2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008,2010 Intel Corporation
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
12 #include <drm/drm_syncobj.h>
14 #include "display/intel_frontbuffer.h"
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
24 #include "pxp/intel_pxp.h"
26 #include "i915_cmd_parser.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
40 /** This vma's place in the execbuf reservation list */
41 struct drm_i915_gem_exec_object2 *exec;
42 struct list_head bind_link;
43 struct list_head reloc_link;
45 struct hlist_node node;
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65 #define __EXEC_HAS_RELOC BIT(31)
66 #define __EXEC_ENGINE_PINNED BIT(30)
67 #define __EXEC_USERPTR_USED BIT(29)
68 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
69 #define UPDATE PIN_OFFSET_FIXED
71 #define BATCH_OFFSET_BIAS (256*1024)
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 (__I915_EXEC_UNKNOWN_FLAGS | \
75 I915_EXEC_CONSTANTS_MASK | \
76 I915_EXEC_RESOURCE_STREAMER)
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
88 * DOC: User command execution
90 * Userspace submits commands to be executed on the GPU as an instruction
91 * stream within a GEM object we call a batchbuffer. This instructions may
92 * refer to other GEM objects containing auxiliary state such as kernels,
93 * samplers, render targets and even secondary batchbuffers. Userspace does
94 * not know where in the GPU memory these objects reside and so before the
95 * batchbuffer is passed to the GPU for execution, those addresses in the
96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
97 * or patching. To try and avoid having to relocate each object on the next
98 * execution, userspace is told the location of those objects in this pass,
99 * but this remains just a hint as the kernel may choose a new location for
100 * any object in the future.
102 * At the level of talking to the hardware, submitting a batchbuffer for the
103 * GPU to execute is to add content to a buffer from which the HW
104 * command streamer is reading.
106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107 * Execlists, this command is not placed on the same buffer as the
110 * 2. Add a command to invalidate caches to the buffer.
112 * 3. Add a batchbuffer start command to the buffer; the start command is
113 * essentially a token together with the GPU address of the batchbuffer
116 * 4. Add a pipeline flush to the buffer.
118 * 5. Add a memory write command to the buffer to record when the GPU
119 * is done executing the batchbuffer. The memory write writes the
120 * global sequence number of the request, ``i915_request::global_seqno``;
121 * the i915 driver uses the current value in the register to determine
122 * if the GPU has completed the batchbuffer.
124 * 6. Add a user interrupt command to the buffer. This command instructs
125 * the GPU to issue an interrupt when the command, pipeline flush and
126 * memory write are completed.
128 * 7. Inform the hardware of the additional commands added to the buffer
129 * (by updating the tail pointer).
131 * Processing an execbuf ioctl is conceptually split up into a few phases.
133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
134 * 2. Reservation - Assign GPU address space for every object
135 * 3. Relocation - Update any addresses to point to the final locations
136 * 4. Serialisation - Order the request with respect to its dependencies
137 * 5. Construction - Construct a request to execute the batchbuffer
138 * 6. Submission (at some point in the future execution)
140 * Reserving resources for the execbuf is the most complicated phase. We
141 * neither want to have to migrate the object in the address space, nor do
142 * we want to have to update any relocations pointing to this object. Ideally,
143 * we want to leave the object where it is and for all the existing relocations
144 * to match. If the object is given a new address, or if userspace thinks the
145 * object is elsewhere, we have to parse all the relocation entries and update
146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147 * all the target addresses in all of its objects match the value in the
148 * relocation entries and that they all match the presumed offsets given by the
149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
150 * moved any buffers, all the relocation entries are valid and we can skip
151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154 * The addresses written in the objects must match the corresponding
155 * reloc.presumed_offset which in turn must match the corresponding
158 * Any render targets written to in the batch must be flagged with
161 * To avoid stalling, execobject.offset should match the current
162 * address of that object within the active context.
164 * The reservation is done is multiple phases. First we try and keep any
165 * object already bound in its current location - so as long as meets the
166 * constraints imposed by the new execbuffer. Any object left unbound after the
167 * first pass is then fitted into any available idle space. If an object does
168 * not fit, all objects are removed from the reservation and the process rerun
169 * after sorting the objects into a priority order (more difficult to fit
170 * objects are tried first). Failing that, the entire VM is cleared and we try
171 * to fit the execbuf once last time before concluding that it simply will not
174 * A small complication to all of this is that we allow userspace not only to
175 * specify an alignment and a size for the object in the address space, but
176 * we also allow userspace to specify the exact offset. This objects are
177 * simpler to place (the location is known a priori) all we have to do is make
178 * sure the space is available.
180 * Once all the objects are in place, patching up the buried pointers to point
181 * to the final locations is a fairly simple job of walking over the relocation
182 * entry arrays, looking up the right address and rewriting the value into
183 * the object. Simple! ... The relocation entries are stored in user memory
184 * and so to access them we have to copy them into a local buffer. That copy
185 * has to avoid taking any pagefaults as they may lead back to a GEM object
186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187 * the relocation into multiple passes. First we try to do everything within an
188 * atomic context (avoid the pagefaults) which requires that we never wait. If
189 * we detect that we may wait, or if we need to fault, then we have to fallback
190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191 * bells yet?) Dropping the mutex means that we lose all the state we have
192 * built up so far for the execbuf and we must reset any global data. However,
193 * we do leave the objects pinned in their final locations - which is a
194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
195 * allocate and copy all the relocation entries into a large array at our
196 * leisure, reacquire the mutex, reclaim all the objects and other state and
197 * then proceed to update any incorrect addresses with the objects.
199 * As we process the relocation entries, we maintain a record of whether the
200 * object is being written to. Using NORELOC, we expect userspace to provide
201 * this information instead. We also check whether we can skip the relocation
202 * by comparing the expected value inside the relocation entry with the target's
203 * final address. If they differ, we have to map the current object and rewrite
204 * the 4 or 8 byte pointer within.
206 * Serialising an execbuf is quite simple according to the rules of the GEM
207 * ABI. Execution within each context is ordered by the order of submission.
208 * Writes to any GEM object are in order of submission and are exclusive. Reads
209 * from a GEM object are unordered with respect to other reads, but ordered by
210 * writes. A write submitted after a read cannot occur before the read, and
211 * similarly any read submitted after a write cannot occur before the write.
212 * Writes are ordered between engines such that only one write occurs at any
213 * time (completing any reads beforehand) - using semaphores where available
214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216 * reads before starting, and any read (either using set-domain or pread) must
217 * flush all GPU writes before starting. (Note we only employ a barrier before,
218 * we currently rely on userspace not concurrently starting a new execution
219 * whilst reading or writing to an object. This may be an advantage or not
220 * depending on how much you trust userspace not to shoot themselves in the
221 * foot.) Serialisation may just result in the request being inserted into
222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
223 * all dependencies are resolved.
225 * After all of that, is just a matter of closing the request and handing it to
226 * the hardware (well, leaving it in a queue to be executed). However, we also
227 * offer the ability for batchbuffers to be run with elevated privileges so
228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229 * Before any batch is given extra privileges we first must check that it
230 * contains no nefarious instructions, we check that each instruction is from
231 * our whitelist and all registers are also from an allowed list. We first
232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
233 * access to it, either by the CPU or GPU as we scan it) and then parse each
234 * instruction. If everything is ok, we set a flag telling the hardware to run
235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 struct dma_fence *dma_fence;
242 struct dma_fence_chain *chain_fence;
245 struct i915_execbuffer {
246 struct drm_i915_private *i915; /** i915 backpointer */
247 struct drm_file *file; /** per-file lookup tables and limits */
248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
252 struct intel_gt *gt; /* gt for the execbuf */
253 struct intel_context *context; /* logical state for the request */
254 struct i915_gem_context *gem_context; /** caller's context */
256 /** our requests to build */
257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 /** identity of the batch obj/vma */
259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 struct i915_vma *trampoline; /** trampoline used for chaining */
262 /** used for excl fence in dma_resv objects when > 1 BB submitted */
263 struct dma_fence *composite_fence;
265 /** actual size of execobj[] as we may extend it for the cmdparser */
266 unsigned int buffer_count;
268 /* number of batches in execbuf IOCTL */
269 unsigned int num_batches;
271 /** list of vma not yet bound during reservation phase */
272 struct list_head unbound;
274 /** list of vma that have execobj.relocation_count */
275 struct list_head relocs;
277 struct i915_gem_ww_ctx ww;
280 * Track the most recently used object for relocations, as we
281 * frequently have to perform multiple relocations within the same
285 struct drm_mm_node node; /** temporary GTT binding */
286 unsigned long vaddr; /** Current kmap address */
287 unsigned long page; /** Currently mapped page index */
288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 bool use_64bit_reloc : 1;
292 bool needs_unfenced : 1;
295 u64 invalid_flags; /** Set of execobj.flags that are invalid */
297 /** Length of batch within object */
298 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 u32 batch_start_offset; /** Location within object of batch */
300 u32 batch_flags; /** Flags composed for emit_bb_start() */
301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
304 * Indicate either the size of the hastable used to resolve
305 * relocation handles, or if negative that we are using a direct
306 * index into the execobj[].
