1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
34 #define SEND_MAX_EXTENT_REFS 64
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
50 unsigned short buf_len:15;
51 unsigned short reversed:1;
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
62 #define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 /* reused for each extent */
68 struct btrfs_root *root;
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 struct file *send_filp;
85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
88 struct btrfs_root *send_root;
89 struct btrfs_root *parent_root;
90 struct clone_root *clone_roots;
93 /* current state of the compare_tree call */
94 struct btrfs_path *left_path;
95 struct btrfs_path *right_path;
96 struct btrfs_key *cmp_key;
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
105 int cur_inode_new_gen;
106 int cur_inode_deleted;
110 u64 cur_inode_last_extent;
111 u64 cur_inode_next_write_offset;
112 bool ignore_cur_inode;
116 struct list_head new_refs;
117 struct list_head deleted_refs;
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
123 struct file_ra_state ra;
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
136 * Tree state when the first send was performed:
148 * Tree state when the second (incremental) send is performed:
157 * The sequence of steps that lead to the second state was:
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
177 struct rb_root waiting_dir_moves;
180 * A directory that is going to be rm'ed might have a child directory
181 * which is in the pending directory moves index above. In this case,
182 * the directory can only be removed after the move/rename of its child
183 * is performed. Example:
203 * Sequence of steps that lead to the send snapshot:
204 * rm -f /a/b/c/foo.txt
206 * mv /a/b/c/x /a/b/YY
209 * When the child is processed, its move/rename is delayed until its
210 * parent is processed (as explained above), but all other operations
211 * like update utimes, chown, chgrp, etc, are performed and the paths
212 * that it uses for those operations must use the orphanized name of
213 * its parent (the directory we're going to rm later), so we need to
214 * memorize that name.
216 * Indexed by the inode number of the directory to be deleted.
218 struct rb_root orphan_dirs;
221 struct pending_dir_move {
223 struct list_head list;
227 struct list_head update_refs;
230 struct waiting_dir_move {
234 * There might be some directory that could not be removed because it
235 * was waiting for this directory inode to be moved first. Therefore
236 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 struct orphan_dir_info {
247 u64 last_dir_index_offset;
250 struct name_cache_entry {
251 struct list_head list;
253 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 * more then one inum would fall into the same entry, we use radix_list
256 * to store the additional entries. radix_list is also used to store
257 * entries where two entries have the same inum but different
260 struct list_head radix_list;
266 int need_later_update;
272 #define ADVANCE_ONLY_NEXT -1
274 enum btrfs_compare_tree_result {
275 BTRFS_COMPARE_TREE_NEW,
276 BTRFS_COMPARE_TREE_DELETED,
277 BTRFS_COMPARE_TREE_CHANGED,
278 BTRFS_COMPARE_TREE_SAME,
282 static void inconsistent_snapshot_error(struct send_ctx *sctx,
283 enum btrfs_compare_tree_result result,
286 const char *result_string;
289 case BTRFS_COMPARE_TREE_NEW:
290 result_string = "new";
292 case BTRFS_COMPARE_TREE_DELETED:
293 result_string = "deleted";
295 case BTRFS_COMPARE_TREE_CHANGED:
296 result_string = "updated";
298 case BTRFS_COMPARE_TREE_SAME:
300 result_string = "unchanged";
304 result_string = "unexpected";
307 btrfs_err(sctx->send_root->fs_info,
308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 result_string, what, sctx->cmp_key->objectid,
310 sctx->send_root->root_key.objectid,
312 sctx->parent_root->root_key.objectid : 0));
315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
317 static struct waiting_dir_move *
318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
322 static int need_send_hole(struct send_ctx *sctx)
324 return (sctx->parent_root && !sctx->cur_inode_new &&
325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326 S_ISREG(sctx->cur_inode_mode));
329 static void fs_path_reset(struct fs_path *p)
332 p->start = p->buf + p->buf_len - 1;
342 static struct fs_path *fs_path_alloc(void)
346 p = kmalloc(sizeof(*p), GFP_KERNEL);
350 p->buf = p->inline_buf;
351 p->buf_len = FS_PATH_INLINE_SIZE;
356 static struct fs_path *fs_path_alloc_reversed(void)
368 static void fs_path_free(struct fs_path *p)
372 if (p->buf != p->inline_buf)
377 static int fs_path_len(struct fs_path *p)
379 return p->end - p->start;
382 static int fs_path_ensure_buf(struct fs_path *p, int len)
390 if (p->buf_len >= len)
393 if (len > PATH_MAX) {
398 path_len = p->end - p->start;
399 old_buf_len = p->buf_len;
402 * First time the inline_buf does not suffice
404 if (p->buf == p->inline_buf) {
405 tmp_buf = kmalloc(len, GFP_KERNEL);
407 memcpy(tmp_buf, p->buf, old_buf_len);
409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
415 * The real size of the buffer is bigger, this will let the fast path
416 * happen most of the time
418 p->buf_len = ksize(p->buf);
421 tmp_buf = p->buf + old_buf_len - path_len - 1;
422 p->end = p->buf + p->buf_len - 1;
423 p->start = p->end - path_len;
424 memmove(p->start, tmp_buf, path_len + 1);
427 p->end = p->start + path_len;
432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
438 new_len = p->end - p->start + name_len;
439 if (p->start != p->end)
441 ret = fs_path_ensure_buf(p, new_len);
446 if (p->start != p->end)
448 p->start -= name_len;
449 *prepared = p->start;
451 if (p->start != p->end)
462 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
467 ret = fs_path_prepare_for_add(p, name_len, &prepared);
470 memcpy(prepared, name, name_len);
476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
484 memcpy(prepared, p2->start, p2->end - p2->start);
490 static int fs_path_add_from_extent_buffer(struct fs_path *p,
491 struct extent_buffer *eb,
492 unsigned long off, int len)
497 ret = fs_path_prepare_for_add(p, len, &prepared);
501 read_extent_buffer(eb, prepared, off, len);
507 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
511 p->reversed = from->reversed;
514 ret = fs_path_add_path(p, from);
520 static void fs_path_unreverse(struct fs_path *p)
529 len = p->end - p->start;
531 p->end = p->start + len;
532 memmove(p->start, tmp, len + 1);
536 static struct btrfs_path *alloc_path_for_send(void)
538 struct btrfs_path *path;
540 path = btrfs_alloc_path();
543 path->search_commit_root = 1;
544 path->skip_locking = 1;
545 path->need_commit_sem = 1;
549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
555 ret = kernel_write(filp, buf + pos, len - pos, off);
556 /* TODO handle that correctly */
557 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
577 if (unlikely(left < total_len))
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 put_unaligned_le16(attr, &hdr->tlv_type);
582 put_unaligned_le16(len, &hdr->tlv_len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
604 return tlv_put(sctx, attr, str, len);
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
625 ret = tlv_put(sctx, attrtype, data, attrlen); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx *sctx)
669 struct btrfs_stream_header hdr;
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
683 struct btrfs_cmd_header *hdr;
685 if (WARN_ON(!sctx->send_buf))
688 BUG_ON(sctx->send_size);
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 put_unaligned_le16(cmd, &hdr->cmd);
697 static int send_cmd(struct send_ctx *sctx)
700 struct btrfs_cmd_header *hdr;
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705 put_unaligned_le32(0, &hdr->crc);
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 put_unaligned_le32(crc, &hdr->crc);
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
738 ret = send_cmd(sctx);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
763 ret = send_cmd(sctx);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
786 ret = send_cmd(sctx);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
809 ret = send_cmd(sctx);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
828 key.type = BTRFS_INODE_ITEM_KEY;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
840 *size = btrfs_inode_size(path->nodes[0], ii);
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
860 struct btrfs_path *path;
863 path = alloc_path_for_send();
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
868 btrfs_free_path(path);
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
896 int slot = path->slots[0];
903 unsigned long name_off;
904 unsigned long elem_size;
907 p = fs_path_alloc_reversed();
911 tmp_path = alloc_path_for_send();
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
930 while (cur < total) {
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
952 ret = PTR_ERR(start);
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
961 start = btrfs_ref_to_path(root, tmp_path,
966 ret = PTR_ERR(start);
969 BUG_ON(start < p->buf);
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
987 btrfs_free_path(tmp_path);
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 iterate_dir_item_t iterate, void *ctx)
1008 struct extent_buffer *eb;
1009 struct btrfs_item *item;
1010 struct btrfs_dir_item *di;
1011 struct btrfs_key di_key;
1024 * Start with a small buffer (1 page). If later we end up needing more
1025 * space, which can happen for xattrs on a fs with a leaf size greater
1026 * then the page size, attempt to increase the buffer. Typically xattr
1030 buf = kmalloc(buf_len, GFP_KERNEL);
1036 eb = path->nodes[0];
1037 slot = path->slots[0];
1038 item = btrfs_item_nr(slot);
1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1042 total = btrfs_item_size(eb, item);
1045 while (cur < total) {
1046 name_len = btrfs_dir_name_len(eb, di);
1047 data_len = btrfs_dir_data_len(eb, di);
1048 type = btrfs_dir_type(eb, di);
1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051 if (type == BTRFS_FT_XATTR) {
1052 if (name_len > XATTR_NAME_MAX) {
1053 ret = -ENAMETOOLONG;
1056 if (name_len + data_len >
1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1065 if (name_len + data_len > PATH_MAX) {
1066 ret = -ENAMETOOLONG;
1071 if (name_len + data_len > buf_len) {
1072 buf_len = name_len + data_len;
1073 if (is_vmalloc_addr(buf)) {
1077 char *tmp = krealloc(buf, buf_len,
1078 GFP_KERNEL | __GFP_NOWARN);
1085 buf = kvmalloc(buf_len, GFP_KERNEL);
1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 name_len + data_len);
1096 len = sizeof(*di) + name_len + data_len;
1097 di = (struct btrfs_dir_item *)((char *)di + len);
1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 data_len, type, ctx);
1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 struct fs_path *p, void *ctx)
1121 struct fs_path *pt = ctx;
1123 ret = fs_path_copy(pt, p);
1127 /* we want the first only */
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1135 static int get_inode_path(struct btrfs_root *root,
1136 u64 ino, struct fs_path *path)
1139 struct btrfs_key key, found_key;
1140 struct btrfs_path *p;
1142 p = alloc_path_for_send();
1146 fs_path_reset(path);
1149 key.type = BTRFS_INODE_REF_KEY;
1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 if (found_key.objectid != ino ||
1161 (found_key.type != BTRFS_INODE_REF_KEY &&
1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1167 ret = iterate_inode_ref(root, p, &found_key, 1,
1168 __copy_first_ref, path);
1178 struct backref_ctx {
1179 struct send_ctx *sctx;
1181 /* number of total found references */
1185 * used for clones found in send_root. clones found behind cur_objectid
1186 * and cur_offset are not considered as allowed clones.
1191 /* may be truncated in case it's the last extent in a file */
1194 /* Just to check for bugs in backref resolving */
1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 u64 root = (u64)(uintptr_t)key;
1201 struct clone_root *cr = (struct clone_root *)elt;
1203 if (root < cr->root->root_key.objectid)
1205 if (root > cr->root->root_key.objectid)
1210 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 struct clone_root *cr1 = (struct clone_root *)e1;
1213 struct clone_root *cr2 = (struct clone_root *)e2;
1215 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1217 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1223 * Called for every backref that is found for the current extent.
1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 struct backref_ctx *bctx = ctx_;
1229 struct clone_root *found;
1231 /* First check if the root is in the list of accepted clone sources */
1232 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233 bctx->sctx->clone_roots_cnt,
1234 sizeof(struct clone_root),
1235 __clone_root_cmp_bsearch);
1239 if (found->root == bctx->sctx->send_root &&
1240 ino == bctx->cur_objectid &&
1241 offset == bctx->cur_offset) {
1242 bctx->found_itself = 1;
1246 * Make sure we don't consider clones from send_root that are
1247 * behind the current inode/offset.
1249 if (found->root == bctx->sctx->send_root) {
1251 * If the source inode was not yet processed we can't issue a
1252 * clone operation, as the source extent does not exist yet at
1253 * the destination of the stream.
1255 if (ino > bctx->cur_objectid)
1258 * We clone from the inode currently being sent as long as the
1259 * source extent is already processed, otherwise we could try
1260 * to clone from an extent that does not exist yet at the
1261 * destination of the stream.
1263 if (ino == bctx->cur_objectid &&
1264 offset + bctx->extent_len >
1265 bctx->sctx->cur_inode_next_write_offset)
1270 found->found_refs++;
1271 if (ino < found->ino) {
1273 found->offset = offset;
1274 } else if (found->ino == ino) {
1276 * same extent found more then once in the same file.
1278 if (found->offset > offset + bctx->extent_len)
1279 found->offset = offset;
1286 * Given an inode, offset and extent item, it finds a good clone for a clone
1287 * instruction. Returns -ENOENT when none could be found. The function makes
1288 * sure that the returned clone is usable at the point where sending is at the
1289 * moment. This means, that no clones are accepted which lie behind the current
1292 * path must point to the extent item when called.
1294 static int find_extent_clone(struct send_ctx *sctx,
1295 struct btrfs_path *path,
1296 u64 ino, u64 data_offset,
1298 struct clone_root **found)
1300 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1306 u64 extent_item_pos;
1308 struct btrfs_file_extent_item *fi;
1309 struct extent_buffer *eb = path->nodes[0];
1310 struct backref_ctx *backref_ctx = NULL;
1311 struct clone_root *cur_clone_root;
1312 struct btrfs_key found_key;
1313 struct btrfs_path *tmp_path;
1314 struct btrfs_extent_item *ei;
1318 tmp_path = alloc_path_for_send();
1322 /* We only use this path under the commit sem */
1323 tmp_path->need_commit_sem = 0;
1325 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1331 if (data_offset >= ino_size) {
1333 * There may be extents that lie behind the file's size.
1334 * I at least had this in combination with snapshotting while
1335 * writing large files.
1341 fi = btrfs_item_ptr(eb, path->slots[0],
1342 struct btrfs_file_extent_item);
1343 extent_type = btrfs_file_extent_type(eb, fi);
1344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1348 compressed = btrfs_file_extent_compression(eb, fi);
1350 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1351 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1352 if (disk_byte == 0) {
1356 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1358 down_read(&fs_info->commit_root_sem);
1359 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1360 &found_key, &flags);
1361 up_read(&fs_info->commit_root_sem);
1365 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1370 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1371 struct btrfs_extent_item);
1373 * Backreference walking (iterate_extent_inodes() below) is currently
1374 * too expensive when an extent has a large number of references, both
1375 * in time spent and used memory. So for now just fallback to write
1376 * operations instead of clone operations when an extent has more than
1377 * a certain amount of references.
1379 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1383 btrfs_release_path(tmp_path);
1386 * Setup the clone roots.
1388 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1389 cur_clone_root = sctx->clone_roots + i;
1390 cur_clone_root->ino = (u64)-1;
1391 cur_clone_root->offset = 0;
1392 cur_clone_root->found_refs = 0;
1395 backref_ctx->sctx = sctx;
1396 backref_ctx->found = 0;
1397 backref_ctx->cur_objectid = ino;
1398 backref_ctx->cur_offset = data_offset;
1399 backref_ctx->found_itself = 0;
1400 backref_ctx->extent_len = num_bytes;
1403 * The last extent of a file may be too large due to page alignment.
1404 * We need to adjust extent_len in this case so that the checks in
1405 * __iterate_backrefs work.
1407 if (data_offset + num_bytes >= ino_size)
1408 backref_ctx->extent_len = ino_size - data_offset;
1411 * Now collect all backrefs.
1413 if (compressed == BTRFS_COMPRESS_NONE)
1414 extent_item_pos = logical - found_key.objectid;
1416 extent_item_pos = 0;
1417 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1418 extent_item_pos, 1, __iterate_backrefs,
1419 backref_ctx, false);
1424 if (!backref_ctx->found_itself) {
1425 /* found a bug in backref code? */
1428 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1429 ino, data_offset, disk_byte, found_key.objectid);
1433 btrfs_debug(fs_info,
1434 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1435 data_offset, ino, num_bytes, logical);
1437 if (!backref_ctx->found)
1438 btrfs_debug(fs_info, "no clones found");
1440 cur_clone_root = NULL;
1441 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1442 if (sctx->clone_roots[i].found_refs) {
1443 if (!cur_clone_root)
1444 cur_clone_root = sctx->clone_roots + i;
1445 else if (sctx->clone_roots[i].root == sctx->send_root)
1446 /* prefer clones from send_root over others */
1447 cur_clone_root = sctx->clone_roots + i;
1452 if (cur_clone_root) {
1453 *found = cur_clone_root;
1460 btrfs_free_path(tmp_path);
1465 static int read_symlink(struct btrfs_root *root,
1467 struct fs_path *dest)
1470 struct btrfs_path *path;
1471 struct btrfs_key key;
1472 struct btrfs_file_extent_item *ei;
1478 path = alloc_path_for_send();
1483 key.type = BTRFS_EXTENT_DATA_KEY;
1485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1490 * An empty symlink inode. Can happen in rare error paths when
1491 * creating a symlink (transaction committed before the inode
1492 * eviction handler removed the symlink inode items and a crash
1493 * happened in between or the subvol was snapshoted in between).
