1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
32 struct anon_vma_chain;
35 struct writeback_control;
38 void init_mm_internals(void);
40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
43 static inline void set_max_mapnr(unsigned long limit)
48 static inline void set_max_mapnr(unsigned long limit) { }
51 extern atomic_long_t _totalram_pages;
52 static inline unsigned long totalram_pages(void)
54 return (unsigned long)atomic_long_read(&_totalram_pages);
57 static inline void totalram_pages_inc(void)
59 atomic_long_inc(&_totalram_pages);
62 static inline void totalram_pages_dec(void)
64 atomic_long_dec(&_totalram_pages);
67 static inline void totalram_pages_add(long count)
69 atomic_long_add(count, &_totalram_pages);
72 static inline void totalram_pages_set(long val)
74 atomic_long_set(&_totalram_pages, val);
77 extern void * high_memory;
78 extern int page_cluster;
81 extern int sysctl_legacy_va_layout;
83 #define sysctl_legacy_va_layout 0
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern const int mmap_rnd_bits_max;
89 extern int mmap_rnd_bits __read_mostly;
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
98 #include <asm/pgtable.h>
99 #include <asm/processor.h>
102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
110 #define lm_alias(x) __va(__pa_symbol(x))
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X) (0)
125 * On some architectures it is expensive to call memset() for small sizes.
126 * Those architectures should provide their own implementation of "struct page"
127 * zeroing by defining this macro in <asm/pgtable.h>.
129 #ifndef mm_zero_struct_page
130 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
134 * Default maximum number of active map areas, this limits the number of vmas
135 * per mm struct. Users can overwrite this number by sysctl but there is a
138 * When a program's coredump is generated as ELF format, a section is created
139 * per a vma. In ELF, the number of sections is represented in unsigned short.
140 * This means the number of sections should be smaller than 65535 at coredump.
141 * Because the kernel adds some informative sections to a image of program at
142 * generating coredump, we need some margin. The number of extra sections is
143 * 1-3 now and depends on arch. We use "5" as safe margin, here.
145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146 * not a hard limit any more. Although some userspace tools can be surprised by
149 #define MAPCOUNT_ELF_CORE_MARGIN (5)
150 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
152 extern int sysctl_max_map_count;
154 extern unsigned long sysctl_user_reserve_kbytes;
155 extern unsigned long sysctl_admin_reserve_kbytes;
157 extern int sysctl_overcommit_memory;
158 extern int sysctl_overcommit_ratio;
159 extern unsigned long sysctl_overcommit_kbytes;
161 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
163 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
166 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
168 /* to align the pointer to the (next) page boundary */
169 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
171 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
172 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
175 * Linux kernel virtual memory manager primitives.
176 * The idea being to have a "virtual" mm in the same way
177 * we have a virtual fs - giving a cleaner interface to the
178 * mm details, and allowing different kinds of memory mappings
179 * (from shared memory to executable loading to arbitrary
183 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
184 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
185 void vm_area_free(struct vm_area_struct *);
188 extern struct rb_root nommu_region_tree;
189 extern struct rw_semaphore nommu_region_sem;
191 extern unsigned int kobjsize(const void *objp);
195 * vm_flags in vm_area_struct, see mm_types.h.