309 struct hlist_head *buckets; /** ht for relocation handles */
311 struct eb_fence *fences;
312 unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 (intel_engine_using_cmd_parser(eb->context->engine) &&
327 eb->args->batch_len);
330 static int eb_create(struct i915_execbuffer *eb)
332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 unsigned int size = 1 + ilog2(eb->buffer_count);
336 * Without a 1:1 association between relocation handles and
337 * the execobject[] index, we instead create a hashtable.
338 * We size it dynamically based on available memory, starting
339 * first with 1:1 assocative hash and scaling back until
340 * the allocation succeeds.
342 * Later on we use a positive lut_size to indicate we are
343 * using this hashtable, and a negative value to indicate a
349 /* While we can still reduce the allocation size, don't
350 * raise a warning and allow the allocation to fail.
351 * On the last pass though, we want to try as hard
352 * as possible to perform the allocation and warn
357 flags |= __GFP_NORETRY | __GFP_NOWARN;
359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
370 eb->lut_size = -eb->buffer_count;
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 const struct i915_vma *vma,
381 if (vma->node.size < entry->pad_to_size)
384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
387 if (flags & EXEC_OBJECT_PINNED &&
388 vma->node.start != entry->offset)
391 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392 vma->node.start < BATCH_OFFSET_BIAS)
395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396 (vma->node.start + vma->node.size + 4095) >> 32)
399 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 !i915_vma_is_map_and_fenceable(vma))
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 unsigned int exec_flags)
411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 pin_flags |= PIN_GLOBAL;
415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 * limit address to the first 4GBs for unflagged objects.
418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 pin_flags |= PIN_ZONE_4G;
421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 pin_flags |= PIN_MAPPABLE;
424 if (exec_flags & EXEC_OBJECT_PINNED)
425 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
433 eb_pin_vma(struct i915_execbuffer *eb,
434 const struct drm_i915_gem_exec_object2 *entry,
437 struct i915_vma *vma = ev->vma;
442 pin_flags = vma->node.start;
444 pin_flags = entry->offset & PIN_OFFSET_MASK;
446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448 pin_flags |= PIN_GLOBAL;
450 /* Attempt to reuse the current location if available */
451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
456 if (entry->flags & EXEC_OBJECT_PINNED)
459 /* Failing that pick any _free_ space if suitable */
460 err = i915_vma_pin_ww(vma, &eb->ww,
463 eb_pin_flags(entry, ev->flags) |
464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470 err = i915_vma_pin_fence(vma);
475 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
478 ev->flags |= __EXEC_OBJECT_HAS_PIN;
479 if (eb_vma_misplaced(entry, vma, ev->flags))
486 eb_unreserve_vma(struct eb_vma *ev)
488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489 __i915_vma_unpin_fence(ev->vma);
491 ev->flags &= ~__EXEC_OBJECT_RESERVED;
495 eb_validate_vma(struct i915_execbuffer *eb,
496 struct drm_i915_gem_exec_object2 *entry,
497 struct i915_vma *vma)
499 /* Relocations are disallowed for all platforms after TGL-LP. This
500 * also covers all platforms with local memory.
502 if (entry->relocation_count &&
503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
506 if (unlikely(entry->flags & eb->invalid_flags))
509 if (unlikely(entry->alignment &&
510 !is_power_of_2_u64(entry->alignment)))
514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 * any non-page-aligned or non-canonical addresses.
517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
521 /* pad_to_size was once a reserved field, so sanitize it */
522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 if (unlikely(offset_in_page(entry->pad_to_size)))
526 entry->pad_to_size = 0;
529 * From drm_mm perspective address space is continuous,
530 * so from this point we're always using non-canonical
533 entry->offset = gen8_noncanonical_addr(entry->offset);
535 if (!eb->reloc_cache.has_fence) {
536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 eb->reloc_cache.needs_unfenced) &&
540 i915_gem_object_is_tiled(vma->obj))
541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
550 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 buffer_idx < eb->num_batches :
552 buffer_idx >= eb->args->buffer_count - eb->num_batches;
556 eb_add_vma(struct i915_execbuffer *eb,
557 unsigned int *current_batch,
559 struct i915_vma *vma)
561 struct drm_i915_private *i915 = eb->i915;
562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563 struct eb_vma *ev = &eb->vma[i];
567 ev->flags = entry->flags;
569 if (eb->lut_size > 0) {
570 ev->handle = entry->handle;
571 hlist_add_head(&ev->node,
572 &eb->buckets[hash_32(entry->handle,
576 if (entry->relocation_count)
577 list_add_tail(&ev->reloc_link, &eb->relocs);
580 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 * to negative relocation deltas. Usually that works out ok since the
582 * relocate address is still positive, except when the batch is placed
583 * very low in the GTT. Ensure this doesn't happen.
585 * Note that actual hangs have only been observed on gen7, but for
586 * paranoia do it everywhere.
588 if (is_batch_buffer(eb, i)) {
589 if (entry->relocation_count &&
590 !(ev->flags & EXEC_OBJECT_PINNED))
591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592 if (eb->reloc_cache.has_fence)
593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
595 eb->batches[*current_batch] = ev;
597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
599 "Attempting to use self-modifying batch buffer\n");
603 if (range_overflows_t(u64,
604 eb->batch_start_offset,
607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
611 if (eb->args->batch_len == 0)
612 eb->batch_len[*current_batch] = ev->vma->size -
613 eb->batch_start_offset;
615 eb->batch_len[*current_batch] = eb->args->batch_len;
616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 drm_dbg(&i915->drm, "Invalid batch length\n");
627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 const struct drm_i915_gem_object *obj)
630 if (!i915_gem_object_has_struct_page(obj))
633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
639 return (cache->has_llc ||
641 obj->cache_level != I915_CACHE_NONE);
644 static int eb_reserve_vma(struct i915_execbuffer *eb,
648 struct drm_i915_gem_exec_object2 *entry = ev->exec;
649 struct i915_vma *vma = ev->vma;
652 if (drm_mm_node_allocated(&vma->node) &&
653 eb_vma_misplaced(entry, vma, ev->flags)) {
654 err = i915_vma_unbind(vma);
659 err = i915_vma_pin_ww(vma, &eb->ww,
660 entry->pad_to_size, entry->alignment,
661 eb_pin_flags(entry, ev->flags) | pin_flags);
665 if (entry->offset != vma->node.start) {
666 entry->offset = vma->node.start | UPDATE;
667 eb->args->flags |= __EXEC_HAS_RELOC;
670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671 err = i915_vma_pin_fence(vma);
676 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
679 ev->flags |= __EXEC_OBJECT_HAS_PIN;
680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
687 const unsigned int count = eb->buffer_count;
689 struct list_head last;
690 bool unpinned = false;
692 /* Resort *all* the objects into priority order */
693 INIT_LIST_HEAD(&eb->unbound);
694 INIT_LIST_HEAD(&last);
696 for (i = 0; i < count; i++) {
697 struct eb_vma *ev = &eb->vma[i];
698 unsigned int flags = ev->flags;
700 if (!force && flags & EXEC_OBJECT_PINNED &&
701 flags & __EXEC_OBJECT_HAS_PIN)
705 eb_unreserve_vma(ev);
707 if (flags & EXEC_OBJECT_PINNED)
708 /* Pinned must have their slot */
709 list_add(&ev->bind_link, &eb->unbound);
710 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711 /* Map require the lowest 256MiB (aperture) */
712 list_add_tail(&ev->bind_link, &eb->unbound);
713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714 /* Prioritise 4GiB region for restricted bo */
715 list_add(&ev->bind_link, &last);
717 list_add_tail(&ev->bind_link, &last);
720 list_splice_tail(&last, &eb->unbound);
724 static int eb_reserve(struct i915_execbuffer *eb)
732 * Attempt to pin all of the buffers into the GTT.
733 * This is done in 2 phases:
735 * 1. Unbind all objects that do not match the GTT constraints for
736 * the execbuffer (fenceable, mappable, alignment etc).
737 * 2. Bind new objects.
739 * This avoid unnecessary unbinding of later objects in order to make
740 * room for the earlier objects *unless* we need to defragment.
742 * Defragmenting is skipped if all objects are pinned at a fixed location.