1494 * Print an informative message to dmesg/syslog so that the user
1495 * can delete the symlink.
1497 btrfs_err(root->fs_info,
1498 "Found empty symlink inode %llu at root %llu",
1499 ino, root->root_key.objectid);
1504 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1505 struct btrfs_file_extent_item);
1506 type = btrfs_file_extent_type(path->nodes[0], ei);
1507 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1508 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1509 BUG_ON(compression);
1511 off = btrfs_file_extent_inline_start(ei);
1512 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1514 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1517 btrfs_free_path(path);
1522 * Helper function to generate a file name that is unique in the root of
1523 * send_root and parent_root. This is used to generate names for orphan inodes.
1525 static int gen_unique_name(struct send_ctx *sctx,
1527 struct fs_path *dest)
1530 struct btrfs_path *path;
1531 struct btrfs_dir_item *di;
1536 path = alloc_path_for_send();
1541 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1543 ASSERT(len < sizeof(tmp));
1545 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1546 path, BTRFS_FIRST_FREE_OBJECTID,
1547 tmp, strlen(tmp), 0);
1548 btrfs_release_path(path);
1554 /* not unique, try again */
1559 if (!sctx->parent_root) {
1565 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1566 path, BTRFS_FIRST_FREE_OBJECTID,
1567 tmp, strlen(tmp), 0);
1568 btrfs_release_path(path);
1574 /* not unique, try again */
1582 ret = fs_path_add(dest, tmp, strlen(tmp));
1585 btrfs_free_path(path);
1590 inode_state_no_change,
1591 inode_state_will_create,
1592 inode_state_did_create,
1593 inode_state_will_delete,
1594 inode_state_did_delete,
1597 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1605 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1607 if (ret < 0 && ret != -ENOENT)
1611 if (!sctx->parent_root) {
1612 right_ret = -ENOENT;
1614 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1615 NULL, NULL, NULL, NULL);
1616 if (ret < 0 && ret != -ENOENT)
1621 if (!left_ret && !right_ret) {
1622 if (left_gen == gen && right_gen == gen) {
1623 ret = inode_state_no_change;
1624 } else if (left_gen == gen) {
1625 if (ino < sctx->send_progress)
1626 ret = inode_state_did_create;
1628 ret = inode_state_will_create;
1629 } else if (right_gen == gen) {
1630 if (ino < sctx->send_progress)
1631 ret = inode_state_did_delete;
1633 ret = inode_state_will_delete;
1637 } else if (!left_ret) {
1638 if (left_gen == gen) {
1639 if (ino < sctx->send_progress)
1640 ret = inode_state_did_create;
1642 ret = inode_state_will_create;
1646 } else if (!right_ret) {
1647 if (right_gen == gen) {
1648 if (ino < sctx->send_progress)
1649 ret = inode_state_did_delete;
1651 ret = inode_state_will_delete;
1663 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1667 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1670 ret = get_cur_inode_state(sctx, ino, gen);
1674 if (ret == inode_state_no_change ||
1675 ret == inode_state_did_create ||
1676 ret == inode_state_will_delete)
1686 * Helper function to lookup a dir item in a dir.
1688 static int lookup_dir_item_inode(struct btrfs_root *root,
1689 u64 dir, const char *name, int name_len,
1694 struct btrfs_dir_item *di;
1695 struct btrfs_key key;
1696 struct btrfs_path *path;
1698 path = alloc_path_for_send();
1702 di = btrfs_lookup_dir_item(NULL, root, path,
1703 dir, name, name_len, 0);
1704 if (IS_ERR_OR_NULL(di)) {
1705 ret = di ? PTR_ERR(di) : -ENOENT;
1708 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1709 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1713 *found_inode = key.objectid;
1714 *found_type = btrfs_dir_type(path->nodes[0], di);
1717 btrfs_free_path(path);
1722 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1723 * generation of the parent dir and the name of the dir entry.
1725 static int get_first_ref(struct btrfs_root *root, u64 ino,
1726 u64 *dir, u64 *dir_gen, struct fs_path *name)
1729 struct btrfs_key key;
1730 struct btrfs_key found_key;
1731 struct btrfs_path *path;
1735 path = alloc_path_for_send();
1740 key.type = BTRFS_INODE_REF_KEY;
1743 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1747 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1749 if (ret || found_key.objectid != ino ||
1750 (found_key.type != BTRFS_INODE_REF_KEY &&
1751 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1756 if (found_key.type == BTRFS_INODE_REF_KEY) {
1757 struct btrfs_inode_ref *iref;
1758 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 struct btrfs_inode_ref);
1760 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1761 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1762 (unsigned long)(iref + 1),
1764 parent_dir = found_key.offset;
1766 struct btrfs_inode_extref *extref;
1767 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1768 struct btrfs_inode_extref);
1769 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1770 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1771 (unsigned long)&extref->name, len);
1772 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1776 btrfs_release_path(path);
1779 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1788 btrfs_free_path(path);
1792 static int is_first_ref(struct btrfs_root *root,
1794 const char *name, int name_len)
1797 struct fs_path *tmp_name;
1800 tmp_name = fs_path_alloc();
1804 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1808 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1813 ret = !memcmp(tmp_name->start, name, name_len);
1816 fs_path_free(tmp_name);
1821 * Used by process_recorded_refs to determine if a new ref would overwrite an
1822 * already existing ref. In case it detects an overwrite, it returns the
1823 * inode/gen in who_ino/who_gen.
1824 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1825 * to make sure later references to the overwritten inode are possible.
1826 * Orphanizing is however only required for the first ref of an inode.
1827 * process_recorded_refs does an additional is_first_ref check to see if
1828 * orphanizing is really required.
1830 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1831 const char *name, int name_len,
1832 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1836 u64 other_inode = 0;
1839 if (!sctx->parent_root)
1842 ret = is_inode_existent(sctx, dir, dir_gen);
1847 * If we have a parent root we need to verify that the parent dir was
1848 * not deleted and then re-created, if it was then we have no overwrite
1849 * and we can just unlink this entry.
1851 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1852 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1854 if (ret < 0 && ret != -ENOENT)
1864 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1865 &other_inode, &other_type);
1866 if (ret < 0 && ret != -ENOENT)
1874 * Check if the overwritten ref was already processed. If yes, the ref
1875 * was already unlinked/moved, so we can safely assume that we will not
1876 * overwrite anything at this point in time.
1878 if (other_inode > sctx->send_progress ||
1879 is_waiting_for_move(sctx, other_inode)) {
1880 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1881 who_gen, who_mode, NULL, NULL, NULL);
1886 *who_ino = other_inode;
1896 * Checks if the ref was overwritten by an already processed inode. This is
1897 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1898 * thus the orphan name needs be used.
1899 * process_recorded_refs also uses it to avoid unlinking of refs that were
1902 static int did_overwrite_ref(struct send_ctx *sctx,
1903 u64 dir, u64 dir_gen,
1904 u64 ino, u64 ino_gen,
1905 const char *name, int name_len)
1912 if (!sctx->parent_root)
1915 ret = is_inode_existent(sctx, dir, dir_gen);
1919 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1920 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1922 if (ret < 0 && ret != -ENOENT)
1932 /* check if the ref was overwritten by another ref */
1933 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1934 &ow_inode, &other_type);
1935 if (ret < 0 && ret != -ENOENT)
1938 /* was never and will never be overwritten */
1943 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1948 if (ow_inode == ino && gen == ino_gen) {
1954 * We know that it is or will be overwritten. Check this now.
1955 * The current inode being processed might have been the one that caused
1956 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1957 * the current inode being processed.
1959 if ((ow_inode < sctx->send_progress) ||
1960 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1961 gen == sctx->cur_inode_gen))
1971 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1972 * that got overwritten. This is used by process_recorded_refs to determine
1973 * if it has to use the path as returned by get_cur_path or the orphan name.
1975 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1978 struct fs_path *name = NULL;
1982 if (!sctx->parent_root)
1985 name = fs_path_alloc();
1989 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1993 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1994 name->start, fs_path_len(name));
2002 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2003 * so we need to do some special handling in case we have clashes. This function
2004 * takes care of this with the help of name_cache_entry::radix_list.
2005 * In case of error, nce is kfreed.
2007 static int name_cache_insert(struct send_ctx *sctx,
2008 struct name_cache_entry *nce)
2011 struct list_head *nce_head;
2013 nce_head = radix_tree_lookup(&sctx->name_cache,
2014 (unsigned long)nce->ino);
2016 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2021 INIT_LIST_HEAD(nce_head);
2023 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2030 list_add_tail(&nce->radix_list, nce_head);
2031 list_add_tail(&nce->list, &sctx->name_cache_list);
2032 sctx->name_cache_size++;
2037 static void name_cache_delete(struct send_ctx *sctx,
2038 struct name_cache_entry *nce)
2040 struct list_head *nce_head;
2042 nce_head = radix_tree_lookup(&sctx->name_cache,
2043 (unsigned long)nce->ino);
2045 btrfs_err(sctx->send_root->fs_info,
2046 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2047 nce->ino, sctx->name_cache_size);
2050 list_del(&nce->radix_list);
2051 list_del(&nce->list);
2052 sctx->name_cache_size--;
2055 * We may not get to the final release of nce_head if the lookup fails
2057 if (nce_head && list_empty(nce_head)) {
2058 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2063 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2066 struct list_head *nce_head;
2067 struct name_cache_entry *cur;
2069 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2073 list_for_each_entry(cur, nce_head, radix_list) {
2074 if (cur->ino == ino && cur->gen == gen)
2081 * Remove some entries from the beginning of name_cache_list.
2083 static void name_cache_clean_unused(struct send_ctx *sctx)
2085 struct name_cache_entry *nce;
2087 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2090 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2091 nce = list_entry(sctx->name_cache_list.next,
2092 struct name_cache_entry, list);
2093 name_cache_delete(sctx, nce);
2098 static void name_cache_free(struct send_ctx *sctx)
2100 struct name_cache_entry *nce;
2102 while (!list_empty(&sctx->name_cache_list)) {
2103 nce = list_entry(sctx->name_cache_list.next,
2104 struct name_cache_entry, list);
2105 name_cache_delete(sctx, nce);
2111 * Used by get_cur_path for each ref up to the root.
2112 * Returns 0 if it succeeded.
2113 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2114 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2115 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2116 * Returns <0 in case of error.
2118 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2122 struct fs_path *dest)
2126 struct name_cache_entry *nce = NULL;
2129 * First check if we already did a call to this function with the same
2130 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2131 * return the cached result.
2133 nce = name_cache_search(sctx, ino, gen);
2135 if (ino < sctx->send_progress && nce->need_later_update) {
2136 name_cache_delete(sctx, nce);
2141 * Removes the entry from the list and adds it back to
2142 * the end. This marks the entry as recently used so
2143 * that name_cache_clean_unused does not remove it.
2145 list_move_tail(&nce->list, &sctx->name_cache_list);
2147 *parent_ino = nce->parent_ino;
2148 *parent_gen = nce->parent_gen;
2149 ret = fs_path_add(dest, nce->name, nce->name_len);
2158 * If the inode is not existent yet, add the orphan name and return 1.
2159 * This should only happen for the parent dir that we determine in
2162 ret = is_inode_existent(sctx, ino, gen);
2167 ret = gen_unique_name(sctx, ino, gen, dest);
2175 * Depending on whether the inode was already processed or not, use
2176 * send_root or parent_root for ref lookup.
2178 if (ino < sctx->send_progress)
2179 ret = get_first_ref(sctx->send_root, ino,
2180 parent_ino, parent_gen, dest);
2182 ret = get_first_ref(sctx->parent_root, ino,
2183 parent_ino, parent_gen, dest);
2188 * Check if the ref was overwritten by an inode's ref that was processed
2189 * earlier. If yes, treat as orphan and return 1.
2191 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 dest->start, dest->end - dest->start);
2196 fs_path_reset(dest);
2197 ret = gen_unique_name(sctx, ino, gen, dest);
2205 * Store the result of the lookup in the name cache.
2207 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2215 nce->parent_ino = *parent_ino;
2216 nce->parent_gen = *parent_gen;
2217 nce->name_len = fs_path_len(dest);
2219 strcpy(nce->name, dest->start);
2221 if (ino < sctx->send_progress)
2222 nce->need_later_update = 0;
2224 nce->need_later_update = 1;
2226 nce_ret = name_cache_insert(sctx, nce);
2229 name_cache_clean_unused(sctx);
2236 * Magic happens here. This function returns the first ref to an inode as it
2237 * would look like while receiving the stream at this point in time.
2238 * We walk the path up to the root. For every inode in between, we check if it
2239 * was already processed/sent. If yes, we continue with the parent as found
2240 * in send_root. If not, we continue with the parent as found in parent_root.
2241 * If we encounter an inode that was deleted at this point in time, we use the
2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243 * that were not created yet and overwritten inodes/refs.
2245 * When do we have orphan inodes:
2246 * 1. When an inode is freshly created and thus no valid refs are available yet
2247 * 2. When a directory lost all it's refs (deleted) but still has dir items
2248 * inside which were not processed yet (pending for move/delete). If anyone
2249 * tried to get the path to the dir items, it would get a path inside that
2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252 * of an unprocessed inode. If in that case the first ref would be
2253 * overwritten, the overwritten inode gets "orphanized". Later when we
2254 * process this overwritten inode, it is restored at a new place by moving
2257 * sctx->send_progress tells this function at which point in time receiving
2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 struct fs_path *dest)
2264 struct fs_path *name = NULL;
2265 u64 parent_inode = 0;
2269 name = fs_path_alloc();
2276 fs_path_reset(dest);
2278 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279 struct waiting_dir_move *wdm;
2281 fs_path_reset(name);
2283 if (is_waiting_for_rm(sctx, ino, gen)) {
2284 ret = gen_unique_name(sctx, ino, gen, name);
2287 ret = fs_path_add_path(dest, name);
2291 wdm = get_waiting_dir_move(sctx, ino);
2292 if (wdm && wdm->orphanized) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2296 ret = get_first_ref(sctx->parent_root, ino,
2297 &parent_inode, &parent_gen, name);
2299 ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 ret = fs_path_add_path(dest, name);
2320 fs_path_unreverse(dest);
2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2327 static int send_subvol_begin(struct send_ctx *sctx)
2330 struct btrfs_root *send_root = sctx->send_root;
2331 struct btrfs_root *parent_root = sctx->parent_root;
2332 struct btrfs_path *path;
2333 struct btrfs_key key;
2334 struct btrfs_root_ref *ref;
2335 struct extent_buffer *leaf;
2339 path = btrfs_alloc_path();
2343 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2345 btrfs_free_path(path);
2349 key.objectid = send_root->root_key.objectid;
2350 key.type = BTRFS_ROOT_BACKREF_KEY;
2353 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2362 leaf = path->nodes[0];
2363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 key.objectid != send_root->root_key.objectid) {
2369 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 namelen = btrfs_root_ref_name_len(leaf, ref);
2371 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 btrfs_release_path(path);
2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2384 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2386 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 sctx->send_root->root_item.received_uuid);
2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 sctx->send_root->root_item.uuid);
2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394 btrfs_root_ctransid(&sctx->send_root->root_item));
2396 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 parent_root->root_item.received_uuid);
2400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 parent_root->root_item.uuid);
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403 btrfs_root_ctransid(&sctx->parent_root->root_item));
2406 ret = send_cmd(sctx);
2410 btrfs_free_path(path);
2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2421 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2423 p = fs_path_alloc();
2427 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2431 ret = get_cur_path(sctx, ino, gen, p);
2434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2437 ret = send_cmd(sctx);
2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2451 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2453 p = fs_path_alloc();
2457 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2461 ret = get_cur_path(sctx, ino, gen, p);
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2467 ret = send_cmd(sctx);
2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2477 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2481 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2484 p = fs_path_alloc();
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2492 ret = get_cur_path(sctx, ino, gen, p);
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2499 ret = send_cmd(sctx);
2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2509 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2511 struct fs_path *p = NULL;
2512 struct btrfs_inode_item *ii;
2513 struct btrfs_path *path = NULL;
2514 struct extent_buffer *eb;
2515 struct btrfs_key key;
2518 btrfs_debug(fs_info, "send_utimes %llu", ino);
2520 p = fs_path_alloc();
2524 path = alloc_path_for_send();
2531 key.type = BTRFS_INODE_ITEM_KEY;
2533 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2539 eb = path->nodes[0];
2540 slot = path->slots[0];
2541 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2543 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2547 ret = get_cur_path(sctx, ino, gen, p);
2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554 /* TODO Add otime support when the otime patches get into upstream */
2556 ret = send_cmd(sctx);
2561 btrfs_free_path(path);
2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567 * a valid path yet because we did not process the refs yet. So, the inode
2568 * is created as orphan.
