]> Git Repo - linux.git/blob - drivers/pci/controller/vmd.c
Merge tag 'drm-fixes-2018-06-22' of git://anongit.freedesktop.org/drm/drm
[linux.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 enum vmd_features {
35         /*
36          * Device may contain registers which hint the physical location of the
37          * membars, in order to allow proper address translation during
38          * resource assignment to enable guest virtualization
39          */
40         VMD_FEAT_HAS_MEMBAR_SHADOW      = (1 << 0),
41
42         /*
43          * Device may provide root port configuration information which limits
44          * bus numbering
45          */
46         VMD_FEAT_HAS_BUS_RESTRICTIONS   = (1 << 1),
47 };
48
49 /*
50  * Lock for manipulating VMD IRQ lists.
51  */
52 static DEFINE_RAW_SPINLOCK(list_lock);
53
54 /**
55  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56  * @node:       list item for parent traversal.
57  * @irq:        back pointer to parent.
58  * @enabled:    true if driver enabled IRQ
59  * @virq:       the virtual IRQ value provided to the requesting driver.
60  *
61  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62  * a VMD IRQ using this structure.
63  */
64 struct vmd_irq {
65         struct list_head        node;
66         struct vmd_irq_list     *irq;
67         bool                    enabled;
68         unsigned int            virq;
69 };
70
71 /**
72  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73  * @irq_list:   the list of irq's the VMD one demuxes to.
74  * @srcu:       SRCU struct for local synchronization.
75  * @count:      number of child IRQs assigned to this vector; used to track
76  *              sharing.
77  */
78 struct vmd_irq_list {
79         struct list_head        irq_list;
80         struct srcu_struct      srcu;
81         unsigned int            count;
82 };
83
84 struct vmd_dev {
85         struct pci_dev          *dev;
86
87         spinlock_t              cfg_lock;
88         char __iomem            *cfgbar;
89
90         int msix_count;
91         struct vmd_irq_list     *irqs;
92
93         struct pci_sysdata      sysdata;
94         struct resource         resources[3];
95         struct irq_domain       *irq_domain;
96         struct pci_bus          *bus;
97
98 #ifdef CONFIG_X86_DEV_DMA_OPS
99         struct dma_map_ops      dma_ops;
100         struct dma_domain       dma_domain;
101 #endif
102 };
103
104 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
105 {
106         return container_of(bus->sysdata, struct vmd_dev, sysdata);
107 }
108
109 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
110                                            struct vmd_irq_list *irqs)
111 {
112         return irqs - vmd->irqs;
113 }
114
115 /*
116  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
117  * but the MSI entry for the hardware it's driving will be programmed with a
118  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
119  * domain into one of its own, and the VMD driver de-muxes these for the
120  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
121  * and irq_chip to set this up.
122  */
123 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
124 {
125         struct vmd_irq *vmdirq = data->chip_data;
126         struct vmd_irq_list *irq = vmdirq->irq;
127         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
128
129         msg->address_hi = MSI_ADDR_BASE_HI;
130         msg->address_lo = MSI_ADDR_BASE_LO |
131                           MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
132         msg->data = 0;
133 }
134
135 /*
136  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
137  */
138 static void vmd_irq_enable(struct irq_data *data)
139 {
140         struct vmd_irq *vmdirq = data->chip_data;
141         unsigned long flags;
142
143         raw_spin_lock_irqsave(&list_lock, flags);
144         WARN_ON(vmdirq->enabled);
145         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
146         vmdirq->enabled = true;
147         raw_spin_unlock_irqrestore(&list_lock, flags);
148
149         data->chip->irq_unmask(data);
150 }
151
152 static void vmd_irq_disable(struct irq_data *data)
153 {
154         struct vmd_irq *vmdirq = data->chip_data;
155         unsigned long flags;
156
157         data->chip->irq_mask(data);
158
159         raw_spin_lock_irqsave(&list_lock, flags);
160         if (vmdirq->enabled) {
161                 list_del_rcu(&vmdirq->node);
162                 vmdirq->enabled = false;
163         }
164         raw_spin_unlock_irqrestore(&list_lock, flags);
165 }
166
167 /*
168  * XXX: Stubbed until we develop acceptable way to not create conflicts with
169  * other devices sharing the same vector.