196 * When changing, update also include/trace/events/mmflags.h
198 #define VM_NONE 0x00000000
200 #define VM_READ 0x00000001 /* currently active flags */
201 #define VM_WRITE 0x00000002
202 #define VM_EXEC 0x00000004
203 #define VM_SHARED 0x00000008
205 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
206 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
207 #define VM_MAYWRITE 0x00000020
208 #define VM_MAYEXEC 0x00000040
209 #define VM_MAYSHARE 0x00000080
211 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
212 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
213 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
214 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
215 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
217 #define VM_LOCKED 0x00002000
218 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
220 /* Used by sys_madvise() */
221 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
222 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
224 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
225 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
226 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
227 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
228 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
229 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
230 #define VM_SYNC 0x00800000 /* Synchronous page faults */
231 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
232 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
233 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
235 #ifdef CONFIG_MEM_SOFT_DIRTY
236 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
238 # define VM_SOFTDIRTY 0
241 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
242 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
243 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
244 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
246 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
247 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
248 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
249 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
250 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
251 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
252 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
253 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
254 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
255 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
256 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
257 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
259 #ifdef CONFIG_ARCH_HAS_PKEYS
260 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
261 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
262 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
263 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
264 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
266 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
268 # define VM_PKEY_BIT4 0
270 #endif /* CONFIG_ARCH_HAS_PKEYS */
272 #if defined(CONFIG_X86)
273 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
274 #elif defined(CONFIG_PPC)
275 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
276 #elif defined(CONFIG_PARISC)
277 # define VM_GROWSUP VM_ARCH_1
278 #elif defined(CONFIG_IA64)
279 # define VM_GROWSUP VM_ARCH_1
280 #elif defined(CONFIG_SPARC64)
281 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
282 # define VM_ARCH_CLEAR VM_SPARC_ADI
283 #elif !defined(CONFIG_MMU)
284 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
287 #if defined(CONFIG_X86_INTEL_MPX)
288 /* MPX specific bounds table or bounds directory */
289 # define VM_MPX VM_HIGH_ARCH_4
291 # define VM_MPX VM_NONE
295 # define VM_GROWSUP VM_NONE
298 /* Bits set in the VMA until the stack is in its final location */
299 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
301 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
302 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
305 #ifdef CONFIG_STACK_GROWSUP
306 #define VM_STACK VM_GROWSUP
308 #define VM_STACK VM_GROWSDOWN
311 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
314 * Special vmas that are non-mergable, non-mlock()able.
315 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
317 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
319 /* This mask defines which mm->def_flags a process can inherit its parent */
320 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
322 /* This mask is used to clear all the VMA flags used by mlock */
323 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
325 /* Arch-specific flags to clear when updating VM flags on protection change */
326 #ifndef VM_ARCH_CLEAR
327 # define VM_ARCH_CLEAR VM_NONE
329 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
332 * mapping from the currently active vm_flags protection bits (the
333 * low four bits) to a page protection mask..
335 extern pgprot_t protection_map[16];
337 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
338 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
339 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
340 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
341 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
342 #define FAULT_FLAG_TRIED 0x20 /* Second try */
343 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
344 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
345 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
347 #define FAULT_FLAG_TRACE \
348 { FAULT_FLAG_WRITE, "WRITE" }, \
349 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
350 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
351 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
352 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
353 { FAULT_FLAG_TRIED, "TRIED" }, \
354 { FAULT_FLAG_USER, "USER" }, \
355 { FAULT_FLAG_REMOTE, "REMOTE" }, \
356 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
359 * vm_fault is filled by the the pagefault handler and passed to the vma's
360 * ->fault function. The vma's ->fault is responsible for returning a bitmask
361 * of VM_FAULT_xxx flags that give details about how the fault was handled.
363 * MM layer fills up gfp_mask for page allocations but fault handler might
364 * alter it if its implementation requires a different allocation context.
366 * pgoff should be used in favour of virtual_address, if possible.
369 struct vm_area_struct *vma; /* Target VMA */
370 unsigned int flags; /* FAULT_FLAG_xxx flags */
371 gfp_t gfp_mask; /* gfp mask to be used for allocations */
372 pgoff_t pgoff; /* Logical page offset based on vma */
373 unsigned long address; /* Faulting virtual address */
374 pmd_t *pmd; /* Pointer to pmd entry matching
376 pud_t *pud; /* Pointer to pud entry matching
379 pte_t orig_pte; /* Value of PTE at the time of fault */
381 struct page *cow_page; /* Page handler may use for COW fault */
382 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
383 struct page *page; /* ->fault handlers should return a
384 * page here, unless VM_FAULT_NOPAGE
385 * is set (which is also implied by
388 /* These three entries are valid only while holding ptl lock */
389 pte_t *pte; /* Pointer to pte entry matching
390 * the 'address'. NULL if the page
391 * table hasn't been allocated.
393 spinlock_t *ptl; /* Page table lock.
394 * Protects pte page table if 'pte'
395 * is not NULL, otherwise pmd.
397 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
398 * vm_ops->map_pages() calls
399 * alloc_set_pte() from atomic context.
