2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <drm/drm_vma_manager.h>
29 #include <drm/i915_drm.h>
30 #include <linux/dma-fence-array.h>
31 #include <linux/kthread.h>
32 #include <linux/dma-resv.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/stop_machine.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 #include <linux/mman.h>
41 #include "display/intel_display.h"
42 #include "display/intel_frontbuffer.h"
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_pm.h"
48 #include "gem/i915_gemfs.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_mocs.h"
53 #include "gt/intel_reset.h"
54 #include "gt/intel_renderstate.h"
55 #include "gt/intel_workarounds.h"
58 #include "i915_scatterlist.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
65 insert_mappable_node(struct i915_ggtt *ggtt,
66 struct drm_mm_node *node, u32 size)
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
76 remove_mappable_node(struct drm_mm_node *node)
78 drm_mm_remove_node(node);
82 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file)
85 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86 struct drm_i915_gem_get_aperture *args = data;
90 mutex_lock(&ggtt->vm.mutex);
92 pinned = ggtt->vm.reserved;
93 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94 if (i915_vma_is_pinned(vma))
95 pinned += vma->node.size;
97 mutex_unlock(&ggtt->vm.mutex);
99 args->aper_size = ggtt->vm.total;
100 args->aper_available_size = args->aper_size - pinned;
105 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
108 struct i915_vma *vma;
109 LIST_HEAD(still_in_list);
112 lockdep_assert_held(&obj->base.dev->struct_mutex);
114 spin_lock(&obj->vma.lock);
115 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
118 list_move_tail(&vma->obj_link, &still_in_list);
119 spin_unlock(&obj->vma.lock);
122 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
123 !i915_vma_is_active(vma))
124 ret = i915_vma_unbind(vma);
126 spin_lock(&obj->vma.lock);
128 list_splice(&still_in_list, &obj->vma.list);
129 spin_unlock(&obj->vma.lock);
135 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
136 struct drm_i915_gem_pwrite *args,
137 struct drm_file *file)
139 void *vaddr = obj->phys_handle->vaddr + args->offset;
140 char __user *user_data = u64_to_user_ptr(args->data_ptr);
143 * We manually control the domain here and pretend that it
144 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
146 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
148 if (copy_from_user(vaddr, user_data, args->size))
151 drm_clflush_virt_range(vaddr, args->size);
152 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
154 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
159 i915_gem_create(struct drm_file *file,
160 struct drm_i915_private *dev_priv,
164 struct drm_i915_gem_object *obj;
169 size = round_up(*size_p, PAGE_SIZE);
173 /* Allocate the new object */
174 obj = i915_gem_object_create_shmem(dev_priv, size);
178 ret = drm_gem_handle_create(file, &obj->base, &handle);
179 /* drop reference from allocate - handle holds it now */
180 i915_gem_object_put(obj);
190 i915_gem_dumb_create(struct drm_file *file,
191 struct drm_device *dev,
192 struct drm_mode_create_dumb *args)
194 int cpp = DIV_ROUND_UP(args->bpp, 8);
199 format = DRM_FORMAT_C8;
202 format = DRM_FORMAT_RGB565;
205 format = DRM_FORMAT_XRGB8888;
211 /* have to work out size/pitch and return them */
212 args->pitch = ALIGN(args->width * cpp, 64);
214 /* align stride to page size so that we can remap */
215 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
216 DRM_FORMAT_MOD_LINEAR))
217 args->pitch = ALIGN(args->pitch, 4096);
219 args->size = args->pitch * args->height;
220 return i915_gem_create(file, to_i915(dev),
221 &args->size, &args->handle);
225 * Creates a new mm object and returns a handle to it.