744 for (pass = 0; pass <= 2; pass++) {
745 int pin_flags = PIN_USER | PIN_VALIDATE;
748 pin_flags |= PIN_NONBLOCK;
751 unpinned = eb_unbind(eb, pass == 2);
754 err = mutex_lock_interruptible(&eb->context->vm->mutex);
756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757 mutex_unlock(&eb->context->vm->mutex);
763 list_for_each_entry(ev, &eb->unbound, bind_link) {
764 err = eb_reserve_vma(eb, ev, pin_flags);
776 static int eb_select_context(struct i915_execbuffer *eb)
778 struct i915_gem_context *ctx;
780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781 if (unlikely(IS_ERR(ctx)))
784 eb->gem_context = ctx;
785 if (i915_gem_context_has_full_ppgtt(ctx))
786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
791 static int __eb_add_lut(struct i915_execbuffer *eb,
792 u32 handle, struct i915_vma *vma)
794 struct i915_gem_context *ctx = eb->gem_context;
795 struct i915_lut_handle *lut;
798 lut = i915_lut_handle_alloc();
803 if (!atomic_fetch_inc(&vma->open_count))
804 i915_vma_reopen(vma);
805 lut->handle = handle;
808 /* Check that the context hasn't been closed in the meantime */
810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811 if (likely(!i915_gem_context_is_closed(ctx)))
812 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
815 if (err == 0) { /* And nor has this handle */
816 struct drm_i915_gem_object *obj = vma->obj;
818 spin_lock(&obj->lut_lock);
819 if (idr_find(&eb->file->object_idr, handle) == obj) {
820 list_add(&lut->obj_link, &obj->lut_list);
822 radix_tree_delete(&ctx->handles_vma, handle);
825 spin_unlock(&obj->lut_lock);
827 mutex_unlock(&ctx->lut_mutex);
837 i915_lut_handle_free(lut);
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
843 struct i915_address_space *vm = eb->context->vm;
846 struct drm_i915_gem_object *obj;
847 struct i915_vma *vma;
851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852 if (likely(vma && vma->vm == vm))
853 vma = i915_vma_tryget(vma);
858 obj = i915_gem_object_lookup(eb->file, handle);
860 return ERR_PTR(-ENOENT);
863 * If the user has opted-in for protected-object tracking, make
864 * sure the object encryption can be used.
865 * We only need to do this when the object is first used with
866 * this context, because the context itself will be banned when
867 * the protected objects become invalid.
869 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870 i915_gem_object_is_protected(obj)) {
871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
873 i915_gem_object_put(obj);
878 vma = i915_vma_instance(obj, vm, NULL);
880 i915_gem_object_put(obj);
884 err = __eb_add_lut(eb, handle, vma);
888 i915_gem_object_put(obj);
894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
896 unsigned int i, current_batch = 0;
899 INIT_LIST_HEAD(&eb->relocs);
901 for (i = 0; i < eb->buffer_count; i++) {
902 struct i915_vma *vma;
904 vma = eb_lookup_vma(eb, eb->exec[i].handle);
910 err = eb_validate_vma(eb, &eb->exec[i], vma);
916 err = eb_add_vma(eb, ¤t_batch, i, vma);
920 if (i915_gem_object_is_userptr(vma->obj)) {
921 err = i915_gem_object_userptr_submit_init(vma->obj);
923 if (i + 1 < eb->buffer_count) {
925 * Execbuffer code expects last vma entry to be NULL,
926 * since we already initialized this entry,
927 * set the next value to NULL or we mess up
930 eb->vma[i + 1].vma = NULL;
936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937 eb->args->flags |= __EXEC_USERPTR_USED;
944 eb->vma[i].vma = NULL;
948 static int eb_lock_vmas(struct i915_execbuffer *eb)
953 for (i = 0; i < eb->buffer_count; i++) {
954 struct eb_vma *ev = &eb->vma[i];
955 struct i915_vma *vma = ev->vma;
957 err = i915_gem_object_lock(vma->obj, &eb->ww);
965 static int eb_validate_vmas(struct i915_execbuffer *eb)
970 INIT_LIST_HEAD(&eb->unbound);
972 err = eb_lock_vmas(eb);
976 for (i = 0; i < eb->buffer_count; i++) {
977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978 struct eb_vma *ev = &eb->vma[i];
979 struct i915_vma *vma = ev->vma;
981 err = eb_pin_vma(eb, entry, ev);
986 if (entry->offset != vma->node.start) {
987 entry->offset = vma->node.start | UPDATE;
988 eb->args->flags |= __EXEC_HAS_RELOC;
991 eb_unreserve_vma(ev);
993 list_add_tail(&ev->bind_link, &eb->unbound);
994 if (drm_mm_node_allocated(&vma->node)) {
995 err = i915_vma_unbind(vma);
1001 /* Reserve enough slots to accommodate composite fences */
1002 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1010 if (!list_empty(&eb->unbound))
1011 return eb_reserve(eb);
1016 static struct eb_vma *
1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1019 if (eb->lut_size < 0) {
1020 if (handle >= -eb->lut_size)
1022 return &eb->vma[handle];
1024 struct hlist_head *head;
1027 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1028 hlist_for_each_entry(ev, head, node) {
1029 if (ev->handle == handle)
1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1038 const unsigned int count = eb->buffer_count;
1041 for (i = 0; i < count; i++) {
1042 struct eb_vma *ev = &eb->vma[i];
1043 struct i915_vma *vma = ev->vma;
1048 eb_unreserve_vma(ev);
1054 eb_capture_release(eb);
1055 eb_unpin_engine(eb);
1058 static void eb_destroy(const struct i915_execbuffer *eb)
1060 if (eb->lut_size > 0)
1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1066 const struct i915_vma *target)
1068 return gen8_canonical_addr((int)reloc->delta + target->node.start);
1071 static void reloc_cache_init(struct reloc_cache *cache,
1072 struct drm_i915_private *i915)
1076 /* Must be a variable in the struct to allow GCC to unroll. */
1077 cache->graphics_ver = GRAPHICS_VER(i915);
1078 cache->has_llc = HAS_LLC(i915);
1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1080 cache->has_fence = cache->graphics_ver < 4;
1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1082 cache->node.flags = 0;
1085 static inline void *unmask_page(unsigned long p)
1087 return (void *)(uintptr_t)(p & PAGE_MASK);
1090 static inline unsigned int unmask_flags(unsigned long p)
1092 return p & ~PAGE_MASK;
1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1099 struct drm_i915_private *i915 =
1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1101 return to_gt(i915)->ggtt;
1104 static void reloc_cache_unmap(struct reloc_cache *cache)
1111 vaddr = unmask_page(cache->vaddr);
1112 if (cache->vaddr & KMAP)
1113 kunmap_atomic(vaddr);
1115 io_mapping_unmap_atomic((void __iomem *)vaddr);
1118 static void reloc_cache_remap(struct reloc_cache *cache,
1119 struct drm_i915_gem_object *obj)
1126 if (cache->vaddr & KMAP) {
1127 struct page *page = i915_gem_object_get_page(obj, cache->page);
1129 vaddr = kmap_atomic(page);
1130 cache->vaddr = unmask_flags(cache->vaddr) |
1131 (unsigned long)vaddr;
1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134 unsigned long offset;
1136 offset = cache->node.start;
1137 if (!drm_mm_node_allocated(&cache->node))
1138 offset += cache->page << PAGE_SHIFT;
1140 cache->vaddr = (unsigned long)
1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1152 vaddr = unmask_page(cache->vaddr);
1153 if (cache->vaddr & KMAP) {
1154 struct drm_i915_gem_object *obj =
1155 (struct drm_i915_gem_object *)cache->node.mm;
1156 if (cache->vaddr & CLFLUSH_AFTER)
1159 kunmap_atomic(vaddr);
1160 i915_gem_object_finish_access(obj);
1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1165 io_mapping_unmap_atomic((void __iomem *)vaddr);
1167 if (drm_mm_node_allocated(&cache->node)) {
1168 ggtt->vm.clear_range(&ggtt->vm,
1171 mutex_lock(&ggtt->vm.mutex);
1172 drm_mm_remove_node(&cache->node);
1173 mutex_unlock(&ggtt->vm.mutex);
1175 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1183 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1184 struct reloc_cache *cache,
1185 unsigned long pageno)
1191 kunmap_atomic(unmask_page(cache->vaddr));
1193 unsigned int flushes;
1196 err = i915_gem_object_prepare_write(obj, &flushes);
1198 return ERR_PTR(err);
1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1203 cache->vaddr = flushes | KMAP;
1204 cache->node.mm = (void *)obj;
1209 page = i915_gem_object_get_page(obj, pageno);
1211 set_page_dirty(page);
1213 vaddr = kmap_atomic(page);
1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1215 cache->page = pageno;
1220 static void *reloc_iomap(struct i915_vma *batch,
1221 struct i915_execbuffer *eb,
1224 struct drm_i915_gem_object *obj = batch->obj;
1225 struct reloc_cache *cache = &eb->reloc_cache;
1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1227 unsigned long offset;
1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1234 struct i915_vma *vma = ERR_PTR(-ENODEV);
1237 if (i915_gem_object_is_tiled(obj))
1238 return ERR_PTR(-EINVAL);
1240 if (use_cpu_reloc(cache, obj))
1243 err = i915_gem_object_set_to_gtt_domain(obj, true);
1245 return ERR_PTR(err);
1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1249 * VMA from the object list because we no longer pin.
1251 * Only attempt to pin the batch buffer to ggtt if the current batch
1252 * is not inside ggtt, or the batch buffer is not misplaced.