400 * do_fault_around() pre-allocates
401 * page table to avoid allocation from
406 /* page entry size for vm->huge_fault() */
407 enum page_entry_size {
414 * These are the virtual MM functions - opening of an area, closing and
415 * unmapping it (needed to keep files on disk up-to-date etc), pointer
416 * to the functions called when a no-page or a wp-page exception occurs.
418 struct vm_operations_struct {
419 void (*open)(struct vm_area_struct * area);
420 void (*close)(struct vm_area_struct * area);
421 int (*split)(struct vm_area_struct * area, unsigned long addr);
422 int (*mremap)(struct vm_area_struct * area);
423 vm_fault_t (*fault)(struct vm_fault *vmf);
424 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
425 enum page_entry_size pe_size);
426 void (*map_pages)(struct vm_fault *vmf,
427 pgoff_t start_pgoff, pgoff_t end_pgoff);
428 unsigned long (*pagesize)(struct vm_area_struct * area);
430 /* notification that a previously read-only page is about to become
431 * writable, if an error is returned it will cause a SIGBUS */
432 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
434 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
435 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
437 /* called by access_process_vm when get_user_pages() fails, typically
438 * for use by special VMAs that can switch between memory and hardware
440 int (*access)(struct vm_area_struct *vma, unsigned long addr,
441 void *buf, int len, int write);
443 /* Called by the /proc/PID/maps code to ask the vma whether it
444 * has a special name. Returning non-NULL will also cause this
445 * vma to be dumped unconditionally. */
446 const char *(*name)(struct vm_area_struct *vma);
450 * set_policy() op must add a reference to any non-NULL @new mempolicy
451 * to hold the policy upon return. Caller should pass NULL @new to
452 * remove a policy and fall back to surrounding context--i.e. do not
453 * install a MPOL_DEFAULT policy, nor the task or system default
456 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
459 * get_policy() op must add reference [mpol_get()] to any policy at
460 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
461 * in mm/mempolicy.c will do this automatically.
462 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
463 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
464 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
465 * must return NULL--i.e., do not "fallback" to task or system default
468 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
472 * Called by vm_normal_page() for special PTEs to find the
473 * page for @addr. This is useful if the default behavior
474 * (using pte_page()) would not find the correct page.
476 struct page *(*find_special_page)(struct vm_area_struct *vma,
480 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
482 static const struct vm_operations_struct dummy_vm_ops = {};
484 memset(vma, 0, sizeof(*vma));
486 vma->vm_ops = &dummy_vm_ops;
487 INIT_LIST_HEAD(&vma->anon_vma_chain);
490 static inline void vma_set_anonymous(struct vm_area_struct *vma)
495 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
496 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
501 #define page_private(page) ((page)->private)
502 #define set_page_private(page, v) ((page)->private = (v))
504 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
505 static inline int pmd_devmap(pmd_t pmd)
509 static inline int pud_devmap(pud_t pud)
513 static inline int pgd_devmap(pgd_t pgd)
520 * FIXME: take this include out, include page-flags.h in
521 * files which need it (119 of them)
523 #include <linux/page-flags.h>
524 #include <linux/huge_mm.h>
527 * Methods to modify the page usage count.
529 * What counts for a page usage:
530 * - cache mapping (page->mapping)
531 * - private data (page->private)
532 * - page mapped in a task's page tables, each mapping
533 * is counted separately
535 * Also, many kernel routines increase the page count before a critical
536 * routine so they can be sure the page doesn't go away from under them.
540 * Drop a ref, return true if the refcount fell to zero (the page has no users)
542 static inline int put_page_testzero(struct page *page)
544 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
545 return page_ref_dec_and_test(page);
549 * Try to grab a ref unless the page has a refcount of zero, return false if
551 * This can be called when MMU is off so it must not access
552 * any of the virtual mappings.
554 static inline int get_page_unless_zero(struct page *page)
556 return page_ref_add_unless(page, 1, 0);
559 extern int page_is_ram(unsigned long pfn);
567 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
570 /* Support for virtually mapped pages */
571 struct page *vmalloc_to_page(const void *addr);
572 unsigned long vmalloc_to_pfn(const void *addr);
575 * Determine if an address is within the vmalloc range
577 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
578 * is no special casing required.