226 * @dev: drm device pointer
227 * @data: ioctl data blob
228 * @file: drm file pointer
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file)
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct drm_i915_gem_create *args = data;
237 i915_gem_flush_free_objects(dev_priv);
239 return i915_gem_create(file, dev_priv,
240 &args->size, &args->handle);
244 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
253 drm_clflush_virt_range(vaddr + offset, len);
255 ret = __copy_to_user(user_data, vaddr + offset, len);
259 return ret ? -EFAULT : 0;
263 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
264 struct drm_i915_gem_pread *args)
266 unsigned int needs_clflush;
267 unsigned int idx, offset;
268 struct dma_fence *fence;
269 char __user *user_data;
273 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
277 fence = i915_gem_object_lock_fence(obj);
278 i915_gem_object_finish_access(obj);
283 user_data = u64_to_user_ptr(args->data_ptr);
284 offset = offset_in_page(args->offset);
285 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
286 struct page *page = i915_gem_object_get_page(obj, idx);
287 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
289 ret = shmem_pread(page, offset, length, user_data,
299 i915_gem_object_unlock_fence(obj, fence);
304 gtt_user_read(struct io_mapping *mapping,
305 loff_t base, int offset,
306 char __user *user_data, int length)
309 unsigned long unwritten;
311 /* We can use the cpu mem copy function because this is X86. */
312 vaddr = io_mapping_map_atomic_wc(mapping, base);
313 unwritten = __copy_to_user_inatomic(user_data,
314 (void __force *)vaddr + offset,
316 io_mapping_unmap_atomic(vaddr);
318 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
319 unwritten = copy_to_user(user_data,
320 (void __force *)vaddr + offset,
322 io_mapping_unmap(vaddr);
328 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
329 const struct drm_i915_gem_pread *args)
331 struct drm_i915_private *i915 = to_i915(obj->base.dev);
332 struct i915_ggtt *ggtt = &i915->ggtt;
333 intel_wakeref_t wakeref;
334 struct drm_mm_node node;
335 struct dma_fence *fence;
336 void __user *user_data;
337 struct i915_vma *vma;
341 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
345 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346 vma = ERR_PTR(-ENODEV);
347 if (!i915_gem_object_is_tiled(obj))
348 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
350 PIN_NONBLOCK /* NOWARN */ |
353 node.start = i915_ggtt_offset(vma);
354 node.allocated = false;
356 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
359 GEM_BUG_ON(!node.allocated);
362 mutex_unlock(&i915->drm.struct_mutex);
364 ret = i915_gem_object_lock_interruptible(obj);
368 ret = i915_gem_object_set_to_gtt_domain(obj, false);
370 i915_gem_object_unlock(obj);
374 fence = i915_gem_object_lock_fence(obj);
375 i915_gem_object_unlock(obj);
381 user_data = u64_to_user_ptr(args->data_ptr);
383 offset = args->offset;
386 /* Operation in this page
388 * page_base = page offset within aperture
389 * page_offset = offset within page
390 * page_length = bytes to copy for this page
392 u32 page_base = node.start;
393 unsigned page_offset = offset_in_page(offset);
394 unsigned page_length = PAGE_SIZE - page_offset;
395 page_length = remain < page_length ? remain : page_length;
396 if (node.allocated) {
397 ggtt->vm.insert_page(&ggtt->vm,
398 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
399 node.start, I915_CACHE_NONE, 0);
401 page_base += offset & PAGE_MASK;
404 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
405 user_data, page_length)) {
410 remain -= page_length;
411 user_data += page_length;
412 offset += page_length;
415 i915_gem_object_unlock_fence(obj, fence);
417 mutex_lock(&i915->drm.struct_mutex);
418 if (node.allocated) {
419 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 remove_mappable_node(&node);
425 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426 mutex_unlock(&i915->drm.struct_mutex);
432 * Reads data from the object referenced by handle.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
437 * On error, the contents of *data are undefined.
440 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
443 struct drm_i915_gem_pread *args = data;
444 struct drm_i915_gem_object *obj;
450 if (!access_ok(u64_to_user_ptr(args->data_ptr),
454 obj = i915_gem_object_lookup(file, args->handle);
458 /* Bounds check source. */
459 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
464 trace_i915_gem_object_pread(obj, args->offset, args->size);
466 ret = i915_gem_object_wait(obj,
467 I915_WAIT_INTERRUPTIBLE,
468 MAX_SCHEDULE_TIMEOUT);
472 ret = i915_gem_object_pin_pages(obj);
476 ret = i915_gem_shmem_pread(obj, args);
477 if (ret == -EFAULT || ret == -ENODEV)
478 ret = i915_gem_gtt_pread(obj, args);
480 i915_gem_object_unpin_pages(obj);
482 i915_gem_object_put(obj);
486 /* This is the fast write path which cannot handle
487 * page faults in the source data
491 ggtt_write(struct io_mapping *mapping,
492 loff_t base, int offset,
493 char __user *user_data, int length)
496 unsigned long unwritten;
498 /* We can use the cpu mem copy function because this is X86. */
499 vaddr = io_mapping_map_atomic_wc(mapping, base);
500 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
502 io_mapping_unmap_atomic(vaddr);
504 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
505 unwritten = copy_from_user((void __force *)vaddr + offset,
507 io_mapping_unmap(vaddr);
514 * This is the fast pwrite path, where we copy the data directly from the
515 * user into the GTT, uncached.
516 * @obj: i915 GEM object
517 * @args: pwrite arguments structure
520 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
521 const struct drm_i915_gem_pwrite *args)
523 struct drm_i915_private *i915 = to_i915(obj->base.dev);
524 struct i915_ggtt *ggtt = &i915->ggtt;
525 struct intel_runtime_pm *rpm = &i915->runtime_pm;
526 intel_wakeref_t wakeref;
527 struct drm_mm_node node;
528 struct dma_fence *fence;
529 struct i915_vma *vma;
531 void __user *user_data;
534 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
538 if (i915_gem_object_has_struct_page(obj)) {
540 * Avoid waking the device up if we can fallback, as
541 * waking/resuming is very slow (worst-case 10-100 ms
542 * depending on PCI sleeps and our own resume time).
