1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) Microsoft Corporation.
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <asm/mshyperv.h>
54 * Protocol versions. The low word is the minor version, the high word the
58 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
59 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
60 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 enum pci_protocol_version_t {
63 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
64 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
67 #define CPU_AFFINITY_ALL -1ULL
70 * Supported protocol versions in the order of probing - highest go
73 static enum pci_protocol_version_t pci_protocol_versions[] = {
74 PCI_PROTOCOL_VERSION_1_2,
75 PCI_PROTOCOL_VERSION_1_1,
79 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 static enum pci_protocol_version_t pci_protocol_version;
83 #define PCI_CONFIG_MMIO_LENGTH 0x2000
84 #define CFG_PAGE_OFFSET 0x1000
85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 #define STATUS_REVISION_MISMATCH 0xC0000059
95 enum pci_message_type {
99 PCI_MESSAGE_BASE = 0x42490000,
100 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
101 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
102 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
103 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
104 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
105 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
106 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
107 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
108 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
109 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
110 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
111 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
112 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
113 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
114 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
115 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
116 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
117 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
118 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
119 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
120 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
121 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
122 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
127 * Structures defining the virtual PCI Express protocol.
139 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
140 * which is all this driver does. This representation is the one used in
141 * Windows, which is what is expected when sending this back and forth with
142 * the Hyper-V parent partition.
144 union win_slot_encoding {
154 * Pretty much as defined in the PCI Specifications.
156 struct pci_function_description {
157 u16 v_id; /* vendor ID */
158 u16 d_id; /* device ID */
164 union win_slot_encoding win_slot;
165 u32 ser; /* serial number */
171 * @delivery_mode: As defined in Intel's Programmer's
172 * Reference Manual, Volume 3, Chapter 8.
173 * @vector_count: Number of contiguous entries in the
174 * Interrupt Descriptor Table that are
175 * occupied by this Message-Signaled
176 * Interrupt. For "MSI", as first defined
177 * in PCI 2.2, this can be between 1 and
178 * 32. For "MSI-X," as first defined in PCI
179 * 3.0, this must be 1, as each MSI-X table
180 * entry would have its own descriptor.
181 * @reserved: Empty space
182 * @cpu_mask: All the target virtual processors.
193 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
195 * @delivery_mode: As defined in Intel's Programmer's
196 * Reference Manual, Volume 3, Chapter 8.
197 * @vector_count: Number of contiguous entries in the
198 * Interrupt Descriptor Table that are
199 * occupied by this Message-Signaled
200 * Interrupt. For "MSI", as first defined
201 * in PCI 2.2, this can be between 1 and
202 * 32. For "MSI-X," as first defined in PCI
203 * 3.0, this must be 1, as each MSI-X table
204 * entry would have its own descriptor.
205 * @processor_count: number of bits enabled in array.
206 * @processor_array: All the target virtual processors.
208 struct hv_msi_desc2 {
213 u16 processor_array[32];
217 * struct tran_int_desc
218 * @reserved: unused, padding
219 * @vector_count: same as in hv_msi_desc
220 * @data: This is the "data payload" value that is
221 * written by the device when it generates
222 * a message-signaled interrupt, either MSI
224 * @address: This is the address to which the data
225 * payload is written on interrupt
228 struct tran_int_desc {
236 * A generic message format for virtual PCI.
237 * Specific message formats are defined later in the file.
244 struct pci_child_message {
245 struct pci_message message_type;
246 union win_slot_encoding wslot;
249 struct pci_incoming_message {
250 struct vmpacket_descriptor hdr;
251 struct pci_message message_type;
254 struct pci_response {
255 struct vmpacket_descriptor hdr;
256 s32 status; /* negative values are failures */
260 void (*completion_func)(void *context, struct pci_response *resp,
261 int resp_packet_size);
264 struct pci_message message[0];
268 * Specific message types supporting the PCI protocol.
272 * Version negotiation message. Sent from the guest to the host.
273 * The guest is free to try different versions until the host
274 * accepts the version.
276 * pci_version: The protocol version requested.
277 * is_last_attempt: If TRUE, this is the last version guest will request.
278 * reservedz: Reserved field, set to zero.
281 struct pci_version_request {
282 struct pci_message message_type;
283 u32 protocol_version;
287 * Bus D0 Entry. This is sent from the guest to the host when the virtual
288 * bus (PCI Express port) is ready for action.
291 struct pci_bus_d0_entry {
292 struct pci_message message_type;
297 struct pci_bus_relations {
298 struct pci_incoming_message incoming;
300 struct pci_function_description func[0];
303 struct pci_q_res_req_response {
304 struct vmpacket_descriptor hdr;
305 s32 status; /* negative values are failures */
309 struct pci_set_power {
310 struct pci_message message_type;
311 union win_slot_encoding wslot;
312 u32 power_state; /* In Windows terms */
316 struct pci_set_power_response {
317 struct vmpacket_descriptor hdr;
318 s32 status; /* negative values are failures */
319 union win_slot_encoding wslot;
320 u32 resultant_state; /* In Windows terms */
324 struct pci_resources_assigned {
325 struct pci_message message_type;
326 union win_slot_encoding wslot;
327 u8 memory_range[0x14][6]; /* not used here */
332 struct pci_resources_assigned2 {
333 struct pci_message message_type;
334 union win_slot_encoding wslot;
335 u8 memory_range[0x14][6]; /* not used here */
336 u32 msi_descriptor_count;
340 struct pci_create_interrupt {
341 struct pci_message message_type;
342 union win_slot_encoding wslot;
343 struct hv_msi_desc int_desc;
346 struct pci_create_int_response {
347 struct pci_response response;
349 struct tran_int_desc int_desc;
352 struct pci_create_interrupt2 {
353 struct pci_message message_type;
354 union win_slot_encoding wslot;
355 struct hv_msi_desc2 int_desc;
358 struct pci_delete_interrupt {
359 struct pci_message message_type;
360 union win_slot_encoding wslot;
361 struct tran_int_desc int_desc;
364 struct pci_dev_incoming {
365 struct pci_incoming_message incoming;
366 union win_slot_encoding wslot;
369 struct pci_eject_response {
370 struct pci_message message_type;
371 union win_slot_encoding wslot;
375 static int pci_ring_size = (4 * PAGE_SIZE);
378 * Definitions or interrupt steering hypercall.
380 #define HV_PARTITION_ID_SELF ((u64)-1)
381 #define HVCALL_RETARGET_INTERRUPT 0x7e
383 struct hv_interrupt_entry {
384 u32 source; /* 1 for MSI(-X) */
390 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
393 u64 format; /* 0 (HvGenericSetSparse4k) */
395 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
399 * flags for hv_device_interrupt_target.flags
401 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
402 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
404 struct hv_device_interrupt_target {
409 struct hv_vp_set vp_set;
413 struct retarget_msi_interrupt {
414 u64 partition_id; /* use "self" */
416 struct hv_interrupt_entry int_entry;
418 struct hv_device_interrupt_target int_target;
422 * Driver specific state.