580 static inline bool is_vmalloc_addr(const void *x)
583 unsigned long addr = (unsigned long)x;
585 return addr >= VMALLOC_START && addr < VMALLOC_END;
591 extern int is_vmalloc_or_module_addr(const void *x);
593 static inline int is_vmalloc_or_module_addr(const void *x)
599 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
600 static inline void *kvmalloc(size_t size, gfp_t flags)
602 return kvmalloc_node(size, flags, NUMA_NO_NODE);
604 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
606 return kvmalloc_node(size, flags | __GFP_ZERO, node);
608 static inline void *kvzalloc(size_t size, gfp_t flags)
610 return kvmalloc(size, flags | __GFP_ZERO);
613 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
617 if (unlikely(check_mul_overflow(n, size, &bytes)))
620 return kvmalloc(bytes, flags);
623 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
625 return kvmalloc_array(n, size, flags | __GFP_ZERO);
628 extern void kvfree(const void *addr);
630 static inline atomic_t *compound_mapcount_ptr(struct page *page)
632 return &page[1].compound_mapcount;
635 static inline int compound_mapcount(struct page *page)
637 VM_BUG_ON_PAGE(!PageCompound(page), page);
638 page = compound_head(page);
639 return atomic_read(compound_mapcount_ptr(page)) + 1;
643 * The atomic page->_mapcount, starts from -1: so that transitions
644 * both from it and to it can be tracked, using atomic_inc_and_test
645 * and atomic_add_negative(-1).
647 static inline void page_mapcount_reset(struct page *page)
649 atomic_set(&(page)->_mapcount, -1);
652 int __page_mapcount(struct page *page);
654 static inline int page_mapcount(struct page *page)
656 VM_BUG_ON_PAGE(PageSlab(page), page);
658 if (unlikely(PageCompound(page)))
659 return __page_mapcount(page);
660 return atomic_read(&page->_mapcount) + 1;
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 int total_mapcount(struct page *page);
665 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
667 static inline int total_mapcount(struct page *page)
669 return page_mapcount(page);
671 static inline int page_trans_huge_mapcount(struct page *page,
674 int mapcount = page_mapcount(page);
676 *total_mapcount = mapcount;
681 static inline struct page *virt_to_head_page(const void *x)
683 struct page *page = virt_to_page(x);
685 return compound_head(page);
688 void __put_page(struct page *page);
690 void put_pages_list(struct list_head *pages);
692 void split_page(struct page *page, unsigned int order);
695 * Compound pages have a destructor function. Provide a
696 * prototype for that function and accessor functions.
697 * These are _only_ valid on the head of a compound page.
699 typedef void compound_page_dtor(struct page *);
701 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
702 enum compound_dtor_id {
705 #ifdef CONFIG_HUGETLB_PAGE
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 extern compound_page_dtor * const compound_page_dtors[];
715 static inline void set_compound_page_dtor(struct page *page,
716 enum compound_dtor_id compound_dtor)
718 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
719 page[1].compound_dtor = compound_dtor;
722 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
724 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
725 return compound_page_dtors[page[1].compound_dtor];
728 static inline unsigned int compound_order(struct page *page)
732 return page[1].compound_order;
735 static inline void set_compound_order(struct page *page, unsigned int order)
737 page[1].compound_order = order;
740 void free_compound_page(struct page *page);
744 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
745 * servicing faults for write access. In the normal case, do always want
746 * pte_mkwrite. But get_user_pages can cause write faults for mappings
747 * that do not have writing enabled, when used by access_process_vm.
749 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
751 if (likely(vma->vm_flags & VM_WRITE))
752 pte = pte_mkwrite(pte);
756 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
758 vm_fault_t finish_fault(struct vm_fault *vmf);
759 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
763 * Multiple processes may "see" the same page. E.g. for untouched
764 * mappings of /dev/null, all processes see the same page full of
765 * zeroes, and text pages of executables and shared libraries have
766 * only one copy in memory, at most, normally.
768 * For the non-reserved pages, page_count(page) denotes a reference count.
769 * page_count() == 0 means the page is free. page->lru is then used for
770 * freelist management in the buddy allocator.
771 * page_count() > 0 means the page has been allocated.