543 * This easily dwarfs any performance advantage from
544 * using the cache bypass of indirect GGTT access.
546 wakeref = intel_runtime_pm_get_if_in_use(rpm);
552 /* No backing pages, no fallback, we must force GGTT access */
553 wakeref = intel_runtime_pm_get(rpm);
556 vma = ERR_PTR(-ENODEV);
557 if (!i915_gem_object_is_tiled(obj))
558 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
560 PIN_NONBLOCK /* NOWARN */ |
563 node.start = i915_ggtt_offset(vma);
564 node.allocated = false;
566 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
569 GEM_BUG_ON(!node.allocated);
572 mutex_unlock(&i915->drm.struct_mutex);
574 ret = i915_gem_object_lock_interruptible(obj);
578 ret = i915_gem_object_set_to_gtt_domain(obj, true);
580 i915_gem_object_unlock(obj);
584 fence = i915_gem_object_lock_fence(obj);
585 i915_gem_object_unlock(obj);
591 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
593 user_data = u64_to_user_ptr(args->data_ptr);
594 offset = args->offset;
597 /* Operation in this page
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
603 u32 page_base = node.start;
604 unsigned int page_offset = offset_in_page(offset);
605 unsigned int page_length = PAGE_SIZE - page_offset;
606 page_length = remain < page_length ? remain : page_length;
607 if (node.allocated) {
608 /* flush the write before we modify the GGTT */
609 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
610 ggtt->vm.insert_page(&ggtt->vm,
611 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
612 node.start, I915_CACHE_NONE, 0);
613 wmb(); /* flush modifications to the GGTT (insert_page) */
615 page_base += offset & PAGE_MASK;
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
620 * If the object is non-shmem backed, we retry again with the
621 * path that handles page fault.
623 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
624 user_data, page_length)) {
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
633 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
635 i915_gem_object_unlock_fence(obj, fence);
637 mutex_lock(&i915->drm.struct_mutex);
638 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639 if (node.allocated) {
640 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 remove_mappable_node(&node);
646 intel_runtime_pm_put(rpm, wakeref);
648 mutex_unlock(&i915->drm.struct_mutex);
652 /* Per-page copy function for the shmem pwrite fastpath.
653 * Flushes invalid cachelines before writing to the target if
654 * needs_clflush_before is set and flushes out any written cachelines after
655 * writing if needs_clflush is set.
658 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
667 if (needs_clflush_before)
668 drm_clflush_virt_range(vaddr + offset, len);
670 ret = __copy_from_user(vaddr + offset, user_data, len);
671 if (!ret && needs_clflush_after)
672 drm_clflush_virt_range(vaddr + offset, len);
676 return ret ? -EFAULT : 0;
680 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
681 const struct drm_i915_gem_pwrite *args)
683 unsigned int partial_cacheline_write;
684 unsigned int needs_clflush;
685 unsigned int offset, idx;
686 struct dma_fence *fence;
687 void __user *user_data;
691 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
695 fence = i915_gem_object_lock_fence(obj);
696 i915_gem_object_finish_access(obj);
700 /* If we don't overwrite a cacheline completely we need to be
701 * careful to have up-to-date data by first clflushing. Don't
702 * overcomplicate things and flush the entire patch.
704 partial_cacheline_write = 0;
705 if (needs_clflush & CLFLUSH_BEFORE)
706 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
708 user_data = u64_to_user_ptr(args->data_ptr);
710 offset = offset_in_page(args->offset);
711 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
712 struct page *page = i915_gem_object_get_page(obj, idx);
713 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
715 ret = shmem_pwrite(page, offset, length, user_data,
716 (offset | length) & partial_cacheline_write,
717 needs_clflush & CLFLUSH_AFTER);
726 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
727 i915_gem_object_unlock_fence(obj, fence);
733 * Writes data to the object referenced by handle.
735 * @data: ioctl data blob
738 * On error, the contents of the buffer that were to be modified are undefined.
741 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
742 struct drm_file *file)
744 struct drm_i915_gem_pwrite *args = data;
745 struct drm_i915_gem_object *obj;
751 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
754 obj = i915_gem_object_lookup(file, args->handle);
758 /* Bounds check destination. */
759 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
764 /* Writes not allowed into this read-only object */
765 if (i915_gem_object_is_readonly(obj)) {
770 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
773 if (obj->ops->pwrite)
774 ret = obj->ops->pwrite(obj, args);
778 ret = i915_gem_object_wait(obj,
779 I915_WAIT_INTERRUPTIBLE |
781 MAX_SCHEDULE_TIMEOUT);
785 ret = i915_gem_object_pin_pages(obj);
790 /* We can only do the GTT pwrite on untiled buffers, as otherwise
791 * it would end up going through the fenced access, and we'll get
792 * different detiling behavior between reading and writing.
793 * pread/pwrite currently are reading and writing from the CPU
794 * perspective, requiring manual detiling by the client.
