
1360                         eb->reloc_cache.vaddr);
1361
1362         if (wide) {
1363                 offset += sizeof(u32);
1364                 target_addr >>= 32;
1365                 wide = false;
1366                 goto repeat;
1367         }
1368
1369         return target->node.start | UPDATE;
1370 }
1371
1372 static u64
1373 eb_relocate_entry(struct i915_execbuffer *eb,
1374                   struct eb_vma *ev,
1375                   const struct drm_i915_gem_relocation_entry *reloc)
1376 {
1377         struct drm_i915_private *i915 = eb->i915;
1378         struct eb_vma *target;
1379         int err;
1380
1381         /* we've already hold a reference to all valid objects */
1382         target = eb_get_vma(eb, reloc->target_handle);
1383         if (unlikely(!target))
1384                 return -ENOENT;
1385
1386         /* Validate that the target is in a valid r/w GPU domain */
1387         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1388                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1389                           "target %d offset %d "
1390                           "read %08x write %08x",
1391                           reloc->target_handle,
1392                           (int) reloc->offset,
1393                           reloc->read_domains,
1394                           reloc->write_domain);
1395                 return -EINVAL;
1396         }
1397         if (unlikely((reloc->write_domain | reloc->read_domains)
1398                      & ~I915_GEM_GPU_DOMAINS)) {
1399                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1400                           "target %d offset %d "
1401                           "read %08x write %08x",
1402                           reloc->target_handle,
1403                           (int) reloc->offset,
1404                           reloc->read_domains,
1405                           reloc->write_domain);
1406                 return -EINVAL;
1407         }
1408
1409         if (reloc->write_domain) {
1410                 target->flags |= EXEC_OBJECT_WRITE;
1411
1412                 /*
1413                  * Sandybridge PPGTT errata: We need a global gtt mapping
1414                  * for MI and pipe_control writes because the gpu doesn't
1415                  * properly redirect them through the ppgtt for non_secure
1416                  * batchbuffers.
1417                  */
1418                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1419                     GRAPHICS_VER(eb->i915) == 6 &&
1420                     !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1421                         struct i915_vma *vma = target->vma;
1422
1423                         reloc_cache_unmap(&eb->reloc_cache);
1424                         mutex_lock(&vma->vm->mutex);
1425                         err = i915_vma_bind(target->vma,
1426                                             target->vma->obj->cache_level,
1427                                             PIN_GLOBAL, NULL, NULL);
1428                         mutex_unlock(&vma->vm->mutex);
1429                         reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1430                         if (err)
1431                                 return err;
1432                 }
1433         }
1434
1435         /*
1436          * If the relocation already has the right value in it, no
1437          * more work needs to be done.
1438          */
1439         if (!DBG_FORCE_RELOC &&
1440             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1441                 return 0;
1442
1443         /* Check that the relocation address is valid... */
1444         if (unlikely(reloc->offset >
1445                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1446                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1447                           "target %d offset %d size %d.\n",
1448                           reloc->target_handle,
1449                           (int)reloc->offset,
1450                           (int)ev->vma->size);
1451                 return -EINVAL;
1452         }
1453         if (unlikely(reloc->offset & 3)) {
1454                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1455                           "target %d offset %d.\n",
1456                           reloc->target_handle,
1457                           (int)reloc->offset);
1458                 return -EINVAL;
1459         }
1460
1461         /*
1462          * If we write into the object, we need to force the synchronisation
1463          * barrier, either with an asynchronous clflush or if we executed the
1464          * patching using the GPU (though that should be serialised by the
1465          * timeline). To be completely sure, and since we are required to
1466          * do relocations we are already stalling, disable the user's opt
1467          * out of our synchronisation.
1468          */
1469         ev->flags &= ~EXEC_OBJECT_ASYNC;
1470
1471         /* and update the user's relocation entry */
1472         return relocate_entry(ev->vma, reloc, eb, target->vma);
1473 }
1474
1475 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1476 {
1477 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1478         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1479         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1480         struct drm_i915_gem_relocation_entry __user *urelocs =
1481                 u64_to_user_ptr(entry->relocs_ptr);
1482         unsigned long remain = entry->relocation_count;
1483
1484         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1485                 return -EINVAL;
1486
1487         /*
1488          * We must check that the entire relocation array is safe
1489          * to read. However, if the array is not writable the user loses
1490          * the updated relocation values.
1491          */
1492         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1493                 return -EFAULT;
1494
1495         do {
1496                 struct drm_i915_gem_relocation_entry *r = stack;
1497                 unsigned int count =
1498                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1499                 unsigned int copied;
1500
1501                 /*
1502                  * This is the fast path and we cannot handle a pagefault
1503                  * whilst holding the struct mutex lest the user pass in the
1504                  * relocations contained within a mmaped bo. For in such a case
1505                  * we, the page fault handler would call i915_gem_fault() and
1506                  * we would try to acquire the struct mutex again. Obviously
1507                  * this is bad and so lockdep complains vehemently.
1508                  */
1509                 pagefault_disable();
1510                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1511                 pagefault_enable();
1512                 if (unlikely(copied)) {
1513                         remain = -EFAULT;
1514                         goto out;
1515                 }
1516
1517                 remain -= count;
1518                 do {
1519                         u64 offset = eb_relocate_entry(eb, ev, r);
1520
1521                         if (likely(offset == 0)) {
1522                         } else if ((s64)offset < 0) {
1523                                 remain = (int)offset;
1524                                 goto out;
1525                         } else {
1526                                 /*
1527                                  * Note that reporting an error now
1528                                  * leaves everything in an inconsistent
1529                                  * state as we have *already* changed
1530                                  * the relocation value inside the
1531                                  * object. As we have not changed the
1532                                  * reloc.presumed_offset or will not
1533                                  * change the execobject.offset, on the
1534                                  * call we may not rewrite the value
1535                                  * inside the object, leaving it
1536                                  * dangling and causing a GPU hang. Unless
1537                                  * userspace dynamically rebuilds the
1538                                  * relocations on each execbuf rather than
1539                                  * presume a static tree.
1540                                  *
1541                                  * We did previously check if the relocations
1542                                  * were writable (access_ok), an error now
1543                                  * would be a strange race with mprotect,
1544                                  * having already demonstrated that we
1545                                  * can read from this userspace address.
1546                                  */
1547                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1548                                 __put_user(offset,
1549                                            &urelocs[r - stack].presumed_offset);
1550                         }
1551                 } while (r++, --count);
1552                 urelocs += ARRAY_SIZE(stack);
1553         } while (remain);
1554 out:
1555         reloc_cache_reset(&eb->reloc_cache, eb);
1556         return remain;
1557 }
1558
1559 static int
1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1561 {
1562         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1563         struct drm_i915_gem_relocation_entry *relocs =
1564                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1565         unsigned int i;
1566         int err;
1567
1568         for (i = 0; i < entry->relocation_count; i++) {
1569                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1570
1571                 if ((s64)offset < 0) {
1572                         err = (int)offset;
1573                         goto err;
1574                 }
1575         }
1576         err = 0;
1577 err:
1578         reloc_cache_reset(&eb->reloc_cache, eb);
1579         return err;
1580 }
1581
1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1583 {
1584         const char __user *addr, *end;
1585         unsigned long size;
1586         char __maybe_unused c;
1587
1588         size = entry->relocation_count;
1589         if (size == 0)
1590                 return 0;
1591
1592         if (size > N_RELOC(ULONG_MAX))
1593                 return -EINVAL;
1594
1595         addr = u64_to_user_ptr(entry->relocs_ptr);
1596         size *= sizeof(struct drm_i915_gem_relocation_entry);
1597         if (!access_ok(addr, size))
1598                 return -EFAULT;
1599
1600         end = addr + size;
1601         for (; addr < end; addr += PAGE_SIZE) {
1602                 int err = __get_user(c, addr);
1603                 if (err)
1604                         return err;
1605         }
1606         return __get_user(c, end - 1);
1607 }
1608
1609 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1610 {
1611         struct drm_i915_gem_relocation_entry *relocs;
1612         const unsigned int count = eb->buffer_count;
1613         unsigned int i;
1614         int err;
1615
1616         for (i = 0; i < count; i++) {
1617                 const unsigned int nreloc = eb->exec[i].relocation_count;
1618                 struct drm_i915_gem_relocation_entry __user *urelocs;
1619                 unsigned long size;
1620                 unsigned long copied;
1621
1622                 if (nreloc == 0)
1623                         continue;
1624
1625                 err = check_relocations(&eb->exec[i]);
1626                 if (err)
1627                         goto err;
1628
1629                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1630                 size = nreloc * sizeof(*relocs);
1631
1632                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1633                 if (!relocs) {
1634                         err = -ENOMEM;
1635                         goto err;
1636                 }
1637
1638                 /* copy_from_user is limited to < 4GiB */
1639                 copied = 0;
1640                 do {
1641                         unsigned int len =
1642                                 min_t(u64, BIT_ULL(31), size - copied);
1643
1644                         if (__copy_from_user((char *)relocs + copied,
1645                                              (char __user *)urelocs + copied,
1646                                              len))
1647                                 goto end;
1648
1649                         copied += len;
1650                 } while (copied < size);
1651
1652                 /*
1653                  * As we do not update the known relocation offsets after
1654                  * relocating (due to the complexities in lock handling),
1655                  * we need to mark them as invalid now so that we force the
1656                  * relocation processing next time. Just in case the target
1657                  * object is evicted and then rebound into its old
1658                  * presumed_offset before the next execbuffer - if that
1659                  * happened we would make the mistake of assuming that the
1660                  * relocations were valid.