425 enum hv_pcibus_state {
433 struct hv_pcibus_device {
434 struct pci_sysdata sysdata;
435 enum hv_pcibus_state state;
436 refcount_t remove_lock;
437 struct hv_device *hdev;
438 resource_size_t low_mmio_space;
439 resource_size_t high_mmio_space;
440 struct resource *mem_config;
441 struct resource *low_mmio_res;
442 struct resource *high_mmio_res;
443 struct completion *survey_event;
444 struct completion remove_event;
445 struct pci_bus *pci_bus;
446 spinlock_t config_lock; /* Avoid two threads writing index page */
447 spinlock_t device_list_lock; /* Protect lists below */
448 void __iomem *cfg_addr;
450 struct list_head resources_for_children;
452 struct list_head children;
453 struct list_head dr_list;
455 struct msi_domain_info msi_info;
456 struct msi_controller msi_chip;
457 struct irq_domain *irq_domain;
459 /* hypercall arg, must not cross page boundary */
460 struct retarget_msi_interrupt retarget_msi_interrupt_params;
462 spinlock_t retarget_msi_interrupt_lock;
464 struct workqueue_struct *wq;
468 * Tracks "Device Relations" messages from the host, which must be both
469 * processed in order and deferred so that they don't run in the context
470 * of the incoming packet callback.
473 struct work_struct wrk;
474 struct hv_pcibus_device *bus;
478 struct list_head list_entry;
480 struct pci_function_description func[0];
483 enum hv_pcichild_state {
484 hv_pcichild_init = 0,
485 hv_pcichild_requirements,
486 hv_pcichild_resourced,
487 hv_pcichild_ejecting,
492 /* List protected by pci_rescan_remove_lock */
493 struct list_head list_entry;
495 enum hv_pcichild_state state;
496 struct pci_function_description desc;
497 bool reported_missing;
498 struct hv_pcibus_device *hbus;
499 struct work_struct wrk;
502 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
503 * read it back, for each of the BAR offsets within config space.
508 struct hv_pci_compl {
509 struct completion host_event;
510 s32 completion_status;
513 static void hv_pci_onchannelcallback(void *context);
516 * hv_pci_generic_compl() - Invoked for a completion packet
517 * @context: Set up by the sender of the packet.
518 * @resp: The response packet
519 * @resp_packet_size: Size in bytes of the packet
521 * This function is used to trigger an event and report status
522 * for any message for which the completion packet contains a
523 * status and nothing else.
525 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
526 int resp_packet_size)
528 struct hv_pci_compl *comp_pkt = context;
530 if (resp_packet_size >= offsetofend(struct pci_response, status))
531 comp_pkt->completion_status = resp->status;
533 comp_pkt->completion_status = -1;
535 complete(&comp_pkt->host_event);
538 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
541 static void get_pcichild(struct hv_pci_dev *hpdev)
543 refcount_inc(&hpdev->refs);
546 static void put_pcichild(struct hv_pci_dev *hpdev)
548 if (refcount_dec_and_test(&hpdev->refs))
552 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
553 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
556 * There is no good way to get notified from vmbus_onoffer_rescind(),
557 * so let's use polling here, since this is not a hot path.
559 static int wait_for_response(struct hv_device *hdev,
560 struct completion *comp)
563 if (hdev->channel->rescind) {
564 dev_warn_once(&hdev->device, "The device is gone.\n");
568 if (wait_for_completion_timeout(comp, HZ / 10))
576 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
577 * @devfn: The Linux representation of PCI slot
579 * Windows uses a slightly different representation of PCI slot.
581 * Return: The Windows representation
583 static u32 devfn_to_wslot(int devfn)
585 union win_slot_encoding wslot;
588 wslot.bits.dev = PCI_SLOT(devfn);
589 wslot.bits.func = PCI_FUNC(devfn);
595 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
596 * @wslot: The Windows representation of PCI slot
598 * Windows uses a slightly different representation of PCI slot.
600 * Return: The Linux representation
602 static int wslot_to_devfn(u32 wslot)
604 union win_slot_encoding slot_no;
606 slot_no.slot = wslot;
607 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
611 * PCI Configuration Space for these root PCI buses is implemented as a pair
612 * of pages in memory-mapped I/O space. Writing to the first page chooses
613 * the PCI function being written or read. Once the first page has been
614 * written to, the following page maps in the entire configuration space of
619 * _hv_pcifront_read_config() - Internal PCI config read
620 * @hpdev: The PCI driver's representation of the device
621 * @where: Offset within config space
622 * @size: Size of the transfer
623 * @val: Pointer to the buffer receiving the data
625 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
629 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
632 * If the attempt is to read the IDs or the ROM BAR, simulate that.
634 if (where + size <= PCI_COMMAND) {
635 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
636 } else if (where >= PCI_CLASS_REVISION && where + size <=
637 PCI_CACHE_LINE_SIZE) {
638 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
639 PCI_CLASS_REVISION, size);
640 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
642 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
643 PCI_SUBSYSTEM_VENDOR_ID, size);
644 } else if (where >= PCI_ROM_ADDRESS && where + size <=
645 PCI_CAPABILITY_LIST) {
646 /* ROM BARs are unimplemented */
648 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
651 * Interrupt Line and Interrupt PIN are hard-wired to zero
652 * because this front-end only supports message-signaled
656 } else if (where + size <= CFG_PAGE_SIZE) {
657 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
658 /* Choose the function to be read. (See comment above) */
659 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
660 /* Make sure the function was chosen before we start reading. */
662 /* Read from that function's config space. */
675 * Make sure the read was done before we release the spinlock
676 * allowing consecutive reads/writes.
679 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
681 dev_err(&hpdev->hbus->hdev->device,
682 "Attempt to read beyond a function's config space.\n");
686 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
690 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
693 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 /* Choose the function to be read. (See comment above) */
696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 /* Make sure the function was chosen before we start reading. */
699 /* Read from that function's config space. */
702 * mb() is not required here, because the spin_unlock_irqrestore()
706 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
712 * _hv_pcifront_write_config() - Internal PCI config write
713 * @hpdev: The PCI driver's representation of the device
714 * @where: Offset within config space
715 * @size: Size of the transfer
716 * @val: The data being transferred
718 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
722 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
724 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
725 where + size <= PCI_CAPABILITY_LIST) {
726 /* SSIDs and ROM BARs are read-only */
727 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
728 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
729 /* Choose the function to be written. (See comment above) */
730 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
731 /* Make sure the function was chosen before we start writing. */
733 /* Write to that function's config space. */
746 * Make sure the write was done before we release the spinlock
747 * allowing consecutive reads/writes.
750 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
752 dev_err(&hpdev->hbus->hdev->device,
753 "Attempt to write beyond a function's config space.\n");
758 * hv_pcifront_read_config() - Read configuration space
759 * @bus: PCI Bus structure
760 * @devfn: Device/function
761 * @where: Offset from base
762 * @size: Byte/word/dword
763 * @val: Value to be read
765 * Return: PCIBIOS_SUCCESSFUL on success
766 * PCIBIOS_DEVICE_NOT_FOUND on failure
768 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
769 int where, int size, u32 *val)
771 struct hv_pcibus_device *hbus =
772 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
773 struct hv_pci_dev *hpdev;
775 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
777 return PCIBIOS_DEVICE_NOT_FOUND;
779 _hv_pcifront_read_config(hpdev, where, size, val);
782 return PCIBIOS_SUCCESSFUL;
786 * hv_pcifront_write_config() - Write configuration space
787 * @bus: PCI Bus structure
788 * @devfn: Device/function
789 * @where: Offset from base
790 * @size: Byte/word/dword
791 * @val: Value to be written to device
793 * Return: PCIBIOS_SUCCESSFUL on success
794 * PCIBIOS_DEVICE_NOT_FOUND on failure
796 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
797 int where, int size, u32 val)
799 struct hv_pcibus_device *hbus =
800 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
801 struct hv_pci_dev *hpdev;
803 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
805 return PCIBIOS_DEVICE_NOT_FOUND;
807 _hv_pcifront_write_config(hpdev, where, size, val);
810 return PCIBIOS_SUCCESSFUL;
813 /* PCIe operations */
814 static struct pci_ops hv_pcifront_ops = {
815 .read = hv_pcifront_read_config,
816 .write = hv_pcifront_write_config,
819 /* Interrupt management hooks */
820 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
821 struct tran_int_desc *int_desc)
823 struct pci_delete_interrupt *int_pkt;
825 struct pci_packet pkt;
826 u8 buffer[sizeof(struct pci_delete_interrupt)];
829 memset(&ctxt, 0, sizeof(ctxt));
830 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
831 int_pkt->message_type.type =
832 PCI_DELETE_INTERRUPT_MESSAGE;
833 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
834 int_pkt->int_desc = *int_desc;
835 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
836 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
841 * hv_msi_free() - Free the MSI.