796 if (!i915_gem_object_has_struct_page(obj) ||
797 cpu_write_needs_clflush(obj))
798 /* Note that the gtt paths might fail with non-page-backed user
799 * pointers (e.g. gtt mappings when moving data between
800 * textures). Fallback to the shmem path in that case.
802 ret = i915_gem_gtt_pwrite_fast(obj, args);
804 if (ret == -EFAULT || ret == -ENOSPC) {
805 if (obj->phys_handle)
806 ret = i915_gem_phys_pwrite(obj, args, file);
808 ret = i915_gem_shmem_pwrite(obj, args);
811 i915_gem_object_unpin_pages(obj);
813 i915_gem_object_put(obj);
818 * Called when user space has done writes to this buffer
820 * @data: ioctl data blob
824 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
825 struct drm_file *file)
827 struct drm_i915_gem_sw_finish *args = data;
828 struct drm_i915_gem_object *obj;
830 obj = i915_gem_object_lookup(file, args->handle);
835 * Proxy objects are barred from CPU access, so there is no
836 * need to ban sw_finish as it is a nop.
839 /* Pinned buffers may be scanout, so flush the cache */
840 i915_gem_object_flush_if_display(obj);
841 i915_gem_object_put(obj);
846 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
848 struct drm_i915_gem_object *obj, *on;
852 * Only called during RPM suspend. All users of the userfault_list
853 * must be holding an RPM wakeref to ensure that this can not
854 * run concurrently with themselves (and use the struct_mutex for
855 * protection between themselves).
858 list_for_each_entry_safe(obj, on,
859 &i915->ggtt.userfault_list, userfault_link)
860 __i915_gem_object_release_mmap(obj);
863 * The fence will be lost when the device powers down. If any were
864 * in use by hardware (i.e. they are pinned), we should not be powering
865 * down! All other fences will be reacquired by the user upon waking.
867 for (i = 0; i < i915->ggtt.num_fences; i++) {
868 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
871 * Ideally we want to assert that the fence register is not
872 * live at this point (i.e. that no piece of code will be
873 * trying to write through fence + GTT, as that both violates
874 * our tracking of activity and associated locking/barriers,
875 * but also is illegal given that the hw is powered down).
877 * Previously we used reg->pin_count as a "liveness" indicator.
878 * That is not sufficient, and we need a more fine-grained
879 * tool if we want to have a sanity check here.
885 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
891 wait_for_timelines(struct drm_i915_private *i915,
892 unsigned int wait, long timeout)
894 struct intel_gt_timelines *timelines = &i915->gt.timelines;
895 struct intel_timeline *tl;
898 spin_lock_irqsave(&timelines->lock, flags);
899 list_for_each_entry(tl, &timelines->active_list, link) {
900 struct i915_request *rq;
902 rq = i915_active_request_get_unlocked(&tl->last_request);
906 spin_unlock_irqrestore(&timelines->lock, flags);
911 * Switching to the kernel context is often used a synchronous
912 * step prior to idling, e.g. in suspend for flushing all
913 * current operations to memory before sleeping. These we
914 * want to complete as quickly as possible to avoid prolonged
915 * stalls, so allow the gpu to boost to maximum clocks.
917 if (wait & I915_WAIT_FOR_IDLE_BOOST)
920 timeout = i915_request_wait(rq, wait, timeout);
921 i915_request_put(rq);
925 /* restart after reacquiring the lock */
926 spin_lock_irqsave(&timelines->lock, flags);
927 tl = list_entry(&timelines->active_list, typeof(*tl), link);
929 spin_unlock_irqrestore(&timelines->lock, flags);
934 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
935 unsigned int flags, long timeout)
937 /* If the device is asleep, we have no requests outstanding */
938 if (!intel_gt_pm_is_awake(&i915->gt))
941 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
942 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
943 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
945 timeout = wait_for_timelines(i915, flags, timeout);
949 if (flags & I915_WAIT_LOCKED) {
950 lockdep_assert_held(&i915->drm.struct_mutex);
952 i915_retire_requests(i915);
959 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
960 const struct i915_ggtt_view *view,
965 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
966 struct i915_address_space *vm = &dev_priv->ggtt.vm;
967 struct i915_vma *vma;
970 lockdep_assert_held(&obj->base.dev->struct_mutex);
972 if (i915_gem_object_never_bind_ggtt(obj))
973 return ERR_PTR(-ENODEV);
975 if (flags & PIN_MAPPABLE &&
976 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
977 /* If the required space is larger than the available
978 * aperture, we will not able to find a slot for the
979 * object and unbinding the object now will be in
980 * vain. Worse, doing so may cause us to ping-pong
981 * the object in and out of the Global GTT and
982 * waste a lot of cycles under the mutex.