170  */
171 static int vmd_irq_set_affinity(struct irq_data *data,
172                                 const struct cpumask *dest, bool force)
173 {
174         return -EINVAL;
175 }
176
177 static struct irq_chip vmd_msi_controller = {
178         .name                   = "VMD-MSI",
179         .irq_enable             = vmd_irq_enable,
180         .irq_disable            = vmd_irq_disable,
181         .irq_compose_msi_msg    = vmd_compose_msi_msg,
182         .irq_set_affinity       = vmd_irq_set_affinity,
183 };
184
185 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
186                                      msi_alloc_info_t *arg)
187 {
188         return 0;
189 }
190
191 /*
192  * XXX: We can be even smarter selecting the best IRQ once we solve the
193  * affinity problem.
194  */
195 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
196 {
197         int i, best = 1;
198         unsigned long flags;
199
200         if (pci_is_bridge(msi_desc_to_pci_dev(desc)) || vmd->msix_count == 1)
201                 return &vmd->irqs[0];
202
203         raw_spin_lock_irqsave(&list_lock, flags);
204         for (i = 1; i < vmd->msix_count; i++)
205                 if (vmd->irqs[i].count < vmd->irqs[best].count)
206                         best = i;
207         vmd->irqs[best].count++;
208         raw_spin_unlock_irqrestore(&list_lock, flags);
209
210         return &vmd->irqs[best];
211 }
212
213 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
214                         unsigned int virq, irq_hw_number_t hwirq,
215                         msi_alloc_info_t *arg)
216 {
217         struct msi_desc *desc = arg->desc;
218         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
219         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
220         unsigned int index, vector;
221
222         if (!vmdirq)
223                 return -ENOMEM;
224
225         INIT_LIST_HEAD(&vmdirq->node);
226         vmdirq->irq = vmd_next_irq(vmd, desc);
227         vmdirq->virq = virq;
228         index = index_from_irqs(vmd, vmdirq->irq);
229         vector = pci_irq_vector(vmd->dev, index);
230
231         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
232                             handle_untracked_irq, vmd, NULL);
233         return 0;
234 }
235
236 static void vmd_msi_free(struct irq_domain *domain,
237                         struct msi_domain_info *info, unsigned int virq)
238 {
239         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
240         unsigned long flags;
241
242         synchronize_srcu(&vmdirq->irq->srcu);
243
244         /* XXX: Potential optimization to rebalance */
245         raw_spin_lock_irqsave(&list_lock, flags);
246         vmdirq->irq->count--;
247         raw_spin_unlock_irqrestore(&list_lock, flags);
248
249         kfree(vmdirq);
250 }
251
252 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
253                            int nvec, msi_alloc_info_t *arg)
254 {
255         struct pci_dev *pdev = to_pci_dev(dev);
256         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
257
258         if (nvec > vmd->msix_count)
259                 return vmd->msix_count;
260
261         memset(arg, 0, sizeof(*arg));
262         return 0;
263 }
264
265 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
266 {
267         arg->desc = desc;
268 }
269
270 static struct msi_domain_ops vmd_msi_domain_ops = {
271         .get_hwirq      = vmd_get_hwirq,
272         .msi_init       = vmd_msi_init,
273         .msi_free       = vmd_msi_free,
274         .msi_prepare    = vmd_msi_prepare,
275         .set_desc       = vmd_set_desc,
276 };
277
278 static struct msi_domain_info vmd_msi_domain_info = {
279         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
280                           MSI_FLAG_PCI_MSIX,
281         .ops            = &vmd_msi_domain_ops,
282         .chip           = &vmd_msi_controller,
283 };
284
285 #ifdef CONFIG_X86_DEV_DMA_OPS
286 /*
287  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
288  * VMD domain need to be mapped for the VMD, not the device requiring
289  * the mapping.