1254 if (!i915_is_ggtt(batch->vm) ||
1255 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1258 PIN_NONBLOCK /* NOWARN */ |
1262 if (vma == ERR_PTR(-EDEADLK))
1266 memset(&cache->node, 0, sizeof(cache->node));
1267 mutex_lock(&ggtt->vm.mutex);
1268 err = drm_mm_insert_node_in_range
1269 (&ggtt->vm.mm, &cache->node,
1270 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1271 0, ggtt->mappable_end,
1273 mutex_unlock(&ggtt->vm.mutex);
1274 if (err) /* no inactive aperture space, use cpu reloc */
1277 cache->node.start = vma->node.start;
1278 cache->node.mm = (void *)vma;
1282 offset = cache->node.start;
1283 if (drm_mm_node_allocated(&cache->node)) {
1284 ggtt->vm.insert_page(&ggtt->vm,
1285 i915_gem_object_get_dma_address(obj, page),
1286 offset, I915_CACHE_NONE, 0);
1288 offset += page << PAGE_SHIFT;
1291 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1294 cache->vaddr = (unsigned long)vaddr;
1299 static void *reloc_vaddr(struct i915_vma *vma,
1300 struct i915_execbuffer *eb,
1303 struct reloc_cache *cache = &eb->reloc_cache;
1306 if (cache->page == page) {
1307 vaddr = unmask_page(cache->vaddr);
1310 if ((cache->vaddr & KMAP) == 0)
1311 vaddr = reloc_iomap(vma, eb, page);
1313 vaddr = reloc_kmap(vma->obj, cache, page);
1319 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1321 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1322 if (flushes & CLFLUSH_BEFORE)
1323 drm_clflush_virt_range(addr, sizeof(*addr));
1328 * Writes to the same cacheline are serialised by the CPU
1329 * (including clflush). On the write path, we only require
1330 * that it hits memory in an orderly fashion and place
1331 * mb barriers at the start and end of the relocation phase
1332 * to ensure ordering of clflush wrt to the system.
1334 if (flushes & CLFLUSH_AFTER)
1335 drm_clflush_virt_range(addr, sizeof(*addr));
1341 relocate_entry(struct i915_vma *vma,
1342 const struct drm_i915_gem_relocation_entry *reloc,
1343 struct i915_execbuffer *eb,
1344 const struct i915_vma *target)
1346 u64 target_addr = relocation_target(reloc, target);
1347 u64 offset = reloc->offset;
1348 bool wide = eb->reloc_cache.use_64bit_reloc;
1352 vaddr = reloc_vaddr(vma, eb,
1353 offset >> PAGE_SHIFT);
1355 return PTR_ERR(vaddr);
1357 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1358 clflush_write32(vaddr + offset_in_page(offset),
1359 lower_32_bits(target_addr),
1360 eb->reloc_cache.vaddr);
1363 offset += sizeof(u32);
1369 return target->node.start | UPDATE;
1373 eb_relocate_entry(struct i915_execbuffer *eb,
1375 const struct drm_i915_gem_relocation_entry *reloc)
1377 struct drm_i915_private *i915 = eb->i915;
1378 struct eb_vma *target;
1381 /* we've already hold a reference to all valid objects */
1382 target = eb_get_vma(eb, reloc->target_handle);
1383 if (unlikely(!target))
1386 /* Validate that the target is in a valid r/w GPU domain */
1387 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1388 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1389 "target %d offset %d "
1390 "read %08x write %08x",
1391 reloc->target_handle,
1392 (int) reloc->offset,
1393 reloc->read_domains,
1394 reloc->write_domain);
1397 if (unlikely((reloc->write_domain | reloc->read_domains)
1398 & ~I915_GEM_GPU_DOMAINS)) {
1399 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1400 "target %d offset %d "
1401 "read %08x write %08x",
1402 reloc->target_handle,
1403 (int) reloc->offset,
1404 reloc->read_domains,
1405 reloc->write_domain);
1409 if (reloc->write_domain) {
1410 target->flags |= EXEC_OBJECT_WRITE;
1413 * Sandybridge PPGTT errata: We need a global gtt mapping
1414 * for MI and pipe_control writes because the gpu doesn't
1415 * properly redirect them through the ppgtt for non_secure
1418 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1419 GRAPHICS_VER(eb->i915) == 6 &&
1420 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1421 struct i915_vma *vma = target->vma;
1423 reloc_cache_unmap(&eb->reloc_cache);
1424 mutex_lock(&vma->vm->mutex);
1425 err = i915_vma_bind(target->vma,
1426 target->vma->obj->cache_level,
1427 PIN_GLOBAL, NULL, NULL);
1428 mutex_unlock(&vma->vm->mutex);
1429 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1436 * If the relocation already has the right value in it, no
1437 * more work needs to be done.
1439 if (!DBG_FORCE_RELOC &&
1440 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1443 /* Check that the relocation address is valid... */
1444 if (unlikely(reloc->offset >
1445 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1446 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1447 "target %d offset %d size %d.\n",
1448 reloc->target_handle,
1450 (int)ev->vma->size);
1453 if (unlikely(reloc->offset & 3)) {
1454 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1455 "target %d offset %d.\n",
1456 reloc->target_handle,
1457 (int)reloc->offset);
1462 * If we write into the object, we need to force the synchronisation
1463 * barrier, either with an asynchronous clflush or if we executed the
1464 * patching using the GPU (though that should be serialised by the
1465 * timeline). To be completely sure, and since we are required to
1466 * do relocations we are already stalling, disable the user's opt
1467 * out of our synchronisation.
1469 ev->flags &= ~EXEC_OBJECT_ASYNC;
1471 /* and update the user's relocation entry */
1472 return relocate_entry(ev->vma, reloc, eb, target->vma);
1475 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1477 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1478 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1479 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1480 struct drm_i915_gem_relocation_entry __user *urelocs =
1481 u64_to_user_ptr(entry->relocs_ptr);
1482 unsigned long remain = entry->relocation_count;
1484 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1488 * We must check that the entire relocation array is safe
1489 * to read. However, if the array is not writable the user loses
1490 * the updated relocation values.
1492 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1496 struct drm_i915_gem_relocation_entry *r = stack;
1497 unsigned int count =
1498 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1499 unsigned int copied;
1502 * This is the fast path and we cannot handle a pagefault
1503 * whilst holding the struct mutex lest the user pass in the
1504 * relocations contained within a mmaped bo. For in such a case
1505 * we, the page fault handler would call i915_gem_fault() and
1506 * we would try to acquire the struct mutex again. Obviously
1507 * this is bad and so lockdep complains vehemently.
1509 pagefault_disable();
1510 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1512 if (unlikely(copied)) {
1519 u64 offset = eb_relocate_entry(eb, ev, r);
1521 if (likely(offset == 0)) {
1522 } else if ((s64)offset < 0) {
1523 remain = (int)offset;
1527 * Note that reporting an error now
1528 * leaves everything in an inconsistent
1529 * state as we have *already* changed
1530 * the relocation value inside the
1531 * object. As we have not changed the
1532 * reloc.presumed_offset or will not
1533 * change the execobject.offset, on the
1534 * call we may not rewrite the value
1535 * inside the object, leaving it
1536 * dangling and causing a GPU hang. Unless
1537 * userspace dynamically rebuilds the
1538 * relocations on each execbuf rather than
1539 * presume a static tree.
1541 * We did previously check if the relocations
1542 * were writable (access_ok), an error now
1543 * would be a strange race with mprotect,
1544 * having already demonstrated that we
1545 * can read from this userspace address.
1547 offset = gen8_canonical_addr(offset & ~UPDATE);
1549 &urelocs[r - stack].presumed_offset);
1551 } while (r++, --count);
1552 urelocs += ARRAY_SIZE(stack);
1555 reloc_cache_reset(&eb->reloc_cache, eb);
1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1562 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1563 struct drm_i915_gem_relocation_entry *relocs =
1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1568 for (i = 0; i < entry->relocation_count; i++) {
1569 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1571 if ((s64)offset < 0) {
1578 reloc_cache_reset(&eb->reloc_cache, eb);
1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1584 const char __user *addr, *end;
1586 char __maybe_unused c;
1588 size = entry->relocation_count;
1592 if (size > N_RELOC(ULONG_MAX))
1595 addr = u64_to_user_ptr(entry->relocs_ptr);
1596 size *= sizeof(struct drm_i915_gem_relocation_entry);
1597 if (!access_ok(addr, size))
1601 for (; addr < end; addr += PAGE_SIZE) {
1602 int err = __get_user(c, addr);
1606 return __get_user(c, end - 1);
1609 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1611 struct drm_i915_gem_relocation_entry *relocs;
1612 const unsigned int count = eb->buffer_count;
1616 for (i = 0; i < count; i++) {
1617 const unsigned int nreloc = eb->exec[i].relocation_count;
1618 struct drm_i915_gem_relocation_entry __user *urelocs;
1620 unsigned long copied;
1625 err = check_relocations(&eb->exec[i]);
1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1630 size = nreloc * sizeof(*relocs);
1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1638 /* copy_from_user is limited to < 4GiB */
1642 min_t(u64, BIT_ULL(31), size - copied);
1644 if (__copy_from_user((char *)relocs + copied,
1645 (char __user *)urelocs + copied,
1650 } while (copied < size);
1653 * As we do not update the known relocation offsets after
1654 * relocating (due to the complexities in lock handling),
1655 * we need to mark them as invalid now so that we force the
1656 * relocation processing next time. Just in case the target
1657 * object is evicted and then rebound into its old
1658 * presumed_offset before the next execbuffer - if that
1659 * happened we would make the mistake of assuming that the
1660 * relocations were valid.