1661                  */
1662                 if (!user_access_begin(urelocs, size))
1663                         goto end;
1664
1665                 for (copied = 0; copied < nreloc; copied++)
1666                         unsafe_put_user(-1,
1667                                         &urelocs[copied].presumed_offset,
1668                                         end_user);
1669                 user_access_end();
1670
1671                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1672         }
1673
1674         return 0;
1675
1676 end_user:
1677         user_access_end();
1678 end:
1679         kvfree(relocs);
1680         err = -EFAULT;
1681 err:
1682         while (i--) {
1683                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1684                 if (eb->exec[i].relocation_count)
1685                         kvfree(relocs);
1686         }
1687         return err;
1688 }
1689
1690 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1691 {
1692         const unsigned int count = eb->buffer_count;
1693         unsigned int i;
1694
1695         for (i = 0; i < count; i++) {
1696                 int err;
1697
1698                 err = check_relocations(&eb->exec[i]);
1699                 if (err)
1700                         return err;
1701         }
1702
1703         return 0;
1704 }
1705
1706 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1707 {
1708         const unsigned int count = eb->buffer_count;
1709         unsigned int i;
1710         int ret;
1711
1712         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1713                 return 0;
1714
1715         for (i = 0; i < count; i++) {
1716                 struct eb_vma *ev = &eb->vma[i];
1717
1718                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1719                         continue;
1720
1721                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1722                 if (ret)
1723                         return ret;
1724
1725                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1726         }
1727
1728         return 0;
1729 }
1730
1731 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1732 {
1733         bool have_copy = false;
1734         struct eb_vma *ev;
1735         int err = 0;
1736
1737 repeat:
1738         if (signal_pending(current)) {
1739                 err = -ERESTARTSYS;
1740                 goto out;
1741         }
1742
1743         /* We may process another execbuffer during the unlock... */
1744         eb_release_vmas(eb, false);
1745         i915_gem_ww_ctx_fini(&eb->ww);
1746
1747         /*
1748          * We take 3 passes through the slowpatch.
1749          *
1750          * 1 - we try to just prefault all the user relocation entries and
1751          * then attempt to reuse the atomic pagefault disabled fast path again.
1752          *
1753          * 2 - we copy the user entries to a local buffer here outside of the
1754          * local and allow ourselves to wait upon any rendering before
1755          * relocations
1756          *
1757          * 3 - we already have a local copy of the relocation entries, but
1758          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1759          */
1760         if (!err) {
1761                 err = eb_prefault_relocations(eb);
1762         } else if (!have_copy) {
1763                 err = eb_copy_relocations(eb);
1764                 have_copy = err == 0;
1765         } else {
1766                 cond_resched();
1767                 err = 0;
1768         }
1769
1770         if (!err)
1771                 err = eb_reinit_userptr(eb);
1772
1773         i915_gem_ww_ctx_init(&eb->ww, true);
1774         if (err)
1775                 goto out;
1776
1777         /* reacquire the objects */
1778 repeat_validate:
1779         err = eb_pin_engine(eb, false);
1780         if (err)
1781                 goto err;
1782
1783         err = eb_validate_vmas(eb);
1784         if (err)
1785                 goto err;
1786
1787         GEM_BUG_ON(!eb->batches[0]);
1788
1789         list_for_each_entry(ev, &eb->relocs, reloc_link) {
1790                 if (!have_copy) {
1791                         err = eb_relocate_vma(eb, ev);
1792                         if (err)
1793                                 break;
1794                 } else {
1795                         err = eb_relocate_vma_slow(eb, ev);
1796                         if (err)
1797                                 break;
1798                 }
1799         }
1800
1801         if (err == -EDEADLK)
1802                 goto err;
1803
1804         if (err && !have_copy)
1805                 goto repeat;
1806
1807         if (err)
1808                 goto err;
1809
1810         /* as last step, parse the command buffer */
1811         err = eb_parse(eb);
1812         if (err)
1813                 goto err;
1814
1815         /*
1816          * Leave the user relocations as are, this is the painfully slow path,
1817          * and we want to avoid the complication of dropping the lock whilst
1818          * having buffers reserved in the aperture and so causing spurious
1819          * ENOSPC for random operations.
1820          */
1821
1822 err:
1823         if (err == -EDEADLK) {
1824                 eb_release_vmas(eb, false);
1825                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1826                 if (!err)
1827                         goto repeat_validate;
1828         }
1829
1830         if (err == -EAGAIN)
1831                 goto repeat;
1832
1833 out:
1834         if (have_copy) {
1835                 const unsigned int count = eb->buffer_count;
1836                 unsigned int i;
1837
1838                 for (i = 0; i < count; i++) {
1839                         const struct drm_i915_gem_exec_object2 *entry =
1840                                 &eb->exec[i];
1841                         struct drm_i915_gem_relocation_entry *relocs;
1842
1843                         if (!entry->relocation_count)
1844                                 continue;
1845
1846                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1847                         kvfree(relocs);
1848                 }
1849         }
1850
1851         return err;
1852 }
1853
1854 static int eb_relocate_parse(struct i915_execbuffer *eb)
1855 {
1856         int err;
1857         bool throttle = true;
1858
1859 retry:
1860         err = eb_pin_engine(eb, throttle);
1861         if (err) {
1862                 if (err != -EDEADLK)
1863                         return err;
1864
1865                 goto err;
1866         }
1867
1868         /* only throttle once, even if we didn't need to throttle */
1869         throttle = false;
1870
1871         err = eb_validate_vmas(eb);
1872         if (err == -EAGAIN)
1873                 goto slow;
1874         else if (err)
1875                 goto err;
1876
1877         /* The objects are in their final locations, apply the relocations. */
1878         if (eb->args->flags & __EXEC_HAS_RELOC) {
1879                 struct eb_vma *ev;
1880
1881                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1882                         err = eb_relocate_vma(eb, ev);
1883                         if (err)
1884                                 break;
1885                 }
1886
1887                 if (err == -EDEADLK)
1888                         goto err;
1889                 else if (err)
1890                         goto slow;
1891         }
1892
1893         if (!err)
1894                 err = eb_parse(eb);
1895
1896 err:
1897         if (err == -EDEADLK) {
1898                 eb_release_vmas(eb, false);
1899                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1900                 if (!err)
1901                         goto retry;
1902         }
1903
1904         return err;
1905
1906 slow:
1907         err = eb_relocate_parse_slow(eb);
1908         if (err)
1909                 /*
1910                  * If the user expects the execobject.offset and
1911                  * reloc.presumed_offset to be an exact match,
1912                  * as for using NO_RELOC, then we cannot update
1913                  * the execobject.offset until we have completed
1914                  * relocation.
1915                  */
1916                 eb->args->flags &= ~__EXEC_HAS_RELOC;
1917
1918         return err;
1919 }
1920
1921 /*
1922  * Using two helper loops for the order of which requests / batches are created
1923  * and added the to backend. Requests are created in order from the parent to
1924  * the last child. Requests are added in the reverse order, from the last child
1925  * to parent. This is done for locking reasons as the timeline lock is acquired
1926  * during request creation and released when the request is added to the
1927  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1928  * the ordering.