773 * Pages are allocated by the slab allocator in order to provide memory
774 * to kmalloc and kmem_cache_alloc. In this case, the management of the
775 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
776 * unless a particular usage is carefully commented. (the responsibility of
777 * freeing the kmalloc memory is the caller's, of course).
779 * A page may be used by anyone else who does a __get_free_page().
780 * In this case, page_count still tracks the references, and should only
781 * be used through the normal accessor functions. The top bits of page->flags
782 * and page->virtual store page management information, but all other fields
783 * are unused and could be used privately, carefully. The management of this
784 * page is the responsibility of the one who allocated it, and those who have
785 * subsequently been given references to it.
787 * The other pages (we may call them "pagecache pages") are completely
788 * managed by the Linux memory manager: I/O, buffers, swapping etc.
789 * The following discussion applies only to them.
791 * A pagecache page contains an opaque `private' member, which belongs to the
792 * page's address_space. Usually, this is the address of a circular list of
793 * the page's disk buffers. PG_private must be set to tell the VM to call
794 * into the filesystem to release these pages.
796 * A page may belong to an inode's memory mapping. In this case, page->mapping
797 * is the pointer to the inode, and page->index is the file offset of the page,
798 * in units of PAGE_SIZE.
800 * If pagecache pages are not associated with an inode, they are said to be
801 * anonymous pages. These may become associated with the swapcache, and in that
802 * case PG_swapcache is set, and page->private is an offset into the swapcache.
804 * In either case (swapcache or inode backed), the pagecache itself holds one
805 * reference to the page. Setting PG_private should also increment the
806 * refcount. The each user mapping also has a reference to the page.
808 * The pagecache pages are stored in a per-mapping radix tree, which is
809 * rooted at mapping->i_pages, and indexed by offset.
810 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
811 * lists, we instead now tag pages as dirty/writeback in the radix tree.
813 * All pagecache pages may be subject to I/O:
814 * - inode pages may need to be read from disk,
815 * - inode pages which have been modified and are MAP_SHARED may need
816 * to be written back to the inode on disk,
817 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
818 * modified may need to be swapped out to swap space and (later) to be read
823 * The zone field is never updated after free_area_init_core()
824 * sets it, so none of the operations on it need to be atomic.
827 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
828 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
829 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
830 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
831 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
832 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
835 * Define the bit shifts to access each section. For non-existent
836 * sections we define the shift as 0; that plus a 0 mask ensures
837 * the compiler will optimise away reference to them.
839 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
840 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
841 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
842 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
843 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
845 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
846 #ifdef NODE_NOT_IN_PAGE_FLAGS
847 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
848 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
849 SECTIONS_PGOFF : ZONES_PGOFF)
851 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
852 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
853 NODES_PGOFF : ZONES_PGOFF)
856 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
858 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
859 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
862 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
863 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
864 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
865 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
866 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
867 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
869 static inline enum zone_type page_zonenum(const struct page *page)
871 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
874 #ifdef CONFIG_ZONE_DEVICE
875 static inline bool is_zone_device_page(const struct page *page)
877 return page_zonenum(page) == ZONE_DEVICE;
879 extern void memmap_init_zone_device(struct zone *, unsigned long,
880 unsigned long, struct dev_pagemap *);
882 static inline bool is_zone_device_page(const struct page *page)
888 #ifdef CONFIG_DEV_PAGEMAP_OPS
889 void dev_pagemap_get_ops(void);
890 void dev_pagemap_put_ops(void);
891 void __put_devmap_managed_page(struct page *page);
892 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
893 static inline bool put_devmap_managed_page(struct page *page)
895 if (!static_branch_unlikely(&devmap_managed_key))
897 if (!is_zone_device_page(page))
899 switch (page->pgmap->type) {
900 case MEMORY_DEVICE_PRIVATE:
901 case MEMORY_DEVICE_PUBLIC:
902 case MEMORY_DEVICE_FS_DAX:
903 __put_devmap_managed_page(page);
911 static inline bool is_device_private_page(const struct page *page)
913 return is_zone_device_page(page) &&
914 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
917 static inline bool is_device_public_page(const struct page *page)
919 return is_zone_device_page(page) &&
920 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
923 #ifdef CONFIG_PCI_P2PDMA
924 static inline bool is_pci_p2pdma_page(const struct page *page)
926 return is_zone_device_page(page) &&
927 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
929 #else /* CONFIG_PCI_P2PDMA */
930 static inline bool is_pci_p2pdma_page(const struct page *page)
934 #endif /* CONFIG_PCI_P2PDMA */
936 #else /* CONFIG_DEV_PAGEMAP_OPS */
937 static inline void dev_pagemap_get_ops(void)
941 static inline void dev_pagemap_put_ops(void)
945 static inline bool put_devmap_managed_page(struct page *page)
950 static inline bool is_device_private_page(const struct page *page)
955 static inline bool is_device_public_page(const struct page *page)
960 static inline bool is_pci_p2pdma_page(const struct page *page)
964 #endif /* CONFIG_DEV_PAGEMAP_OPS */
966 static inline void get_page(struct page *page)
968 page = compound_head(page);
970 * Getting a normal page or the head of a compound page
971 * requires to already have an elevated page->_refcount.