1662 if (!user_access_begin(urelocs, size))
1665 for (copied = 0; copied < nreloc; copied++)
1667 &urelocs[copied].presumed_offset,
1671 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1683 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1684 if (eb->exec[i].relocation_count)
1690 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1692 const unsigned int count = eb->buffer_count;
1695 for (i = 0; i < count; i++) {
1698 err = check_relocations(&eb->exec[i]);
1706 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1708 const unsigned int count = eb->buffer_count;
1712 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1715 for (i = 0; i < count; i++) {
1716 struct eb_vma *ev = &eb->vma[i];
1718 if (!i915_gem_object_is_userptr(ev->vma->obj))
1721 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1725 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1731 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1733 bool have_copy = false;
1738 if (signal_pending(current)) {
1743 /* We may process another execbuffer during the unlock... */
1744 eb_release_vmas(eb, false);
1745 i915_gem_ww_ctx_fini(&eb->ww);
1748 * We take 3 passes through the slowpatch.
1750 * 1 - we try to just prefault all the user relocation entries and
1751 * then attempt to reuse the atomic pagefault disabled fast path again.
1753 * 2 - we copy the user entries to a local buffer here outside of the
1754 * local and allow ourselves to wait upon any rendering before
1757 * 3 - we already have a local copy of the relocation entries, but
1758 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1761 err = eb_prefault_relocations(eb);
1762 } else if (!have_copy) {
1763 err = eb_copy_relocations(eb);
1764 have_copy = err == 0;
1771 err = eb_reinit_userptr(eb);
1773 i915_gem_ww_ctx_init(&eb->ww, true);
1777 /* reacquire the objects */
1779 err = eb_pin_engine(eb, false);
1783 err = eb_validate_vmas(eb);
1787 GEM_BUG_ON(!eb->batches[0]);
1789 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1791 err = eb_relocate_vma(eb, ev);
1795 err = eb_relocate_vma_slow(eb, ev);
1801 if (err == -EDEADLK)
1804 if (err && !have_copy)
1810 /* as last step, parse the command buffer */
1816 * Leave the user relocations as are, this is the painfully slow path,
1817 * and we want to avoid the complication of dropping the lock whilst
1818 * having buffers reserved in the aperture and so causing spurious
1819 * ENOSPC for random operations.
1823 if (err == -EDEADLK) {
1824 eb_release_vmas(eb, false);
1825 err = i915_gem_ww_ctx_backoff(&eb->ww);
1827 goto repeat_validate;
1835 const unsigned int count = eb->buffer_count;
1838 for (i = 0; i < count; i++) {
1839 const struct drm_i915_gem_exec_object2 *entry =
1841 struct drm_i915_gem_relocation_entry *relocs;
1843 if (!entry->relocation_count)
1846 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1854 static int eb_relocate_parse(struct i915_execbuffer *eb)
1857 bool throttle = true;
1860 err = eb_pin_engine(eb, throttle);
1862 if (err != -EDEADLK)
1868 /* only throttle once, even if we didn't need to throttle */
1871 err = eb_validate_vmas(eb);
1877 /* The objects are in their final locations, apply the relocations. */
1878 if (eb->args->flags & __EXEC_HAS_RELOC) {
1881 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1882 err = eb_relocate_vma(eb, ev);
1887 if (err == -EDEADLK)
1897 if (err == -EDEADLK) {
1898 eb_release_vmas(eb, false);
1899 err = i915_gem_ww_ctx_backoff(&eb->ww);
1907 err = eb_relocate_parse_slow(eb);
1910 * If the user expects the execobject.offset and
1911 * reloc.presumed_offset to be an exact match,
1912 * as for using NO_RELOC, then we cannot update
1913 * the execobject.offset until we have completed
1916 eb->args->flags &= ~__EXEC_HAS_RELOC;
1922 * Using two helper loops for the order of which requests / batches are created
1923 * and added the to backend. Requests are created in order from the parent to
1924 * the last child. Requests are added in the reverse order, from the last child
1925 * to parent. This is done for locking reasons as the timeline lock is acquired
1926 * during request creation and released when the request is added to the
1927 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1930 #define for_each_batch_create_order(_eb, _i) \
1931 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1932 #define for_each_batch_add_order(_eb, _i) \
1933 BUILD_BUG_ON(!typecheck(int, _i)); \
1934 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1936 static struct i915_request *
1937 eb_find_first_request_added(struct i915_execbuffer *eb)
1941 for_each_batch_add_order(eb, i)
1942 if (eb->requests[i])
1943 return eb->requests[i];
1945 GEM_BUG_ON("Request not found");
1950 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1952 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1953 static int eb_capture_stage(struct i915_execbuffer *eb)
1955 const unsigned int count = eb->buffer_count;
1956 unsigned int i = count, j;
1959 struct eb_vma *ev = &eb->vma[i];
1960 struct i915_vma *vma = ev->vma;
1961 unsigned int flags = ev->flags;
1963 if (!(flags & EXEC_OBJECT_CAPTURE))
1966 if (i915_gem_context_is_recoverable(eb->gem_context) &&
1967 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
1970 for_each_batch_create_order(eb, j) {
1971 struct i915_capture_list *capture;
1973 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1977 capture->next = eb->capture_lists[j];
1978 capture->vma_res = i915_vma_resource_get(vma->resource);
1979 eb->capture_lists[j] = capture;
1986 /* Commit once we're in the critical path */
1987 static void eb_capture_commit(struct i915_execbuffer *eb)
1991 for_each_batch_create_order(eb, j) {
1992 struct i915_request *rq = eb->requests[j];
1997 rq->capture_list = eb->capture_lists[j];
1998 eb->capture_lists[j] = NULL;
2003 * Release anything that didn't get committed due to errors.
2004 * The capture_list will otherwise be freed at request retire.
2006 static void eb_capture_release(struct i915_execbuffer *eb)
2010 for_each_batch_create_order(eb, j) {
2011 if (eb->capture_lists[j]) {
2012 i915_request_free_capture_list(eb->capture_lists[j]);
2013 eb->capture_lists[j] = NULL;
2018 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2020 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2025 static int eb_capture_stage(struct i915_execbuffer *eb)
2030 static void eb_capture_commit(struct i915_execbuffer *eb)
2034 static void eb_capture_release(struct i915_execbuffer *eb)
2038 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2044 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2046 const unsigned int count = eb->buffer_count;
2047 unsigned int i = count;
2051 struct eb_vma *ev = &eb->vma[i];
2052 struct i915_vma *vma = ev->vma;
2053 unsigned int flags = ev->flags;
2054 struct drm_i915_gem_object *obj = vma->obj;
2056 assert_vma_held(vma);
2059 * If the GPU is not _reading_ through the CPU cache, we need
2060 * to make sure that any writes (both previous GPU writes from
2061 * before a change in snooping levels and normal CPU writes)
2062 * caught in that cache are flushed to main memory.
2065 * obj->cache_dirty &&
2066 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2067 * but gcc's optimiser doesn't handle that as well and emits
2068 * two jumps instead of one. Maybe one day...
2070 * FIXME: There is also sync flushing in set_pages(), which
2071 * serves a different purpose(some of the time at least).
2073 * We should consider:
2075 * 1. Rip out the async flush code.
2077 * 2. Or make the sync flushing use the async clflush path
2078 * using mandatory fences underneath. Currently the below
2079 * async flush happens after we bind the object.
2081 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2082 if (i915_gem_clflush_object(obj, 0))
2083 flags &= ~EXEC_OBJECT_ASYNC;
2086 /* We only need to await on the first request */
2087 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2088 err = i915_request_await_object
2089 (eb_find_first_request_added(eb), obj,
2090 flags & EXEC_OBJECT_WRITE);
2093 for_each_batch_add_order(eb, j) {
2096 if (!eb->requests[j])
2099 err = _i915_vma_move_to_active(vma, eb->requests[j],
2101 eb->composite_fence ?
2102 eb->composite_fence :
2103 &eb->requests[j]->fence,
2104 flags | __EXEC_OBJECT_NO_RESERVE);
2108 #ifdef CONFIG_MMU_NOTIFIER
2109 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2110 read_lock(&eb->i915->mm.notifier_lock);
2113 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2114 * could not have been set
2116 for (i = 0; i < count; i++) {
2117 struct eb_vma *ev = &eb->vma[i];
2118 struct drm_i915_gem_object *obj = ev->vma->obj;
2120 if (!i915_gem_object_is_userptr(obj))
2123 err = i915_gem_object_userptr_submit_done(obj);
2128 read_unlock(&eb->i915->mm.notifier_lock);
2135 /* Unconditionally flush any chipset caches (for streaming writes). */
2136 intel_gt_chipset_flush(eb->gt);
2137 eb_capture_commit(eb);
2142 for_each_batch_create_order(eb, j) {
2143 if (!eb->requests[j])
2146 i915_request_set_error_once(eb->requests[j], err);
2151 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2153 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2156 /* Kernel clipping was a DRI1 misfeature */
2157 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2158 I915_EXEC_USE_EXTENSIONS))) {
2159 if (exec->num_cliprects || exec->cliprects_ptr)
2163 if (exec->DR4 == 0xffffffff) {
2164 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2167 if (exec->DR1 || exec->DR4)
2170 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2176 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2181 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2182 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2186 cs = intel_ring_begin(rq, 4 * 2 + 2);
2190 *cs++ = MI_LOAD_REGISTER_IMM(4);
2191 for (i = 0; i < 4; i++) {
2192 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2196 intel_ring_advance(rq, cs);
2201 static struct i915_vma *
2202 shadow_batch_pin(struct i915_execbuffer *eb,
2203 struct drm_i915_gem_object *obj,
2204 struct i915_address_space *vm,
2207 struct i915_vma *vma;
2210 vma = i915_vma_instance(obj, vm, NULL);
2214 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2216 return ERR_PTR(err);
2221 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2224 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2225 * batch" bit. Hence we need to pin secure batches into the global gtt.