842 * @domain: The interrupt domain pointer
843 * @info: Extra MSI-related context
844 * @irq: Identifies the IRQ.
846 * The Hyper-V parent partition and hypervisor are tracking the
847 * messages that are in use, keeping the interrupt redirection
848 * table up to date. This callback sends a message that frees
849 * the IRT entry and related tracking nonsense.
851 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
854 struct hv_pcibus_device *hbus;
855 struct hv_pci_dev *hpdev;
856 struct pci_dev *pdev;
857 struct tran_int_desc *int_desc;
858 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
859 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
861 pdev = msi_desc_to_pci_dev(msi);
863 int_desc = irq_data_get_irq_chip_data(irq_data);
867 irq_data->chip_data = NULL;
868 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
874 hv_int_desc_free(hpdev, int_desc);
878 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
881 struct irq_data *parent = data->parent_data;
883 return parent->chip->irq_set_affinity(parent, dest, force);
886 static void hv_irq_mask(struct irq_data *data)
888 pci_msi_mask_irq(data);
892 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
894 * @data: Describes the IRQ
896 * Build new a destination for the MSI and make a hypercall to
897 * update the Interrupt Redirection Table. "Device Logical ID"
898 * is built out of this PCI bus's instance GUID and the function
899 * number of the device.
901 static void hv_irq_unmask(struct irq_data *data)
903 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
904 struct irq_cfg *cfg = irqd_cfg(data);
905 struct retarget_msi_interrupt *params;
906 struct hv_pcibus_device *hbus;
907 struct cpumask *dest;
908 struct pci_bus *pbus;
909 struct pci_dev *pdev;
916 dest = irq_data_get_effective_affinity_mask(data);
917 pdev = msi_desc_to_pci_dev(msi_desc);
919 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
921 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
923 params = &hbus->retarget_msi_interrupt_params;
924 memset(params, 0, sizeof(*params));
925 params->partition_id = HV_PARTITION_ID_SELF;
926 params->int_entry.source = 1; /* MSI(-X) */
927 params->int_entry.address = msi_desc->msg.address_lo;
928 params->int_entry.data = msi_desc->msg.data;
929 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
930 (hbus->hdev->dev_instance.b[4] << 16) |
931 (hbus->hdev->dev_instance.b[7] << 8) |
932 (hbus->hdev->dev_instance.b[6] & 0xf8) |
933 PCI_FUNC(pdev->devfn);
934 params->int_target.vector = cfg->vector;
937 * Honoring apic->irq_delivery_mode set to dest_Fixed by
938 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
939 * spurious interrupt storm. Not doing so does not seem to have a
940 * negative effect (yet?).
943 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
945 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
946 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
947 * with >64 VP support.
948 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
949 * is not sufficient for this hypercall.
951 params->int_target.flags |=
952 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
953 params->int_target.vp_set.valid_banks =
954 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
957 * var-sized hypercall, var-size starts after vp_mask (thus
958 * vp_set.format does not count, but vp_set.valid_banks does).
960 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
962 for_each_cpu_and(cpu, dest, cpu_online_mask) {
963 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
965 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
966 dev_err(&hbus->hdev->device,
967 "too high CPU %d", cpu_vmbus);
972 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
973 (1ULL << (cpu_vmbus & 63));
976 for_each_cpu_and(cpu, dest, cpu_online_mask) {
977 params->int_target.vp_mask |=
978 (1ULL << hv_cpu_number_to_vp_number(cpu));
982 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
986 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
989 dev_err(&hbus->hdev->device,
990 "%s() failed: %#llx", __func__, res);
994 pci_msi_unmask_irq(data);
997 struct compose_comp_ctxt {
998 struct hv_pci_compl comp_pkt;
999 struct tran_int_desc int_desc;
1002 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1003 int resp_packet_size)
1005 struct compose_comp_ctxt *comp_pkt = context;
1006 struct pci_create_int_response *int_resp =
1007 (struct pci_create_int_response *)resp;
1009 comp_pkt->comp_pkt.completion_status = resp->status;
1010 comp_pkt->int_desc = int_resp->int_desc;
1011 complete(&comp_pkt->comp_pkt.host_event);
1014 static u32 hv_compose_msi_req_v1(
1015 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1016 u32 slot, u8 vector)
1018 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1019 int_pkt->wslot.slot = slot;
1020 int_pkt->int_desc.vector = vector;
1021 int_pkt->int_desc.vector_count = 1;
1022 int_pkt->int_desc.delivery_mode = dest_Fixed;
1025 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1028 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1030 return sizeof(*int_pkt);
1033 static u32 hv_compose_msi_req_v2(
1034 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1035 u32 slot, u8 vector)
1039 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1040 int_pkt->wslot.slot = slot;
1041 int_pkt->int_desc.vector = vector;
1042 int_pkt->int_desc.vector_count = 1;
1043 int_pkt->int_desc.delivery_mode = dest_Fixed;
1046 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1047 * by subsequent retarget in hv_irq_unmask().
1049 cpu = cpumask_first_and(affinity, cpu_online_mask);
1050 int_pkt->int_desc.processor_array[0] =
1051 hv_cpu_number_to_vp_number(cpu);
1052 int_pkt->int_desc.processor_count = 1;
1054 return sizeof(*int_pkt);
1058 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1059 * @data: Everything about this MSI
1060 * @msg: Buffer that is filled in by this function
1062 * This function unpacks the IRQ looking for target CPU set, IDT
1063 * vector and mode and sends a message to the parent partition
1064 * asking for a mapping for that tuple in this partition. The
1065 * response supplies a data value and address to which that data
1066 * should be written to trigger that interrupt.
1068 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1070 struct irq_cfg *cfg = irqd_cfg(data);
1071 struct hv_pcibus_device *hbus;
1072 struct hv_pci_dev *hpdev;
1073 struct pci_bus *pbus;
1074 struct pci_dev *pdev;
1075 struct cpumask *dest;
1076 struct compose_comp_ctxt comp;
1077 struct tran_int_desc *int_desc;
1079 struct pci_packet pci_pkt;
1081 struct pci_create_interrupt v1;
1082 struct pci_create_interrupt2 v2;
1089 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1090 dest = irq_data_get_effective_affinity_mask(data);
1092 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1093 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1095 goto return_null_message;
1097 /* Free any previous message that might have already been composed. */
1098 if (data->chip_data) {
1099 int_desc = data->chip_data;
1100 data->chip_data = NULL;
1101 hv_int_desc_free(hpdev, int_desc);
1104 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1106 goto drop_reference;
1108 memset(&ctxt, 0, sizeof(ctxt));
1109 init_completion(&comp.comp_pkt.host_event);
1110 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1111 ctxt.pci_pkt.compl_ctxt = ∁
1113 switch (pci_protocol_version) {
1114 case PCI_PROTOCOL_VERSION_1_1:
1115 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1117 hpdev->desc.win_slot.slot,
1121 case PCI_PROTOCOL_VERSION_1_2:
1122 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1124 hpdev->desc.win_slot.slot,
1129 /* As we only negotiate protocol versions known to this driver,
1130 * this path should never hit. However, this is it not a hot
1131 * path so we print a message to aid future updates.