1929  */
1930 #define for_each_batch_create_order(_eb, _i) \
1931         for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1932 #define for_each_batch_add_order(_eb, _i) \
1933         BUILD_BUG_ON(!typecheck(int, _i)); \
1934         for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1935
1936 static struct i915_request *
1937 eb_find_first_request_added(struct i915_execbuffer *eb)
1938 {
1939         int i;
1940
1941         for_each_batch_add_order(eb, i)
1942                 if (eb->requests[i])
1943                         return eb->requests[i];
1944
1945         GEM_BUG_ON("Request not found");
1946
1947         return NULL;
1948 }
1949
1950 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1951
1952 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1953 static int eb_capture_stage(struct i915_execbuffer *eb)
1954 {
1955         const unsigned int count = eb->buffer_count;
1956         unsigned int i = count, j;
1957
1958         while (i--) {
1959                 struct eb_vma *ev = &eb->vma[i];
1960                 struct i915_vma *vma = ev->vma;
1961                 unsigned int flags = ev->flags;
1962
1963                 if (!(flags & EXEC_OBJECT_CAPTURE))
1964                         continue;
1965
1966                 if (i915_gem_context_is_recoverable(eb->gem_context) &&
1967                     (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
1968                         return -EINVAL;
1969
1970                 for_each_batch_create_order(eb, j) {
1971                         struct i915_capture_list *capture;
1972
1973                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1974                         if (!capture)
1975                                 continue;
1976
1977                         capture->next = eb->capture_lists[j];
1978                         capture->vma_res = i915_vma_resource_get(vma->resource);
1979                         eb->capture_lists[j] = capture;
1980                 }
1981         }
1982
1983         return 0;
1984 }
1985
1986 /* Commit once we're in the critical path */
1987 static void eb_capture_commit(struct i915_execbuffer *eb)
1988 {
1989         unsigned int j;
1990
1991         for_each_batch_create_order(eb, j) {
1992                 struct i915_request *rq = eb->requests[j];
1993
1994                 if (!rq)
1995                         break;
1996
1997                 rq->capture_list = eb->capture_lists[j];
1998                 eb->capture_lists[j] = NULL;
1999         }
2000 }
2001
2002 /*
2003  * Release anything that didn't get committed due to errors.
2004  * The capture_list will otherwise be freed at request retire.
2005  */
2006 static void eb_capture_release(struct i915_execbuffer *eb)
2007 {
2008         unsigned int j;
2009
2010         for_each_batch_create_order(eb, j) {
2011                 if (eb->capture_lists[j]) {
2012                         i915_request_free_capture_list(eb->capture_lists[j]);
2013                         eb->capture_lists[j] = NULL;
2014                 }
2015         }
2016 }
2017
2018 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2019 {
2020         memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2021 }
2022
2023 #else
2024
2025 static int eb_capture_stage(struct i915_execbuffer *eb)
2026 {
2027         return 0;
2028 }
2029
2030 static void eb_capture_commit(struct i915_execbuffer *eb)
2031 {
2032 }
2033
2034 static void eb_capture_release(struct i915_execbuffer *eb)
2035 {
2036 }
2037
2038 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2039 {
2040 }
2041
2042 #endif
2043
2044 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2045 {
2046         const unsigned int count = eb->buffer_count;
2047         unsigned int i = count;
2048         int err = 0, j;
2049
2050         while (i--) {
2051                 struct eb_vma *ev = &eb->vma[i];
2052                 struct i915_vma *vma = ev->vma;
2053                 unsigned int flags = ev->flags;
2054                 struct drm_i915_gem_object *obj = vma->obj;
2055
2056                 assert_vma_held(vma);
2057
2058                 /*
2059                  * If the GPU is not _reading_ through the CPU cache, we need
2060                  * to make sure that any writes (both previous GPU writes from
2061                  * before a change in snooping levels and normal CPU writes)
2062                  * caught in that cache are flushed to main memory.
2063                  *
2064                  * We want to say
2065                  *   obj->cache_dirty &&
2066                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2067                  * but gcc's optimiser doesn't handle that as well and emits
2068                  * two jumps instead of one. Maybe one day...
2069                  *
2070                  * FIXME: There is also sync flushing in set_pages(), which
2071                  * serves a different purpose(some of the time at least).
2072                  *
2073                  * We should consider:
2074                  *
2075                  *   1. Rip out the async flush code.
2076                  *
2077                  *   2. Or make the sync flushing use the async clflush path
2078                  *   using mandatory fences underneath. Currently the below
2079                  *   async flush happens after we bind the object.
2080                  */
2081                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2082                         if (i915_gem_clflush_object(obj, 0))
2083                                 flags &= ~EXEC_OBJECT_ASYNC;
2084                 }
2085
2086                 /* We only need to await on the first request */
2087                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2088                         err = i915_request_await_object
2089                                 (eb_find_first_request_added(eb), obj,
2090                                  flags & EXEC_OBJECT_WRITE);
2091                 }
2092
2093                 for_each_batch_add_order(eb, j) {
2094                         if (err)
2095                                 break;
2096                         if (!eb->requests[j])
2097                                 continue;
2098
2099                         err = _i915_vma_move_to_active(vma, eb->requests[j],
2100                                                        j ? NULL :
2101                                                        eb->composite_fence ?
2102                                                        eb->composite_fence :
2103                                                        &eb->requests[j]->fence,
2104                                                        flags | __EXEC_OBJECT_NO_RESERVE);
2105                 }
2106         }
2107
2108 #ifdef CONFIG_MMU_NOTIFIER
2109         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2110                 read_lock(&eb->i915->mm.notifier_lock);
2111
2112                 /*
2113                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2114                  * could not have been set
2115                  */
2116                 for (i = 0; i < count; i++) {
2117                         struct eb_vma *ev = &eb->vma[i];
2118                         struct drm_i915_gem_object *obj = ev->vma->obj;
2119
2120                         if (!i915_gem_object_is_userptr(obj))
2121                                 continue;
2122
2123                         err = i915_gem_object_userptr_submit_done(obj);
2124                         if (err)
2125                                 break;
2126                 }
2127
2128                 read_unlock(&eb->i915->mm.notifier_lock);
2129         }
2130 #endif
2131
2132         if (unlikely(err))
2133                 goto err_skip;
2134
2135         /* Unconditionally flush any chipset caches (for streaming writes). */
2136         intel_gt_chipset_flush(eb->gt);
2137         eb_capture_commit(eb);
2138
2139         return 0;
2140
2141 err_skip:
2142         for_each_batch_create_order(eb, j) {
2143                 if (!eb->requests[j])
2144                         break;
2145
2146                 i915_request_set_error_once(eb->requests[j], err);
2147         }
2148         return err;
2149 }
2150
2151 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2152 {
2153         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2154                 return -EINVAL;
2155
2156         /* Kernel clipping was a DRI1 misfeature */
2157         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2158                              I915_EXEC_USE_EXTENSIONS))) {
2159                 if (exec->num_cliprects || exec->cliprects_ptr)
2160                         return -EINVAL;
2161         }
2162
2163         if (exec->DR4 == 0xffffffff) {
2164                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2165                 exec->DR4 = 0;
2166         }
2167         if (exec->DR1 || exec->DR4)
2168                 return -EINVAL;
2169
2170         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2171                 return -EINVAL;
2172
2173         return 0;
2174 }
2175
2176 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2177 {
2178         u32 *cs;
2179         int i;
2180
2181         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2182                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2183                 return -EINVAL;
2184         }
2185
2186         cs = intel_ring_begin(rq, 4 * 2 + 2);
2187         if (IS_ERR(cs))
2188                 return PTR_ERR(cs);
2189
2190         *cs++ = MI_LOAD_REGISTER_IMM(4);
2191         for (i = 0; i < 4; i++) {
2192                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2193                 *cs++ = 0;
2194         }
2195         *cs++ = MI_NOOP;
2196         intel_ring_advance(rq, cs);
2197
2198         return 0;
2199 }
2200
2201 static struct i915_vma *
2202 shadow_batch_pin(struct i915_execbuffer *eb,
2203                  struct drm_i915_gem_object *obj,
2204                  struct i915_address_space *vm,
2205                  unsigned int flags)
2206 {
2207         struct i915_vma *vma;
2208         int err;
2209
2210         vma = i915_vma_instance(obj, vm, NULL);
2211         if (IS_ERR(vma))
2212                 return vma;
2213
2214         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2215         if (err)
2216                 return ERR_PTR(err);
2217
2218         return vma;
2219 }
2220
2221 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2222 {
2223         /*
2224          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2225          * batch" bit. Hence we need to pin secure batches into the global gtt.