984 if (obj->base.size > dev_priv->ggtt.mappable_end)
985 return ERR_PTR(-E2BIG);
987 /* If NONBLOCK is set the caller is optimistically
988 * trying to cache the full object within the mappable
989 * aperture, and *must* have a fallback in place for
990 * situations where we cannot bind the object. We
991 * can be a little more lax here and use the fallback
992 * more often to avoid costly migrations of ourselves
993 * and other objects within the aperture.
995 * Half-the-aperture is used as a simple heuristic.
996 * More interesting would to do search for a free
997 * block prior to making the commitment to unbind.
998 * That caters for the self-harm case, and with a
999 * little more heuristics (e.g. NOFAULT, NOEVICT)
1000 * we could try to minimise harm to others.
1002 if (flags & PIN_NONBLOCK &&
1003 obj->base.size > dev_priv->ggtt.mappable_end / 2)
1004 return ERR_PTR(-ENOSPC);
1007 vma = i915_vma_instance(obj, vm, view);
1011 if (i915_vma_misplaced(vma, size, alignment, flags)) {
1012 if (flags & PIN_NONBLOCK) {
1013 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1014 return ERR_PTR(-ENOSPC);
1016 if (flags & PIN_MAPPABLE &&
1017 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1018 return ERR_PTR(-ENOSPC);
1021 WARN(i915_vma_is_pinned(vma),
1022 "bo is already pinned in ggtt with incorrect alignment:"
1023 " offset=%08x, req.alignment=%llx,"
1024 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
1025 i915_ggtt_offset(vma), alignment,
1026 !!(flags & PIN_MAPPABLE),
1027 i915_vma_is_map_and_fenceable(vma));
1028 ret = i915_vma_unbind(vma);
1030 return ERR_PTR(ret);
1033 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1034 mutex_lock(&vma->vm->mutex);
1035 ret = i915_vma_revoke_fence(vma);
1036 mutex_unlock(&vma->vm->mutex);
1038 return ERR_PTR(ret);
1041 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
1043 return ERR_PTR(ret);
1049 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1050 struct drm_file *file_priv)
1052 struct drm_i915_private *i915 = to_i915(dev);
1053 struct drm_i915_gem_madvise *args = data;
1054 struct drm_i915_gem_object *obj;
1057 switch (args->madv) {
1058 case I915_MADV_DONTNEED:
1059 case I915_MADV_WILLNEED:
1065 obj = i915_gem_object_lookup(file_priv, args->handle);
1069 err = mutex_lock_interruptible(&obj->mm.lock);
1073 if (i915_gem_object_has_pages(obj) &&
1074 i915_gem_object_is_tiled(obj) &&
1075 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1076 if (obj->mm.madv == I915_MADV_WILLNEED) {
1077 GEM_BUG_ON(!obj->mm.quirked);
1078 __i915_gem_object_unpin_pages(obj);
1079 obj->mm.quirked = false;
1081 if (args->madv == I915_MADV_WILLNEED) {
1082 GEM_BUG_ON(obj->mm.quirked);
1083 __i915_gem_object_pin_pages(obj);
1084 obj->mm.quirked = true;
1088 if (obj->mm.madv != __I915_MADV_PURGED)
1089 obj->mm.madv = args->madv;
1091 if (i915_gem_object_has_pages(obj)) {
1092 struct list_head *list;
1094 if (i915_gem_object_is_shrinkable(obj)) {
1095 unsigned long flags;
1097 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1099 if (obj->mm.madv != I915_MADV_WILLNEED)
1100 list = &i915->mm.purge_list;
1102 list = &i915->mm.shrink_list;
1103 list_move_tail(&obj->mm.link, list);
1105 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1109 /* if the object is no longer attached, discard its backing storage */
1110 if (obj->mm.madv == I915_MADV_DONTNEED &&
1111 !i915_gem_object_has_pages(obj))
1112 i915_gem_object_truncate(obj);
1114 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1115 mutex_unlock(&obj->mm.lock);
1118 i915_gem_object_put(obj);
1122 void i915_gem_sanitize(struct drm_i915_private *i915)
1124 intel_wakeref_t wakeref;
1128 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1129 intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1132 * As we have just resumed the machine and woken the device up from
1133 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
1134 * back to defaults, recovering from whatever wedged state we left it
1135 * in and so worth trying to use the device once more.
1137 if (intel_gt_is_wedged(&i915->gt))
1138 intel_gt_unset_wedged(&i915->gt);
1141 * If we inherit context state from the BIOS or earlier occupants
1142 * of the GPU, the GPU may be in an inconsistent state when we
1143 * try to take over. The only way to remove the earlier state
1144 * is by resetting. However, resetting on earlier gen is tricky as
1145 * it may impact the display and we are uncertain about the stability
1146 * of the reset, so this could be applied to even earlier gen.