2570 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2572 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2580 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2582 p = fs_path_alloc();
2586 if (ino != sctx->cur_ino) {
2587 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2592 gen = sctx->cur_inode_gen;
2593 mode = sctx->cur_inode_mode;
2594 rdev = sctx->cur_inode_rdev;
2597 if (S_ISREG(mode)) {
2598 cmd = BTRFS_SEND_C_MKFILE;
2599 } else if (S_ISDIR(mode)) {
2600 cmd = BTRFS_SEND_C_MKDIR;
2601 } else if (S_ISLNK(mode)) {
2602 cmd = BTRFS_SEND_C_SYMLINK;
2603 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604 cmd = BTRFS_SEND_C_MKNOD;
2605 } else if (S_ISFIFO(mode)) {
2606 cmd = BTRFS_SEND_C_MKFIFO;
2607 } else if (S_ISSOCK(mode)) {
2608 cmd = BTRFS_SEND_C_MKSOCK;
2610 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611 (int)(mode & S_IFMT));
2616 ret = begin_cmd(sctx, cmd);
2620 ret = gen_unique_name(sctx, ino, gen, p);
2624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2627 if (S_ISLNK(mode)) {
2629 ret = read_symlink(sctx->send_root, ino, p);
2632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2639 ret = send_cmd(sctx);
2651 * We need some special handling for inodes that get processed before the parent
2652 * directory got created. See process_recorded_refs for details.
2653 * This function does the check if we already created the dir out of order.
2655 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2658 struct btrfs_path *path = NULL;
2659 struct btrfs_key key;
2660 struct btrfs_key found_key;
2661 struct btrfs_key di_key;
2662 struct extent_buffer *eb;
2663 struct btrfs_dir_item *di;
2666 path = alloc_path_for_send();
2673 key.type = BTRFS_DIR_INDEX_KEY;
2675 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2680 eb = path->nodes[0];
2681 slot = path->slots[0];
2682 if (slot >= btrfs_header_nritems(eb)) {
2683 ret = btrfs_next_leaf(sctx->send_root, path);
2686 } else if (ret > 0) {
2693 btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 if (found_key.objectid != key.objectid ||
2695 found_key.type != key.type) {
2700 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2703 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 di_key.objectid < sctx->send_progress) {
2713 btrfs_free_path(path);
2718 * Only creates the inode if it is:
2719 * 1. Not a directory
2720 * 2. Or a directory which was not created already due to out of order
2721 * directories. See did_create_dir and process_recorded_refs for details.
2723 static int send_create_inode_if_needed(struct send_ctx *sctx)
2727 if (S_ISDIR(sctx->cur_inode_mode)) {
2728 ret = did_create_dir(sctx, sctx->cur_ino);
2737 ret = send_create_inode(sctx, sctx->cur_ino);
2745 struct recorded_ref {
2746 struct list_head list;
2748 struct fs_path *full_path;
2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2756 ref->full_path = path;
2757 ref->name = (char *)kbasename(ref->full_path->start);
2758 ref->name_len = ref->full_path->end - ref->name;
2762 * We need to process new refs before deleted refs, but compare_tree gives us
2763 * everything mixed. So we first record all refs and later process them.
2764 * This function is a helper to record one ref.
2766 static int __record_ref(struct list_head *head, u64 dir,
2767 u64 dir_gen, struct fs_path *path)
2769 struct recorded_ref *ref;
2771 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2776 ref->dir_gen = dir_gen;
2777 set_ref_path(ref, path);
2778 list_add_tail(&ref->list, head);
2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2784 struct recorded_ref *new;
2786 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2790 new->dir = ref->dir;
2791 new->dir_gen = ref->dir_gen;
2792 new->full_path = NULL;
2793 INIT_LIST_HEAD(&new->list);
2794 list_add_tail(&new->list, list);
2798 static void __free_recorded_refs(struct list_head *head)
2800 struct recorded_ref *cur;
2802 while (!list_empty(head)) {
2803 cur = list_entry(head->next, struct recorded_ref, list);
2804 fs_path_free(cur->full_path);
2805 list_del(&cur->list);
2810 static void free_recorded_refs(struct send_ctx *sctx)
2812 __free_recorded_refs(&sctx->new_refs);
2813 __free_recorded_refs(&sctx->deleted_refs);
2817 * Renames/moves a file/dir to its orphan name. Used when the first
2818 * ref of an unprocessed inode gets overwritten and for all non empty
2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 struct fs_path *path)
2825 struct fs_path *orphan;
2827 orphan = fs_path_alloc();
2831 ret = gen_unique_name(sctx, ino, gen, orphan);
2835 ret = send_rename(sctx, path, orphan);
2838 fs_path_free(orphan);
2842 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2843 u64 dir_ino, u64 dir_gen)
2845 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 struct rb_node *parent = NULL;
2847 struct orphan_dir_info *entry, *odi;
2851 entry = rb_entry(parent, struct orphan_dir_info, node);
2852 if (dir_ino < entry->ino)
2854 else if (dir_ino > entry->ino)
2855 p = &(*p)->rb_right;
2856 else if (dir_gen < entry->gen)
2858 else if (dir_gen > entry->gen)
2859 p = &(*p)->rb_right;
2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2866 return ERR_PTR(-ENOMEM);
2869 odi->last_dir_index_offset = 0;
2871 rb_link_node(&odi->node, parent, p);
2872 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2876 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2877 u64 dir_ino, u64 gen)
2879 struct rb_node *n = sctx->orphan_dirs.rb_node;
2880 struct orphan_dir_info *entry;
2883 entry = rb_entry(n, struct orphan_dir_info, node);
2884 if (dir_ino < entry->ino)
2886 else if (dir_ino > entry->ino)
2888 else if (gen < entry->gen)
2890 else if (gen > entry->gen)
2898 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2900 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2905 static void free_orphan_dir_info(struct send_ctx *sctx,
2906 struct orphan_dir_info *odi)
2910 rb_erase(&odi->node, &sctx->orphan_dirs);
2915 * Returns 1 if a directory can be removed at this point in time.
2916 * We check this by iterating all dir items and checking if the inode behind
2917 * the dir item was already processed.
2919 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2923 struct btrfs_root *root = sctx->parent_root;
2924 struct btrfs_path *path;
2925 struct btrfs_key key;
2926 struct btrfs_key found_key;
2927 struct btrfs_key loc;
2928 struct btrfs_dir_item *di;
2929 struct orphan_dir_info *odi = NULL;
2932 * Don't try to rmdir the top/root subvolume dir.
2934 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2937 path = alloc_path_for_send();
2942 key.type = BTRFS_DIR_INDEX_KEY;
2945 odi = get_orphan_dir_info(sctx, dir, dir_gen);
2947 key.offset = odi->last_dir_index_offset;
2949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2954 struct waiting_dir_move *dm;
2956 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2957 ret = btrfs_next_leaf(root, path);
2964 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2966 if (found_key.objectid != key.objectid ||
2967 found_key.type != key.type)
2970 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2971 struct btrfs_dir_item);
2972 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2974 dm = get_waiting_dir_move(sctx, loc.objectid);
2976 odi = add_orphan_dir_info(sctx, dir, dir_gen);
2982 odi->last_dir_index_offset = found_key.offset;
2983 dm->rmdir_ino = dir;
2984 dm->rmdir_gen = dir_gen;
2989 if (loc.objectid > send_progress) {
2990 odi = add_orphan_dir_info(sctx, dir, dir_gen);
2996 odi->last_dir_index_offset = found_key.offset;
3003 free_orphan_dir_info(sctx, odi);
3008 btrfs_free_path(path);
3012 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3014 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3016 return entry != NULL;
3019 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3021 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3022 struct rb_node *parent = NULL;
3023 struct waiting_dir_move *entry, *dm;
3025 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3031 dm->orphanized = orphanized;
3035 entry = rb_entry(parent, struct waiting_dir_move, node);
3036 if (ino < entry->ino) {
3038 } else if (ino > entry->ino) {
3039 p = &(*p)->rb_right;
3046 rb_link_node(&dm->node, parent, p);
3047 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3051 static struct waiting_dir_move *
3052 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3054 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3055 struct waiting_dir_move *entry;
3058 entry = rb_entry(n, struct waiting_dir_move, node);
3059 if (ino < entry->ino)
3061 else if (ino > entry->ino)
3069 static void free_waiting_dir_move(struct send_ctx *sctx,
3070 struct waiting_dir_move *dm)
3074 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3078 static int add_pending_dir_move(struct send_ctx *sctx,
3082 struct list_head *new_refs,
3083 struct list_head *deleted_refs,
3084 const bool is_orphan)
3086 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3087 struct rb_node *parent = NULL;
3088 struct pending_dir_move *entry = NULL, *pm;
3089 struct recorded_ref *cur;
3093 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3096 pm->parent_ino = parent_ino;
3099 INIT_LIST_HEAD(&pm->list);
3100 INIT_LIST_HEAD(&pm->update_refs);
3101 RB_CLEAR_NODE(&pm->node);
3105 entry = rb_entry(parent, struct pending_dir_move, node);
3106 if (parent_ino < entry->parent_ino) {
3108 } else if (parent_ino > entry->parent_ino) {
3109 p = &(*p)->rb_right;
3116 list_for_each_entry(cur, deleted_refs, list) {
3117 ret = dup_ref(cur, &pm->update_refs);
3121 list_for_each_entry(cur, new_refs, list) {
3122 ret = dup_ref(cur, &pm->update_refs);
3127 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3132 list_add_tail(&pm->list, &entry->list);
3134 rb_link_node(&pm->node, parent, p);
3135 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3140 __free_recorded_refs(&pm->update_refs);
3146 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3149 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3150 struct pending_dir_move *entry;
3153 entry = rb_entry(n, struct pending_dir_move, node);
3154 if (parent_ino < entry->parent_ino)
3156 else if (parent_ino > entry->parent_ino)
3164 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3165 u64 ino, u64 gen, u64 *ancestor_ino)
3168 u64 parent_inode = 0;
3170 u64 start_ino = ino;
3173 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3174 fs_path_reset(name);
3176 if (is_waiting_for_rm(sctx, ino, gen))
3178 if (is_waiting_for_move(sctx, ino)) {
3179 if (*ancestor_ino == 0)
3180 *ancestor_ino = ino;
3181 ret = get_first_ref(sctx->parent_root, ino,
3182 &parent_inode, &parent_gen, name);
3184 ret = __get_cur_name_and_parent(sctx, ino, gen,
3194 if (parent_inode == start_ino) {
3196 if (*ancestor_ino == 0)
3197 *ancestor_ino = ino;
3206 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3208 struct fs_path *from_path = NULL;
3209 struct fs_path *to_path = NULL;
3210 struct fs_path *name = NULL;
3211 u64 orig_progress = sctx->send_progress;
3212 struct recorded_ref *cur;
3213 u64 parent_ino, parent_gen;
3214 struct waiting_dir_move *dm = NULL;
3221 name = fs_path_alloc();
3222 from_path = fs_path_alloc();
3223 if (!name || !from_path) {
3228 dm = get_waiting_dir_move(sctx, pm->ino);
3230 rmdir_ino = dm->rmdir_ino;
3231 rmdir_gen = dm->rmdir_gen;
3232 is_orphan = dm->orphanized;
3233 free_waiting_dir_move(sctx, dm);
3236 ret = gen_unique_name(sctx, pm->ino,
3237 pm->gen, from_path);
3239 ret = get_first_ref(sctx->parent_root, pm->ino,
3240 &parent_ino, &parent_gen, name);
3243 ret = get_cur_path(sctx, parent_ino, parent_gen,
3247 ret = fs_path_add_path(from_path, name);
3252 sctx->send_progress = sctx->cur_ino + 1;
3253 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3257 LIST_HEAD(deleted_refs);
3258 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3259 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3260 &pm->update_refs, &deleted_refs,
3265 dm = get_waiting_dir_move(sctx, pm->ino);
3267 dm->rmdir_ino = rmdir_ino;
3268 dm->rmdir_gen = rmdir_gen;
3272 fs_path_reset(name);
3275 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3279 ret = send_rename(sctx, from_path, to_path);
3284 struct orphan_dir_info *odi;
3287 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3289 /* already deleted */
3294 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3300 name = fs_path_alloc();
3305 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3308 ret = send_rmdir(sctx, name);
3314 ret = send_utimes(sctx, pm->ino, pm->gen);
3319 * After rename/move, need to update the utimes of both new parent(s)
3320 * and old parent(s).
3322 list_for_each_entry(cur, &pm->update_refs, list) {
3324 * The parent inode might have been deleted in the send snapshot
3326 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3327 NULL, NULL, NULL, NULL, NULL);
3328 if (ret == -ENOENT) {
3335 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3342 fs_path_free(from_path);
3343 fs_path_free(to_path);
3344 sctx->send_progress = orig_progress;
3349 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3351 if (!list_empty(&m->list))
3353 if (!RB_EMPTY_NODE(&m->node))
3354 rb_erase(&m->node, &sctx->pending_dir_moves);
3355 __free_recorded_refs(&m->update_refs);
3359 static void tail_append_pending_moves(struct send_ctx *sctx,
3360 struct pending_dir_move *moves,
3361 struct list_head *stack)
3363 if (list_empty(&moves->list)) {
3364 list_add_tail(&moves->list, stack);
3367 list_splice_init(&moves->list, &list);
3368 list_add_tail(&moves->list, stack);
3369 list_splice_tail(&list, stack);
3371 if (!RB_EMPTY_NODE(&moves->node)) {
3372 rb_erase(&moves->node, &sctx->pending_dir_moves);
3373 RB_CLEAR_NODE(&moves->node);
3377 static int apply_children_dir_moves(struct send_ctx *sctx)
3379 struct pending_dir_move *pm;
3380 struct list_head stack;
3381 u64 parent_ino = sctx->cur_ino;
3384 pm = get_pending_dir_moves(sctx, parent_ino);
3388 INIT_LIST_HEAD(&stack);
3389 tail_append_pending_moves(sctx, pm, &stack);
3391 while (!list_empty(&stack)) {
3392 pm = list_first_entry(&stack, struct pending_dir_move, list);
3393 parent_ino = pm->ino;
3394 ret = apply_dir_move(sctx, pm);
3395 free_pending_move(sctx, pm);
3398 pm = get_pending_dir_moves(sctx, parent_ino);
3400 tail_append_pending_moves(sctx, pm, &stack);
3405 while (!list_empty(&stack)) {
3406 pm = list_first_entry(&stack, struct pending_dir_move, list);
3407 free_pending_move(sctx, pm);
3413 * We might need to delay a directory rename even when no ancestor directory
3414 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3415 * renamed. This happens when we rename a directory to the old name (the name
3416 * in the parent root) of some other unrelated directory that got its rename
3417 * delayed due to some ancestor with higher number that got renamed.
3423 * |---- a/ (ino 257)
3424 * | |---- file (ino 260)
3426 * |---- b/ (ino 258)
3427 * |---- c/ (ino 259)
3431 * |---- a/ (ino 258)
3432 * |---- x/ (ino 259)
3433 * |---- y/ (ino 257)
3434 * |----- file (ino 260)
3436 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3437 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3438 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3441 * 1 - rename 259 from 'c' to 'x'
3442 * 2 - rename 257 from 'a' to 'x/y'
3443 * 3 - rename 258 from 'b' to 'a'
3445 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3446 * be done right away and < 0 on error.
3448 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3449 struct recorded_ref *parent_ref,
3450 const bool is_orphan)
3452 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3453 struct btrfs_path *path;
3454 struct btrfs_key key;
3455 struct btrfs_key di_key;
3456 struct btrfs_dir_item *di;
3460 struct waiting_dir_move *wdm;
3462 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3465 path = alloc_path_for_send();
3469 key.objectid = parent_ref->dir;
3470 key.type = BTRFS_DIR_ITEM_KEY;
3471 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3473 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3476 } else if (ret > 0) {
3481 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3482 parent_ref->name_len);
3488 * di_key.objectid has the number of the inode that has a dentry in the
3489 * parent directory with the same name that sctx->cur_ino is being
3490 * renamed to. We need to check if that inode is in the send root as
3491 * well and if it is currently marked as an inode with a pending rename,
3492 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3493 * that it happens after that other inode is renamed.