1133 dev_err(&hbus->hdev->device,
1134 "Unexpected vPCI protocol, update driver.");
1138 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1139 size, (unsigned long)&ctxt.pci_pkt,
1141 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1143 dev_err(&hbus->hdev->device,
1144 "Sending request for interrupt failed: 0x%x",
1145 comp.comp_pkt.completion_status);
1150 * Since this function is called with IRQ locks held, can't
1151 * do normal wait for completion; instead poll.
1153 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1154 /* 0xFFFF means an invalid PCI VENDOR ID. */
1155 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1156 dev_err_once(&hbus->hdev->device,
1157 "the device has gone\n");
1162 * When the higher level interrupt code calls us with
1163 * interrupt disabled, we must poll the channel by calling
1164 * the channel callback directly when channel->target_cpu is
1165 * the current CPU. When the higher level interrupt code
1166 * calls us with interrupt enabled, let's add the
1167 * local_bh_disable()/enable() to avoid race.
1171 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1172 hv_pci_onchannelcallback(hbus);
1176 if (hpdev->state == hv_pcichild_ejecting) {
1177 dev_err_once(&hbus->hdev->device,
1178 "the device is being ejected\n");
1185 if (comp.comp_pkt.completion_status < 0) {
1186 dev_err(&hbus->hdev->device,
1187 "Request for interrupt failed: 0x%x",
1188 comp.comp_pkt.completion_status);
1193 * Record the assignment so that this can be unwound later. Using
1194 * irq_set_chip_data() here would be appropriate, but the lock it takes
1197 *int_desc = comp.int_desc;
1198 data->chip_data = int_desc;
1200 /* Pass up the result. */
1201 msg->address_hi = comp.int_desc.address >> 32;
1202 msg->address_lo = comp.int_desc.address & 0xffffffff;
1203 msg->data = comp.int_desc.data;
1205 put_pcichild(hpdev);
1211 put_pcichild(hpdev);
1212 return_null_message:
1213 msg->address_hi = 0;
1214 msg->address_lo = 0;
1218 /* HW Interrupt Chip Descriptor */
1219 static struct irq_chip hv_msi_irq_chip = {
1220 .name = "Hyper-V PCIe MSI",
1221 .irq_compose_msi_msg = hv_compose_msi_msg,
1222 .irq_set_affinity = hv_set_affinity,
1223 .irq_ack = irq_chip_ack_parent,
1224 .irq_mask = hv_irq_mask,
1225 .irq_unmask = hv_irq_unmask,
1228 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1229 msi_alloc_info_t *arg)
1231 return arg->msi_hwirq;
1234 static struct msi_domain_ops hv_msi_ops = {
1235 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1236 .msi_prepare = pci_msi_prepare,
1237 .set_desc = pci_msi_set_desc,
1238 .msi_free = hv_msi_free,
1242 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1243 * @hbus: The root PCI bus
1245 * This function creates an IRQ domain which will be used for
1246 * interrupts from devices that have been passed through. These
1247 * devices only support MSI and MSI-X, not line-based interrupts
1248 * or simulations of line-based interrupts through PCIe's
1249 * fabric-layer messages. Because interrupts are remapped, we
1250 * can support multi-message MSI here.
1252 * Return: '0' on success and error value on failure
1254 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1256 hbus->msi_info.chip = &hv_msi_irq_chip;
1257 hbus->msi_info.ops = &hv_msi_ops;
1258 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1259 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1261 hbus->msi_info.handler = handle_edge_irq;
1262 hbus->msi_info.handler_name = "edge";
1263 hbus->msi_info.data = hbus;
1264 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1267 if (!hbus->irq_domain) {
1268 dev_err(&hbus->hdev->device,
1269 "Failed to build an MSI IRQ domain\n");
1277 * get_bar_size() - Get the address space consumed by a BAR
1278 * @bar_val: Value that a BAR returned after -1 was written
1281 * This function returns the size of the BAR, rounded up to 1
1282 * page. It has to be rounded up because the hypervisor's page
1283 * table entry that maps the BAR into the VM can't specify an
1284 * offset within a page. The invariant is that the hypervisor
1285 * must place any BARs of smaller than page length at the
1286 * beginning of a page.
1288 * Return: Size in bytes of the consumed MMIO space.
1290 static u64 get_bar_size(u64 bar_val)
1292 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1297 * survey_child_resources() - Total all MMIO requirements
1298 * @hbus: Root PCI bus, as understood by this driver
1300 static void survey_child_resources(struct hv_pcibus_device *hbus)
1302 struct hv_pci_dev *hpdev;
1303 resource_size_t bar_size = 0;
1304 unsigned long flags;
1305 struct completion *event;
1309 /* If nobody is waiting on the answer, don't compute it. */
1310 event = xchg(&hbus->survey_event, NULL);
1314 /* If the answer has already been computed, go with it. */
1315 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1320 spin_lock_irqsave(&hbus->device_list_lock, flags);
1323 * Due to an interesting quirk of the PCI spec, all memory regions
1324 * for a child device are a power of 2 in size and aligned in memory,
1325 * so it's sufficient to just add them up without tracking alignment.
1327 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1328 for (i = 0; i < 6; i++) {
1329 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1330 dev_err(&hbus->hdev->device,
1331 "There's an I/O BAR in this list!\n");
1333 if (hpdev->probed_bar[i] != 0) {
1335 * A probed BAR has all the upper bits set that
1339 bar_val = hpdev->probed_bar[i];
1340 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1342 ((u64)hpdev->probed_bar[++i] << 32);
1344 bar_val |= 0xffffffff00000000ULL;
1346 bar_size = get_bar_size(bar_val);
1348 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1349 hbus->high_mmio_space += bar_size;
1351 hbus->low_mmio_space += bar_size;
1356 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1361 * prepopulate_bars() - Fill in BARs with defaults
1362 * @hbus: Root PCI bus, as understood by this driver
1364 * The core PCI driver code seems much, much happier if the BARs
1365 * for a device have values upon first scan. So fill them in.