1148 intel_gt_sanitize(&i915->gt, false);
1150 intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1151 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1154 static void init_unused_ring(struct intel_gt *gt, u32 base)
1156 struct intel_uncore *uncore = gt->uncore;
1158 intel_uncore_write(uncore, RING_CTL(base), 0);
1159 intel_uncore_write(uncore, RING_HEAD(base), 0);
1160 intel_uncore_write(uncore, RING_TAIL(base), 0);
1161 intel_uncore_write(uncore, RING_START(base), 0);
1164 static void init_unused_rings(struct intel_gt *gt)
1166 struct drm_i915_private *i915 = gt->i915;
1168 if (IS_I830(i915)) {
1169 init_unused_ring(gt, PRB1_BASE);
1170 init_unused_ring(gt, SRB0_BASE);
1171 init_unused_ring(gt, SRB1_BASE);
1172 init_unused_ring(gt, SRB2_BASE);
1173 init_unused_ring(gt, SRB3_BASE);
1174 } else if (IS_GEN(i915, 2)) {
1175 init_unused_ring(gt, SRB0_BASE);
1176 init_unused_ring(gt, SRB1_BASE);
1177 } else if (IS_GEN(i915, 3)) {
1178 init_unused_ring(gt, PRB1_BASE);
1179 init_unused_ring(gt, PRB2_BASE);
1183 int i915_gem_init_hw(struct drm_i915_private *i915)
1185 struct intel_uncore *uncore = &i915->uncore;
1186 struct intel_gt *gt = &i915->gt;
1189 BUG_ON(!i915->kernel_context);
1190 ret = intel_gt_terminally_wedged(gt);
1194 gt->last_init_time = ktime_get();
1196 /* Double layer security blanket, see i915_gem_init() */
1197 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1199 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
1200 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1202 if (IS_HASWELL(i915))
1203 intel_uncore_write(uncore,
1204 MI_PREDICATE_RESULT_2,
1206 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1208 /* Apply the GT workarounds... */
1209 intel_gt_apply_workarounds(gt);
1210 /* ...and determine whether they are sticking. */
1211 intel_gt_verify_workarounds(gt, "init");
1213 intel_gt_init_swizzling(gt);
1216 * At least 830 can leave some of the unused rings
1217 * "active" (ie. head != tail) after resume which
1218 * will prevent c3 entry. Makes sure all unused rings
1221 init_unused_rings(gt);
1223 ret = i915_ppgtt_init_hw(gt);
1225 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1229 /* We can't enable contexts until all firmware is loaded */
1230 ret = intel_uc_init_hw(>->uc);
1232 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1236 intel_mocs_init(gt);
1239 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1243 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
1245 struct i915_request *requests[I915_NUM_ENGINES] = {};
1246 struct intel_engine_cs *engine;
1247 enum intel_engine_id id;
1251 * As we reset the gpu during very early sanitisation, the current
1252 * register state on the GPU should reflect its defaults values.
1253 * We load a context onto the hw (with restore-inhibit), then switch
1254 * over to a second context to save that default register state. We
1255 * can then prime every new context with that state so they all start
1256 * from the same default HW values.
1259 for_each_engine(engine, i915, id) {
1260 struct intel_context *ce;
1261 struct i915_request *rq;
1263 /* We must be able to switch to something! */
1264 GEM_BUG_ON(!engine->kernel_context);
1265 engine->serial++; /* force the kernel context switch */
1267 ce = intel_context_create(i915->kernel_context, engine);
1273 rq = intel_context_create_request(ce);
1276 intel_context_put(ce);
1280 err = intel_engine_emit_ctx_wa(rq);
1285 * Failing to program the MOCS is non-fatal.The system will not
1286 * run at peak performance. So warn the user and carry on.
1288 err = intel_mocs_emit(rq);
1290 dev_notice(i915->drm.dev,
1291 "Failed to program MOCS registers; expect performance issues.\n");
1293 err = intel_renderstate_emit(rq);
1298 requests[id] = i915_request_get(rq);
1299 i915_request_add(rq);
1304 /* Flush the default context image to memory, and enable powersaving. */
1305 if (!i915_gem_load_power_context(i915)) {
1310 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1311 struct i915_request *rq;
1312 struct i915_vma *state;
1319 /* We want to be able to unbind the state from the GGTT */
1320 GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1322 state = rq->hw_context->state;
1327 * As we will hold a reference to the logical state, it will
1328 * not be torn down with the context, and importantly the
1329 * object will hold onto its vma (making it possible for a
1330 * stray GTT write to corrupt our defaults). Unmap the vma
1331 * from the GTT to prevent such accidents and reclaim the
1334 err = i915_vma_unbind(state);
1338 i915_gem_object_lock(state->obj);
1339 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1340 i915_gem_object_unlock(state->obj);
1344 i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1346 /* Check we can acquire the image of the context state */
1347 vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1348 if (IS_ERR(vaddr)) {
1349 err = PTR_ERR(vaddr);
1353 rq->engine->default_state = i915_gem_object_get(state->obj);
1354 i915_gem_object_unpin_map(state->obj);
1359 * If we have to abandon now, we expect the engines to be idle
1360 * and ready to be torn-down. The quickest way we can accomplish
1361 * this is by declaring ourselves wedged.