3495 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3496 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3501 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3502 &left_gen, NULL, NULL, NULL, NULL);
3505 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3506 &right_gen, NULL, NULL, NULL, NULL);
3513 /* Different inode, no need to delay the rename of sctx->cur_ino */
3514 if (right_gen != left_gen) {
3519 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3520 if (wdm && !wdm->orphanized) {
3521 ret = add_pending_dir_move(sctx,
3523 sctx->cur_inode_gen,
3526 &sctx->deleted_refs,
3532 btrfs_free_path(path);
3537 * Check if inode ino2, or any of its ancestors, is inode ino1.
3538 * Return 1 if true, 0 if false and < 0 on error.
3540 static int check_ino_in_path(struct btrfs_root *root,
3545 struct fs_path *fs_path)
3550 return ino1_gen == ino2_gen;
3552 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3557 fs_path_reset(fs_path);
3558 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3562 return parent_gen == ino1_gen;
3569 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3570 * possible path (in case ino2 is not a directory and has multiple hard links).
3571 * Return 1 if true, 0 if false and < 0 on error.
3573 static int is_ancestor(struct btrfs_root *root,
3577 struct fs_path *fs_path)
3579 bool free_fs_path = false;
3581 struct btrfs_path *path = NULL;
3582 struct btrfs_key key;
3585 fs_path = fs_path_alloc();
3588 free_fs_path = true;
3591 path = alloc_path_for_send();
3597 key.objectid = ino2;
3598 key.type = BTRFS_INODE_REF_KEY;
3601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3606 struct extent_buffer *leaf = path->nodes[0];
3607 int slot = path->slots[0];
3611 if (slot >= btrfs_header_nritems(leaf)) {
3612 ret = btrfs_next_leaf(root, path);
3620 btrfs_item_key_to_cpu(leaf, &key, slot);
3621 if (key.objectid != ino2)
3623 if (key.type != BTRFS_INODE_REF_KEY &&
3624 key.type != BTRFS_INODE_EXTREF_KEY)
3627 item_size = btrfs_item_size_nr(leaf, slot);
3628 while (cur_offset < item_size) {
3632 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3634 struct btrfs_inode_extref *extref;
3636 ptr = btrfs_item_ptr_offset(leaf, slot);
3637 extref = (struct btrfs_inode_extref *)
3639 parent = btrfs_inode_extref_parent(leaf,
3641 cur_offset += sizeof(*extref);
3642 cur_offset += btrfs_inode_extref_name_len(leaf,
3645 parent = key.offset;
3646 cur_offset = item_size;
3649 ret = get_inode_info(root, parent, NULL, &parent_gen,
3650 NULL, NULL, NULL, NULL);
3653 ret = check_ino_in_path(root, ino1, ino1_gen,
3654 parent, parent_gen, fs_path);
3662 btrfs_free_path(path);
3664 fs_path_free(fs_path);
3668 static int wait_for_parent_move(struct send_ctx *sctx,
3669 struct recorded_ref *parent_ref,
3670 const bool is_orphan)
3673 u64 ino = parent_ref->dir;
3674 u64 ino_gen = parent_ref->dir_gen;
3675 u64 parent_ino_before, parent_ino_after;
3676 struct fs_path *path_before = NULL;
3677 struct fs_path *path_after = NULL;
3680 path_after = fs_path_alloc();
3681 path_before = fs_path_alloc();
3682 if (!path_after || !path_before) {
3688 * Our current directory inode may not yet be renamed/moved because some
3689 * ancestor (immediate or not) has to be renamed/moved first. So find if
3690 * such ancestor exists and make sure our own rename/move happens after
3691 * that ancestor is processed to avoid path build infinite loops (done
3692 * at get_cur_path()).
3694 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3695 u64 parent_ino_after_gen;
3697 if (is_waiting_for_move(sctx, ino)) {
3699 * If the current inode is an ancestor of ino in the
3700 * parent root, we need to delay the rename of the
3701 * current inode, otherwise don't delayed the rename
3702 * because we can end up with a circular dependency
3703 * of renames, resulting in some directories never
3704 * getting the respective rename operations issued in
3705 * the send stream or getting into infinite path build
3708 ret = is_ancestor(sctx->parent_root,
3709 sctx->cur_ino, sctx->cur_inode_gen,
3715 fs_path_reset(path_before);
3716 fs_path_reset(path_after);
3718 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3719 &parent_ino_after_gen, path_after);
3722 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3724 if (ret < 0 && ret != -ENOENT) {
3726 } else if (ret == -ENOENT) {
3731 len1 = fs_path_len(path_before);
3732 len2 = fs_path_len(path_after);
3733 if (ino > sctx->cur_ino &&
3734 (parent_ino_before != parent_ino_after || len1 != len2 ||
3735 memcmp(path_before->start, path_after->start, len1))) {
3738 ret = get_inode_info(sctx->parent_root, ino, NULL,
3739 &parent_ino_gen, NULL, NULL, NULL,
3743 if (ino_gen == parent_ino_gen) {
3748 ino = parent_ino_after;
3749 ino_gen = parent_ino_after_gen;
3753 fs_path_free(path_before);
3754 fs_path_free(path_after);
3757 ret = add_pending_dir_move(sctx,
3759 sctx->cur_inode_gen,
3762 &sctx->deleted_refs,
3771 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3774 struct fs_path *new_path;
3777 * Our reference's name member points to its full_path member string, so
3778 * we use here a new path.
3780 new_path = fs_path_alloc();
3784 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3786 fs_path_free(new_path);
3789 ret = fs_path_add(new_path, ref->name, ref->name_len);
3791 fs_path_free(new_path);
3795 fs_path_free(ref->full_path);
3796 set_ref_path(ref, new_path);
3802 * When processing the new references for an inode we may orphanize an existing
3803 * directory inode because its old name conflicts with one of the new references
3804 * of the current inode. Later, when processing another new reference of our
3805 * inode, we might need to orphanize another inode, but the path we have in the
3806 * reference reflects the pre-orphanization name of the directory we previously
3807 * orphanized. For example:
3809 * parent snapshot looks like:
3812 * |----- f1 (ino 257)
3813 * |----- f2 (ino 258)
3814 * |----- d1/ (ino 259)
3815 * |----- d2/ (ino 260)
3817 * send snapshot looks like:
3820 * |----- d1 (ino 258)
3821 * |----- f2/ (ino 259)
3822 * |----- f2_link/ (ino 260)
3823 * | |----- f1 (ino 257)
3825 * |----- d2 (ino 258)
3827 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3828 * cache it in the name cache. Later when we start processing inode 258, when
3829 * collecting all its new references we set a full path of "d1/d2" for its new
3830 * reference with name "d2". When we start processing the new references we
3831 * start by processing the new reference with name "d1", and this results in
3832 * orphanizing inode 259, since its old reference causes a conflict. Then we
3833 * move on the next new reference, with name "d2", and we find out we must
3834 * orphanize inode 260, as its old reference conflicts with ours - but for the
3835 * orphanization we use a source path corresponding to the path we stored in the
3836 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3837 * receiver fail since the path component "d1/" no longer exists, it was renamed
3838 * to "o259-6-0/" when processing the previous new reference. So in this case we
3839 * must recompute the path in the new reference and use it for the new
3840 * orphanization operation.
3842 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3847 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3851 fs_path_reset(ref->full_path);
3852 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3856 ret = fs_path_add(ref->full_path, name, ref->name_len);
3860 /* Update the reference's base name pointer. */
3861 set_ref_path(ref, ref->full_path);
3868 * This does all the move/link/unlink/rmdir magic.
3870 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3872 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3874 struct recorded_ref *cur;
3875 struct recorded_ref *cur2;
3876 struct list_head check_dirs;
3877 struct fs_path *valid_path = NULL;
3881 int did_overwrite = 0;
3883 u64 last_dir_ino_rm = 0;
3884 bool can_rename = true;
3885 bool orphanized_dir = false;
3886 bool orphanized_ancestor = false;
3888 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3891 * This should never happen as the root dir always has the same ref
3892 * which is always '..'
3894 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3895 INIT_LIST_HEAD(&check_dirs);
3897 valid_path = fs_path_alloc();
3904 * First, check if the first ref of the current inode was overwritten
3905 * before. If yes, we know that the current inode was already orphanized
3906 * and thus use the orphan name. If not, we can use get_cur_path to
3907 * get the path of the first ref as it would like while receiving at
3908 * this point in time.
3909 * New inodes are always orphan at the beginning, so force to use the
3910 * orphan name in this case.
3911 * The first ref is stored in valid_path and will be updated if it
3912 * gets moved around.
3914 if (!sctx->cur_inode_new) {
3915 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3916 sctx->cur_inode_gen);
3922 if (sctx->cur_inode_new || did_overwrite) {
3923 ret = gen_unique_name(sctx, sctx->cur_ino,
3924 sctx->cur_inode_gen, valid_path);
3929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3936 * Before doing any rename and link operations, do a first pass on the
3937 * new references to orphanize any unprocessed inodes that may have a
3938 * reference that conflicts with one of the new references of the current
3939 * inode. This needs to happen first because a new reference may conflict
3940 * with the old reference of a parent directory, so we must make sure
3941 * that the path used for link and rename commands don't use an
3942 * orphanized name when an ancestor was not yet orphanized.
3949 * |----- testdir/ (ino 259)
3950 * | |----- a (ino 257)
3952 * |----- b (ino 258)
3957 * |----- testdir_2/ (ino 259)
3958 * | |----- a (ino 260)
3960 * |----- testdir (ino 257)
3961 * |----- b (ino 257)
3962 * |----- b2 (ino 258)
3964 * Processing the new reference for inode 257 with name "b" may happen
3965 * before processing the new reference with name "testdir". If so, we
3966 * must make sure that by the time we send a link command to create the
3967 * hard link "b", inode 259 was already orphanized, since the generated
3968 * path in "valid_path" already contains the orphanized name for 259.
3969 * We are processing inode 257, so only later when processing 259 we do
3970 * the rename operation to change its temporary (orphanized) name to
3973 list_for_each_entry(cur, &sctx->new_refs, list) {
3974 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3977 if (ret == inode_state_will_create)
3981 * Check if this new ref would overwrite the first ref of another
3982 * unprocessed inode. If yes, orphanize the overwritten inode.
3983 * If we find an overwritten ref that is not the first ref,
3986 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3987 cur->name, cur->name_len,
3988 &ow_inode, &ow_gen, &ow_mode);
3992 ret = is_first_ref(sctx->parent_root,
3993 ow_inode, cur->dir, cur->name,
3998 struct name_cache_entry *nce;
3999 struct waiting_dir_move *wdm;
4001 if (orphanized_dir) {
4002 ret = refresh_ref_path(sctx, cur);
4007 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4011 if (S_ISDIR(ow_mode))
4012 orphanized_dir = true;
4015 * If ow_inode has its rename operation delayed
4016 * make sure that its orphanized name is used in
4017 * the source path when performing its rename
4020 if (is_waiting_for_move(sctx, ow_inode)) {
4021 wdm = get_waiting_dir_move(sctx,
4024 wdm->orphanized = true;
4028 * Make sure we clear our orphanized inode's
4029 * name from the name cache. This is because the
4030 * inode ow_inode might be an ancestor of some
4031 * other inode that will be orphanized as well
4032 * later and has an inode number greater than
4033 * sctx->send_progress. We need to prevent
4034 * future name lookups from using the old name
4035 * and get instead the orphan name.
4037 nce = name_cache_search(sctx, ow_inode, ow_gen);
4039 name_cache_delete(sctx, nce);
4044 * ow_inode might currently be an ancestor of
4045 * cur_ino, therefore compute valid_path (the
4046 * current path of cur_ino) again because it
4047 * might contain the pre-orphanization name of
4048 * ow_inode, which is no longer valid.
4050 ret = is_ancestor(sctx->parent_root,
4052 sctx->cur_ino, NULL);
4054 orphanized_ancestor = true;
4055 fs_path_reset(valid_path);
4056 ret = get_cur_path(sctx, sctx->cur_ino,
4057 sctx->cur_inode_gen,
4064 * If we previously orphanized a directory that
4065 * collided with a new reference that we already
4066 * processed, recompute the current path because
4067 * that directory may be part of the path.
4069 if (orphanized_dir) {
4070 ret = refresh_ref_path(sctx, cur);
4074 ret = send_unlink(sctx, cur->full_path);
4082 list_for_each_entry(cur, &sctx->new_refs, list) {
4084 * We may have refs where the parent directory does not exist
4085 * yet. This happens if the parent directories inum is higher
4086 * than the current inum. To handle this case, we create the
4087 * parent directory out of order. But we need to check if this
4088 * did already happen before due to other refs in the same dir.
4090 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4093 if (ret == inode_state_will_create) {
4096 * First check if any of the current inodes refs did
4097 * already create the dir.
4099 list_for_each_entry(cur2, &sctx->new_refs, list) {
4102 if (cur2->dir == cur->dir) {
4109 * If that did not happen, check if a previous inode
4110 * did already create the dir.
4113 ret = did_create_dir(sctx, cur->dir);
4117 ret = send_create_inode(sctx, cur->dir);
4123 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4124 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4133 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4135 ret = wait_for_parent_move(sctx, cur, is_orphan);
4145 * link/move the ref to the new place. If we have an orphan
4146 * inode, move it and update valid_path. If not, link or move
4147 * it depending on the inode mode.
4149 if (is_orphan && can_rename) {
4150 ret = send_rename(sctx, valid_path, cur->full_path);
4154 ret = fs_path_copy(valid_path, cur->full_path);
4157 } else if (can_rename) {
4158 if (S_ISDIR(sctx->cur_inode_mode)) {
4160 * Dirs can't be linked, so move it. For moved
4161 * dirs, we always have one new and one deleted
4162 * ref. The deleted ref is ignored later.
4164 ret = send_rename(sctx, valid_path,
4167 ret = fs_path_copy(valid_path,
4173 * We might have previously orphanized an inode
4174 * which is an ancestor of our current inode,
4175 * so our reference's full path, which was
4176 * computed before any such orphanizations, must
4179 if (orphanized_dir) {
4180 ret = update_ref_path(sctx, cur);
4184 ret = send_link(sctx, cur->full_path,
4190 ret = dup_ref(cur, &check_dirs);
4195 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4197 * Check if we can already rmdir the directory. If not,
4198 * orphanize it. For every dir item inside that gets deleted
4199 * later, we do this check again and rmdir it then if possible.
4200 * See the use of check_dirs for more details.
4202 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4207 ret = send_rmdir(sctx, valid_path);
4210 } else if (!is_orphan) {
4211 ret = orphanize_inode(sctx, sctx->cur_ino,
4212 sctx->cur_inode_gen, valid_path);
4218 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4219 ret = dup_ref(cur, &check_dirs);
4223 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4224 !list_empty(&sctx->deleted_refs)) {
4226 * We have a moved dir. Add the old parent to check_dirs
4228 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4230 ret = dup_ref(cur, &check_dirs);
4233 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4235 * We have a non dir inode. Go through all deleted refs and
4236 * unlink them if they were not already overwritten by other
4239 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4240 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4241 sctx->cur_ino, sctx->cur_inode_gen,
4242 cur->name, cur->name_len);
4247 * If we orphanized any ancestor before, we need
4248 * to recompute the full path for deleted names,
4249 * since any such path was computed before we
4250 * processed any references and orphanized any
4253 if (orphanized_ancestor) {
4254 ret = update_ref_path(sctx, cur);
4258 ret = send_unlink(sctx, cur->full_path);
4262 ret = dup_ref(cur, &check_dirs);
4267 * If the inode is still orphan, unlink the orphan. This may
4268 * happen when a previous inode did overwrite the first ref
4269 * of this inode and no new refs were added for the current
4270 * inode. Unlinking does not mean that the inode is deleted in
4271 * all cases. There may still be links to this inode in other
4275 ret = send_unlink(sctx, valid_path);
4282 * We did collect all parent dirs where cur_inode was once located. We
4283 * now go through all these dirs and check if they are pending for
4284 * deletion and if it's finally possible to perform the rmdir now.
4285 * We also update the inode stats of the parent dirs here.
4287 list_for_each_entry(cur, &check_dirs, list) {
4289 * In case we had refs into dirs that were not processed yet,
4290 * we don't need to do the utime and rmdir logic for these dirs.