2226          * hsw should have this fixed, but bdw mucks it up again. */
2227         if (eb->batch_flags & I915_DISPATCH_SECURE)
2228                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2229
2230         return NULL;
2231 }
2232
2233 static int eb_parse(struct i915_execbuffer *eb)
2234 {
2235         struct drm_i915_private *i915 = eb->i915;
2236         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2237         struct i915_vma *shadow, *trampoline, *batch;
2238         unsigned long len;
2239         int err;
2240
2241         if (!eb_use_cmdparser(eb)) {
2242                 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2243                 if (IS_ERR(batch))
2244                         return PTR_ERR(batch);
2245
2246                 goto secure_batch;
2247         }
2248
2249         if (intel_context_is_parallel(eb->context))
2250                 return -EINVAL;
2251
2252         len = eb->batch_len[0];
2253         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2254                 /*
2255                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2256                  * post-scan tampering
2257                  */
2258                 if (!eb->context->vm->has_read_only) {
2259                         drm_dbg(&i915->drm,
2260                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2261                         return -EINVAL;
2262                 }
2263         } else {
2264                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2265         }
2266         if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2267                 return -EINVAL;
2268
2269         if (!pool) {
2270                 pool = intel_gt_get_buffer_pool(eb->gt, len,
2271                                                 I915_MAP_WB);
2272                 if (IS_ERR(pool))
2273                         return PTR_ERR(pool);
2274                 eb->batch_pool = pool;
2275         }
2276
2277         err = i915_gem_object_lock(pool->obj, &eb->ww);
2278         if (err)
2279                 return err;
2280
2281         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2282         if (IS_ERR(shadow))
2283                 return PTR_ERR(shadow);
2284
2285         intel_gt_buffer_pool_mark_used(pool);
2286         i915_gem_object_set_readonly(shadow->obj);
2287         shadow->private = pool;
2288
2289         trampoline = NULL;
2290         if (CMDPARSER_USES_GGTT(eb->i915)) {
2291                 trampoline = shadow;
2292
2293                 shadow = shadow_batch_pin(eb, pool->obj,
2294                                           &eb->gt->ggtt->vm,
2295                                           PIN_GLOBAL);
2296                 if (IS_ERR(shadow))
2297                         return PTR_ERR(shadow);
2298
2299                 shadow->private = pool;
2300
2301                 eb->batch_flags |= I915_DISPATCH_SECURE;
2302         }
2303
2304         batch = eb_dispatch_secure(eb, shadow);
2305         if (IS_ERR(batch))
2306                 return PTR_ERR(batch);
2307
2308         err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2309         if (err)
2310                 return err;
2311
2312         err = intel_engine_cmd_parser(eb->context->engine,
2313                                       eb->batches[0]->vma,
2314                                       eb->batch_start_offset,
2315                                       eb->batch_len[0],
2316                                       shadow, trampoline);
2317         if (err)
2318                 return err;
2319
2320         eb->batches[0] = &eb->vma[eb->buffer_count++];
2321         eb->batches[0]->vma = i915_vma_get(shadow);
2322         eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2323
2324         eb->trampoline = trampoline;
2325         eb->batch_start_offset = 0;
2326
2327 secure_batch:
2328         if (batch) {
2329                 if (intel_context_is_parallel(eb->context))
2330                         return -EINVAL;
2331
2332                 eb->batches[0] = &eb->vma[eb->buffer_count++];
2333                 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2334                 eb->batches[0]->vma = i915_vma_get(batch);
2335         }
2336         return 0;
2337 }
2338
2339 static int eb_request_submit(struct i915_execbuffer *eb,
2340                              struct i915_request *rq,
2341                              struct i915_vma *batch,
2342                              u64 batch_len)
2343 {
2344         int err;
2345
2346         if (intel_context_nopreempt(rq->context))
2347                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2348
2349         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2350                 err = i915_reset_gen7_sol_offsets(rq);
2351                 if (err)
2352                         return err;
2353         }
2354
2355         /*
2356          * After we completed waiting for other engines (using HW semaphores)
2357          * then we can signal that this request/batch is ready to run. This
2358          * allows us to determine if the batch is still waiting on the GPU
2359          * or actually running by checking the breadcrumb.
2360          */
2361         if (rq->context->engine->emit_init_breadcrumb) {
2362                 err = rq->context->engine->emit_init_breadcrumb(rq);
2363                 if (err)
2364                         return err;
2365         }
2366
2367         err = rq->context->engine->emit_bb_start(rq,
2368                                                  batch->node.start +
2369                                                  eb->batch_start_offset,
2370                                                  batch_len,
2371                                                  eb->batch_flags);
2372         if (err)
2373                 return err;
2374
2375         if (eb->trampoline) {
2376                 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2377                 GEM_BUG_ON(eb->batch_start_offset);
2378                 err = rq->context->engine->emit_bb_start(rq,
2379                                                          eb->trampoline->node.start +
2380                                                          batch_len, 0, 0);
2381                 if (err)
2382                         return err;
2383         }
2384
2385         return 0;
2386 }
2387
2388 static int eb_submit(struct i915_execbuffer *eb)
2389 {
2390         unsigned int i;
2391         int err;
2392
2393         err = eb_move_to_gpu(eb);
2394
2395         for_each_batch_create_order(eb, i) {
2396                 if (!eb->requests[i])
2397                         break;
2398
2399                 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2400                 if (!err)
2401                         err = eb_request_submit(eb, eb->requests[i],
2402                                                 eb->batches[i]->vma,
2403                                                 eb->batch_len[i]);
2404         }
2405
2406         return err;
2407 }
2408
2409 static int num_vcs_engines(struct drm_i915_private *i915)
2410 {
2411         return hweight_long(VDBOX_MASK(to_gt(i915)));
2412 }
2413
2414 /*
2415  * Find one BSD ring to dispatch the corresponding BSD command.
2416  * The engine index is returned.
2417  */
2418 static unsigned int
2419 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2420                          struct drm_file *file)
2421 {
2422         struct drm_i915_file_private *file_priv = file->driver_priv;
2423
2424         /* Check whether the file_priv has already selected one ring. */
2425         if ((int)file_priv->bsd_engine < 0)
2426                 file_priv->bsd_engine =
2427                         get_random_int() % num_vcs_engines(dev_priv);
2428
2429         return file_priv->bsd_engine;
2430 }
2431
2432 static const enum intel_engine_id user_ring_map[] = {
2433         [I915_EXEC_DEFAULT]     = RCS0,
2434         [I915_EXEC_RENDER]      = RCS0,
2435         [I915_EXEC_BLT]         = BCS0,
2436         [I915_EXEC_BSD]         = VCS0,
2437         [I915_EXEC_VEBOX]       = VECS0
2438 };
2439
2440 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2441 {
2442         struct intel_ring *ring = ce->ring;
2443         struct intel_timeline *tl = ce->timeline;
2444         struct i915_request *rq;
2445
2446         /*
2447          * Completely unscientific finger-in-the-air estimates for suitable
2448          * maximum user request size (to avoid blocking) and then backoff.
2449          */
2450         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2451                 return NULL;
2452
2453         /*
2454          * Find a request that after waiting upon, there will be at least half
2455          * the ring available. The hysteresis allows us to compete for the
2456          * shared ring and should mean that we sleep less often prior to
2457          * claiming our resources, but not so long that the ring completely
2458          * drains before we can submit our next request.