973 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
977 static inline void put_page(struct page *page)
979 page = compound_head(page);
982 * For devmap managed pages we need to catch refcount transition from
983 * 2 to 1, when refcount reach one it means the page is free and we
984 * need to inform the device driver through callback. See
985 * include/linux/memremap.h and HMM for details.
987 if (put_devmap_managed_page(page))
990 if (put_page_testzero(page))
994 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
995 #define SECTION_IN_PAGE_FLAGS
999 * The identification function is mainly used by the buddy allocator for
1000 * determining if two pages could be buddies. We are not really identifying
1001 * the zone since we could be using the section number id if we do not have
1002 * node id available in page flags.
1003 * We only guarantee that it will return the same value for two combinable
1006 static inline int page_zone_id(struct page *page)
1008 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1011 #ifdef NODE_NOT_IN_PAGE_FLAGS
1012 extern int page_to_nid(const struct page *page);
1014 static inline int page_to_nid(const struct page *page)
1016 struct page *p = (struct page *)page;
1018 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1022 #ifdef CONFIG_NUMA_BALANCING
1023 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1025 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1028 static inline int cpupid_to_pid(int cpupid)
1030 return cpupid & LAST__PID_MASK;
1033 static inline int cpupid_to_cpu(int cpupid)
1035 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1038 static inline int cpupid_to_nid(int cpupid)
1040 return cpu_to_node(cpupid_to_cpu(cpupid));
1043 static inline bool cpupid_pid_unset(int cpupid)
1045 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1048 static inline bool cpupid_cpu_unset(int cpupid)
1050 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1053 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1055 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1058 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1059 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1060 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1062 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1065 static inline int page_cpupid_last(struct page *page)
1067 return page->_last_cpupid;
1069 static inline void page_cpupid_reset_last(struct page *page)
1071 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1074 static inline int page_cpupid_last(struct page *page)
1076 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1079 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1081 static inline void page_cpupid_reset_last(struct page *page)
1083 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1085 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1086 #else /* !CONFIG_NUMA_BALANCING */
1087 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1089 return page_to_nid(page); /* XXX */
1092 static inline int page_cpupid_last(struct page *page)
1094 return page_to_nid(page); /* XXX */
1097 static inline int cpupid_to_nid(int cpupid)
1102 static inline int cpupid_to_pid(int cpupid)
1107 static inline int cpupid_to_cpu(int cpupid)
1112 static inline int cpu_pid_to_cpupid(int nid, int pid)
1117 static inline bool cpupid_pid_unset(int cpupid)
1122 static inline void page_cpupid_reset_last(struct page *page)
1126 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1130 #endif /* CONFIG_NUMA_BALANCING */
1132 #ifdef CONFIG_KASAN_SW_TAGS
1133 static inline u8 page_kasan_tag(const struct page *page)
1135 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1138 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1140 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1141 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1144 static inline void page_kasan_tag_reset(struct page *page)
1146 page_kasan_tag_set(page, 0xff);
1149 static inline u8 page_kasan_tag(const struct page *page)
1154 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1155 static inline void page_kasan_tag_reset(struct page *page) { }
1158 static inline struct zone *page_zone(const struct page *page)
1160 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1163 static inline pg_data_t *page_pgdat(const struct page *page)
1165 return NODE_DATA(page_to_nid(page));
1168 #ifdef SECTION_IN_PAGE_FLAGS
1169 static inline void set_page_section(struct page *page, unsigned long section)
1171 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1172 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1175 static inline unsigned long page_to_section(const struct page *page)