4291 * The dir will be processed later.
4293 if (cur->dir > sctx->cur_ino)
4296 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4300 if (ret == inode_state_did_create ||
4301 ret == inode_state_no_change) {
4302 /* TODO delayed utimes */
4303 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4306 } else if (ret == inode_state_did_delete &&
4307 cur->dir != last_dir_ino_rm) {
4308 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4313 ret = get_cur_path(sctx, cur->dir,
4314 cur->dir_gen, valid_path);
4317 ret = send_rmdir(sctx, valid_path);
4320 last_dir_ino_rm = cur->dir;
4328 __free_recorded_refs(&check_dirs);
4329 free_recorded_refs(sctx);
4330 fs_path_free(valid_path);
4334 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4335 void *ctx, struct list_head *refs)
4338 struct send_ctx *sctx = ctx;
4342 p = fs_path_alloc();
4346 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4351 ret = get_cur_path(sctx, dir, gen, p);
4354 ret = fs_path_add_path(p, name);
4358 ret = __record_ref(refs, dir, gen, p);
4366 static int __record_new_ref(int num, u64 dir, int index,
4367 struct fs_path *name,
4370 struct send_ctx *sctx = ctx;
4371 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4375 static int __record_deleted_ref(int num, u64 dir, int index,
4376 struct fs_path *name,
4379 struct send_ctx *sctx = ctx;
4380 return record_ref(sctx->parent_root, dir, name, ctx,
4381 &sctx->deleted_refs);
4384 static int record_new_ref(struct send_ctx *sctx)
4388 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4389 sctx->cmp_key, 0, __record_new_ref, sctx);
4398 static int record_deleted_ref(struct send_ctx *sctx)
4402 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4403 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4412 struct find_ref_ctx {
4415 struct btrfs_root *root;
4416 struct fs_path *name;
4420 static int __find_iref(int num, u64 dir, int index,
4421 struct fs_path *name,
4424 struct find_ref_ctx *ctx = ctx_;
4428 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4429 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4431 * To avoid doing extra lookups we'll only do this if everything
4434 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4438 if (dir_gen != ctx->dir_gen)
4440 ctx->found_idx = num;
4446 static int find_iref(struct btrfs_root *root,
4447 struct btrfs_path *path,
4448 struct btrfs_key *key,
4449 u64 dir, u64 dir_gen, struct fs_path *name)
4452 struct find_ref_ctx ctx;
4456 ctx.dir_gen = dir_gen;
4460 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4464 if (ctx.found_idx == -1)
4467 return ctx.found_idx;
4470 static int __record_changed_new_ref(int num, u64 dir, int index,
4471 struct fs_path *name,
4476 struct send_ctx *sctx = ctx;
4478 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4483 ret = find_iref(sctx->parent_root, sctx->right_path,
4484 sctx->cmp_key, dir, dir_gen, name);
4486 ret = __record_new_ref(num, dir, index, name, sctx);
4493 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4494 struct fs_path *name,
4499 struct send_ctx *sctx = ctx;
4501 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4506 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4507 dir, dir_gen, name);
4509 ret = __record_deleted_ref(num, dir, index, name, sctx);
4516 static int record_changed_ref(struct send_ctx *sctx)
4520 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4521 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4524 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4525 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4535 * Record and process all refs at once. Needed when an inode changes the
4536 * generation number, which means that it was deleted and recreated.
4538 static int process_all_refs(struct send_ctx *sctx,
4539 enum btrfs_compare_tree_result cmd)
4542 struct btrfs_root *root;
4543 struct btrfs_path *path;
4544 struct btrfs_key key;
4545 struct btrfs_key found_key;
4546 struct extent_buffer *eb;
4548 iterate_inode_ref_t cb;
4549 int pending_move = 0;
4551 path = alloc_path_for_send();
4555 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4556 root = sctx->send_root;
4557 cb = __record_new_ref;
4558 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4559 root = sctx->parent_root;
4560 cb = __record_deleted_ref;
4562 btrfs_err(sctx->send_root->fs_info,
4563 "Wrong command %d in process_all_refs", cmd);
4568 key.objectid = sctx->cmp_key->objectid;
4569 key.type = BTRFS_INODE_REF_KEY;
4571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4576 eb = path->nodes[0];
4577 slot = path->slots[0];
4578 if (slot >= btrfs_header_nritems(eb)) {
4579 ret = btrfs_next_leaf(root, path);
4587 btrfs_item_key_to_cpu(eb, &found_key, slot);
4589 if (found_key.objectid != key.objectid ||
4590 (found_key.type != BTRFS_INODE_REF_KEY &&
4591 found_key.type != BTRFS_INODE_EXTREF_KEY))
4594 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4600 btrfs_release_path(path);
4603 * We don't actually care about pending_move as we are simply
4604 * re-creating this inode and will be rename'ing it into place once we
4605 * rename the parent directory.
4607 ret = process_recorded_refs(sctx, &pending_move);
4609 btrfs_free_path(path);
4613 static int send_set_xattr(struct send_ctx *sctx,
4614 struct fs_path *path,
4615 const char *name, int name_len,
4616 const char *data, int data_len)
4620 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4625 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4626 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4628 ret = send_cmd(sctx);
4635 static int send_remove_xattr(struct send_ctx *sctx,
4636 struct fs_path *path,
4637 const char *name, int name_len)
4641 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4646 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4648 ret = send_cmd(sctx);
4655 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4656 const char *name, int name_len,
4657 const char *data, int data_len,
4661 struct send_ctx *sctx = ctx;
4663 struct posix_acl_xattr_header dummy_acl;
4665 /* Capabilities are emitted by finish_inode_if_needed */
4666 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4669 p = fs_path_alloc();
4674 * This hack is needed because empty acls are stored as zero byte
4675 * data in xattrs. Problem with that is, that receiving these zero byte
4676 * acls will fail later. To fix this, we send a dummy acl list that
4677 * only contains the version number and no entries.
4679 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4680 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4681 if (data_len == 0) {
4682 dummy_acl.a_version =
4683 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4684 data = (char *)&dummy_acl;
4685 data_len = sizeof(dummy_acl);
4689 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4693 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4700 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4701 const char *name, int name_len,
4702 const char *data, int data_len,
4706 struct send_ctx *sctx = ctx;
4709 p = fs_path_alloc();
4713 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4717 ret = send_remove_xattr(sctx, p, name, name_len);
4724 static int process_new_xattr(struct send_ctx *sctx)
4728 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4729 __process_new_xattr, sctx);
4734 static int process_deleted_xattr(struct send_ctx *sctx)
4736 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4737 __process_deleted_xattr, sctx);
4740 struct find_xattr_ctx {
4748 static int __find_xattr(int num, struct btrfs_key *di_key,
4749 const char *name, int name_len,
4750 const char *data, int data_len,
4751 u8 type, void *vctx)
4753 struct find_xattr_ctx *ctx = vctx;
4755 if (name_len == ctx->name_len &&
4756 strncmp(name, ctx->name, name_len) == 0) {
4757 ctx->found_idx = num;
4758 ctx->found_data_len = data_len;
4759 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4760 if (!ctx->found_data)
4767 static int find_xattr(struct btrfs_root *root,
4768 struct btrfs_path *path,
4769 struct btrfs_key *key,
4770 const char *name, int name_len,
4771 char **data, int *data_len)
4774 struct find_xattr_ctx ctx;
4777 ctx.name_len = name_len;
4779 ctx.found_data = NULL;
4780 ctx.found_data_len = 0;
4782 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4786 if (ctx.found_idx == -1)
4789 *data = ctx.found_data;
4790 *data_len = ctx.found_data_len;
4792 kfree(ctx.found_data);
4794 return ctx.found_idx;
4798 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4799 const char *name, int name_len,
4800 const char *data, int data_len,
4804 struct send_ctx *sctx = ctx;
4805 char *found_data = NULL;
4806 int found_data_len = 0;
4808 ret = find_xattr(sctx->parent_root, sctx->right_path,
4809 sctx->cmp_key, name, name_len, &found_data,
4811 if (ret == -ENOENT) {
4812 ret = __process_new_xattr(num, di_key, name, name_len, data,
4813 data_len, type, ctx);
4814 } else if (ret >= 0) {
4815 if (data_len != found_data_len ||
4816 memcmp(data, found_data, data_len)) {
4817 ret = __process_new_xattr(num, di_key, name, name_len,
4818 data, data_len, type, ctx);
4828 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4829 const char *name, int name_len,
4830 const char *data, int data_len,
4834 struct send_ctx *sctx = ctx;
4836 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4837 name, name_len, NULL, NULL);
4839 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4840 data_len, type, ctx);
4847 static int process_changed_xattr(struct send_ctx *sctx)
4851 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4852 __process_changed_new_xattr, sctx);
4855 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4856 __process_changed_deleted_xattr, sctx);
4862 static int process_all_new_xattrs(struct send_ctx *sctx)
4865 struct btrfs_root *root;
4866 struct btrfs_path *path;
4867 struct btrfs_key key;
4868 struct btrfs_key found_key;
4869 struct extent_buffer *eb;
4872 path = alloc_path_for_send();
4876 root = sctx->send_root;
4878 key.objectid = sctx->cmp_key->objectid;
4879 key.type = BTRFS_XATTR_ITEM_KEY;
4881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4886 eb = path->nodes[0];
4887 slot = path->slots[0];
4888 if (slot >= btrfs_header_nritems(eb)) {
4889 ret = btrfs_next_leaf(root, path);
4892 } else if (ret > 0) {
4899 btrfs_item_key_to_cpu(eb, &found_key, slot);
4900 if (found_key.objectid != key.objectid ||
4901 found_key.type != key.type) {
4906 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4914 btrfs_free_path(path);
4918 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4920 return sctx->send_max_size - SZ_16K;
4923 static int put_data_header(struct send_ctx *sctx, u32 len)
4925 struct btrfs_tlv_header *hdr;
4927 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4929 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4930 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4931 put_unaligned_le16(len, &hdr->tlv_len);
4932 sctx->send_size += sizeof(*hdr);
4936 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4938 struct btrfs_root *root = sctx->send_root;
4939 struct btrfs_fs_info *fs_info = root->fs_info;
4940 struct inode *inode;
4942 pgoff_t index = offset >> PAGE_SHIFT;
4944 unsigned pg_offset = offset_in_page(offset);
4947 ret = put_data_header(sctx, len);
4951 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4953 return PTR_ERR(inode);
4955 last_index = (offset + len - 1) >> PAGE_SHIFT;
4957 /* initial readahead */
4958 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4959 file_ra_state_init(&sctx->ra, inode->i_mapping);
4961 while (index <= last_index) {
4962 unsigned cur_len = min_t(unsigned, len,
4963 PAGE_SIZE - pg_offset);
4965 page = find_lock_page(inode->i_mapping, index);
4967 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4968 NULL, index, last_index + 1 - index);
4970 page = find_or_create_page(inode->i_mapping, index,
4978 if (PageReadahead(page)) {
4979 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4980 NULL, page, index, last_index + 1 - index);
4983 if (!PageUptodate(page)) {
4984 btrfs_readpage(NULL, page);
4986 if (!PageUptodate(page)) {
4994 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4995 pg_offset, cur_len);
5001 sctx->send_size += cur_len;
5008 * Read some bytes from the current inode/file and send a write command to
5011 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5013 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5017 p = fs_path_alloc();
5021 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5023 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5027 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5031 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5032 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5033 ret = put_file_data(sctx, offset, len);
5037 ret = send_cmd(sctx);
5046 * Send a clone command to user space.
5048 static int send_clone(struct send_ctx *sctx,
5049 u64 offset, u32 len,
5050 struct clone_root *clone_root)
5056 btrfs_debug(sctx->send_root->fs_info,
5057 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5058 offset, len, clone_root->root->root_key.objectid,
5059 clone_root->ino, clone_root->offset);
5061 p = fs_path_alloc();
5065 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5069 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5073 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5074 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5075 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5077 if (clone_root->root == sctx->send_root) {
5078 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5079 &gen, NULL, NULL, NULL, NULL);
5082 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5084 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5090 * If the parent we're using has a received_uuid set then use that as
5091 * our clone source as that is what we will look for when doing a
5094 * This covers the case that we create a snapshot off of a received
5095 * subvolume and then use that as the parent and try to receive on a
5098 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5099 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5100 clone_root->root->root_item.received_uuid);
5102 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5103 clone_root->root->root_item.uuid);
5104 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5105 btrfs_root_ctransid(&clone_root->root->root_item));
5106 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5107 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5108 clone_root->offset);
5110 ret = send_cmd(sctx);
5119 * Send an update extent command to user space.
5121 static int send_update_extent(struct send_ctx *sctx,
5122 u64 offset, u32 len)
5127 p = fs_path_alloc();
5131 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5135 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5139 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5140 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5141 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5143 ret = send_cmd(sctx);
5151 static int send_hole(struct send_ctx *sctx, u64 end)
5153 struct fs_path *p = NULL;
5154 u64 read_size = max_send_read_size(sctx);
5155 u64 offset = sctx->cur_inode_last_extent;
5159 * A hole that starts at EOF or beyond it. Since we do not yet support
5160 * fallocate (for extent preallocation and hole punching), sending a
5161 * write of zeroes starting at EOF or beyond would later require issuing
5162 * a truncate operation which would undo the write and achieve nothing.
5164 if (offset >= sctx->cur_inode_size)
5168 * Don't go beyond the inode's i_size due to prealloc extents that start
5171 end = min_t(u64, end, sctx->cur_inode_size);
5173 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5174 return send_update_extent(sctx, offset, end - offset);
5176 p = fs_path_alloc();
5179 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5181 goto tlv_put_failure;
5182 while (offset < end) {
5183 u64 len = min(end - offset, read_size);
5185 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5188 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5189 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5190 ret = put_data_header(sctx, len);
5193 memset(sctx->send_buf + sctx->send_size, 0, len);
5194 sctx->send_size += len;
5195 ret = send_cmd(sctx);
5200 sctx->cur_inode_next_write_offset = offset;
5206 static int send_extent_data(struct send_ctx *sctx,
5210 u64 read_size = max_send_read_size(sctx);
5213 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5214 return send_update_extent(sctx, offset, len);
5216 while (sent < len) {
5217 u64 size = min(len - sent, read_size);
5220 ret = send_write(sctx, offset + sent, size);
5229 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5230 * found, call send_set_xattr function to emit it.
5232 * Return 0 if there isn't a capability, or when the capability was emitted
5233 * successfully, or < 0 if an error occurred.
5235 static int send_capabilities(struct send_ctx *sctx)
5237 struct fs_path *fspath = NULL;
5238 struct btrfs_path *path;
5239 struct btrfs_dir_item *di;
5240 struct extent_buffer *leaf;
5241 unsigned long data_ptr;
5246 path = alloc_path_for_send();
5250 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5251 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5253 /* There is no xattr for this inode */
5255 } else if (IS_ERR(di)) {
5260 leaf = path->nodes[0];
5261 buf_len = btrfs_dir_data_len(leaf, di);
5263 fspath = fs_path_alloc();
5264 buf = kmalloc(buf_len, GFP_KERNEL);
5265 if (!fspath || !buf) {
5270 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5274 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5275 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5277 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5278 strlen(XATTR_NAME_CAPS), buf, buf_len);
5281 fs_path_free(fspath);
5282 btrfs_free_path(path);
5286 static int clone_range(struct send_ctx *sctx,
5287 struct clone_root *clone_root,
5288 const u64 disk_byte,
5293 struct btrfs_path *path;
5294 struct btrfs_key key;
5296 u64 clone_src_i_size = 0;
5299 * Prevent cloning from a zero offset with a length matching the sector
5300 * size because in some scenarios this will make the receiver fail.
5302 * For example, if in the source filesystem the extent at offset 0
5303 * has a length of sectorsize and it was written using direct IO, then
5304 * it can never be an inline extent (even if compression is enabled).
5305 * Then this extent can be cloned in the original filesystem to a non
5306 * zero file offset, but it may not be possible to clone in the
5307 * destination filesystem because it can be inlined due to compression
5308 * on the destination filesystem (as the receiver's write operations are
5309 * always done using buffered IO). The same happens when the original
5310 * filesystem does not have compression enabled but the destination
5313 if (clone_root->offset == 0 &&
5314 len == sctx->send_root->fs_info->sectorsize)
5315 return send_extent_data(sctx, offset, len);
5317 path = alloc_path_for_send();
5322 * There are inodes that have extents that lie behind its i_size. Don't
5323 * accept clones from these extents.