2226 * hsw should have this fixed, but bdw mucks it up again. */
2227 if (eb->batch_flags & I915_DISPATCH_SECURE)
2228 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2233 static int eb_parse(struct i915_execbuffer *eb)
2235 struct drm_i915_private *i915 = eb->i915;
2236 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2237 struct i915_vma *shadow, *trampoline, *batch;
2241 if (!eb_use_cmdparser(eb)) {
2242 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2244 return PTR_ERR(batch);
2249 if (intel_context_is_parallel(eb->context))
2252 len = eb->batch_len[0];
2253 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2255 * ppGTT backed shadow buffers must be mapped RO, to prevent
2256 * post-scan tampering
2258 if (!eb->context->vm->has_read_only) {
2260 "Cannot prevent post-scan tampering without RO capable vm\n");
2264 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2266 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2270 pool = intel_gt_get_buffer_pool(eb->gt, len,
2273 return PTR_ERR(pool);
2274 eb->batch_pool = pool;
2277 err = i915_gem_object_lock(pool->obj, &eb->ww);
2281 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2283 return PTR_ERR(shadow);
2285 intel_gt_buffer_pool_mark_used(pool);
2286 i915_gem_object_set_readonly(shadow->obj);
2287 shadow->private = pool;
2290 if (CMDPARSER_USES_GGTT(eb->i915)) {
2291 trampoline = shadow;
2293 shadow = shadow_batch_pin(eb, pool->obj,
2297 return PTR_ERR(shadow);
2299 shadow->private = pool;
2301 eb->batch_flags |= I915_DISPATCH_SECURE;
2304 batch = eb_dispatch_secure(eb, shadow);
2306 return PTR_ERR(batch);
2308 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2312 err = intel_engine_cmd_parser(eb->context->engine,
2313 eb->batches[0]->vma,
2314 eb->batch_start_offset,
2316 shadow, trampoline);
2320 eb->batches[0] = &eb->vma[eb->buffer_count++];
2321 eb->batches[0]->vma = i915_vma_get(shadow);
2322 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2324 eb->trampoline = trampoline;
2325 eb->batch_start_offset = 0;
2329 if (intel_context_is_parallel(eb->context))
2332 eb->batches[0] = &eb->vma[eb->buffer_count++];
2333 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2334 eb->batches[0]->vma = i915_vma_get(batch);
2339 static int eb_request_submit(struct i915_execbuffer *eb,
2340 struct i915_request *rq,
2341 struct i915_vma *batch,
2346 if (intel_context_nopreempt(rq->context))
2347 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2349 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2350 err = i915_reset_gen7_sol_offsets(rq);
2356 * After we completed waiting for other engines (using HW semaphores)
2357 * then we can signal that this request/batch is ready to run. This
2358 * allows us to determine if the batch is still waiting on the GPU
2359 * or actually running by checking the breadcrumb.
2361 if (rq->context->engine->emit_init_breadcrumb) {
2362 err = rq->context->engine->emit_init_breadcrumb(rq);
2367 err = rq->context->engine->emit_bb_start(rq,
2369 eb->batch_start_offset,
2375 if (eb->trampoline) {
2376 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2377 GEM_BUG_ON(eb->batch_start_offset);
2378 err = rq->context->engine->emit_bb_start(rq,
2379 eb->trampoline->node.start +
2388 static int eb_submit(struct i915_execbuffer *eb)
2393 err = eb_move_to_gpu(eb);
2395 for_each_batch_create_order(eb, i) {
2396 if (!eb->requests[i])
2399 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2401 err = eb_request_submit(eb, eb->requests[i],
2402 eb->batches[i]->vma,
2409 static int num_vcs_engines(struct drm_i915_private *i915)
2411 return hweight_long(VDBOX_MASK(to_gt(i915)));
2415 * Find one BSD ring to dispatch the corresponding BSD command.
2416 * The engine index is returned.
2419 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2420 struct drm_file *file)
2422 struct drm_i915_file_private *file_priv = file->driver_priv;
2424 /* Check whether the file_priv has already selected one ring. */
2425 if ((int)file_priv->bsd_engine < 0)
2426 file_priv->bsd_engine =
2427 get_random_int() % num_vcs_engines(dev_priv);
2429 return file_priv->bsd_engine;
2432 static const enum intel_engine_id user_ring_map[] = {
2433 [I915_EXEC_DEFAULT] = RCS0,
2434 [I915_EXEC_RENDER] = RCS0,
2435 [I915_EXEC_BLT] = BCS0,
2436 [I915_EXEC_BSD] = VCS0,
2437 [I915_EXEC_VEBOX] = VECS0
2440 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2442 struct intel_ring *ring = ce->ring;
2443 struct intel_timeline *tl = ce->timeline;
2444 struct i915_request *rq;
2447 * Completely unscientific finger-in-the-air estimates for suitable
2448 * maximum user request size (to avoid blocking) and then backoff.
2450 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2454 * Find a request that after waiting upon, there will be at least half
2455 * the ring available. The hysteresis allows us to compete for the
2456 * shared ring and should mean that we sleep less often prior to
2457 * claiming our resources, but not so long that the ring completely
2458 * drains before we can submit our next request.
2460 list_for_each_entry(rq, &tl->requests, link) {
2461 if (rq->ring != ring)
2464 if (__intel_ring_space(rq->postfix,
2465 ring->emit, ring->size) > ring->size / 2)
2468 if (&rq->link == &tl->requests)
2469 return NULL; /* weird, we will check again later for real */
2471 return i915_request_get(rq);
2474 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2477 struct intel_timeline *tl;
2478 struct i915_request *rq = NULL;
2481 * Take a local wakeref for preparing to dispatch the execbuf as
2482 * we expect to access the hardware fairly frequently in the
2483 * process, and require the engine to be kept awake between accesses.
2484 * Upon dispatch, we acquire another prolonged wakeref that we hold
2485 * until the timeline is idle, which in turn releases the wakeref
2486 * taken on the engine, and the parent device.
2488 tl = intel_context_timeline_lock(ce);
2492 intel_context_enter(ce);
2494 rq = eb_throttle(eb, ce);
2495 intel_context_timeline_unlock(tl);
2498 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2499 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2501 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2503 i915_request_put(rq);
2506 * Error path, cannot use intel_context_timeline_lock as
2507 * that is user interruptable and this clean up step
2510 mutex_lock(&ce->timeline->mutex);
2511 intel_context_exit(ce);
2512 mutex_unlock(&ce->timeline->mutex);
2515 return -EWOULDBLOCK;
2519 i915_request_put(rq);
2525 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2527 struct intel_context *ce = eb->context, *child;
2531 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2533 if (unlikely(intel_context_is_banned(ce)))
2537 * Pinning the contexts may generate requests in order to acquire
2538 * GGTT space, so do this first before we reserve a seqno for
2541 err = intel_context_pin_ww(ce, &eb->ww);
2544 for_each_child(ce, child) {
2545 err = intel_context_pin_ww(child, &eb->ww);
2546 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2549 for_each_child(ce, child) {
2550 err = eb_pin_timeline(eb, child, throttle);
2555 err = eb_pin_timeline(eb, ce, throttle);
2559 eb->args->flags |= __EXEC_ENGINE_PINNED;
2563 for_each_child(ce, child) {
2565 mutex_lock(&child->timeline->mutex);
2566 intel_context_exit(child);
2567 mutex_unlock(&child->timeline->mutex);
2570 for_each_child(ce, child)
2571 intel_context_unpin(child);
2572 intel_context_unpin(ce);
2576 static void eb_unpin_engine(struct i915_execbuffer *eb)
2578 struct intel_context *ce = eb->context, *child;
2580 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2583 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2585 for_each_child(ce, child) {
2586 mutex_lock(&child->timeline->mutex);
2587 intel_context_exit(child);
2588 mutex_unlock(&child->timeline->mutex);
2590 intel_context_unpin(child);
2593 mutex_lock(&ce->timeline->mutex);
2594 intel_context_exit(ce);
2595 mutex_unlock(&ce->timeline->mutex);
2597 intel_context_unpin(ce);
2601 eb_select_legacy_ring(struct i915_execbuffer *eb)
2603 struct drm_i915_private *i915 = eb->i915;
2604 struct drm_i915_gem_execbuffer2 *args = eb->args;
2605 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2607 if (user_ring_id != I915_EXEC_BSD &&
2608 (args->flags & I915_EXEC_BSD_MASK)) {
2610 "execbuf with non bsd ring but with invalid "
2611 "bsd dispatch flags: %d\n", (int)(args->flags));
2615 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2616 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2618 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2619 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2620 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2621 bsd_idx <= I915_EXEC_BSD_RING2) {
2622 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2626 "execbuf with unknown bsd ring: %u\n",
2631 return _VCS(bsd_idx);
2634 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2635 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2640 return user_ring_map[user_ring_id];
2644 eb_select_engine(struct i915_execbuffer *eb)
2646 struct intel_context *ce, *child;
2650 if (i915_gem_context_user_engines(eb->gem_context))
2651 idx = eb->args->flags & I915_EXEC_RING_MASK;
2653 idx = eb_select_legacy_ring(eb);
2655 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2659 if (intel_context_is_parallel(ce)) {
2660 if (eb->buffer_count < ce->parallel.number_children + 1) {
2661 intel_context_put(ce);
2664 if (eb->batch_start_offset || eb->args->batch_len) {
2665 intel_context_put(ce);
2669 eb->num_batches = ce->parallel.number_children + 1;
2671 for_each_child(ce, child)
2672 intel_context_get(child);
2673 intel_gt_pm_get(ce->engine->gt);
2675 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2676 err = intel_context_alloc_state(ce);
2680 for_each_child(ce, child) {
2681 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2682 err = intel_context_alloc_state(child);
2689 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2690 * EIO if the GPU is already wedged.