290  */
291 static struct device *to_vmd_dev(struct device *dev)
292 {
293         struct pci_dev *pdev = to_pci_dev(dev);
294         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
295
296         return &vmd->dev->dev;
297 }
298
299 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
300 {
301         return get_dma_ops(to_vmd_dev(dev));
302 }
303
304 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
305                        gfp_t flag, unsigned long attrs)
306 {
307         return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
308                                        attrs);
309 }
310
311 static void vmd_free(struct device *dev, size_t size, void *vaddr,
312                      dma_addr_t addr, unsigned long attrs)
313 {
314         return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
315                                       attrs);
316 }
317
318 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
319                     void *cpu_addr, dma_addr_t addr, size_t size,
320                     unsigned long attrs)
321 {
322         return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
323                                       size, attrs);
324 }
325
326 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
327                            void *cpu_addr, dma_addr_t addr, size_t size,
328                            unsigned long attrs)
329 {
330         return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
331                                              addr, size, attrs);
332 }
333
334 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
335                                unsigned long offset, size_t size,
336                                enum dma_data_direction dir,
337                                unsigned long attrs)
338 {
339         return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
340                                           dir, attrs);
341 }
342
343 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
344                            enum dma_data_direction dir, unsigned long attrs)
345 {
346         vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
347 }
348
349 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
350                       enum dma_data_direction dir, unsigned long attrs)
351 {
352         return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
353 }
354
355 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
356                          enum dma_data_direction dir, unsigned long attrs)
357 {
358         vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
359 }
360
361 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
362                                     size_t size, enum dma_data_direction dir)
363 {
364         vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
365 }
366
367 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
368                                        size_t size, enum dma_data_direction dir)
369 {
370         vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
371                                                  dir);
372 }
373
374 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
375                                 int nents, enum dma_data_direction dir)
376 {
377         vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
378 }
379
380 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
381                                    int nents, enum dma_data_direction dir)
382 {
383         vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
384 }
385
386 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
387 {
388         return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
389 }
390
391 static int vmd_dma_supported(struct device *dev, u64 mask)
392 {
393         return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
394 }
395
396 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
397 static u64 vmd_get_required_mask(struct device *dev)
398 {
399         return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
400 }
401 #endif
402
403 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
404 {
405         struct dma_domain *domain = &vmd->dma_domain;
406
407         if (get_dma_ops(&vmd->dev->dev))
408                 del_dma_domain(domain);
409 }
410
411 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)    \
412         do {                                    \
413                 if (source->fn)                 \
414                         dest->fn = vmd_##fn;    \
415         } while (0)
416
417 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
418 {
419         const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
420         struct dma_map_ops *dest = &vmd->dma_ops;
421         struct dma_domain *domain = &vmd->dma_domain;
422
423         domain->domain_nr = vmd->sysdata.domain;
424         domain->dma_ops = dest;
425
426         if (!source)
427                 return;
428         ASSIGN_VMD_DMA_OPS(source, dest, alloc);
429         ASSIGN_VMD_DMA_OPS(source, dest, free);
430         ASSIGN_VMD_DMA_OPS(source, dest, mmap);
431         ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
432         ASSIGN_VMD_DMA_OPS(source, dest, map_page);
433         ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
434         ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
435         ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
436         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
437         ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
438         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
439         ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
440         ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
441         ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
442 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
443         ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
444 #endif
445         add_dma_domain(domain);
446 }
447 #undef ASSIGN_VMD_DMA_OPS
448 #else
449 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
450 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
451 #endif
452
453 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
454                                   unsigned int devfn, int reg, int len)
455 {
456         char __iomem *addr = vmd->cfgbar +
457                              (bus->number << 20) + (devfn << 12) + reg;
458
459         if ((addr - vmd->cfgbar) + len >=
460             resource_size(&vmd->dev->resource[VMD_CFGBAR]))
461                 return NULL;
462
463         return addr;
464 }
465
466 /*
467  * CPU may deadlock if config space is not serialized on some versions of this
468  * hardware, so all config space access is done under a spinlock.