5325 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5326 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5327 btrfs_release_path(path);
5332 * We can't send a clone operation for the entire range if we find
5333 * extent items in the respective range in the source file that
5334 * refer to different extents or if we find holes.
5335 * So check for that and do a mix of clone and regular write/copy
5336 * operations if needed.
5340 * mkfs.btrfs -f /dev/sda
5341 * mount /dev/sda /mnt
5342 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5343 * cp --reflink=always /mnt/foo /mnt/bar
5344 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5345 * btrfs subvolume snapshot -r /mnt /mnt/snap
5347 * If when we send the snapshot and we are processing file bar (which
5348 * has a higher inode number than foo) we blindly send a clone operation
5349 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5350 * a file bar that matches the content of file foo - iow, doesn't match
5351 * the content from bar in the original filesystem.
5353 key.objectid = clone_root->ino;
5354 key.type = BTRFS_EXTENT_DATA_KEY;
5355 key.offset = clone_root->offset;
5356 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5359 if (ret > 0 && path->slots[0] > 0) {
5360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5361 if (key.objectid == clone_root->ino &&
5362 key.type == BTRFS_EXTENT_DATA_KEY)
5367 struct extent_buffer *leaf = path->nodes[0];
5368 int slot = path->slots[0];
5369 struct btrfs_file_extent_item *ei;
5373 u64 clone_data_offset;
5375 if (slot >= btrfs_header_nritems(leaf)) {
5376 ret = btrfs_next_leaf(clone_root->root, path);
5384 btrfs_item_key_to_cpu(leaf, &key, slot);
5387 * We might have an implicit trailing hole (NO_HOLES feature
5388 * enabled). We deal with it after leaving this loop.
5390 if (key.objectid != clone_root->ino ||
5391 key.type != BTRFS_EXTENT_DATA_KEY)
5394 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5395 type = btrfs_file_extent_type(leaf, ei);
5396 if (type == BTRFS_FILE_EXTENT_INLINE) {
5397 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5398 ext_len = PAGE_ALIGN(ext_len);
5400 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5403 if (key.offset + ext_len <= clone_root->offset)
5406 if (key.offset > clone_root->offset) {
5407 /* Implicit hole, NO_HOLES feature enabled. */
5408 u64 hole_len = key.offset - clone_root->offset;
5412 ret = send_extent_data(sctx, offset, hole_len);
5420 clone_root->offset += hole_len;
5421 data_offset += hole_len;
5424 if (key.offset >= clone_root->offset + len)
5427 if (key.offset >= clone_src_i_size)
5430 if (key.offset + ext_len > clone_src_i_size)
5431 ext_len = clone_src_i_size - key.offset;
5433 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5434 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5435 clone_root->offset = key.offset;
5436 if (clone_data_offset < data_offset &&
5437 clone_data_offset + ext_len > data_offset) {
5440 extent_offset = data_offset - clone_data_offset;
5441 ext_len -= extent_offset;
5442 clone_data_offset += extent_offset;
5443 clone_root->offset += extent_offset;
5447 clone_len = min_t(u64, ext_len, len);
5449 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5450 clone_data_offset == data_offset) {
5451 const u64 src_end = clone_root->offset + clone_len;
5452 const u64 sectorsize = SZ_64K;
5455 * We can't clone the last block, when its size is not
5456 * sector size aligned, into the middle of a file. If we
5457 * do so, the receiver will get a failure (-EINVAL) when
5458 * trying to clone or will silently corrupt the data in
5459 * the destination file if it's on a kernel without the
5460 * fix introduced by commit ac765f83f1397646
5461 * ("Btrfs: fix data corruption due to cloning of eof
5464 * So issue a clone of the aligned down range plus a
5465 * regular write for the eof block, if we hit that case.
5467 * Also, we use the maximum possible sector size, 64K,
5468 * because we don't know what's the sector size of the
5469 * filesystem that receives the stream, so we have to
5470 * assume the largest possible sector size.
5472 if (src_end == clone_src_i_size &&
5473 !IS_ALIGNED(src_end, sectorsize) &&
5474 offset + clone_len < sctx->cur_inode_size) {
5477 slen = ALIGN_DOWN(src_end - clone_root->offset,
5480 ret = send_clone(sctx, offset, slen,
5485 ret = send_extent_data(sctx, offset + slen,
5488 ret = send_clone(sctx, offset, clone_len,
5492 ret = send_extent_data(sctx, offset, clone_len);
5501 offset += clone_len;
5502 clone_root->offset += clone_len;
5505 * If we are cloning from the file we are currently processing,
5506 * and using the send root as the clone root, we must stop once
5507 * the current clone offset reaches the current eof of the file
5508 * at the receiver, otherwise we would issue an invalid clone
5509 * operation (source range going beyond eof) and cause the
5510 * receiver to fail. So if we reach the current eof, bail out
5511 * and fallback to a regular write.
5513 if (clone_root->root == sctx->send_root &&
5514 clone_root->ino == sctx->cur_ino &&
5515 clone_root->offset >= sctx->cur_inode_next_write_offset)
5518 data_offset += clone_len;
5524 ret = send_extent_data(sctx, offset, len);
5528 btrfs_free_path(path);
5532 static int send_write_or_clone(struct send_ctx *sctx,
5533 struct btrfs_path *path,
5534 struct btrfs_key *key,
5535 struct clone_root *clone_root)
5538 u64 offset = key->offset;
5540 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5542 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5546 if (clone_root && IS_ALIGNED(end, bs)) {
5547 struct btrfs_file_extent_item *ei;
5551 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5552 struct btrfs_file_extent_item);
5553 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5554 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5555 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5556 offset, end - offset);
5558 ret = send_extent_data(sctx, offset, end - offset);
5560 sctx->cur_inode_next_write_offset = end;
5564 static int is_extent_unchanged(struct send_ctx *sctx,
5565 struct btrfs_path *left_path,
5566 struct btrfs_key *ekey)
5569 struct btrfs_key key;
5570 struct btrfs_path *path = NULL;
5571 struct extent_buffer *eb;
5573 struct btrfs_key found_key;
5574 struct btrfs_file_extent_item *ei;
5579 u64 left_offset_fixed;
5587 path = alloc_path_for_send();
5591 eb = left_path->nodes[0];
5592 slot = left_path->slots[0];
5593 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5594 left_type = btrfs_file_extent_type(eb, ei);
5596 if (left_type != BTRFS_FILE_EXTENT_REG) {
5600 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5601 left_len = btrfs_file_extent_num_bytes(eb, ei);
5602 left_offset = btrfs_file_extent_offset(eb, ei);
5603 left_gen = btrfs_file_extent_generation(eb, ei);
5606 * Following comments will refer to these graphics. L is the left
5607 * extents which we are checking at the moment. 1-8 are the right
5608 * extents that we iterate.
5611 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5614 * |--1--|-2b-|...(same as above)
5616 * Alternative situation. Happens on files where extents got split.
5618 * |-----------7-----------|-6-|
5620 * Alternative situation. Happens on files which got larger.
5623 * Nothing follows after 8.
5626 key.objectid = ekey->objectid;
5627 key.type = BTRFS_EXTENT_DATA_KEY;
5628 key.offset = ekey->offset;
5629 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5638 * Handle special case where the right side has no extents at all.
5640 eb = path->nodes[0];
5641 slot = path->slots[0];
5642 btrfs_item_key_to_cpu(eb, &found_key, slot);
5643 if (found_key.objectid != key.objectid ||
5644 found_key.type != key.type) {
5645 /* If we're a hole then just pretend nothing changed */
5646 ret = (left_disknr) ? 0 : 1;
5651 * We're now on 2a, 2b or 7.
5654 while (key.offset < ekey->offset + left_len) {
5655 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5656 right_type = btrfs_file_extent_type(eb, ei);
5657 if (right_type != BTRFS_FILE_EXTENT_REG &&
5658 right_type != BTRFS_FILE_EXTENT_INLINE) {
5663 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5664 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5665 right_len = PAGE_ALIGN(right_len);
5667 right_len = btrfs_file_extent_num_bytes(eb, ei);
5671 * Are we at extent 8? If yes, we know the extent is changed.
5672 * This may only happen on the first iteration.
5674 if (found_key.offset + right_len <= ekey->offset) {
5675 /* If we're a hole just pretend nothing changed */
5676 ret = (left_disknr) ? 0 : 1;
5681 * We just wanted to see if when we have an inline extent, what
5682 * follows it is a regular extent (wanted to check the above
5683 * condition for inline extents too). This should normally not
5684 * happen but it's possible for example when we have an inline
5685 * compressed extent representing data with a size matching
5686 * the page size (currently the same as sector size).
5688 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5693 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5694 right_offset = btrfs_file_extent_offset(eb, ei);
5695 right_gen = btrfs_file_extent_generation(eb, ei);
5697 left_offset_fixed = left_offset;
5698 if (key.offset < ekey->offset) {
5699 /* Fix the right offset for 2a and 7. */
5700 right_offset += ekey->offset - key.offset;
5702 /* Fix the left offset for all behind 2a and 2b */
5703 left_offset_fixed += key.offset - ekey->offset;
5707 * Check if we have the same extent.
5709 if (left_disknr != right_disknr ||
5710 left_offset_fixed != right_offset ||
5711 left_gen != right_gen) {
5717 * Go to the next extent.
5719 ret = btrfs_next_item(sctx->parent_root, path);
5723 eb = path->nodes[0];
5724 slot = path->slots[0];
5725 btrfs_item_key_to_cpu(eb, &found_key, slot);
5727 if (ret || found_key.objectid != key.objectid ||
5728 found_key.type != key.type) {
5729 key.offset += right_len;
5732 if (found_key.offset != key.offset + right_len) {
5740 * We're now behind the left extent (treat as unchanged) or at the end
5741 * of the right side (treat as changed).
5743 if (key.offset >= ekey->offset + left_len)
5750 btrfs_free_path(path);
5754 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5756 struct btrfs_path *path;
5757 struct btrfs_root *root = sctx->send_root;
5758 struct btrfs_key key;
5761 path = alloc_path_for_send();
5765 sctx->cur_inode_last_extent = 0;
5767 key.objectid = sctx->cur_ino;
5768 key.type = BTRFS_EXTENT_DATA_KEY;
5769 key.offset = offset;
5770 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5774 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5775 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5778 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5780 btrfs_free_path(path);
5784 static int range_is_hole_in_parent(struct send_ctx *sctx,
5788 struct btrfs_path *path;
5789 struct btrfs_key key;
5790 struct btrfs_root *root = sctx->parent_root;
5791 u64 search_start = start;
5794 path = alloc_path_for_send();
5798 key.objectid = sctx->cur_ino;
5799 key.type = BTRFS_EXTENT_DATA_KEY;
5800 key.offset = search_start;
5801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5804 if (ret > 0 && path->slots[0] > 0)
5807 while (search_start < end) {
5808 struct extent_buffer *leaf = path->nodes[0];
5809 int slot = path->slots[0];
5810 struct btrfs_file_extent_item *fi;
5813 if (slot >= btrfs_header_nritems(leaf)) {
5814 ret = btrfs_next_leaf(root, path);
5822 btrfs_item_key_to_cpu(leaf, &key, slot);
5823 if (key.objectid < sctx->cur_ino ||
5824 key.type < BTRFS_EXTENT_DATA_KEY)
5826 if (key.objectid > sctx->cur_ino ||
5827 key.type > BTRFS_EXTENT_DATA_KEY ||
5831 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5832 extent_end = btrfs_file_extent_end(path);
5833 if (extent_end <= start)
5835 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5836 search_start = extent_end;
5846 btrfs_free_path(path);
5850 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5851 struct btrfs_key *key)
5855 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5858 if (sctx->cur_inode_last_extent == (u64)-1) {
5859 ret = get_last_extent(sctx, key->offset - 1);
5864 if (path->slots[0] == 0 &&
5865 sctx->cur_inode_last_extent < key->offset) {
5867 * We might have skipped entire leafs that contained only
5868 * file extent items for our current inode. These leafs have
5869 * a generation number smaller (older) than the one in the
5870 * current leaf and the leaf our last extent came from, and
5871 * are located between these 2 leafs.
5873 ret = get_last_extent(sctx, key->offset - 1);
5878 if (sctx->cur_inode_last_extent < key->offset) {
5879 ret = range_is_hole_in_parent(sctx,
5880 sctx->cur_inode_last_extent,
5885 ret = send_hole(sctx, key->offset);
5889 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5893 static int process_extent(struct send_ctx *sctx,
5894 struct btrfs_path *path,
5895 struct btrfs_key *key)
5897 struct clone_root *found_clone = NULL;
5900 if (S_ISLNK(sctx->cur_inode_mode))
5903 if (sctx->parent_root && !sctx->cur_inode_new) {
5904 ret = is_extent_unchanged(sctx, path, key);
5912 struct btrfs_file_extent_item *ei;
5915 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5916 struct btrfs_file_extent_item);
5917 type = btrfs_file_extent_type(path->nodes[0], ei);
5918 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5919 type == BTRFS_FILE_EXTENT_REG) {
5921 * The send spec does not have a prealloc command yet,
5922 * so just leave a hole for prealloc'ed extents until
5923 * we have enough commands queued up to justify rev'ing
5926 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5931 /* Have a hole, just skip it. */
5932 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5939 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5940 sctx->cur_inode_size, &found_clone);
5941 if (ret != -ENOENT && ret < 0)
5944 ret = send_write_or_clone(sctx, path, key, found_clone);
5948 ret = maybe_send_hole(sctx, path, key);
5953 static int process_all_extents(struct send_ctx *sctx)
5956 struct btrfs_root *root;
5957 struct btrfs_path *path;
5958 struct btrfs_key key;
5959 struct btrfs_key found_key;
5960 struct extent_buffer *eb;
5963 root = sctx->send_root;
5964 path = alloc_path_for_send();
5968 key.objectid = sctx->cmp_key->objectid;
5969 key.type = BTRFS_EXTENT_DATA_KEY;
5971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5976 eb = path->nodes[0];
5977 slot = path->slots[0];
5979 if (slot >= btrfs_header_nritems(eb)) {
5980 ret = btrfs_next_leaf(root, path);
5983 } else if (ret > 0) {
5990 btrfs_item_key_to_cpu(eb, &found_key, slot);
5992 if (found_key.objectid != key.objectid ||
5993 found_key.type != key.type) {
5998 ret = process_extent(sctx, path, &found_key);
6006 btrfs_free_path(path);
6010 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6012 int *refs_processed)
6016 if (sctx->cur_ino == 0)
6018 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6019 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6021 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6024 ret = process_recorded_refs(sctx, pending_move);
6028 *refs_processed = 1;
6033 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6044 int need_truncate = 1;
6045 int pending_move = 0;
6046 int refs_processed = 0;
6048 if (sctx->ignore_cur_inode)
6051 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6057 * We have processed the refs and thus need to advance send_progress.
6058 * Now, calls to get_cur_xxx will take the updated refs of the current
6059 * inode into account.
6061 * On the other hand, if our current inode is a directory and couldn't
6062 * be moved/renamed because its parent was renamed/moved too and it has
6063 * a higher inode number, we can only move/rename our current inode
6064 * after we moved/renamed its parent. Therefore in this case operate on
6065 * the old path (pre move/rename) of our current inode, and the
6066 * move/rename will be performed later.
6068 if (refs_processed && !pending_move)
6069 sctx->send_progress = sctx->cur_ino + 1;
6071 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6073 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6076 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6077 &left_mode, &left_uid, &left_gid, NULL);
6081 if (!sctx->parent_root || sctx->cur_inode_new) {
6083 if (!S_ISLNK(sctx->cur_inode_mode))
6085 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6090 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6091 &old_size, NULL, &right_mode, &right_uid,
6096 if (left_uid != right_uid || left_gid != right_gid)
6098 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6100 if ((old_size == sctx->cur_inode_size) ||
6101 (sctx->cur_inode_size > old_size &&
6102 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6106 if (S_ISREG(sctx->cur_inode_mode)) {
6107 if (need_send_hole(sctx)) {
6108 if (sctx->cur_inode_last_extent == (u64)-1 ||
6109 sctx->cur_inode_last_extent <
6110 sctx->cur_inode_size) {
6111 ret = get_last_extent(sctx, (u64)-1);
6115 if (sctx->cur_inode_last_extent <
6116 sctx->cur_inode_size) {
6117 ret = send_hole(sctx, sctx->cur_inode_size);
6122 if (need_truncate) {
6123 ret = send_truncate(sctx, sctx->cur_ino,
6124 sctx->cur_inode_gen,
6125 sctx->cur_inode_size);
6132 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6133 left_uid, left_gid);
6138 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6144 ret = send_capabilities(sctx);
6149 * If other directory inodes depended on our current directory
6150 * inode's move/rename, now do their move/rename operations.