2692 err = intel_gt_terminally_wedged(ce->engine->gt);
2696 if (!i915_vm_tryget(ce->vm)) {
2702 eb->gt = ce->engine->gt;
2705 * Make sure engine pool stays alive even if we call intel_context_put
2706 * during ww handling. The pool is destroyed when last pm reference
2707 * is dropped, which breaks our -EDEADLK handling.
2712 intel_gt_pm_put(ce->engine->gt);
2713 for_each_child(ce, child)
2714 intel_context_put(child);
2715 intel_context_put(ce);
2720 eb_put_engine(struct i915_execbuffer *eb)
2722 struct intel_context *child;
2724 i915_vm_put(eb->context->vm);
2725 intel_gt_pm_put(eb->gt);
2726 for_each_child(eb->context, child)
2727 intel_context_put(child);
2728 intel_context_put(eb->context);
2732 __free_fence_array(struct eb_fence *fences, unsigned int n)
2735 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2736 dma_fence_put(fences[n].dma_fence);
2737 dma_fence_chain_free(fences[n].chain_fence);
2743 add_timeline_fence_array(struct i915_execbuffer *eb,
2744 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2746 struct drm_i915_gem_exec_fence __user *user_fences;
2747 u64 __user *user_values;
2752 nfences = timeline_fences->fence_count;
2756 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2757 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2758 if (nfences > min_t(unsigned long,
2759 ULONG_MAX / sizeof(*user_fences),
2760 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2763 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2764 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2767 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2768 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2771 f = krealloc(eb->fences,
2772 (eb->num_fences + nfences) * sizeof(*f),
2773 __GFP_NOWARN | GFP_KERNEL);
2778 f += eb->num_fences;
2780 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2781 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2784 struct drm_i915_gem_exec_fence user_fence;
2785 struct drm_syncobj *syncobj;
2786 struct dma_fence *fence = NULL;
2789 if (__copy_from_user(&user_fence,
2791 sizeof(user_fence)))
2794 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2797 if (__get_user(point, user_values++))
2800 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2802 DRM_DEBUG("Invalid syncobj handle provided\n");
2806 fence = drm_syncobj_fence_get(syncobj);
2808 if (!fence && user_fence.flags &&
2809 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2810 DRM_DEBUG("Syncobj handle has no fence\n");
2811 drm_syncobj_put(syncobj);
2816 err = dma_fence_chain_find_seqno(&fence, point);
2818 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2819 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2820 dma_fence_put(fence);
2821 drm_syncobj_put(syncobj);
2826 * A point might have been signaled already and
2827 * garbage collected from the timeline. In this case
2828 * just ignore the point and carry on.
2830 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2831 drm_syncobj_put(syncobj);
2836 * For timeline syncobjs we need to preallocate chains for
2839 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2841 * Waiting and signaling the same point (when point !=
2842 * 0) would break the timeline.
2844 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2845 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2846 dma_fence_put(fence);
2847 drm_syncobj_put(syncobj);
2851 f->chain_fence = dma_fence_chain_alloc();
2852 if (!f->chain_fence) {
2853 drm_syncobj_put(syncobj);
2854 dma_fence_put(fence);
2858 f->chain_fence = NULL;
2861 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2862 f->dma_fence = fence;
2871 static int add_fence_array(struct i915_execbuffer *eb)
2873 struct drm_i915_gem_execbuffer2 *args = eb->args;
2874 struct drm_i915_gem_exec_fence __user *user;
2875 unsigned long num_fences = args->num_cliprects;
2878 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2884 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2885 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2886 if (num_fences > min_t(unsigned long,
2887 ULONG_MAX / sizeof(*user),
2888 SIZE_MAX / sizeof(*f) - eb->num_fences))
2891 user = u64_to_user_ptr(args->cliprects_ptr);
2892 if (!access_ok(user, num_fences * sizeof(*user)))
2895 f = krealloc(eb->fences,
2896 (eb->num_fences + num_fences) * sizeof(*f),
2897 __GFP_NOWARN | GFP_KERNEL);
2902 f += eb->num_fences;
2903 while (num_fences--) {
2904 struct drm_i915_gem_exec_fence user_fence;
2905 struct drm_syncobj *syncobj;
2906 struct dma_fence *fence = NULL;
2908 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2911 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2914 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2916 DRM_DEBUG("Invalid syncobj handle provided\n");
2920 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2921 fence = drm_syncobj_fence_get(syncobj);
2923 DRM_DEBUG("Syncobj handle has no fence\n");
2924 drm_syncobj_put(syncobj);
2929 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2930 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2932 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2933 f->dma_fence = fence;
2935 f->chain_fence = NULL;
2943 static void put_fence_array(struct eb_fence *fences, int num_fences)
2946 __free_fence_array(fences, num_fences);
2950 await_fence_array(struct i915_execbuffer *eb,
2951 struct i915_request *rq)
2956 for (n = 0; n < eb->num_fences; n++) {
2957 struct drm_syncobj *syncobj;
2960 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2962 if (!eb->fences[n].dma_fence)
2965 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2973 static void signal_fence_array(const struct i915_execbuffer *eb,
2974 struct dma_fence * const fence)
2978 for (n = 0; n < eb->num_fences; n++) {
2979 struct drm_syncobj *syncobj;
2982 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2983 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2986 if (eb->fences[n].chain_fence) {
2987 drm_syncobj_add_point(syncobj,
2988 eb->fences[n].chain_fence,
2990 eb->fences[n].value);
2992 * The chain's ownership is transferred to the
2995 eb->fences[n].chain_fence = NULL;
2997 drm_syncobj_replace_fence(syncobj, fence);
3003 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3005 struct i915_execbuffer *eb = data;
3006 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3008 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3011 return add_timeline_fence_array(eb, &timeline_fences);
3014 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3016 struct i915_request *rq, *rn;
3018 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3019 if (rq == end || !i915_request_retire(rq))
3023 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3024 int err, bool last_parallel)
3026 struct intel_timeline * const tl = i915_request_timeline(rq);
3027 struct i915_sched_attr attr = {};
3028 struct i915_request *prev;
3030 lockdep_assert_held(&tl->mutex);
3031 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3033 trace_i915_request_add(rq);
3035 prev = __i915_request_commit(rq);
3037 /* Check that the context wasn't destroyed before submission */
3038 if (likely(!intel_context_is_closed(eb->context))) {
3039 attr = eb->gem_context->sched;
3041 /* Serialise with context_close via the add_to_timeline */
3042 i915_request_set_error_once(rq, -ENOENT);
3043 __i915_request_skip(rq);
3044 err = -ENOENT; /* override any transient errors */
3047 if (intel_context_is_parallel(eb->context)) {
3049 __i915_request_skip(rq);
3050 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3054 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3058 __i915_request_queue(rq, &attr);
3060 /* Try to clean up the client's timeline after submitting the request */
3062 retire_requests(tl, prev);
3064 mutex_unlock(&tl->mutex);
3069 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3074 * We iterate in reverse order of creation to release timeline mutexes in
3077 for_each_batch_add_order(eb, i) {
3078 struct i915_request *rq = eb->requests[i];
3082 err |= eb_request_add(eb, rq, err, i == 0);
3088 static const i915_user_extension_fn execbuf_extensions[] = {
3089 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3093 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3094 struct i915_execbuffer *eb)
3096 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3099 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3100 * have another flag also using it at the same time.