1364 intel_gt_set_wedged(&i915->gt);
1366 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1367 struct intel_context *ce;
1368 struct i915_request *rq;
1374 ce = rq->hw_context;
1375 i915_request_put(rq);
1376 intel_context_put(ce);
1382 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
1384 return intel_gt_init_scratch(&i915->gt, size);
1387 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
1389 intel_gt_fini_scratch(&i915->gt);
1392 static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
1394 struct intel_engine_cs *engine;
1395 enum intel_engine_id id;
1398 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1401 for_each_engine(engine, i915, id) {
1402 if (intel_engine_verify_workarounds(engine, "load"))
1409 int i915_gem_init(struct drm_i915_private *dev_priv)
1413 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1414 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1415 mkwrite_device_info(dev_priv)->page_sizes =
1416 I915_GTT_PAGE_SIZE_4K;
1418 intel_timelines_init(dev_priv);
1420 ret = i915_gem_init_userptr(dev_priv);
1424 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1425 intel_wopcm_init(&dev_priv->wopcm);
1427 /* This is just a security blanket to placate dragons.
1428 * On some systems, we very sporadically observe that the first TLBs
1429 * used by the CS may be stale, despite us poking the TLB reset. If
1430 * we hold the forcewake during initialisation these problems
1431 * just magically go away.
1433 mutex_lock(&dev_priv->drm.struct_mutex);
1434 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1436 ret = i915_init_ggtt(dev_priv);
1438 GEM_BUG_ON(ret == -EIO);
1442 ret = i915_gem_init_scratch(dev_priv,
1443 IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1445 GEM_BUG_ON(ret == -EIO);
1449 ret = intel_engines_setup(dev_priv);
1451 GEM_BUG_ON(ret == -EIO);
1455 ret = i915_gem_contexts_init(dev_priv);
1457 GEM_BUG_ON(ret == -EIO);
1461 ret = intel_engines_init(dev_priv);
1463 GEM_BUG_ON(ret == -EIO);
1467 intel_init_gt_powersave(dev_priv);
1469 intel_uc_init(&dev_priv->gt.uc);
1471 ret = i915_gem_init_hw(dev_priv);
1475 /* Only when the HW is re-initialised, can we replay the requests */
1476 ret = intel_gt_resume(&dev_priv->gt);
1481 * Despite its name intel_init_clock_gating applies both display
1482 * clock gating workarounds; GT mmio workarounds and the occasional
1483 * GT power context workaround. Worse, sometimes it includes a context
1484 * register workaround which we need to apply before we record the
1485 * default HW state for all contexts.
1487 * FIXME: break up the workarounds and apply them at the right time!
1489 intel_init_clock_gating(dev_priv);
1491 ret = intel_engines_verify_workarounds(dev_priv);
1495 ret = __intel_engines_record_defaults(dev_priv);
1499 ret = i915_inject_load_error(dev_priv, -ENODEV);
1503 ret = i915_inject_load_error(dev_priv, -EIO);
1507 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1508 mutex_unlock(&dev_priv->drm.struct_mutex);
1513 * Unwinding is complicated by that we want to handle -EIO to mean
1514 * disable GPU submission but keep KMS alive. We want to mark the
1515 * HW as irrevisibly wedged, but keep enough state around that the
1516 * driver doesn't explode during runtime.
1519 mutex_unlock(&dev_priv->drm.struct_mutex);
1521 intel_gt_set_wedged(&dev_priv->gt);
1522 i915_gem_suspend(dev_priv);
1523 i915_gem_suspend_late(dev_priv);
1525 i915_gem_drain_workqueue(dev_priv);
1527 mutex_lock(&dev_priv->drm.struct_mutex);
1529 intel_uc_fini_hw(&dev_priv->gt.uc);
1532 intel_uc_fini(&dev_priv->gt.uc);
1533 intel_cleanup_gt_powersave(dev_priv);
1534 intel_engines_cleanup(dev_priv);
1538 i915_gem_contexts_fini(dev_priv);
1540 i915_gem_fini_scratch(dev_priv);
1543 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1544 mutex_unlock(&dev_priv->drm.struct_mutex);
1547 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1548 i915_gem_cleanup_userptr(dev_priv);
1549 intel_timelines_fini(dev_priv);
1553 mutex_lock(&dev_priv->drm.struct_mutex);
1556 * Allow engines or uC initialisation to fail by marking the GPU
1557 * as wedged. But we only want to do this when the GPU is angry,
1558 * for all other failure, such as an allocation failure, bail.