469  */
470 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
471                         int len, u32 *value)
472 {
473         struct vmd_dev *vmd = vmd_from_bus(bus);
474         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
475         unsigned long flags;
476         int ret = 0;
477
478         if (!addr)
479                 return -EFAULT;
480
481         spin_lock_irqsave(&vmd->cfg_lock, flags);
482         switch (len) {
483         case 1:
484                 *value = readb(addr);
485                 break;
486         case 2:
487                 *value = readw(addr);
488                 break;
489         case 4:
490                 *value = readl(addr);
491                 break;
492         default:
493                 ret = -EINVAL;
494                 break;
495         }
496         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
497         return ret;
498 }
499
500 /*
501  * VMD h/w converts non-posted config writes to posted memory writes. The
502  * read-back in this function forces the completion so it returns only after
503  * the config space was written, as expected.
504  */
505 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
506                          int len, u32 value)
507 {
508         struct vmd_dev *vmd = vmd_from_bus(bus);
509         char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
510         unsigned long flags;
511         int ret = 0;
512
513         if (!addr)
514                 return -EFAULT;
515
516         spin_lock_irqsave(&vmd->cfg_lock, flags);
517         switch (len) {
518         case 1:
519                 writeb(value, addr);
520                 readb(addr);
521                 break;
522         case 2:
523                 writew(value, addr);
524                 readw(addr);
525                 break;
526         case 4:
527                 writel(value, addr);
528                 readl(addr);
529                 break;
530         default:
531                 ret = -EINVAL;
532                 break;
533         }
534         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
535         return ret;
536 }
537
538 static struct pci_ops vmd_ops = {
539         .read           = vmd_pci_read,
540         .write          = vmd_pci_write,
541 };
542
543 static void vmd_attach_resources(struct vmd_dev *vmd)
544 {
545         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
546         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
547 }
548
549 static void vmd_detach_resources(struct vmd_dev *vmd)
550 {
551         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
552         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
553 }
554
555 /*
556  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
557  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
558  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
559  * currently reserved.
560  */
561 static int vmd_find_free_domain(void)
562 {
563         int domain = 0xffff;
564         struct pci_bus *bus = NULL;
565
566         while ((bus = pci_find_next_bus(bus)) != NULL)
567                 domain = max_t(int, domain, pci_domain_nr(bus));
568         return domain + 1;
569 }
570
571 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
572 {
573         struct pci_sysdata *sd = &vmd->sysdata;
574         struct fwnode_handle *fn;
575         struct resource *res;
576         u32 upper_bits;
577         unsigned long flags;
578         LIST_HEAD(resources);
579         resource_size_t offset[2] = {0};
580         resource_size_t membar2_offset = 0x2000, busn_start = 0;
581
582         /*
583          * Shadow registers may exist in certain VMD device ids which allow
584          * guests to correctly assign host physical addresses to the root ports
585          * and child devices. These registers will either return the host value
586          * or 0, depending on an enable bit in the VMD device.