1366 * The algorithm below works down from large sizes to small,
1367 * attempting to pack the assignments optimally. The assumption,
1368 * enforced in other parts of the code, is that the beginning of
1369 * the memory-mapped I/O space will be aligned on the largest
1372 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1374 resource_size_t high_size = 0;
1375 resource_size_t low_size = 0;
1376 resource_size_t high_base = 0;
1377 resource_size_t low_base = 0;
1378 resource_size_t bar_size;
1379 struct hv_pci_dev *hpdev;
1380 unsigned long flags;
1386 if (hbus->low_mmio_space) {
1387 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1388 low_base = hbus->low_mmio_res->start;
1391 if (hbus->high_mmio_space) {
1393 (63 - __builtin_clzll(hbus->high_mmio_space));
1394 high_base = hbus->high_mmio_res->start;
1397 spin_lock_irqsave(&hbus->device_list_lock, flags);
1399 /* Pick addresses for the BARs. */
1401 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1402 for (i = 0; i < 6; i++) {
1403 bar_val = hpdev->probed_bar[i];
1406 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1409 ((u64)hpdev->probed_bar[i + 1]
1412 bar_val |= 0xffffffffULL << 32;
1414 bar_size = get_bar_size(bar_val);
1416 if (high_size != bar_size) {
1420 _hv_pcifront_write_config(hpdev,
1421 PCI_BASE_ADDRESS_0 + (4 * i),
1423 (u32)(high_base & 0xffffff00));
1425 _hv_pcifront_write_config(hpdev,
1426 PCI_BASE_ADDRESS_0 + (4 * i),
1427 4, (u32)(high_base >> 32));
1428 high_base += bar_size;
1430 if (low_size != bar_size)
1432 _hv_pcifront_write_config(hpdev,
1433 PCI_BASE_ADDRESS_0 + (4 * i),
1435 (u32)(low_base & 0xffffff00));
1436 low_base += bar_size;
1439 if (high_size <= 1 && low_size <= 1) {
1440 /* Set the memory enable bit. */
1441 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1443 command |= PCI_COMMAND_MEMORY;
1444 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1452 } while (high_size || low_size);
1454 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1458 * create_root_hv_pci_bus() - Expose a new root PCI bus
1459 * @hbus: Root PCI bus, as understood by this driver
1461 * Return: 0 on success, -errno on failure
1463 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1465 /* Register the device */
1466 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1467 0, /* bus number is always zero */
1470 &hbus->resources_for_children);
1474 hbus->pci_bus->msi = &hbus->msi_chip;
1475 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1477 pci_lock_rescan_remove();
1478 pci_scan_child_bus(hbus->pci_bus);
1479 pci_bus_assign_resources(hbus->pci_bus);
1480 pci_bus_add_devices(hbus->pci_bus);
1481 pci_unlock_rescan_remove();
1482 hbus->state = hv_pcibus_installed;
1486 struct q_res_req_compl {
1487 struct completion host_event;
1488 struct hv_pci_dev *hpdev;
1492 * q_resource_requirements() - Query Resource Requirements
1493 * @context: The completion context.
1494 * @resp: The response that came from the host.
1495 * @resp_packet_size: The size in bytes of resp.
1497 * This function is invoked on completion of a Query Resource
1498 * Requirements packet.
1500 static void q_resource_requirements(void *context, struct pci_response *resp,
1501 int resp_packet_size)
1503 struct q_res_req_compl *completion = context;
1504 struct pci_q_res_req_response *q_res_req =
1505 (struct pci_q_res_req_response *)resp;
1508 if (resp->status < 0) {
1509 dev_err(&completion->hpdev->hbus->hdev->device,
1510 "query resource requirements failed: %x\n",
1513 for (i = 0; i < 6; i++) {
1514 completion->hpdev->probed_bar[i] =
1515 q_res_req->probed_bar[i];
1519 complete(&completion->host_event);
1523 * new_pcichild_device() - Create a new child device
1524 * @hbus: The internal struct tracking this root PCI bus.
1525 * @desc: The information supplied so far from the host
1528 * This function creates the tracking structure for a new child
1529 * device and kicks off the process of figuring out what it is.
1531 * Return: Pointer to the new tracking struct
1533 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1534 struct pci_function_description *desc)
1536 struct hv_pci_dev *hpdev;
1537 struct pci_child_message *res_req;
1538 struct q_res_req_compl comp_pkt;
1540 struct pci_packet init_packet;
1541 u8 buffer[sizeof(struct pci_child_message)];
1543 unsigned long flags;
1546 hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC);
1552 memset(&pkt, 0, sizeof(pkt));
1553 init_completion(&comp_pkt.host_event);
1554 comp_pkt.hpdev = hpdev;
1555 pkt.init_packet.compl_ctxt = &comp_pkt;
1556 pkt.init_packet.completion_func = q_resource_requirements;
1557 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1558 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1559 res_req->wslot.slot = desc->win_slot.slot;
1561 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1562 sizeof(struct pci_child_message),
1563 (unsigned long)&pkt.init_packet,
1565 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1569 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1572 hpdev->desc = *desc;
1573 refcount_set(&hpdev->refs, 1);
1574 get_pcichild(hpdev);
1575 spin_lock_irqsave(&hbus->device_list_lock, flags);
1577 list_add_tail(&hpdev->list_entry, &hbus->children);
1578 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1587 * get_pcichild_wslot() - Find device from slot
1588 * @hbus: Root PCI bus, as understood by this driver
1589 * @wslot: Location on the bus
1591 * This function looks up a PCI device and returns the internal
1592 * representation of it. It acquires a reference on it, so that
1593 * the device won't be deleted while somebody is using it. The
1594 * caller is responsible for calling put_pcichild() to release
1597 * Return: Internal representation of a PCI device
1599 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1602 unsigned long flags;
1603 struct hv_pci_dev *iter, *hpdev = NULL;
1605 spin_lock_irqsave(&hbus->device_list_lock, flags);
1606 list_for_each_entry(iter, &hbus->children, list_entry) {
1607 if (iter->desc.win_slot.slot == wslot) {
1609 get_pcichild(hpdev);
1613 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1619 * pci_devices_present_work() - Handle new list of child devices
1620 * @work: Work struct embedded in struct hv_dr_work
1622 * "Bus Relations" is the Windows term for "children of this
1623 * bus." The terminology is preserved here for people trying to
1624 * debug the interaction between Hyper-V and Linux. This
1625 * function is called when the parent partition reports a list
1626 * of functions that should be observed under this PCI Express
1629 * This function updates the list, and must tolerate being
1630 * called multiple times with the same information. The typical
1631 * number of child devices is one, with very atypical cases
1632 * involving three or four, so the algorithms used here can be
1633 * simple and inefficient.
1635 * It must also treat the omission of a previously observed device as
1636 * notification that the device no longer exists.
1638 * Note that this function is serialized with hv_eject_device_work(),
1639 * because both are pushed to the ordered workqueue hbus->wq.
1641 static void pci_devices_present_work(struct work_struct *work)
1645 struct pci_function_description *new_desc;
1646 struct hv_pci_dev *hpdev;
1647 struct hv_pcibus_device *hbus;
1648 struct list_head removed;
1649 struct hv_dr_work *dr_wrk;
1650 struct hv_dr_state *dr = NULL;
1651 unsigned long flags;
1653 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1657 INIT_LIST_HEAD(&removed);
1659 /* Pull this off the queue and process it if it was the last one. */
1660 spin_lock_irqsave(&hbus->device_list_lock, flags);
1661 while (!list_empty(&hbus->dr_list)) {
1662 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1664 list_del(&dr->list_entry);
1666 /* Throw this away if the list still has stuff in it. */
1667 if (!list_empty(&hbus->dr_list)) {
1672 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1679 /* First, mark all existing children as reported missing. */
1680 spin_lock_irqsave(&hbus->device_list_lock, flags);
1681 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1682 hpdev->reported_missing = true;
1684 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1686 /* Next, add back any reported devices. */
1687 for (child_no = 0; child_no < dr->device_count; child_no++) {
1689 new_desc = &dr->func[child_no];
1691 spin_lock_irqsave(&hbus->device_list_lock, flags);
1692 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1693 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1694 (hpdev->desc.v_id == new_desc->v_id) &&
1695 (hpdev->desc.d_id == new_desc->d_id) &&
1696 (hpdev->desc.ser == new_desc->ser)) {
1697 hpdev->reported_missing = false;
1701 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1704 hpdev = new_pcichild_device(hbus, new_desc);
1706 dev_err(&hbus->hdev->device,
1707 "couldn't record a child device.\n");
1711 /* Move missing children to a list on the stack. */
1712 spin_lock_irqsave(&hbus->device_list_lock, flags);
1715 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1716 if (hpdev->reported_missing) {
1718 put_pcichild(hpdev);
1719 list_move_tail(&hpdev->list_entry, &removed);
1724 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1726 /* Delete everything that should no longer exist. */
1727 while (!list_empty(&removed)) {
1728 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1730 list_del(&hpdev->list_entry);
1731 put_pcichild(hpdev);
1734 switch (hbus->state) {
1735 case hv_pcibus_installed:
1737 * Tell the core to rescan bus
1738 * because there may have been changes.