1560 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1561 i915_probe_error(dev_priv,
1562 "Failed to initialize GPU, declaring it wedged!\n");
1563 intel_gt_set_wedged(&dev_priv->gt);
1566 /* Minimal basic recovery for KMS */
1567 ret = i915_ggtt_enable_hw(dev_priv);
1568 i915_gem_restore_gtt_mappings(dev_priv);
1569 i915_gem_restore_fences(dev_priv);
1570 intel_init_clock_gating(dev_priv);
1572 mutex_unlock(&dev_priv->drm.struct_mutex);
1575 i915_gem_drain_freed_objects(dev_priv);
1579 void i915_gem_driver_register(struct drm_i915_private *i915)
1581 i915_gem_driver_register__shrinker(i915);
1583 intel_engines_driver_register(i915);
1586 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1588 i915_gem_driver_unregister__shrinker(i915);
1591 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1593 GEM_BUG_ON(dev_priv->gt.awake);
1595 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1597 i915_gem_suspend_late(dev_priv);
1598 intel_disable_gt_powersave(dev_priv);
1600 /* Flush any outstanding unpin_work. */
1601 i915_gem_drain_workqueue(dev_priv);
1603 mutex_lock(&dev_priv->drm.struct_mutex);
1604 intel_uc_fini_hw(&dev_priv->gt.uc);
1605 intel_uc_fini(&dev_priv->gt.uc);
1606 mutex_unlock(&dev_priv->drm.struct_mutex);
1608 i915_gem_drain_freed_objects(dev_priv);
1611 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1613 mutex_lock(&dev_priv->drm.struct_mutex);
1614 intel_engines_cleanup(dev_priv);
1615 i915_gem_contexts_fini(dev_priv);
1616 i915_gem_fini_scratch(dev_priv);
1617 mutex_unlock(&dev_priv->drm.struct_mutex);
1619 intel_wa_list_free(&dev_priv->gt_wa_list);
1621 intel_cleanup_gt_powersave(dev_priv);
1623 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1624 i915_gem_cleanup_userptr(dev_priv);
1625 intel_timelines_fini(dev_priv);
1627 i915_gem_drain_freed_objects(dev_priv);
1629 WARN_ON(!list_empty(&dev_priv->contexts.list));
1632 void i915_gem_init_mmio(struct drm_i915_private *i915)
1634 i915_gem_sanitize(i915);
1637 static void i915_gem_init__mm(struct drm_i915_private *i915)
1639 spin_lock_init(&i915->mm.obj_lock);
1641 init_llist_head(&i915->mm.free_list);
1643 INIT_LIST_HEAD(&i915->mm.purge_list);
1644 INIT_LIST_HEAD(&i915->mm.shrink_list);
1646 i915_gem_init__objects(i915);
1649 int i915_gem_init_early(struct drm_i915_private *dev_priv)
1653 i915_gem_init__mm(dev_priv);
1654 i915_gem_init__pm(dev_priv);
1656 spin_lock_init(&dev_priv->fb_tracking.lock);
1658 err = i915_gemfs_init(dev_priv);
1660 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
1665 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1667 i915_gem_drain_freed_objects(dev_priv);
1668 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1669 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1670 WARN_ON(dev_priv->mm.shrink_count);
1672 i915_gemfs_fini(dev_priv);
1675 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1677 /* Discard all purgeable objects, let userspace recover those as
1678 * required after resuming.
1680 i915_gem_shrink_all(dev_priv);
1685 int i915_gem_freeze_late(struct drm_i915_private *i915)
1687 struct drm_i915_gem_object *obj;
1688 intel_wakeref_t wakeref;
1691 * Called just before we write the hibernation image.
1693 * We need to update the domain tracking to reflect that the CPU
1694 * will be accessing all the pages to create and restore from the
1695 * hibernation, and so upon restoration those pages will be in the
1698 * To make sure the hibernation image contains the latest state,
1699 * we update that state just before writing out the image.
1701 * To try and reduce the hibernation image, we manually shrink
1702 * the objects as well, see i915_gem_freeze()
1705 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1707 i915_gem_shrink(i915, -1UL, NULL, ~0);
1708 i915_gem_drain_freed_objects(i915);
1710 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1711 i915_gem_object_lock(obj);
1712 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1713 i915_gem_object_unlock(obj);
1716 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1721 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1723 struct drm_i915_file_private *file_priv = file->driver_priv;
1724 struct i915_request *request;
1726 /* Clean up our request list when the client is going away, so that
1727 * later retire_requests won't dereference our soon-to-be-gone
1730 spin_lock(&file_priv->mm.lock);
1731 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1732 request->file_priv = NULL;
1733 spin_unlock(&file_priv->mm.lock);
1736 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1738 struct drm_i915_file_private *file_priv;
1743 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1747 file->driver_priv = file_priv;
1748 file_priv->dev_priv = i915;
1749 file_priv->file = file;
1751 spin_lock_init(&file_priv->mm.lock);
1752 INIT_LIST_HEAD(&file_priv->mm.request_list);
1754 file_priv->bsd_engine = -1;
1755 file_priv->hang_timestamp = jiffies;
1757 ret = i915_gem_context_open(i915, file);
1764 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1765 #include "selftests/mock_gem_device.c"
1766 #include "selftests/i915_gem.c"