2459          */
2460         list_for_each_entry(rq, &tl->requests, link) {
2461                 if (rq->ring != ring)
2462                         continue;
2463
2464                 if (__intel_ring_space(rq->postfix,
2465                                        ring->emit, ring->size) > ring->size / 2)
2466                         break;
2467         }
2468         if (&rq->link == &tl->requests)
2469                 return NULL; /* weird, we will check again later for real */
2470
2471         return i915_request_get(rq);
2472 }
2473
2474 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2475                            bool throttle)
2476 {
2477         struct intel_timeline *tl;
2478         struct i915_request *rq = NULL;
2479
2480         /*
2481          * Take a local wakeref for preparing to dispatch the execbuf as
2482          * we expect to access the hardware fairly frequently in the
2483          * process, and require the engine to be kept awake between accesses.
2484          * Upon dispatch, we acquire another prolonged wakeref that we hold
2485          * until the timeline is idle, which in turn releases the wakeref
2486          * taken on the engine, and the parent device.
2487          */
2488         tl = intel_context_timeline_lock(ce);
2489         if (IS_ERR(tl))
2490                 return PTR_ERR(tl);
2491
2492         intel_context_enter(ce);
2493         if (throttle)
2494                 rq = eb_throttle(eb, ce);
2495         intel_context_timeline_unlock(tl);
2496
2497         if (rq) {
2498                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2499                 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2500
2501                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2502                                       timeout) < 0) {
2503                         i915_request_put(rq);
2504
2505                         /*
2506                          * Error path, cannot use intel_context_timeline_lock as
2507                          * that is user interruptable and this clean up step
2508                          * must be done.
2509                          */
2510                         mutex_lock(&ce->timeline->mutex);
2511                         intel_context_exit(ce);
2512                         mutex_unlock(&ce->timeline->mutex);
2513
2514                         if (nonblock)
2515                                 return -EWOULDBLOCK;
2516                         else
2517                                 return -EINTR;
2518                 }
2519                 i915_request_put(rq);
2520         }
2521
2522         return 0;
2523 }
2524
2525 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2526 {
2527         struct intel_context *ce = eb->context, *child;
2528         int err;
2529         int i = 0, j = 0;
2530
2531         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2532
2533         if (unlikely(intel_context_is_banned(ce)))
2534                 return -EIO;
2535
2536         /*
2537          * Pinning the contexts may generate requests in order to acquire
2538          * GGTT space, so do this first before we reserve a seqno for
2539          * ourselves.
2540          */
2541         err = intel_context_pin_ww(ce, &eb->ww);
2542         if (err)
2543                 return err;
2544         for_each_child(ce, child) {
2545                 err = intel_context_pin_ww(child, &eb->ww);
2546                 GEM_BUG_ON(err);        /* perma-pinned should incr a counter */
2547         }
2548
2549         for_each_child(ce, child) {
2550                 err = eb_pin_timeline(eb, child, throttle);
2551                 if (err)
2552                         goto unwind;
2553                 ++i;
2554         }
2555         err = eb_pin_timeline(eb, ce, throttle);
2556         if (err)
2557                 goto unwind;
2558
2559         eb->args->flags |= __EXEC_ENGINE_PINNED;
2560         return 0;
2561
2562 unwind:
2563         for_each_child(ce, child) {
2564                 if (j++ < i) {
2565                         mutex_lock(&child->timeline->mutex);
2566                         intel_context_exit(child);
2567                         mutex_unlock(&child->timeline->mutex);
2568                 }
2569         }
2570         for_each_child(ce, child)
2571                 intel_context_unpin(child);
2572         intel_context_unpin(ce);
2573         return err;
2574 }
2575
2576 static void eb_unpin_engine(struct i915_execbuffer *eb)
2577 {
2578         struct intel_context *ce = eb->context, *child;
2579
2580         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2581                 return;
2582
2583         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2584
2585         for_each_child(ce, child) {
2586                 mutex_lock(&child->timeline->mutex);
2587                 intel_context_exit(child);
2588                 mutex_unlock(&child->timeline->mutex);
2589
2590                 intel_context_unpin(child);
2591         }
2592
2593         mutex_lock(&ce->timeline->mutex);
2594         intel_context_exit(ce);
2595         mutex_unlock(&ce->timeline->mutex);
2596
2597         intel_context_unpin(ce);
2598 }
2599
2600 static unsigned int
2601 eb_select_legacy_ring(struct i915_execbuffer *eb)
2602 {
2603         struct drm_i915_private *i915 = eb->i915;
2604         struct drm_i915_gem_execbuffer2 *args = eb->args;
2605         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2606
2607         if (user_ring_id != I915_EXEC_BSD &&
2608             (args->flags & I915_EXEC_BSD_MASK)) {
2609                 drm_dbg(&i915->drm,
2610                         "execbuf with non bsd ring but with invalid "
2611                         "bsd dispatch flags: %d\n", (int)(args->flags));
2612                 return -1;
2613         }
2614
2615         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2616                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2617
2618                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2619                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2620                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2621                            bsd_idx <= I915_EXEC_BSD_RING2) {
2622                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2623                         bsd_idx--;
2624                 } else {
2625                         drm_dbg(&i915->drm,
2626                                 "execbuf with unknown bsd ring: %u\n",
2627                                 bsd_idx);
2628                         return -1;
2629                 }
2630
2631                 return _VCS(bsd_idx);
2632         }
2633
2634         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2635                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2636                         user_ring_id);
2637                 return -1;
2638         }
2639
2640         return user_ring_map[user_ring_id];
2641 }
2642
2643 static int
2644 eb_select_engine(struct i915_execbuffer *eb)
2645 {
2646         struct intel_context *ce, *child;
2647         unsigned int idx;
2648         int err;
2649
2650         if (i915_gem_context_user_engines(eb->gem_context))
2651                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2652         else
2653                 idx = eb_select_legacy_ring(eb);
2654
2655         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2656         if (IS_ERR(ce))
2657                 return PTR_ERR(ce);
2658
2659         if (intel_context_is_parallel(ce)) {
2660                 if (eb->buffer_count < ce->parallel.number_children + 1) {
2661                         intel_context_put(ce);
2662                         return -EINVAL;
2663                 }
2664                 if (eb->batch_start_offset || eb->args->batch_len) {
2665                         intel_context_put(ce);
2666                         return -EINVAL;
2667                 }
2668         }
2669         eb->num_batches = ce->parallel.number_children + 1;
2670
2671         for_each_child(ce, child)
2672                 intel_context_get(child);
2673         intel_gt_pm_get(ce->engine->gt);
2674
2675         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2676                 err = intel_context_alloc_state(ce);
2677                 if (err)
2678                         goto err;
2679         }
2680         for_each_child(ce, child) {
2681                 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2682                         err = intel_context_alloc_state(child);
2683                         if (err)
2684                                 goto err;
2685                 }
2686         }
2687
2688         /*
2689          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2690          * EIO if the GPU is already wedged.
2691          */
2692         err = intel_gt_terminally_wedged(ce->engine->gt);
2693         if (err)
2694                 goto err;
2695
2696         if (!i915_vm_tryget(ce->vm)) {
2697                 err = -ENOENT;
2698                 goto err;
2699         }
2700
2701         eb->context = ce;
2702         eb->gt = ce->engine->gt;
2703
2704         /*
2705          * Make sure engine pool stays alive even if we call intel_context_put
2706          * during ww handling. The pool is destroyed when last pm reference
2707          * is dropped, which breaks our -EDEADLK handling.