1740 pci_lock_rescan_remove();
1741 pci_scan_child_bus(hbus->pci_bus);
1742 pci_unlock_rescan_remove();
1745 case hv_pcibus_init:
1746 case hv_pcibus_probed:
1747 survey_child_resources(hbus);
1759 * hv_pci_devices_present() - Handles list of new children
1760 * @hbus: Root PCI bus, as understood by this driver
1761 * @relations: Packet from host listing children
1763 * This function is invoked whenever a new list of devices for
1766 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1767 struct pci_bus_relations *relations)
1769 struct hv_dr_state *dr;
1770 struct hv_dr_work *dr_wrk;
1771 unsigned long flags;
1774 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1778 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1779 (sizeof(struct pci_function_description) *
1780 (relations->device_count)), GFP_NOWAIT);
1786 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1788 dr->device_count = relations->device_count;
1789 if (dr->device_count != 0) {
1790 memcpy(dr->func, relations->func,
1791 sizeof(struct pci_function_description) *
1795 spin_lock_irqsave(&hbus->device_list_lock, flags);
1797 * If pending_dr is true, we have already queued a work,
1798 * which will see the new dr. Otherwise, we need to
1801 pending_dr = !list_empty(&hbus->dr_list);
1802 list_add_tail(&dr->list_entry, &hbus->dr_list);
1803 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1809 queue_work(hbus->wq, &dr_wrk->wrk);
1814 * hv_eject_device_work() - Asynchronously handles ejection
1815 * @work: Work struct embedded in internal device struct
1817 * This function handles ejecting a device. Windows will
1818 * attempt to gracefully eject a device, waiting 60 seconds to
1819 * hear back from the guest OS that this completed successfully.
1820 * If this timer expires, the device will be forcibly removed.
1822 static void hv_eject_device_work(struct work_struct *work)
1824 struct pci_eject_response *ejct_pkt;
1825 struct hv_pci_dev *hpdev;
1826 struct pci_dev *pdev;
1827 unsigned long flags;
1830 struct pci_packet pkt;
1831 u8 buffer[sizeof(struct pci_eject_response)];
1834 hpdev = container_of(work, struct hv_pci_dev, wrk);
1836 WARN_ON(hpdev->state != hv_pcichild_ejecting);
1839 * Ejection can come before or after the PCI bus has been set up, so
1840 * attempt to find it and tear down the bus state, if it exists. This
1841 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1842 * because hbus->pci_bus may not exist yet.
1844 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1845 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1848 pci_lock_rescan_remove();
1849 pci_stop_and_remove_bus_device(pdev);
1851 pci_unlock_rescan_remove();
1854 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1855 list_del(&hpdev->list_entry);
1856 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1858 memset(&ctxt, 0, sizeof(ctxt));
1859 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1860 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1861 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1862 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1863 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1864 VM_PKT_DATA_INBAND, 0);
1866 put_pcichild(hpdev);
1867 put_pcichild(hpdev);
1868 put_hvpcibus(hpdev->hbus);
1872 * hv_pci_eject_device() - Handles device ejection
1873 * @hpdev: Internal device tracking struct
1875 * This function is invoked when an ejection packet arrives. It
1876 * just schedules work so that we don't re-enter the packet
1877 * delivery code handling the ejection.
1879 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1881 hpdev->state = hv_pcichild_ejecting;
1882 get_pcichild(hpdev);
1883 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1884 get_hvpcibus(hpdev->hbus);
1885 queue_work(hpdev->hbus->wq, &hpdev->wrk);
1889 * hv_pci_onchannelcallback() - Handles incoming packets
1890 * @context: Internal bus tracking struct
1892 * This function is invoked whenever the host sends a packet to
1893 * this channel (which is private to this root PCI bus).
1895 static void hv_pci_onchannelcallback(void *context)
1897 const int packet_size = 0x100;
1899 struct hv_pcibus_device *hbus = context;
1902 struct vmpacket_descriptor *desc;
1903 unsigned char *buffer;
1904 int bufferlen = packet_size;
1905 struct pci_packet *comp_packet;
1906 struct pci_response *response;
1907 struct pci_incoming_message *new_message;
1908 struct pci_bus_relations *bus_rel;
1909 struct pci_dev_incoming *dev_message;
1910 struct hv_pci_dev *hpdev;
1912 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1917 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1918 bufferlen, &bytes_recvd, &req_id);
1920 if (ret == -ENOBUFS) {
1922 /* Handle large packet */
1923 bufferlen = bytes_recvd;
1924 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1930 /* Zero length indicates there are no more packets. */
1931 if (ret || !bytes_recvd)
1935 * All incoming packets must be at least as large as a
1938 if (bytes_recvd <= sizeof(struct pci_response))
1940 desc = (struct vmpacket_descriptor *)buffer;
1942 switch (desc->type) {
1946 * The host is trusted, and thus it's safe to interpret
1947 * this transaction ID as a pointer.
1949 comp_packet = (struct pci_packet *)req_id;
1950 response = (struct pci_response *)buffer;
1951 comp_packet->completion_func(comp_packet->compl_ctxt,
1956 case VM_PKT_DATA_INBAND:
1958 new_message = (struct pci_incoming_message *)buffer;
1959 switch (new_message->message_type.type) {
1960 case PCI_BUS_RELATIONS:
1962 bus_rel = (struct pci_bus_relations *)buffer;
1964 offsetof(struct pci_bus_relations, func) +
1965 (sizeof(struct pci_function_description) *
1966 (bus_rel->device_count))) {
1967 dev_err(&hbus->hdev->device,
1968 "bus relations too small\n");
1972 hv_pci_devices_present(hbus, bus_rel);
1977 dev_message = (struct pci_dev_incoming *)buffer;
1978 hpdev = get_pcichild_wslot(hbus,
1979 dev_message->wslot.slot);
1981 hv_pci_eject_device(hpdev);
1982 put_pcichild(hpdev);
1987 dev_warn(&hbus->hdev->device,
1988 "Unimplemented protocol message %x\n",
1989 new_message->message_type.type);
1995 dev_err(&hbus->hdev->device,
1996 "unhandled packet type %d, tid %llx len %d\n",
1997 desc->type, req_id, bytes_recvd);
2006 * hv_pci_protocol_negotiation() - Set up protocol
2007 * @hdev: VMBus's tracking struct for this root PCI bus
2009 * This driver is intended to support running on Windows 10
2010 * (server) and later versions. It will not run on earlier
2011 * versions, as they assume that many of the operations which
2012 * Linux needs accomplished with a spinlock held were done via
2013 * asynchronous messaging via VMBus. Windows 10 increases the
2014 * surface area of PCI emulation so that these actions can take
2015 * place by suspending a virtual processor for their duration.