3102 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3105 if (args->num_cliprects != 0)
3108 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3110 ARRAY_SIZE(execbuf_extensions),
3114 static void eb_requests_get(struct i915_execbuffer *eb)
3118 for_each_batch_create_order(eb, i) {
3119 if (!eb->requests[i])
3122 i915_request_get(eb->requests[i]);
3126 static void eb_requests_put(struct i915_execbuffer *eb)
3130 for_each_batch_create_order(eb, i) {
3131 if (!eb->requests[i])
3134 i915_request_put(eb->requests[i]);
3138 static struct sync_file *
3139 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3141 struct sync_file *out_fence = NULL;
3142 struct dma_fence_array *fence_array;
3143 struct dma_fence **fences;
3146 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3148 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3150 return ERR_PTR(-ENOMEM);
3152 for_each_batch_create_order(eb, i) {
3153 fences[i] = &eb->requests[i]->fence;
3154 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3155 &eb->requests[i]->fence.flags);
3158 fence_array = dma_fence_array_create(eb->num_batches,
3160 eb->context->parallel.fence_context,
3161 eb->context->parallel.seqno++,
3165 return ERR_PTR(-ENOMEM);
3168 /* Move ownership to the dma_fence_array created above */
3169 for_each_batch_create_order(eb, i)
3170 dma_fence_get(fences[i]);
3172 if (out_fence_fd != -1) {
3173 out_fence = sync_file_create(&fence_array->base);
3174 /* sync_file now owns fence_arry, drop creation ref */
3175 dma_fence_put(&fence_array->base);
3177 return ERR_PTR(-ENOMEM);
3180 eb->composite_fence = &fence_array->base;
3185 static struct sync_file *
3186 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3187 struct dma_fence *in_fence, int out_fence_fd)
3189 struct sync_file *out_fence = NULL;
3192 if (unlikely(eb->gem_context->syncobj)) {
3193 struct dma_fence *fence;
3195 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3196 err = i915_request_await_dma_fence(rq, fence);
3197 dma_fence_put(fence);
3199 return ERR_PTR(err);
3203 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3204 err = i915_request_await_execution(rq, in_fence);
3206 err = i915_request_await_dma_fence(rq, in_fence);
3208 return ERR_PTR(err);
3212 err = await_fence_array(eb, rq);
3214 return ERR_PTR(err);
3217 if (intel_context_is_parallel(eb->context)) {
3218 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3219 if (IS_ERR(out_fence))
3220 return ERR_PTR(-ENOMEM);
3221 } else if (out_fence_fd != -1) {
3222 out_fence = sync_file_create(&rq->fence);
3224 return ERR_PTR(-ENOMEM);
3230 static struct intel_context *
3231 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3233 struct intel_context *child;
3235 if (likely(context_number == 0))
3238 for_each_child(eb->context, child)
3239 if (!--context_number)
3242 GEM_BUG_ON("Context not found");
3247 static struct sync_file *
3248 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3251 struct sync_file *out_fence = NULL;
3254 for_each_batch_create_order(eb, i) {
3255 /* Allocate a request for this batch buffer nice and early. */
3256 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3257 if (IS_ERR(eb->requests[i])) {
3258 out_fence = ERR_CAST(eb->requests[i]);
3259 eb->requests[i] = NULL;
3264 * Only the first request added (committed to backend) has to
3265 * take the in fences into account as all subsequent requests
3266 * will have fences inserted inbetween them.
3268 if (i + 1 == eb->num_batches) {
3269 out_fence = eb_fences_add(eb, eb->requests[i],
3270 in_fence, out_fence_fd);
3271 if (IS_ERR(out_fence))
3276 * Not really on stack, but we don't want to call
3277 * kfree on the batch_snapshot when we put it, so use the
3278 * _onstack interface.
3280 if (eb->batches[i]->vma)
3281 eb->requests[i]->batch_res =
3282 i915_vma_resource_get(eb->batches[i]->vma->resource);
3283 if (eb->batch_pool) {
3284 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3285 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3294 i915_gem_do_execbuffer(struct drm_device *dev,
3295 struct drm_file *file,
3296 struct drm_i915_gem_execbuffer2 *args,
3297 struct drm_i915_gem_exec_object2 *exec)
3299 struct drm_i915_private *i915 = to_i915(dev);
3300 struct i915_execbuffer eb;
3301 struct dma_fence *in_fence = NULL;
3302 struct sync_file *out_fence = NULL;
3303 int out_fence_fd = -1;
3306 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3307 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3308 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3313 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3314 args->flags |= __EXEC_HAS_RELOC;
3317 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3318 eb.vma[0].vma = NULL;
3319 eb.batch_pool = NULL;
3321 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3322 reloc_cache_init(&eb.reloc_cache, eb.i915);
3324 eb.buffer_count = args->buffer_count;
3325 eb.batch_start_offset = args->batch_start_offset;
3326 eb.trampoline = NULL;
3331 eb_capture_list_clear(&eb);
3333 memset(eb.requests, 0, sizeof(struct i915_request *) *
3334 ARRAY_SIZE(eb.requests));
3335 eb.composite_fence = NULL;
3338 if (args->flags & I915_EXEC_SECURE) {
3339 if (GRAPHICS_VER(i915) >= 11)
3342 /* Return -EPERM to trigger fallback code on old binaries. */
3343 if (!HAS_SECURE_BATCHES(i915))
3346 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3349 eb.batch_flags |= I915_DISPATCH_SECURE;
3351 if (args->flags & I915_EXEC_IS_PINNED)
3352 eb.batch_flags |= I915_DISPATCH_PINNED;
3354 err = parse_execbuf2_extensions(args, &eb);
3358 err = add_fence_array(&eb);
3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3363 if (args->flags & IN_FENCES) {
3364 if ((args->flags & IN_FENCES) == IN_FENCES)
3367 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3375 if (args->flags & I915_EXEC_FENCE_OUT) {
3376 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3377 if (out_fence_fd < 0) {
3383 err = eb_create(&eb);
3387 GEM_BUG_ON(!eb.lut_size);
3389 err = eb_select_context(&eb);
3393 err = eb_select_engine(&eb);
3397 err = eb_lookup_vmas(&eb);
3399 eb_release_vmas(&eb, true);
3403 i915_gem_ww_ctx_init(&eb.ww, true);
3405 err = eb_relocate_parse(&eb);
3408 * If the user expects the execobject.offset and
3409 * reloc.presumed_offset to be an exact match,
3410 * as for using NO_RELOC, then we cannot update
3411 * the execobject.offset until we have completed
3414 args->flags &= ~__EXEC_HAS_RELOC;
3418 ww_acquire_done(&eb.ww.ctx);
3419 err = eb_capture_stage(&eb);
3423 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3424 if (IS_ERR(out_fence)) {
3425 err = PTR_ERR(out_fence);
3433 err = eb_submit(&eb);
3436 eb_requests_get(&eb);
3437 err = eb_requests_add(&eb, err);
3440 signal_fence_array(&eb, eb.composite_fence ?
3441 eb.composite_fence :
3442 &eb.requests[0]->fence);
3446 fd_install(out_fence_fd, out_fence->file);
3447 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3448 args->rsvd2 |= (u64)out_fence_fd << 32;
3451 fput(out_fence->file);
3455 if (unlikely(eb.gem_context->syncobj)) {
3456 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3457 eb.composite_fence ?
3458 eb.composite_fence :
3459 &eb.requests[0]->fence);
3462 if (!out_fence && eb.composite_fence)
3463 dma_fence_put(eb.composite_fence);
3465 eb_requests_put(&eb);
3468 eb_release_vmas(&eb, true);
3469 WARN_ON(err == -EDEADLK);
3470 i915_gem_ww_ctx_fini(&eb.ww);
3473 intel_gt_buffer_pool_put(eb.batch_pool);
3477 i915_gem_context_put(eb.gem_context);
3481 if (out_fence_fd != -1)
3482 put_unused_fd(out_fence_fd);
3484 dma_fence_put(in_fence);
3486 put_fence_array(eb.fences, eb.num_fences);
3490 static size_t eb_element_size(void)
3492 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3495 static bool check_buffer_count(size_t count)
3497 const size_t sz = eb_element_size();
3500 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3501 * array size (see eb_create()). Otherwise, we can accept an array as
3502 * large as can be addressed (though use large arrays at your peril)!
3505 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3510 struct drm_file *file)
3512 struct drm_i915_private *i915 = to_i915(dev);
3513 struct drm_i915_gem_execbuffer2 *args = data;
3514 struct drm_i915_gem_exec_object2 *exec2_list;
3515 const size_t count = args->buffer_count;
3518 if (!check_buffer_count(count)) {
3519 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3523 err = i915_gem_check_execbuffer(args);
3527 /* Allocate extra slots for use by the command parser */
3528 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3529 __GFP_NOWARN | GFP_KERNEL);
3530 if (exec2_list == NULL) {
3531 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3535 if (copy_from_user(exec2_list,
3536 u64_to_user_ptr(args->buffers_ptr),
3537 sizeof(*exec2_list) * count)) {
3538 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3543 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3546 * Now that we have begun execution of the batchbuffer, we ignore
3547 * any new error after this point. Also given that we have already
3548 * updated the associated relocations, we try to write out the current
3549 * object locations irrespective of any error.
3551 if (args->flags & __EXEC_HAS_RELOC) {
3552 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3553 u64_to_user_ptr(args->buffers_ptr);
3556 /* Copy the new buffer offsets back to the user's exec list. */
3558 * Note: count * sizeof(*user_exec_list) does not overflow,
3559 * because we checked 'count' in check_buffer_count().
3561 * And this range already got effectively checked earlier
3562 * when we did the "copy_from_user()" above.
3564 if (!user_write_access_begin(user_exec_list,
3565 count * sizeof(*user_exec_list)))
3568 for (i = 0; i < args->buffer_count; i++) {
3569 if (!(exec2_list[i].offset & UPDATE))
3572 exec2_list[i].offset =
3573 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3574 unsafe_put_user(exec2_list[i].offset,
3575 &user_exec_list[i].offset,
3579 user_write_access_end();
3583 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;