2708          */
2709         return err;
2710
2711 err:
2712         intel_gt_pm_put(ce->engine->gt);
2713         for_each_child(ce, child)
2714                 intel_context_put(child);
2715         intel_context_put(ce);
2716         return err;
2717 }
2718
2719 static void
2720 eb_put_engine(struct i915_execbuffer *eb)
2721 {
2722         struct intel_context *child;
2723
2724         i915_vm_put(eb->context->vm);
2725         intel_gt_pm_put(eb->gt);
2726         for_each_child(eb->context, child)
2727                 intel_context_put(child);
2728         intel_context_put(eb->context);
2729 }
2730
2731 static void
2732 __free_fence_array(struct eb_fence *fences, unsigned int n)
2733 {
2734         while (n--) {
2735                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2736                 dma_fence_put(fences[n].dma_fence);
2737                 dma_fence_chain_free(fences[n].chain_fence);
2738         }
2739         kvfree(fences);
2740 }
2741
2742 static int
2743 add_timeline_fence_array(struct i915_execbuffer *eb,
2744                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2745 {
2746         struct drm_i915_gem_exec_fence __user *user_fences;
2747         u64 __user *user_values;
2748         struct eb_fence *f;
2749         u64 nfences;
2750         int err = 0;
2751
2752         nfences = timeline_fences->fence_count;
2753         if (!nfences)
2754                 return 0;
2755
2756         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2757         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2758         if (nfences > min_t(unsigned long,
2759                             ULONG_MAX / sizeof(*user_fences),
2760                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2761                 return -EINVAL;
2762
2763         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2764         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2765                 return -EFAULT;
2766
2767         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2768         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2769                 return -EFAULT;
2770
2771         f = krealloc(eb->fences,
2772                      (eb->num_fences + nfences) * sizeof(*f),
2773                      __GFP_NOWARN | GFP_KERNEL);
2774         if (!f)
2775                 return -ENOMEM;
2776
2777         eb->fences = f;
2778         f += eb->num_fences;
2779
2780         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2781                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2782
2783         while (nfences--) {
2784                 struct drm_i915_gem_exec_fence user_fence;
2785                 struct drm_syncobj *syncobj;
2786                 struct dma_fence *fence = NULL;
2787                 u64 point;
2788
2789                 if (__copy_from_user(&user_fence,
2790                                      user_fences++,
2791                                      sizeof(user_fence)))
2792                         return -EFAULT;
2793
2794                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2795                         return -EINVAL;
2796
2797                 if (__get_user(point, user_values++))
2798                         return -EFAULT;
2799
2800                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2801                 if (!syncobj) {
2802                         DRM_DEBUG("Invalid syncobj handle provided\n");
2803                         return -ENOENT;
2804                 }
2805
2806                 fence = drm_syncobj_fence_get(syncobj);
2807
2808                 if (!fence && user_fence.flags &&
2809                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2810                         DRM_DEBUG("Syncobj handle has no fence\n");
2811                         drm_syncobj_put(syncobj);
2812                         return -EINVAL;
2813                 }
2814
2815                 if (fence)
2816                         err = dma_fence_chain_find_seqno(&fence, point);
2817
2818                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2819                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2820                         dma_fence_put(fence);
2821                         drm_syncobj_put(syncobj);
2822                         return err;
2823                 }
2824
2825                 /*
2826                  * A point might have been signaled already and
2827                  * garbage collected from the timeline. In this case
2828                  * just ignore the point and carry on.
2829                  */
2830                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2831                         drm_syncobj_put(syncobj);
2832                         continue;
2833                 }
2834
2835                 /*
2836                  * For timeline syncobjs we need to preallocate chains for
2837                  * later signaling.
2838                  */
2839                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2840                         /*
2841                          * Waiting and signaling the same point (when point !=
2842                          * 0) would break the timeline.
2843                          */
2844                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2845                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2846                                 dma_fence_put(fence);
2847                                 drm_syncobj_put(syncobj);
2848                                 return -EINVAL;
2849                         }
2850
2851                         f->chain_fence = dma_fence_chain_alloc();
2852                         if (!f->chain_fence) {
2853                                 drm_syncobj_put(syncobj);
2854                                 dma_fence_put(fence);
2855                                 return -ENOMEM;
2856                         }
2857                 } else {
2858                         f->chain_fence = NULL;
2859                 }
2860
2861                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2862                 f->dma_fence = fence;
2863                 f->value = point;
2864                 f++;
2865                 eb->num_fences++;
2866         }
2867
2868         return 0;
2869 }
2870
2871 static int add_fence_array(struct i915_execbuffer *eb)
2872 {
2873         struct drm_i915_gem_execbuffer2 *args = eb->args;
2874         struct drm_i915_gem_exec_fence __user *user;
2875         unsigned long num_fences = args->num_cliprects;
2876         struct eb_fence *f;
2877
2878         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2879                 return 0;
2880
2881         if (!num_fences)
2882                 return 0;
2883
2884         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2885         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2886         if (num_fences > min_t(unsigned long,
2887                                ULONG_MAX / sizeof(*user),
2888                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2889                 return -EINVAL;
2890
2891         user = u64_to_user_ptr(args->cliprects_ptr);
2892         if (!access_ok(user, num_fences * sizeof(*user)))
2893                 return -EFAULT;
2894
2895         f = krealloc(eb->fences,
2896                      (eb->num_fences + num_fences) * sizeof(*f),
2897                      __GFP_NOWARN | GFP_KERNEL);
2898         if (!f)
2899                 return -ENOMEM;
2900
2901         eb->fences = f;
2902         f += eb->num_fences;
2903         while (num_fences--) {
2904                 struct drm_i915_gem_exec_fence user_fence;
2905                 struct drm_syncobj *syncobj;
2906                 struct dma_fence *fence = NULL;
2907
2908                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2909                         return -EFAULT;
2910
2911                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2912                         return -EINVAL;
2913
2914                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2915                 if (!syncobj) {
2916                         DRM_DEBUG("Invalid syncobj handle provided\n");
2917                         return -ENOENT;
2918                 }
2919
2920                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2921                         fence = drm_syncobj_fence_get(syncobj);
2922                         if (!fence) {
2923                                 DRM_DEBUG("Syncobj handle has no fence\n");
2924                                 drm_syncobj_put(syncobj);
2925                                 return -EINVAL;
2926                         }
2927                 }
2928
2929                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2930                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2931
2932                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2933                 f->dma_fence = fence;
2934                 f->value = 0;
2935                 f->chain_fence = NULL;
2936                 f++;
2937                 eb->num_fences++;
2938         }
2939
2940         return 0;
2941 }
2942
2943 static void put_fence_array(struct eb_fence *fences, int num_fences)
2944 {
2945         if (fences)
2946                 __free_fence_array(fences, num_fences);
2947 }
2948
2949 static int
2950 await_fence_array(struct i915_execbuffer *eb,
2951                   struct i915_request *rq)
2952 {
2953         unsigned int n;
2954         int err;
2955
2956         for (n = 0; n < eb->num_fences; n++) {
2957                 struct drm_syncobj *syncobj;
2958                 unsigned int flags;
2959
2960                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2961
2962                 if (!eb->fences[n].dma_fence)
2963                         continue;
2964
2965                 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2966                 if (err < 0)
2967                         return err;
2968         }
2969
2970         return 0;
2971 }
2972
2973 static void signal_fence_array(const struct i915_execbuffer *eb,
2974                                struct dma_fence * const fence)
2975 {
2976         unsigned int n;
2977
2978         for (n = 0; n < eb->num_fences; n++) {
2979                 struct drm_syncobj *syncobj;
2980                 unsigned int flags;
2981
2982                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2983                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2984                         continue;
2985
2986                 if (eb->fences[n].chain_fence) {
2987                         drm_syncobj_add_point(syncobj,
2988                                               eb->fences[n].chain_fence,
2989                                               fence,
2990                                               eb->fences[n].value);
2991                         /*
2992                          * The chain's ownership is transferred to the
2993                          * timeline.
2994                          */
2995                         eb->fences[n].chain_fence = NULL;
2996                 } else {
2997                         drm_syncobj_replace_fence(syncobj, fence);
2998                 }
2999         }
3000 }
3001
3002 static int
3003 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3004 {
3005         struct i915_execbuffer *eb = data;
3006         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3007
3008         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3009                 return -EFAULT;
3010
3011         return add_timeline_fence_array(eb, &timeline_fences);
3012 }
3013
3014 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3015 {
3016         struct i915_request *rq, *rn;
3017
3018         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3019                 if (rq == end || !i915_request_retire(rq))
3020                         break;
3021 }
3022
3023 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3024                           int err, bool last_parallel)
3025 {
3026         struct intel_timeline * const tl = i915_request_timeline(rq);
3027         struct i915_sched_attr attr = {};
3028         struct i915_request *prev;
3029
3030         lockdep_assert_held(&tl->mutex);
3031         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3032
3033         trace_i915_request_add(rq);
3034
3035         prev = __i915_request_commit(rq);
3036
3037         /* Check that the context wasn't destroyed before submission */
3038         if (likely(!intel_context_is_closed(eb->context))) {
3039                 attr = eb->gem_context->sched;
3040         } else {
3041                 /* Serialise with context_close via the add_to_timeline */
3042                 i915_request_set_error_once(rq, -ENOENT);
3043                 __i915_request_skip(rq);
3044                 err = -ENOENT; /* override any transient errors */
3045         }
3046
3047         if (intel_context_is_parallel(eb->context)) {
3048                 if (err) {
3049                         __i915_request_skip(rq);
3050                         set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3051                                 &rq->fence.flags);
3052                 }
3053                 if (last_parallel)
3054                         set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3055                                 &rq->fence.flags);
3056         }
3057
3058         __i915_request_queue(rq, &attr);
3059
3060         /* Try to clean up the client's timeline after submitting the request */
3061         if (prev)
3062                 retire_requests(tl, prev);
3063
3064         mutex_unlock(&tl->mutex);
3065
3066         return err;
3067 }
3068
3069 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3070 {
3071         int i;
3072
3073         /*
3074          * We iterate in reverse order of creation to release timeline mutexes in
3075          * same order.