6152 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6153 ret = apply_children_dir_moves(sctx);
6157 * Need to send that every time, no matter if it actually
6158 * changed between the two trees as we have done changes to
6159 * the inode before. If our inode is a directory and it's
6160 * waiting to be moved/renamed, we will send its utimes when
6161 * it's moved/renamed, therefore we don't need to do it here.
6163 sctx->send_progress = sctx->cur_ino + 1;
6164 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6173 struct parent_paths_ctx {
6174 struct list_head *refs;
6175 struct send_ctx *sctx;
6178 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6181 struct parent_paths_ctx *ppctx = ctx;
6183 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6188 * Issue unlink operations for all paths of the current inode found in the
6191 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6193 LIST_HEAD(deleted_refs);
6194 struct btrfs_path *path;
6195 struct btrfs_key key;
6196 struct parent_paths_ctx ctx;
6199 path = alloc_path_for_send();
6203 key.objectid = sctx->cur_ino;
6204 key.type = BTRFS_INODE_REF_KEY;
6206 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6210 ctx.refs = &deleted_refs;
6214 struct extent_buffer *eb = path->nodes[0];
6215 int slot = path->slots[0];
6217 if (slot >= btrfs_header_nritems(eb)) {
6218 ret = btrfs_next_leaf(sctx->parent_root, path);
6226 btrfs_item_key_to_cpu(eb, &key, slot);
6227 if (key.objectid != sctx->cur_ino)
6229 if (key.type != BTRFS_INODE_REF_KEY &&
6230 key.type != BTRFS_INODE_EXTREF_KEY)
6233 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6234 record_parent_ref, &ctx);
6241 while (!list_empty(&deleted_refs)) {
6242 struct recorded_ref *ref;
6244 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6245 ret = send_unlink(sctx, ref->full_path);
6248 fs_path_free(ref->full_path);
6249 list_del(&ref->list);
6254 btrfs_free_path(path);
6256 __free_recorded_refs(&deleted_refs);
6260 static int changed_inode(struct send_ctx *sctx,
6261 enum btrfs_compare_tree_result result)
6264 struct btrfs_key *key = sctx->cmp_key;
6265 struct btrfs_inode_item *left_ii = NULL;
6266 struct btrfs_inode_item *right_ii = NULL;
6270 sctx->cur_ino = key->objectid;
6271 sctx->cur_inode_new_gen = 0;
6272 sctx->cur_inode_last_extent = (u64)-1;
6273 sctx->cur_inode_next_write_offset = 0;
6274 sctx->ignore_cur_inode = false;
6277 * Set send_progress to current inode. This will tell all get_cur_xxx
6278 * functions that the current inode's refs are not updated yet. Later,
6279 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6281 sctx->send_progress = sctx->cur_ino;
6283 if (result == BTRFS_COMPARE_TREE_NEW ||
6284 result == BTRFS_COMPARE_TREE_CHANGED) {
6285 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6286 sctx->left_path->slots[0],
6287 struct btrfs_inode_item);
6288 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6291 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6292 sctx->right_path->slots[0],
6293 struct btrfs_inode_item);
6294 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6297 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6298 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6299 sctx->right_path->slots[0],
6300 struct btrfs_inode_item);
6302 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6306 * The cur_ino = root dir case is special here. We can't treat
6307 * the inode as deleted+reused because it would generate a
6308 * stream that tries to delete/mkdir the root dir.
6310 if (left_gen != right_gen &&
6311 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6312 sctx->cur_inode_new_gen = 1;
6316 * Normally we do not find inodes with a link count of zero (orphans)
6317 * because the most common case is to create a snapshot and use it
6318 * for a send operation. However other less common use cases involve
6319 * using a subvolume and send it after turning it to RO mode just
6320 * after deleting all hard links of a file while holding an open
6321 * file descriptor against it or turning a RO snapshot into RW mode,
6322 * keep an open file descriptor against a file, delete it and then
6323 * turn the snapshot back to RO mode before using it for a send
6324 * operation. So if we find such cases, ignore the inode and all its
6325 * items completely if it's a new inode, or if it's a changed inode
6326 * make sure all its previous paths (from the parent snapshot) are all
6327 * unlinked and all other the inode items are ignored.
6329 if (result == BTRFS_COMPARE_TREE_NEW ||
6330 result == BTRFS_COMPARE_TREE_CHANGED) {
6333 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6335 sctx->ignore_cur_inode = true;
6336 if (result == BTRFS_COMPARE_TREE_CHANGED)
6337 ret = btrfs_unlink_all_paths(sctx);
6342 if (result == BTRFS_COMPARE_TREE_NEW) {
6343 sctx->cur_inode_gen = left_gen;
6344 sctx->cur_inode_new = 1;
6345 sctx->cur_inode_deleted = 0;
6346 sctx->cur_inode_size = btrfs_inode_size(
6347 sctx->left_path->nodes[0], left_ii);
6348 sctx->cur_inode_mode = btrfs_inode_mode(
6349 sctx->left_path->nodes[0], left_ii);
6350 sctx->cur_inode_rdev = btrfs_inode_rdev(
6351 sctx->left_path->nodes[0], left_ii);
6352 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6353 ret = send_create_inode_if_needed(sctx);
6354 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6355 sctx->cur_inode_gen = right_gen;
6356 sctx->cur_inode_new = 0;
6357 sctx->cur_inode_deleted = 1;
6358 sctx->cur_inode_size = btrfs_inode_size(
6359 sctx->right_path->nodes[0], right_ii);
6360 sctx->cur_inode_mode = btrfs_inode_mode(
6361 sctx->right_path->nodes[0], right_ii);
6362 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6364 * We need to do some special handling in case the inode was
6365 * reported as changed with a changed generation number. This
6366 * means that the original inode was deleted and new inode
6367 * reused the same inum. So we have to treat the old inode as
6368 * deleted and the new one as new.
6370 if (sctx->cur_inode_new_gen) {
6372 * First, process the inode as if it was deleted.
6374 sctx->cur_inode_gen = right_gen;
6375 sctx->cur_inode_new = 0;
6376 sctx->cur_inode_deleted = 1;
6377 sctx->cur_inode_size = btrfs_inode_size(
6378 sctx->right_path->nodes[0], right_ii);
6379 sctx->cur_inode_mode = btrfs_inode_mode(
6380 sctx->right_path->nodes[0], right_ii);
6381 ret = process_all_refs(sctx,
6382 BTRFS_COMPARE_TREE_DELETED);
6387 * Now process the inode as if it was new.
6389 sctx->cur_inode_gen = left_gen;
6390 sctx->cur_inode_new = 1;
6391 sctx->cur_inode_deleted = 0;
6392 sctx->cur_inode_size = btrfs_inode_size(
6393 sctx->left_path->nodes[0], left_ii);
6394 sctx->cur_inode_mode = btrfs_inode_mode(
6395 sctx->left_path->nodes[0], left_ii);
6396 sctx->cur_inode_rdev = btrfs_inode_rdev(
6397 sctx->left_path->nodes[0], left_ii);
6398 ret = send_create_inode_if_needed(sctx);
6402 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6406 * Advance send_progress now as we did not get into
6407 * process_recorded_refs_if_needed in the new_gen case.
6409 sctx->send_progress = sctx->cur_ino + 1;
6412 * Now process all extents and xattrs of the inode as if
6413 * they were all new.
6415 ret = process_all_extents(sctx);
6418 ret = process_all_new_xattrs(sctx);
6422 sctx->cur_inode_gen = left_gen;
6423 sctx->cur_inode_new = 0;
6424 sctx->cur_inode_new_gen = 0;
6425 sctx->cur_inode_deleted = 0;
6426 sctx->cur_inode_size = btrfs_inode_size(
6427 sctx->left_path->nodes[0], left_ii);
6428 sctx->cur_inode_mode = btrfs_inode_mode(
6429 sctx->left_path->nodes[0], left_ii);
6438 * We have to process new refs before deleted refs, but compare_trees gives us
6439 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6440 * first and later process them in process_recorded_refs.
6441 * For the cur_inode_new_gen case, we skip recording completely because
6442 * changed_inode did already initiate processing of refs. The reason for this is
6443 * that in this case, compare_tree actually compares the refs of 2 different
6444 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6445 * refs of the right tree as deleted and all refs of the left tree as new.
6447 static int changed_ref(struct send_ctx *sctx,
6448 enum btrfs_compare_tree_result result)
6452 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6453 inconsistent_snapshot_error(sctx, result, "reference");
6457 if (!sctx->cur_inode_new_gen &&
6458 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6459 if (result == BTRFS_COMPARE_TREE_NEW)
6460 ret = record_new_ref(sctx);
6461 else if (result == BTRFS_COMPARE_TREE_DELETED)
6462 ret = record_deleted_ref(sctx);
6463 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6464 ret = record_changed_ref(sctx);
6471 * Process new/deleted/changed xattrs. We skip processing in the
6472 * cur_inode_new_gen case because changed_inode did already initiate processing
6473 * of xattrs. The reason is the same as in changed_ref
6475 static int changed_xattr(struct send_ctx *sctx,
6476 enum btrfs_compare_tree_result result)
6480 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6481 inconsistent_snapshot_error(sctx, result, "xattr");
6485 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6486 if (result == BTRFS_COMPARE_TREE_NEW)
6487 ret = process_new_xattr(sctx);
6488 else if (result == BTRFS_COMPARE_TREE_DELETED)
6489 ret = process_deleted_xattr(sctx);
6490 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6491 ret = process_changed_xattr(sctx);
6498 * Process new/deleted/changed extents. We skip processing in the
6499 * cur_inode_new_gen case because changed_inode did already initiate processing
6500 * of extents. The reason is the same as in changed_ref
6502 static int changed_extent(struct send_ctx *sctx,
6503 enum btrfs_compare_tree_result result)
6508 * We have found an extent item that changed without the inode item
6509 * having changed. This can happen either after relocation (where the
6510 * disk_bytenr of an extent item is replaced at
6511 * relocation.c:replace_file_extents()) or after deduplication into a
6512 * file in both the parent and send snapshots (where an extent item can
6513 * get modified or replaced with a new one). Note that deduplication
6514 * updates the inode item, but it only changes the iversion (sequence
6515 * field in the inode item) of the inode, so if a file is deduplicated
6516 * the same amount of times in both the parent and send snapshots, its
6517 * iversion becomes the same in both snapshots, whence the inode item is
6518 * the same on both snapshots.
6520 if (sctx->cur_ino != sctx->cmp_key->objectid)
6523 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6524 if (result != BTRFS_COMPARE_TREE_DELETED)
6525 ret = process_extent(sctx, sctx->left_path,
6532 static int dir_changed(struct send_ctx *sctx, u64 dir)
6534 u64 orig_gen, new_gen;
6537 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6542 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6547 return (orig_gen != new_gen) ? 1 : 0;
6550 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6551 struct btrfs_key *key)
6553 struct btrfs_inode_extref *extref;
6554 struct extent_buffer *leaf;
6555 u64 dirid = 0, last_dirid = 0;
6562 /* Easy case, just check this one dirid */
6563 if (key->type == BTRFS_INODE_REF_KEY) {
6564 dirid = key->offset;
6566 ret = dir_changed(sctx, dirid);
6570 leaf = path->nodes[0];
6571 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6572 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6573 while (cur_offset < item_size) {
6574 extref = (struct btrfs_inode_extref *)(ptr +
6576 dirid = btrfs_inode_extref_parent(leaf, extref);
6577 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6578 cur_offset += ref_name_len + sizeof(*extref);
6579 if (dirid == last_dirid)
6581 ret = dir_changed(sctx, dirid);
6591 * Updates compare related fields in sctx and simply forwards to the actual
6592 * changed_xxx functions.
6594 static int changed_cb(struct btrfs_path *left_path,
6595 struct btrfs_path *right_path,
6596 struct btrfs_key *key,
6597 enum btrfs_compare_tree_result result,
6598 struct send_ctx *sctx)
6602 if (result == BTRFS_COMPARE_TREE_SAME) {
6603 if (key->type == BTRFS_INODE_REF_KEY ||
6604 key->type == BTRFS_INODE_EXTREF_KEY) {
6605 ret = compare_refs(sctx, left_path, key);
6610 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6611 return maybe_send_hole(sctx, left_path, key);
6615 result = BTRFS_COMPARE_TREE_CHANGED;
6619 sctx->left_path = left_path;
6620 sctx->right_path = right_path;
6621 sctx->cmp_key = key;
6623 ret = finish_inode_if_needed(sctx, 0);
6627 /* Ignore non-FS objects */
6628 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6629 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6632 if (key->type == BTRFS_INODE_ITEM_KEY) {
6633 ret = changed_inode(sctx, result);
6634 } else if (!sctx->ignore_cur_inode) {
6635 if (key->type == BTRFS_INODE_REF_KEY ||
6636 key->type == BTRFS_INODE_EXTREF_KEY)
6637 ret = changed_ref(sctx, result);
6638 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6639 ret = changed_xattr(sctx, result);
6640 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6641 ret = changed_extent(sctx, result);
6648 static int full_send_tree(struct send_ctx *sctx)
6651 struct btrfs_root *send_root = sctx->send_root;
6652 struct btrfs_key key;
6653 struct btrfs_path *path;
6654 struct extent_buffer *eb;
6657 path = alloc_path_for_send();
6660 path->reada = READA_FORWARD_ALWAYS;
6662 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6663 key.type = BTRFS_INODE_ITEM_KEY;
6666 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6673 eb = path->nodes[0];
6674 slot = path->slots[0];
6675 btrfs_item_key_to_cpu(eb, &key, slot);
6677 ret = changed_cb(path, NULL, &key,
6678 BTRFS_COMPARE_TREE_NEW, sctx);
6682 ret = btrfs_next_item(send_root, path);
6692 ret = finish_inode_if_needed(sctx, 1);
6695 btrfs_free_path(path);
6699 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6701 struct extent_buffer *eb;
6702 struct extent_buffer *parent = path->nodes[*level];
6703 int slot = path->slots[*level];
6704 const int nritems = btrfs_header_nritems(parent);
6708 BUG_ON(*level == 0);
6709 eb = btrfs_read_node_slot(parent, slot);
6714 * Trigger readahead for the next leaves we will process, so that it is
6715 * very likely that when we need them they are already in memory and we
6716 * will not block on disk IO. For nodes we only do readahead for one,
6717 * since the time window between processing nodes is typically larger.
6719 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6721 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6722 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6723 btrfs_readahead_node_child(parent, slot);
6724 reada_done += eb->fs_info->nodesize;
6728 path->nodes[*level - 1] = eb;
6729 path->slots[*level - 1] = 0;
6734 static int tree_move_next_or_upnext(struct btrfs_path *path,
6735 int *level, int root_level)
6739 nritems = btrfs_header_nritems(path->nodes[*level]);
6741 path->slots[*level]++;
6743 while (path->slots[*level] >= nritems) {
6744 if (*level == root_level)
6748 path->slots[*level] = 0;
6749 free_extent_buffer(path->nodes[*level]);
6750 path->nodes[*level] = NULL;
6752 path->slots[*level]++;
6754 nritems = btrfs_header_nritems(path->nodes[*level]);
6761 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6764 static int tree_advance(struct btrfs_path *path,
6765 int *level, int root_level,
6767 struct btrfs_key *key,
6772 if (*level == 0 || !allow_down) {
6773 ret = tree_move_next_or_upnext(path, level, root_level);
6775 ret = tree_move_down(path, level, reada_min_gen);
6779 btrfs_item_key_to_cpu(path->nodes[*level], key,
6780 path->slots[*level]);
6782 btrfs_node_key_to_cpu(path->nodes[*level], key,
6783 path->slots[*level]);
6788 static int tree_compare_item(struct btrfs_path *left_path,
6789 struct btrfs_path *right_path,
6794 unsigned long off1, off2;
6796 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6797 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6801 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6802 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6803 right_path->slots[0]);
6805 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6807 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6814 * This function compares two trees and calls the provided callback for
6815 * every changed/new/deleted item it finds.
6816 * If shared tree blocks are encountered, whole subtrees are skipped, making
6817 * the compare pretty fast on snapshotted subvolumes.
6819 * This currently works on commit roots only. As commit roots are read only,
6820 * we don't do any locking. The commit roots are protected with transactions.
6821 * Transactions are ended and rejoined when a commit is tried in between.
6823 * This function checks for modifications done to the trees while comparing.
6824 * If it detects a change, it aborts immediately.