587          */
588         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
589                 u32 vmlock;
590                 int ret;
591
592                 membar2_offset = 0x2018;
593                 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
594                 if (ret || vmlock == ~0)
595                         return -ENODEV;
596
597                 if (MB2_SHADOW_EN(vmlock)) {
598                         void __iomem *membar2;
599
600                         membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
601                         if (!membar2)
602                                 return -ENOMEM;
603                         offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
604                                                 readq(membar2 + 0x2008);
605                         offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
606                                                 readq(membar2 + 0x2010);
607                         pci_iounmap(vmd->dev, membar2);
608                 }
609         }
610
611         /*
612          * Certain VMD devices may have a root port configuration option which
613          * limits the bus range to between 0-127 or 128-255
614          */
615         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
616                 u32 vmcap, vmconfig;
617
618                 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
619                 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
620                 if (BUS_RESTRICT_CAP(vmcap) &&
621                     (BUS_RESTRICT_CFG(vmconfig) == 0x1))
622                         busn_start = 128;
623         }
624
625         res = &vmd->dev->resource[VMD_CFGBAR];
626         vmd->resources[0] = (struct resource) {
627                 .name  = "VMD CFGBAR",
628                 .start = busn_start,
629                 .end   = busn_start + (resource_size(res) >> 20) - 1,
630                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
631         };
632
633         /*
634          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
635          * put 32-bit resources in the window.
636          *
637          * There's no hardware reason why a 64-bit window *couldn't*
638          * contain a 32-bit resource, but pbus_size_mem() computes the
639          * bridge window size assuming a 64-bit window will contain no
640          * 32-bit resources.  __pci_assign_resource() enforces that
641          * artificial restriction to make sure everything will fit.
642          *
643          * The only way we could use a 64-bit non-prefechable MEMBAR is
644          * if its address is <4GB so that we can convert it to a 32-bit
645          * resource.  To be visible to the host OS, all VMD endpoints must
646          * be initially configured by platform BIOS, which includes setting
647          * up these resources.  We can assume the device is configured
648          * according to the platform needs.
649          */
650         res = &vmd->dev->resource[VMD_MEMBAR1];
651         upper_bits = upper_32_bits(res->end);
652         flags = res->flags & ~IORESOURCE_SIZEALIGN;
653         if (!upper_bits)
654                 flags &= ~IORESOURCE_MEM_64;
655         vmd->resources[1] = (struct resource) {
656                 .name  = "VMD MEMBAR1",
657                 .start = res->start,
658                 .end   = res->end,
659                 .flags = flags,
660                 .parent = res,
661         };
662
663         res = &vmd->dev->resource[VMD_MEMBAR2];
664         upper_bits = upper_32_bits(res->end);
665         flags = res->flags & ~IORESOURCE_SIZEALIGN;
666         if (!upper_bits)
667                 flags &= ~IORESOURCE_MEM_64;
668         vmd->resources[2] = (struct resource) {
669                 .name  = "VMD MEMBAR2",
670                 .start = res->start + membar2_offset,
671                 .end   = res->end,
672                 .flags = flags,
673                 .parent = res,
674         };
675
676         sd->vmd_domain = true;
677         sd->domain = vmd_find_free_domain();
678         if (sd->domain < 0)
679                 return sd->domain;
680
681         sd->node = pcibus_to_node(vmd->dev->bus);
682
683         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
684         if (!fn)
685                 return -ENODEV;
686
687         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
688                                                     x86_vector_domain);
689         irq_domain_free_fwnode(fn);
690         if (!vmd->irq_domain)
691                 return -ENODEV;
692
693         pci_add_resource(&resources, &vmd->resources[0]);
694         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
695         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
696
697         vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
698                                        sd, &resources);
699         if (!vmd->bus) {
700                 pci_free_resource_list(&resources);
701                 irq_domain_remove(vmd->irq_domain);
702                 return -ENODEV;
703         }
704
705         vmd_attach_resources(vmd);
706         vmd_setup_dma_ops(vmd);
707         dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
708         pci_rescan_bus(vmd->bus);
709
710         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