3076          */
3077         for_each_batch_add_order(eb, i) {
3078                 struct i915_request *rq = eb->requests[i];
3079
3080                 if (!rq)
3081                         continue;
3082                 err |= eb_request_add(eb, rq, err, i == 0);
3083         }
3084
3085         return err;
3086 }
3087
3088 static const i915_user_extension_fn execbuf_extensions[] = {
3089         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3090 };
3091
3092 static int
3093 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3094                           struct i915_execbuffer *eb)
3095 {
3096         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3097                 return 0;
3098
3099         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3100          * have another flag also using it at the same time.
3101          */
3102         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3103                 return -EINVAL;
3104
3105         if (args->num_cliprects != 0)
3106                 return -EINVAL;
3107
3108         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3109                                     execbuf_extensions,
3110                                     ARRAY_SIZE(execbuf_extensions),
3111                                     eb);
3112 }
3113
3114 static void eb_requests_get(struct i915_execbuffer *eb)
3115 {
3116         unsigned int i;
3117
3118         for_each_batch_create_order(eb, i) {
3119                 if (!eb->requests[i])
3120                         break;
3121
3122                 i915_request_get(eb->requests[i]);
3123         }
3124 }
3125
3126 static void eb_requests_put(struct i915_execbuffer *eb)
3127 {
3128         unsigned int i;
3129
3130         for_each_batch_create_order(eb, i) {
3131                 if (!eb->requests[i])
3132                         break;
3133
3134                 i915_request_put(eb->requests[i]);
3135         }
3136 }
3137
3138 static struct sync_file *
3139 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3140 {
3141         struct sync_file *out_fence = NULL;
3142         struct dma_fence_array *fence_array;
3143         struct dma_fence **fences;
3144         unsigned int i;
3145
3146         GEM_BUG_ON(!intel_context_is_parent(eb->context));
3147
3148         fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3149         if (!fences)
3150                 return ERR_PTR(-ENOMEM);
3151
3152         for_each_batch_create_order(eb, i) {
3153                 fences[i] = &eb->requests[i]->fence;
3154                 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3155                           &eb->requests[i]->fence.flags);
3156         }
3157
3158         fence_array = dma_fence_array_create(eb->num_batches,
3159                                              fences,
3160                                              eb->context->parallel.fence_context,
3161                                              eb->context->parallel.seqno++,
3162                                              false);
3163         if (!fence_array) {
3164                 kfree(fences);
3165                 return ERR_PTR(-ENOMEM);
3166         }
3167
3168         /* Move ownership to the dma_fence_array created above */
3169         for_each_batch_create_order(eb, i)
3170                 dma_fence_get(fences[i]);
3171
3172         if (out_fence_fd != -1) {
3173                 out_fence = sync_file_create(&fence_array->base);
3174                 /* sync_file now owns fence_arry, drop creation ref */
3175                 dma_fence_put(&fence_array->base);
3176                 if (!out_fence)
3177                         return ERR_PTR(-ENOMEM);
3178         }
3179
3180         eb->composite_fence = &fence_array->base;
3181
3182         return out_fence;
3183 }
3184
3185 static struct sync_file *
3186 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3187               struct dma_fence *in_fence, int out_fence_fd)
3188 {
3189         struct sync_file *out_fence = NULL;
3190         int err;
3191
3192         if (unlikely(eb->gem_context->syncobj)) {
3193                 struct dma_fence *fence;
3194
3195                 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3196                 err = i915_request_await_dma_fence(rq, fence);
3197                 dma_fence_put(fence);
3198                 if (err)
3199                         return ERR_PTR(err);
3200         }
3201
3202         if (in_fence) {
3203                 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3204                         err = i915_request_await_execution(rq, in_fence);
3205                 else
3206                         err = i915_request_await_dma_fence(rq, in_fence);
3207                 if (err < 0)
3208                         return ERR_PTR(err);
3209         }
3210
3211         if (eb->fences) {
3212                 err = await_fence_array(eb, rq);
3213                 if (err)
3214                         return ERR_PTR(err);
3215         }
3216
3217         if (intel_context_is_parallel(eb->context)) {
3218                 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3219                 if (IS_ERR(out_fence))
3220                         return ERR_PTR(-ENOMEM);
3221         } else if (out_fence_fd != -1) {
3222                 out_fence = sync_file_create(&rq->fence);
3223                 if (!out_fence)
3224                         return ERR_PTR(-ENOMEM);
3225         }
3226
3227         return out_fence;
3228 }
3229
3230 static struct intel_context *
3231 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3232 {
3233         struct intel_context *child;
3234
3235         if (likely(context_number == 0))
3236                 return eb->context;
3237
3238         for_each_child(eb->context, child)
3239                 if (!--context_number)
3240                         return child;
3241
3242         GEM_BUG_ON("Context not found");
3243
3244         return NULL;
3245 }
3246
3247 static struct sync_file *
3248 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3249                    int out_fence_fd)
3250 {
3251         struct sync_file *out_fence = NULL;
3252         unsigned int i;
3253
3254         for_each_batch_create_order(eb, i) {
3255                 /* Allocate a request for this batch buffer nice and early. */
3256                 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3257                 if (IS_ERR(eb->requests[i])) {
3258                         out_fence = ERR_CAST(eb->requests[i]);
3259                         eb->requests[i] = NULL;
3260                         return out_fence;
3261                 }
3262
3263                 /*
3264                  * Only the first request added (committed to backend) has to
3265                  * take the in fences into account as all subsequent requests
3266                  * will have fences inserted inbetween them.
3267                  */
3268                 if (i + 1 == eb->num_batches) {
3269                         out_fence = eb_fences_add(eb, eb->requests[i],
3270                                                   in_fence, out_fence_fd);
3271                         if (IS_ERR(out_fence))
3272                                 return out_fence;
3273                 }
3274
3275                 /*
3276                  * Not really on stack, but we don't want to call
3277                  * kfree on the batch_snapshot when we put it, so use the
3278                  * _onstack interface.