6826 static int btrfs_compare_trees(struct btrfs_root *left_root,
6827 struct btrfs_root *right_root, struct send_ctx *sctx)
6829 struct btrfs_fs_info *fs_info = left_root->fs_info;
6832 struct btrfs_path *left_path = NULL;
6833 struct btrfs_path *right_path = NULL;
6834 struct btrfs_key left_key;
6835 struct btrfs_key right_key;
6836 char *tmp_buf = NULL;
6837 int left_root_level;
6838 int right_root_level;
6841 int left_end_reached;
6842 int right_end_reached;
6851 left_path = btrfs_alloc_path();
6856 right_path = btrfs_alloc_path();
6862 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6868 left_path->search_commit_root = 1;
6869 left_path->skip_locking = 1;
6870 right_path->search_commit_root = 1;
6871 right_path->skip_locking = 1;
6874 * Strategy: Go to the first items of both trees. Then do
6876 * If both trees are at level 0
6877 * Compare keys of current items
6878 * If left < right treat left item as new, advance left tree
6880 * If left > right treat right item as deleted, advance right tree
6882 * If left == right do deep compare of items, treat as changed if
6883 * needed, advance both trees and repeat
6884 * If both trees are at the same level but not at level 0
6885 * Compare keys of current nodes/leafs
6886 * If left < right advance left tree and repeat
6887 * If left > right advance right tree and repeat
6888 * If left == right compare blockptrs of the next nodes/leafs
6889 * If they match advance both trees but stay at the same level
6891 * If they don't match advance both trees while allowing to go
6893 * If tree levels are different
6894 * Advance the tree that needs it and repeat
6896 * Advancing a tree means:
6897 * If we are at level 0, try to go to the next slot. If that's not
6898 * possible, go one level up and repeat. Stop when we found a level
6899 * where we could go to the next slot. We may at this point be on a
6902 * If we are not at level 0 and not on shared tree blocks, go one
6905 * If we are not at level 0 and on shared tree blocks, go one slot to
6906 * the right if possible or go up and right.
6909 down_read(&fs_info->commit_root_sem);
6910 left_level = btrfs_header_level(left_root->commit_root);
6911 left_root_level = left_level;
6912 left_path->nodes[left_level] =
6913 btrfs_clone_extent_buffer(left_root->commit_root);
6914 if (!left_path->nodes[left_level]) {
6915 up_read(&fs_info->commit_root_sem);
6920 right_level = btrfs_header_level(right_root->commit_root);
6921 right_root_level = right_level;
6922 right_path->nodes[right_level] =
6923 btrfs_clone_extent_buffer(right_root->commit_root);
6924 if (!right_path->nodes[right_level]) {
6925 up_read(&fs_info->commit_root_sem);
6930 * Our right root is the parent root, while the left root is the "send"
6931 * root. We know that all new nodes/leaves in the left root must have
6932 * a generation greater than the right root's generation, so we trigger
6933 * readahead for those nodes and leaves of the left root, as we know we
6934 * will need to read them at some point.
6936 reada_min_gen = btrfs_header_generation(right_root->commit_root);
6937 up_read(&fs_info->commit_root_sem);
6939 if (left_level == 0)
6940 btrfs_item_key_to_cpu(left_path->nodes[left_level],
6941 &left_key, left_path->slots[left_level]);
6943 btrfs_node_key_to_cpu(left_path->nodes[left_level],
6944 &left_key, left_path->slots[left_level]);
6945 if (right_level == 0)
6946 btrfs_item_key_to_cpu(right_path->nodes[right_level],
6947 &right_key, right_path->slots[right_level]);
6949 btrfs_node_key_to_cpu(right_path->nodes[right_level],
6950 &right_key, right_path->slots[right_level]);
6952 left_end_reached = right_end_reached = 0;
6953 advance_left = advance_right = 0;
6957 if (advance_left && !left_end_reached) {
6958 ret = tree_advance(left_path, &left_level,
6960 advance_left != ADVANCE_ONLY_NEXT,
6961 &left_key, reada_min_gen);
6963 left_end_reached = ADVANCE;
6968 if (advance_right && !right_end_reached) {
6969 ret = tree_advance(right_path, &right_level,
6971 advance_right != ADVANCE_ONLY_NEXT,
6972 &right_key, reada_min_gen);
6974 right_end_reached = ADVANCE;
6980 if (left_end_reached && right_end_reached) {
6983 } else if (left_end_reached) {
6984 if (right_level == 0) {
6985 ret = changed_cb(left_path, right_path,
6987 BTRFS_COMPARE_TREE_DELETED,
6992 advance_right = ADVANCE;
6994 } else if (right_end_reached) {
6995 if (left_level == 0) {
6996 ret = changed_cb(left_path, right_path,
6998 BTRFS_COMPARE_TREE_NEW,
7003 advance_left = ADVANCE;
7007 if (left_level == 0 && right_level == 0) {
7008 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7010 ret = changed_cb(left_path, right_path,
7012 BTRFS_COMPARE_TREE_NEW,
7016 advance_left = ADVANCE;
7017 } else if (cmp > 0) {
7018 ret = changed_cb(left_path, right_path,
7020 BTRFS_COMPARE_TREE_DELETED,
7024 advance_right = ADVANCE;
7026 enum btrfs_compare_tree_result result;
7028 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7029 ret = tree_compare_item(left_path, right_path,
7032 result = BTRFS_COMPARE_TREE_CHANGED;
7034 result = BTRFS_COMPARE_TREE_SAME;
7035 ret = changed_cb(left_path, right_path,
7036 &left_key, result, sctx);
7039 advance_left = ADVANCE;
7040 advance_right = ADVANCE;
7042 } else if (left_level == right_level) {
7043 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7045 advance_left = ADVANCE;
7046 } else if (cmp > 0) {
7047 advance_right = ADVANCE;
7049 left_blockptr = btrfs_node_blockptr(
7050 left_path->nodes[left_level],
7051 left_path->slots[left_level]);
7052 right_blockptr = btrfs_node_blockptr(
7053 right_path->nodes[right_level],
7054 right_path->slots[right_level]);
7055 left_gen = btrfs_node_ptr_generation(
7056 left_path->nodes[left_level],
7057 left_path->slots[left_level]);
7058 right_gen = btrfs_node_ptr_generation(
7059 right_path->nodes[right_level],
7060 right_path->slots[right_level]);
7061 if (left_blockptr == right_blockptr &&
7062 left_gen == right_gen) {
7064 * As we're on a shared block, don't
7065 * allow to go deeper.
7067 advance_left = ADVANCE_ONLY_NEXT;
7068 advance_right = ADVANCE_ONLY_NEXT;
7070 advance_left = ADVANCE;
7071 advance_right = ADVANCE;
7074 } else if (left_level < right_level) {
7075 advance_right = ADVANCE;
7077 advance_left = ADVANCE;
7082 btrfs_free_path(left_path);
7083 btrfs_free_path(right_path);
7088 static int send_subvol(struct send_ctx *sctx)
7092 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7093 ret = send_header(sctx);
7098 ret = send_subvol_begin(sctx);
7102 if (sctx->parent_root) {
7103 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7106 ret = finish_inode_if_needed(sctx, 1);
7110 ret = full_send_tree(sctx);
7116 free_recorded_refs(sctx);
7121 * If orphan cleanup did remove any orphans from a root, it means the tree
7122 * was modified and therefore the commit root is not the same as the current
7123 * root anymore. This is a problem, because send uses the commit root and
7124 * therefore can see inode items that don't exist in the current root anymore,
7125 * and for example make calls to btrfs_iget, which will do tree lookups based
7126 * on the current root and not on the commit root. Those lookups will fail,
7127 * returning a -ESTALE error, and making send fail with that error. So make
7128 * sure a send does not see any orphans we have just removed, and that it will
7129 * see the same inodes regardless of whether a transaction commit happened
7130 * before it started (meaning that the commit root will be the same as the
7131 * current root) or not.
7133 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7136 struct btrfs_trans_handle *trans = NULL;
7139 if (sctx->parent_root &&
7140 sctx->parent_root->node != sctx->parent_root->commit_root)
7143 for (i = 0; i < sctx->clone_roots_cnt; i++)
7144 if (sctx->clone_roots[i].root->node !=
7145 sctx->clone_roots[i].root->commit_root)
7149 return btrfs_end_transaction(trans);
7154 /* Use any root, all fs roots will get their commit roots updated. */
7156 trans = btrfs_join_transaction(sctx->send_root);
7158 return PTR_ERR(trans);
7162 return btrfs_commit_transaction(trans);
7166 * Make sure any existing dellaloc is flushed for any root used by a send
7167 * operation so that we do not miss any data and we do not race with writeback
7168 * finishing and changing a tree while send is using the tree. This could
7169 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7170 * a send operation then uses the subvolume.
7171 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7173 static int flush_delalloc_roots(struct send_ctx *sctx)
7175 struct btrfs_root *root = sctx->parent_root;
7180 ret = btrfs_start_delalloc_snapshot(root, false);
7183 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7186 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7187 root = sctx->clone_roots[i].root;
7188 ret = btrfs_start_delalloc_snapshot(root, false);
7191 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7197 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7199 spin_lock(&root->root_item_lock);
7200 root->send_in_progress--;
7202 * Not much left to do, we don't know why it's unbalanced and
7203 * can't blindly reset it to 0.
7205 if (root->send_in_progress < 0)
7206 btrfs_err(root->fs_info,
7207 "send_in_progress unbalanced %d root %llu",
7208 root->send_in_progress, root->root_key.objectid);
7209 spin_unlock(&root->root_item_lock);
7212 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7214 btrfs_warn_rl(root->fs_info,
7215 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7216 root->root_key.objectid, root->dedupe_in_progress);
7219 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7222 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7223 struct btrfs_fs_info *fs_info = send_root->fs_info;
7224 struct btrfs_root *clone_root;
7225 struct send_ctx *sctx = NULL;
7227 u64 *clone_sources_tmp = NULL;
7228 int clone_sources_to_rollback = 0;
7230 int sort_clone_roots = 0;
7232 if (!capable(CAP_SYS_ADMIN))
7236 * The subvolume must remain read-only during send, protect against
7237 * making it RW. This also protects against deletion.
7239 spin_lock(&send_root->root_item_lock);
7240 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7241 dedupe_in_progress_warn(send_root);
7242 spin_unlock(&send_root->root_item_lock);
7245 send_root->send_in_progress++;
7246 spin_unlock(&send_root->root_item_lock);
7249 * Userspace tools do the checks and warn the user if it's
7252 if (!btrfs_root_readonly(send_root)) {
7258 * Check that we don't overflow at later allocations, we request
7259 * clone_sources_count + 1 items, and compare to unsigned long inside
7262 if (arg->clone_sources_count >
7263 ULONG_MAX / sizeof(struct clone_root) - 1) {
7268 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7273 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7279 INIT_LIST_HEAD(&sctx->new_refs);
7280 INIT_LIST_HEAD(&sctx->deleted_refs);
7281 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7282 INIT_LIST_HEAD(&sctx->name_cache_list);
7284 sctx->flags = arg->flags;
7286 sctx->send_filp = fget(arg->send_fd);
7287 if (!sctx->send_filp) {
7292 sctx->send_root = send_root;
7294 * Unlikely but possible, if the subvolume is marked for deletion but
7295 * is slow to remove the directory entry, send can still be started
7297 if (btrfs_root_dead(sctx->send_root)) {
7302 sctx->clone_roots_cnt = arg->clone_sources_count;
7304 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7305 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7306 if (!sctx->send_buf) {
7311 sctx->pending_dir_moves = RB_ROOT;
7312 sctx->waiting_dir_moves = RB_ROOT;
7313 sctx->orphan_dirs = RB_ROOT;
7315 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7316 arg->clone_sources_count + 1,
7318 if (!sctx->clone_roots) {
7323 alloc_size = array_size(sizeof(*arg->clone_sources),
7324 arg->clone_sources_count);
7326 if (arg->clone_sources_count) {
7327 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7328 if (!clone_sources_tmp) {
7333 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7340 for (i = 0; i < arg->clone_sources_count; i++) {
7341 clone_root = btrfs_get_fs_root(fs_info,
7342 clone_sources_tmp[i], true);
7343 if (IS_ERR(clone_root)) {
7344 ret = PTR_ERR(clone_root);
7347 spin_lock(&clone_root->root_item_lock);
7348 if (!btrfs_root_readonly(clone_root) ||
7349 btrfs_root_dead(clone_root)) {
7350 spin_unlock(&clone_root->root_item_lock);
7351 btrfs_put_root(clone_root);
7355 if (clone_root->dedupe_in_progress) {
7356 dedupe_in_progress_warn(clone_root);
7357 spin_unlock(&clone_root->root_item_lock);
7358 btrfs_put_root(clone_root);
7362 clone_root->send_in_progress++;
7363 spin_unlock(&clone_root->root_item_lock);
7365 sctx->clone_roots[i].root = clone_root;
7366 clone_sources_to_rollback = i + 1;
7368 kvfree(clone_sources_tmp);
7369 clone_sources_tmp = NULL;
7372 if (arg->parent_root) {
7373 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7375 if (IS_ERR(sctx->parent_root)) {
7376 ret = PTR_ERR(sctx->parent_root);
7380 spin_lock(&sctx->parent_root->root_item_lock);
7381 sctx->parent_root->send_in_progress++;
7382 if (!btrfs_root_readonly(sctx->parent_root) ||
7383 btrfs_root_dead(sctx->parent_root)) {
7384 spin_unlock(&sctx->parent_root->root_item_lock);
7388 if (sctx->parent_root->dedupe_in_progress) {
7389 dedupe_in_progress_warn(sctx->parent_root);
7390 spin_unlock(&sctx->parent_root->root_item_lock);
7394 spin_unlock(&sctx->parent_root->root_item_lock);
7398 * Clones from send_root are allowed, but only if the clone source
7399 * is behind the current send position. This is checked while searching
7400 * for possible clone sources.
7402 sctx->clone_roots[sctx->clone_roots_cnt++].root =
7403 btrfs_grab_root(sctx->send_root);
7405 /* We do a bsearch later */
7406 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7407 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7409 sort_clone_roots = 1;
7411 ret = flush_delalloc_roots(sctx);
7415 ret = ensure_commit_roots_uptodate(sctx);
7419 spin_lock(&fs_info->send_reloc_lock);
7420 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
7421 spin_unlock(&fs_info->send_reloc_lock);
7422 btrfs_warn_rl(fs_info,
7423 "cannot run send because a relocation operation is in progress");
7427 fs_info->send_in_progress++;
7428 spin_unlock(&fs_info->send_reloc_lock);
7430 current->journal_info = BTRFS_SEND_TRANS_STUB;
7431 ret = send_subvol(sctx);
7432 current->journal_info = NULL;
7433 spin_lock(&fs_info->send_reloc_lock);
7434 fs_info->send_in_progress--;
7435 spin_unlock(&fs_info->send_reloc_lock);
7439 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7440 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7443 ret = send_cmd(sctx);
7449 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7450 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7452 struct pending_dir_move *pm;
7454 n = rb_first(&sctx->pending_dir_moves);
7455 pm = rb_entry(n, struct pending_dir_move, node);
7456 while (!list_empty(&pm->list)) {
7457 struct pending_dir_move *pm2;
7459 pm2 = list_first_entry(&pm->list,
7460 struct pending_dir_move, list);
7461 free_pending_move(sctx, pm2);
7463 free_pending_move(sctx, pm);
7466 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7467 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7469 struct waiting_dir_move *dm;
7471 n = rb_first(&sctx->waiting_dir_moves);
7472 dm = rb_entry(n, struct waiting_dir_move, node);
7473 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7477 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7478 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7480 struct orphan_dir_info *odi;
7482 n = rb_first(&sctx->orphan_dirs);
7483 odi = rb_entry(n, struct orphan_dir_info, node);
7484 free_orphan_dir_info(sctx, odi);
7487 if (sort_clone_roots) {
7488 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7489 btrfs_root_dec_send_in_progress(
7490 sctx->clone_roots[i].root);
7491 btrfs_put_root(sctx->clone_roots[i].root);
7494 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7495 btrfs_root_dec_send_in_progress(
7496 sctx->clone_roots[i].root);
7497 btrfs_put_root(sctx->clone_roots[i].root);
7500 btrfs_root_dec_send_in_progress(send_root);
7502 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7503 btrfs_root_dec_send_in_progress(sctx->parent_root);
7504 btrfs_put_root(sctx->parent_root);
7507 kvfree(clone_sources_tmp);
7510 if (sctx->send_filp)
7511 fput(sctx->send_filp);
7513 kvfree(sctx->clone_roots);
7514 kvfree(sctx->send_buf);
7516 name_cache_free(sctx);