2017 * This function negotiates the channel protocol version,
2018 * failing if the host doesn't support the necessary protocol
2021 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2023 struct pci_version_request *version_req;
2024 struct hv_pci_compl comp_pkt;
2025 struct pci_packet *pkt;
2030 * Initiate the handshake with the host and negotiate
2031 * a version that the host can support. We start with the
2032 * highest version number and go down if the host cannot
2035 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2039 init_completion(&comp_pkt.host_event);
2040 pkt->completion_func = hv_pci_generic_compl;
2041 pkt->compl_ctxt = &comp_pkt;
2042 version_req = (struct pci_version_request *)&pkt->message;
2043 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2045 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2046 version_req->protocol_version = pci_protocol_versions[i];
2047 ret = vmbus_sendpacket(hdev->channel, version_req,
2048 sizeof(struct pci_version_request),
2049 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2050 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2052 ret = wait_for_response(hdev, &comp_pkt.host_event);
2055 dev_err(&hdev->device,
2056 "PCI Pass-through VSP failed to request version: %d",
2061 if (comp_pkt.completion_status >= 0) {
2062 pci_protocol_version = pci_protocol_versions[i];
2063 dev_info(&hdev->device,
2064 "PCI VMBus probing: Using version %#x\n",
2065 pci_protocol_version);
2069 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2070 dev_err(&hdev->device,
2071 "PCI Pass-through VSP failed version request: %#x",
2072 comp_pkt.completion_status);
2077 reinit_completion(&comp_pkt.host_event);
2080 dev_err(&hdev->device,
2081 "PCI pass-through VSP failed to find supported version");
2090 * hv_pci_free_bridge_windows() - Release memory regions for the
2092 * @hbus: Root PCI bus, as understood by this driver
2094 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2097 * Set the resources back to the way they looked when they
2098 * were allocated by setting IORESOURCE_BUSY again.
2101 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2102 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2103 vmbus_free_mmio(hbus->low_mmio_res->start,
2104 resource_size(hbus->low_mmio_res));
2107 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2108 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2109 vmbus_free_mmio(hbus->high_mmio_res->start,
2110 resource_size(hbus->high_mmio_res));
2115 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2117 * @hbus: Root PCI bus, as understood by this driver
2119 * This function calls vmbus_allocate_mmio(), which is itself a
2120 * bit of a compromise. Ideally, we might change the pnp layer
2121 * in the kernel such that it comprehends either PCI devices
2122 * which are "grandchildren of ACPI," with some intermediate bus
2123 * node (in this case, VMBus) or change it such that it
2124 * understands VMBus. The pnp layer, however, has been declared
2125 * deprecated, and not subject to change.
2127 * The workaround, implemented here, is to ask VMBus to allocate
2128 * MMIO space for this bus. VMBus itself knows which ranges are
2129 * appropriate by looking at its own ACPI objects. Then, after
2130 * these ranges are claimed, they're modified to look like they
2131 * would have looked if the ACPI and pnp code had allocated
2132 * bridge windows. These descriptors have to exist in this form
2133 * in order to satisfy the code which will get invoked when the
2134 * endpoint PCI function driver calls request_mem_region() or
2135 * request_mem_region_exclusive().
2137 * Return: 0 on success, -errno on failure
2139 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2141 resource_size_t align;
2144 if (hbus->low_mmio_space) {
2145 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2146 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2147 (u64)(u32)0xffffffff,
2148 hbus->low_mmio_space,
2151 dev_err(&hbus->hdev->device,
2152 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2153 hbus->low_mmio_space);
2157 /* Modify this resource to become a bridge window. */
2158 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2159 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2160 pci_add_resource(&hbus->resources_for_children,
2161 hbus->low_mmio_res);
2164 if (hbus->high_mmio_space) {
2165 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2166 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2168 hbus->high_mmio_space, align,
2171 dev_err(&hbus->hdev->device,
2172 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2173 hbus->high_mmio_space);
2174 goto release_low_mmio;
2177 /* Modify this resource to become a bridge window. */
2178 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2179 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2180 pci_add_resource(&hbus->resources_for_children,
2181 hbus->high_mmio_res);
2187 if (hbus->low_mmio_res) {
2188 vmbus_free_mmio(hbus->low_mmio_res->start,
2189 resource_size(hbus->low_mmio_res));
2196 * hv_allocate_config_window() - Find MMIO space for PCI Config
2197 * @hbus: Root PCI bus, as understood by this driver
2199 * This function claims memory-mapped I/O space for accessing
2200 * configuration space for the functions on this bus.
2202 * Return: 0 on success, -errno on failure
2204 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2209 * Set up a region of MMIO space to use for accessing configuration
2212 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2213 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2218 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2219 * resource claims (those which cannot be overlapped) and the ranges
2220 * which are valid for the children of this bus, which are intended
2221 * to be overlapped by those children. Set the flag on this claim
2222 * meaning that this region can't be overlapped.
2225 hbus->mem_config->flags |= IORESOURCE_BUSY;
2230 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2232 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2236 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2237 * @hdev: VMBus's tracking struct for this root PCI bus
2239 * Return: 0 on success, -errno on failure
2241 static int hv_pci_enter_d0(struct hv_device *hdev)
2243 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2244 struct pci_bus_d0_entry *d0_entry;
2245 struct hv_pci_compl comp_pkt;
2246 struct pci_packet *pkt;
2250 * Tell the host that the bus is ready to use, and moved into the
2251 * powered-on state. This includes telling the host which region
2252 * of memory-mapped I/O space has been chosen for configuration space
2255 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2259 init_completion(&comp_pkt.host_event);
2260 pkt->completion_func = hv_pci_generic_compl;
2261 pkt->compl_ctxt = &comp_pkt;
2262 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2263 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2264 d0_entry->mmio_base = hbus->mem_config->start;
2266 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2267 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2268 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2270 ret = wait_for_response(hdev, &comp_pkt.host_event);
2275 if (comp_pkt.completion_status < 0) {
2276 dev_err(&hdev->device,
2277 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2278 comp_pkt.completion_status);
2291 * hv_pci_query_relations() - Ask host to send list of child
2293 * @hdev: VMBus's tracking struct for this root PCI bus
2295 * Return: 0 on success, -errno on failure
2297 static int hv_pci_query_relations(struct hv_device *hdev)
2299 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2300 struct pci_message message;
2301 struct completion comp;
2304 /* Ask the host to send along the list of child devices */
2305 init_completion(&comp);
2306 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2309 memset(&message, 0, sizeof(message));
2310 message.type = PCI_QUERY_BUS_RELATIONS;
2312 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2313 0, VM_PKT_DATA_INBAND, 0);
2315 ret = wait_for_response(hdev, &comp);
2321 * hv_send_resources_allocated() - Report local resource choices
2322 * @hdev: VMBus's tracking struct for this root PCI bus
2324 * The host OS is expecting to be sent a request as a message
2325 * which contains all the resources that the device will use.
2326 * The response contains those same resources, "translated"
2327 * which is to say, the values which should be used by the
2328 * hardware, when it delivers an interrupt. (MMIO resources are
2329 * used in local terms.) This is nice for Windows, and lines up
2330 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2331 * is deeply expecting to scan an emulated PCI configuration
2332 * space. So this message is sent here only to drive the state
2333 * machine on the host forward.