711                                "domain"), "Can't create symlink to domain\n");
712         return 0;
713 }
714
715 static irqreturn_t vmd_irq(int irq, void *data)
716 {
717         struct vmd_irq_list *irqs = data;
718         struct vmd_irq *vmdirq;
719         int idx;
720
721         idx = srcu_read_lock(&irqs->srcu);
722         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
723                 generic_handle_irq(vmdirq->virq);
724         srcu_read_unlock(&irqs->srcu, idx);
725
726         return IRQ_HANDLED;
727 }
728
729 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
730 {
731         struct vmd_dev *vmd;
732         int i, err;
733
734         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
735                 return -ENOMEM;
736
737         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
738         if (!vmd)
739                 return -ENOMEM;
740
741         vmd->dev = dev;
742         err = pcim_enable_device(dev);
743         if (err < 0)
744                 return err;
745
746         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
747         if (!vmd->cfgbar)
748                 return -ENOMEM;
749
750         pci_set_master(dev);
751         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
752             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
753                 return -ENODEV;
754
755         vmd->msix_count = pci_msix_vec_count(dev);
756         if (vmd->msix_count < 0)
757                 return -ENODEV;
758
759         vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
760                                         PCI_IRQ_MSIX);
761         if (vmd->msix_count < 0)
762                 return vmd->msix_count;
763
764         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
765                                  GFP_KERNEL);
766         if (!vmd->irqs)
767                 return -ENOMEM;
768
769         for (i = 0; i < vmd->msix_count; i++) {
770                 err = init_srcu_struct(&vmd->irqs[i].srcu);
771                 if (err)
772                         return err;
773
774                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
775                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
776                                        vmd_irq, IRQF_NO_THREAD,
777                                        "vmd", &vmd->irqs[i]);
778                 if (err)
779                         return err;
780         }
781
782         spin_lock_init(&vmd->cfg_lock);
783         pci_set_drvdata(dev, vmd);
784         err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
785         if (err)
786                 return err;
787
788         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
789                  vmd->sysdata.domain);
790         return 0;
791 }
792
793 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
794 {
795         int i;
796
797         for (i = 0; i < vmd->msix_count; i++)
798                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
799 }
800
801 static void vmd_remove(struct pci_dev *dev)
802 {
803         struct vmd_dev *vmd = pci_get_drvdata(dev);
804
805         vmd_detach_resources(vmd);
806         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
807         pci_stop_root_bus(vmd->bus);
808         pci_remove_root_bus(vmd->bus);
809         vmd_cleanup_srcu(vmd);
810         vmd_teardown_dma_ops(vmd);
811         irq_domain_remove(vmd->irq_domain);
812 }
813
814 #ifdef CONFIG_PM_SLEEP
815 static int vmd_suspend(struct device *dev)
816 {
817         struct pci_dev *pdev = to_pci_dev(dev);
818         struct vmd_dev *vmd = pci_get_drvdata(pdev);
819         int i;
820
821         for (i = 0; i < vmd->msix_count; i++)
822                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
823
824         pci_save_state(pdev);
825         return 0;
826 }
827
828 static int vmd_resume(struct device *dev)
829 {
830         struct pci_dev *pdev = to_pci_dev(dev);
831         struct vmd_dev *vmd = pci_get_drvdata(pdev);
832         int err, i;
833
834         for (i = 0; i < vmd->msix_count; i++) {
835                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
836                                        vmd_irq, IRQF_NO_THREAD,
837                                        "vmd", &vmd->irqs[i]);
838                 if (err)
839                         return err;
840         }
841
842         pci_restore_state(pdev);
843         return 0;
844 }
845 #endif
846 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
847
848 static const struct pci_device_id vmd_ids[] = {
849         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
850         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
851                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
852                                 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
853         {0,}
854 };
855 MODULE_DEVICE_TABLE(pci, vmd_ids);
856
857 static struct pci_driver vmd_drv = {
858         .name           = "vmd",
859         .id_table       = vmd_ids,
860         .probe          = vmd_probe,
861         .remove         = vmd_remove,
862         .driver         = {
863                 .pm     = &vmd_dev_pm_ops,
864         },
865 };
866 module_pci_driver(vmd_drv);
867
868 MODULE_AUTHOR("Intel Corporation");
869 MODULE_LICENSE("GPL v2");
870 MODULE_VERSION("0.6");
This page took 0.075177 seconds and 4 git commands to generate.