3279                  */
3280                 if (eb->batches[i]->vma)
3281                         eb->requests[i]->batch_res =
3282                                 i915_vma_resource_get(eb->batches[i]->vma->resource);
3283                 if (eb->batch_pool) {
3284                         GEM_BUG_ON(intel_context_is_parallel(eb->context));
3285                         intel_gt_buffer_pool_mark_active(eb->batch_pool,
3286                                                          eb->requests[i]);
3287                 }
3288         }
3289
3290         return out_fence;
3291 }
3292
3293 static int
3294 i915_gem_do_execbuffer(struct drm_device *dev,
3295                        struct drm_file *file,
3296                        struct drm_i915_gem_execbuffer2 *args,
3297                        struct drm_i915_gem_exec_object2 *exec)
3298 {
3299         struct drm_i915_private *i915 = to_i915(dev);
3300         struct i915_execbuffer eb;
3301         struct dma_fence *in_fence = NULL;
3302         struct sync_file *out_fence = NULL;
3303         int out_fence_fd = -1;
3304         int err;
3305
3306         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3307         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3308                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3309
3310         eb.i915 = i915;
3311         eb.file = file;
3312         eb.args = args;
3313         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3314                 args->flags |= __EXEC_HAS_RELOC;
3315
3316         eb.exec = exec;
3317         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3318         eb.vma[0].vma = NULL;
3319         eb.batch_pool = NULL;
3320
3321         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3322         reloc_cache_init(&eb.reloc_cache, eb.i915);
3323
3324         eb.buffer_count = args->buffer_count;
3325         eb.batch_start_offset = args->batch_start_offset;
3326         eb.trampoline = NULL;
3327
3328         eb.fences = NULL;
3329         eb.num_fences = 0;
3330
3331         eb_capture_list_clear(&eb);
3332
3333         memset(eb.requests, 0, sizeof(struct i915_request *) *
3334                ARRAY_SIZE(eb.requests));
3335         eb.composite_fence = NULL;
3336
3337         eb.batch_flags = 0;
3338         if (args->flags & I915_EXEC_SECURE) {
3339                 if (GRAPHICS_VER(i915) >= 11)
3340                         return -ENODEV;
3341
3342                 /* Return -EPERM to trigger fallback code on old binaries. */
3343                 if (!HAS_SECURE_BATCHES(i915))
3344                         return -EPERM;
3345
3346                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3347                         return -EPERM;
3348
3349                 eb.batch_flags |= I915_DISPATCH_SECURE;
3350         }
3351         if (args->flags & I915_EXEC_IS_PINNED)
3352                 eb.batch_flags |= I915_DISPATCH_PINNED;
3353
3354         err = parse_execbuf2_extensions(args, &eb);
3355         if (err)
3356                 goto err_ext;
3357
3358         err = add_fence_array(&eb);
3359         if (err)
3360                 goto err_ext;
3361
3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3363         if (args->flags & IN_FENCES) {
3364                 if ((args->flags & IN_FENCES) == IN_FENCES)
3365                         return -EINVAL;
3366
3367                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3368                 if (!in_fence) {
3369                         err = -EINVAL;
3370                         goto err_ext;
3371                 }
3372         }
3373 #undef IN_FENCES
3374
3375         if (args->flags & I915_EXEC_FENCE_OUT) {
3376                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3377                 if (out_fence_fd < 0) {
3378                         err = out_fence_fd;
3379                         goto err_in_fence;
3380                 }
3381         }
3382
3383         err = eb_create(&eb);
3384         if (err)
3385                 goto err_out_fence;
3386
3387         GEM_BUG_ON(!eb.lut_size);
3388
3389         err = eb_select_context(&eb);
3390         if (unlikely(err))
3391                 goto err_destroy;
3392
3393         err = eb_select_engine(&eb);
3394         if (unlikely(err))
3395                 goto err_context;
3396
3397         err = eb_lookup_vmas(&eb);
3398         if (err) {
3399                 eb_release_vmas(&eb, true);
3400                 goto err_engine;
3401         }
3402
3403         i915_gem_ww_ctx_init(&eb.ww, true);
3404
3405         err = eb_relocate_parse(&eb);
3406         if (err) {
3407                 /*
3408                  * If the user expects the execobject.offset and
3409                  * reloc.presumed_offset to be an exact match,
3410                  * as for using NO_RELOC, then we cannot update
3411                  * the execobject.offset until we have completed
3412                  * relocation.
3413                  */
3414                 args->flags &= ~__EXEC_HAS_RELOC;
3415                 goto err_vma;
3416         }
3417
3418         ww_acquire_done(&eb.ww.ctx);
3419         err = eb_capture_stage(&eb);
3420         if (err)
3421                 goto err_vma;
3422
3423         out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3424         if (IS_ERR(out_fence)) {
3425                 err = PTR_ERR(out_fence);
3426                 out_fence = NULL;
3427                 if (eb.requests[0])
3428                         goto err_request;
3429                 else
3430                         goto err_vma;
3431         }
3432
3433         err = eb_submit(&eb);
3434
3435 err_request:
3436         eb_requests_get(&eb);
3437         err = eb_requests_add(&eb, err);
3438
3439         if (eb.fences)
3440                 signal_fence_array(&eb, eb.composite_fence ?
3441                                    eb.composite_fence :
3442                                    &eb.requests[0]->fence);
3443
3444         if (out_fence) {
3445                 if (err == 0) {
3446                         fd_install(out_fence_fd, out_fence->file);
3447                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3448                         args->rsvd2 |= (u64)out_fence_fd << 32;
3449                         out_fence_fd = -1;
3450                 } else {
3451                         fput(out_fence->file);
3452                 }
3453         }
3454
3455         if (unlikely(eb.gem_context->syncobj)) {
3456                 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3457                                           eb.composite_fence ?
3458                                           eb.composite_fence :
3459                                           &eb.requests[0]->fence);
3460         }
3461
3462         if (!out_fence && eb.composite_fence)
3463                 dma_fence_put(eb.composite_fence);
3464
3465         eb_requests_put(&eb);
3466
3467 err_vma:
3468         eb_release_vmas(&eb, true);
3469         WARN_ON(err == -EDEADLK);
3470         i915_gem_ww_ctx_fini(&eb.ww);
3471
3472         if (eb.batch_pool)
3473                 intel_gt_buffer_pool_put(eb.batch_pool);
3474 err_engine:
3475         eb_put_engine(&eb);
3476 err_context:
3477         i915_gem_context_put(eb.gem_context);
3478 err_destroy:
3479         eb_destroy(&eb);
3480 err_out_fence:
3481         if (out_fence_fd != -1)
3482                 put_unused_fd(out_fence_fd);
3483 err_in_fence:
3484         dma_fence_put(in_fence);
3485 err_ext:
3486         put_fence_array(eb.fences, eb.num_fences);
3487         return err;
3488 }
3489
3490 static size_t eb_element_size(void)
3491 {
3492         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3493 }
3494
3495 static bool check_buffer_count(size_t count)
3496 {
3497         const size_t sz = eb_element_size();
3498
3499         /*
3500          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3501          * array size (see eb_create()). Otherwise, we can accept an array as
3502          * large as can be addressed (though use large arrays at your peril)!
3503          */
3504
3505         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3506 }
3507
3508 int
3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3510                            struct drm_file *file)
3511 {
3512         struct drm_i915_private *i915 = to_i915(dev);
3513         struct drm_i915_gem_execbuffer2 *args = data;
3514         struct drm_i915_gem_exec_object2 *exec2_list;
3515         const size_t count = args->buffer_count;
3516         int err;
3517
3518         if (!check_buffer_count(count)) {
3519                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3520                 return -EINVAL;
3521         }
3522
3523         err = i915_gem_check_execbuffer(args);
3524         if (err)
3525                 return err;
3526
3527         /* Allocate extra slots for use by the command parser */
3528         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3529                                     __GFP_NOWARN | GFP_KERNEL);
3530         if (exec2_list == NULL) {
3531                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3532                         count);
3533                 return -ENOMEM;
3534         }
3535         if (copy_from_user(exec2_list,
3536                            u64_to_user_ptr(args->buffers_ptr),
3537                            sizeof(*exec2_list) * count)) {
3538                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3539                 kvfree(exec2_list);
3540                 return -EFAULT;
3541         }
3542
3543         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3544
3545         /*
3546          * Now that we have begun execution of the batchbuffer, we ignore
3547          * any new error after this point. Also given that we have already
3548          * updated the associated relocations, we try to write out the current
3549          * object locations irrespective of any error.
3550          */
3551         if (args->flags & __EXEC_HAS_RELOC) {
3552                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3553                         u64_to_user_ptr(args->buffers_ptr);
3554                 unsigned int i;
3555
3556                 /* Copy the new buffer offsets back to the user's exec list. */
3557                 /*
3558                  * Note: count * sizeof(*user_exec_list) does not overflow,
3559                  * because we checked 'count' in check_buffer_count().
3560                  *
3561                  * And this range already got effectively checked earlier
3562                  * when we did the "copy_from_user()" above.
3563                  */
3564                 if (!user_write_access_begin(user_exec_list,
3565                                              count * sizeof(*user_exec_list)))
3566                         goto end;
3567
3568                 for (i = 0; i < args->buffer_count; i++) {
3569                         if (!(exec2_list[i].offset & UPDATE))
3570                                 continue;
3571
3572                         exec2_list[i].offset =
3573                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3574                         unsafe_put_user(exec2_list[i].offset,
3575                                         &user_exec_list[i].offset,
3576                                         end_user);
3577                 }
3578 end_user:
3579                 user_write_access_end();
3580 end:;
3581         }
3582
3583         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3584         kvfree(exec2_list);
3585         return err;
3586 }
This page took 0.376093 seconds and 4 git commands to generate.