2335 * Return: 0 on success, -errno on failure
2337 static int hv_send_resources_allocated(struct hv_device *hdev)
2339 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2340 struct pci_resources_assigned *res_assigned;
2341 struct pci_resources_assigned2 *res_assigned2;
2342 struct hv_pci_compl comp_pkt;
2343 struct hv_pci_dev *hpdev;
2344 struct pci_packet *pkt;
2349 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2350 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2352 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2358 for (wslot = 0; wslot < 256; wslot++) {
2359 hpdev = get_pcichild_wslot(hbus, wslot);
2363 memset(pkt, 0, sizeof(*pkt) + size_res);
2364 init_completion(&comp_pkt.host_event);
2365 pkt->completion_func = hv_pci_generic_compl;
2366 pkt->compl_ctxt = &comp_pkt;
2368 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2370 (struct pci_resources_assigned *)&pkt->message;
2371 res_assigned->message_type.type =
2372 PCI_RESOURCES_ASSIGNED;
2373 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2376 (struct pci_resources_assigned2 *)&pkt->message;
2377 res_assigned2->message_type.type =
2378 PCI_RESOURCES_ASSIGNED2;
2379 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2381 put_pcichild(hpdev);
2383 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2384 size_res, (unsigned long)pkt,
2386 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2388 ret = wait_for_response(hdev, &comp_pkt.host_event);
2392 if (comp_pkt.completion_status < 0) {
2394 dev_err(&hdev->device,
2395 "resource allocated returned 0x%x",
2396 comp_pkt.completion_status);
2406 * hv_send_resources_released() - Report local resources
2408 * @hdev: VMBus's tracking struct for this root PCI bus
2410 * Return: 0 on success, -errno on failure
2412 static int hv_send_resources_released(struct hv_device *hdev)
2414 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2415 struct pci_child_message pkt;
2416 struct hv_pci_dev *hpdev;
2420 for (wslot = 0; wslot < 256; wslot++) {
2421 hpdev = get_pcichild_wslot(hbus, wslot);
2425 memset(&pkt, 0, sizeof(pkt));
2426 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2427 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2429 put_pcichild(hpdev);
2431 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2432 VM_PKT_DATA_INBAND, 0);
2440 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2442 refcount_inc(&hbus->remove_lock);
2445 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2447 if (refcount_dec_and_test(&hbus->remove_lock))
2448 complete(&hbus->remove_event);
2452 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2453 * @hdev: VMBus's tracking struct for this root PCI bus
2454 * @dev_id: Identifies the device itself
2456 * Return: 0 on success, -errno on failure
2458 static int hv_pci_probe(struct hv_device *hdev,
2459 const struct hv_vmbus_device_id *dev_id)
2461 struct hv_pcibus_device *hbus;
2465 * hv_pcibus_device contains the hypercall arguments for retargeting in
2466 * hv_irq_unmask(). Those must not cross a page boundary.
2468 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2470 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2473 hbus->state = hv_pcibus_init;
2476 * The PCI bus "domain" is what is called "segment" in ACPI and
2477 * other specs. Pull it from the instance ID, to get something
2478 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2479 * do the same thing for consistency. Note that, since this code
2480 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2481 * that (1) the only domain in use for something that looks like
2482 * a physical PCI bus (which is actually emulated by the
2483 * hypervisor) is domain 0 and (2) there will be no overlap
2484 * between domains derived from these instance IDs in the same
2487 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2488 hdev->dev_instance.b[8] << 8;
2491 refcount_set(&hbus->remove_lock, 1);
2492 INIT_LIST_HEAD(&hbus->children);
2493 INIT_LIST_HEAD(&hbus->dr_list);
2494 INIT_LIST_HEAD(&hbus->resources_for_children);
2495 spin_lock_init(&hbus->config_lock);
2496 spin_lock_init(&hbus->device_list_lock);
2497 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2498 init_completion(&hbus->remove_event);
2499 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2500 hbus->sysdata.domain);
2506 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2507 hv_pci_onchannelcallback, hbus);
2511 hv_set_drvdata(hdev, hbus);
2513 ret = hv_pci_protocol_negotiation(hdev);
2517 ret = hv_allocate_config_window(hbus);
2521 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2522 PCI_CONFIG_MMIO_LENGTH);
2523 if (!hbus->cfg_addr) {
2524 dev_err(&hdev->device,
2525 "Unable to map a virtual address for config space\n");
2530 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2531 if (!hbus->sysdata.fwnode) {
2536 ret = hv_pcie_init_irq_domain(hbus);
2540 ret = hv_pci_query_relations(hdev);
2542 goto free_irq_domain;
2544 ret = hv_pci_enter_d0(hdev);
2546 goto free_irq_domain;
2548 ret = hv_pci_allocate_bridge_windows(hbus);
2550 goto free_irq_domain;
2552 ret = hv_send_resources_allocated(hdev);
2556 prepopulate_bars(hbus);
2558 hbus->state = hv_pcibus_probed;
2560 ret = create_root_hv_pci_bus(hbus);
2567 hv_pci_free_bridge_windows(hbus);
2569 irq_domain_remove(hbus->irq_domain);
2571 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2573 iounmap(hbus->cfg_addr);
2575 hv_free_config_window(hbus);
2577 vmbus_close(hdev->channel);
2579 destroy_workqueue(hbus->wq);
2581 free_page((unsigned long)hbus);
2585 static void hv_pci_bus_exit(struct hv_device *hdev)
2587 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2589 struct pci_packet teardown_packet;
2590 u8 buffer[sizeof(struct pci_message)];
2592 struct pci_bus_relations relations;
2593 struct hv_pci_compl comp_pkt;
2597 * After the host sends the RESCIND_CHANNEL message, it doesn't
2598 * access the per-channel ringbuffer any longer.
2600 if (hdev->channel->rescind)
2603 /* Delete any children which might still exist. */
2604 memset(&relations, 0, sizeof(relations));
2605 hv_pci_devices_present(hbus, &relations);
2607 ret = hv_send_resources_released(hdev);
2609 dev_err(&hdev->device,
2610 "Couldn't send resources released packet(s)\n");
2612 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2613 init_completion(&comp_pkt.host_event);
2614 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2615 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2616 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2618 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2619 sizeof(struct pci_message),
2620 (unsigned long)&pkt.teardown_packet,
2622 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2624 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2628 * hv_pci_remove() - Remove routine for this VMBus channel
2629 * @hdev: VMBus's tracking struct for this root PCI bus
2631 * Return: 0 on success, -errno on failure
2633 static int hv_pci_remove(struct hv_device *hdev)
2635 struct hv_pcibus_device *hbus;
2637 hbus = hv_get_drvdata(hdev);
2638 if (hbus->state == hv_pcibus_installed) {
2639 /* Remove the bus from PCI's point of view. */
2640 pci_lock_rescan_remove();
2641 pci_stop_root_bus(hbus->pci_bus);
2642 pci_remove_root_bus(hbus->pci_bus);
2643 pci_unlock_rescan_remove();
2644 hbus->state = hv_pcibus_removed;
2647 hv_pci_bus_exit(hdev);
2649 vmbus_close(hdev->channel);
2651 iounmap(hbus->cfg_addr);
2652 hv_free_config_window(hbus);
2653 pci_free_resource_list(&hbus->resources_for_children);
2654 hv_pci_free_bridge_windows(hbus);
2655 irq_domain_remove(hbus->irq_domain);
2656 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2658 wait_for_completion(&hbus->remove_event);
2659 destroy_workqueue(hbus->wq);
2660 free_page((unsigned long)hbus);
2664 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2665 /* PCI Pass-through Class ID */
2666 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2671 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2673 static struct hv_driver hv_pci_drv = {
2675 .id_table = hv_pci_id_table,
2676 .probe = hv_pci_probe,
2677 .remove = hv_pci_remove,
2680 static void __exit exit_hv_pci_drv(void)
2682 vmbus_driver_unregister(&hv_pci_drv);
2685 static int __init init_hv_pci_drv(void)
2687 return vmbus_driver_register(&hv_pci_drv);
2690 module_init(init_hv_pci_drv);
2691 module_exit(exit_hv_pci_drv);
2693 MODULE_DESCRIPTION("Hyper-V PCI");
2694 MODULE_LICENSE("GPL v2");