1177 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1181 static inline void set_page_zone(struct page *page, enum zone_type zone)
1183 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1184 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1187 static inline void set_page_node(struct page *page, unsigned long node)
1189 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1190 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1193 static inline void set_page_links(struct page *page, enum zone_type zone,
1194 unsigned long node, unsigned long pfn)
1196 set_page_zone(page, zone);
1197 set_page_node(page, node);
1198 #ifdef SECTION_IN_PAGE_FLAGS
1199 set_page_section(page, pfn_to_section_nr(pfn));
1204 static inline struct mem_cgroup *page_memcg(struct page *page)
1206 return page->mem_cgroup;
1208 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1210 WARN_ON_ONCE(!rcu_read_lock_held());
1211 return READ_ONCE(page->mem_cgroup);
1214 static inline struct mem_cgroup *page_memcg(struct page *page)
1218 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1220 WARN_ON_ONCE(!rcu_read_lock_held());
1226 * Some inline functions in vmstat.h depend on page_zone()
1228 #include <linux/vmstat.h>
1230 static __always_inline void *lowmem_page_address(const struct page *page)
1232 return page_to_virt(page);
1235 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1236 #define HASHED_PAGE_VIRTUAL
1239 #if defined(WANT_PAGE_VIRTUAL)
1240 static inline void *page_address(const struct page *page)
1242 return page->virtual;
1244 static inline void set_page_address(struct page *page, void *address)
1246 page->virtual = address;
1248 #define page_address_init() do { } while(0)
1251 #if defined(HASHED_PAGE_VIRTUAL)
1252 void *page_address(const struct page *page);
1253 void set_page_address(struct page *page, void *virtual);
1254 void page_address_init(void);
1257 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1258 #define page_address(page) lowmem_page_address(page)
1259 #define set_page_address(page, address) do { } while(0)
1260 #define page_address_init() do { } while(0)
1263 extern void *page_rmapping(struct page *page);
1264 extern struct anon_vma *page_anon_vma(struct page *page);
1265 extern struct address_space *page_mapping(struct page *page);
1267 extern struct address_space *__page_file_mapping(struct page *);
1270 struct address_space *page_file_mapping(struct page *page)
1272 if (unlikely(PageSwapCache(page)))
1273 return __page_file_mapping(page);
1275 return page->mapping;
1278 extern pgoff_t __page_file_index(struct page *page);
1281 * Return the pagecache index of the passed page. Regular pagecache pages
1282 * use ->index whereas swapcache pages use swp_offset(->private)
1284 static inline pgoff_t page_index(struct page *page)
1286 if (unlikely(PageSwapCache(page)))
1287 return __page_file_index(page);
1291 bool page_mapped(struct page *page);
1292 struct address_space *page_mapping(struct page *page);
1293 struct address_space *page_mapping_file(struct page *page);
1296 * Return true only if the page has been allocated with
1297 * ALLOC_NO_WATERMARKS and the low watermark was not
1298 * met implying that the system is under some pressure.
1300 static inline bool page_is_pfmemalloc(struct page *page)
1303 * Page index cannot be this large so this must be
1304 * a pfmemalloc page.
1306 return page->index == -1UL;
1310 * Only to be called by the page allocator on a freshly allocated
1313 static inline void set_page_pfmemalloc(struct page *page)
1318 static inline void clear_page_pfmemalloc(struct page *page)
1324 * Different kinds of faults, as returned by handle_mm_fault().
1325 * Used to decide whether a process gets delivered SIGBUS or
1326 * just gets major/minor fault counters bumped up.
1329 #define VM_FAULT_OOM 0x0001
1330 #define VM_FAULT_SIGBUS 0x0002
1331 #define VM_FAULT_MAJOR 0x0004
1332 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1333 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1334 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1335 #define VM_FAULT_SIGSEGV 0x0040
1337 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1338 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1339 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1340 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1341 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1342 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1343 * and needs fsync() to complete (for
1344 * synchronous page faults in DAX) */
1346 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1347 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1350 #define VM_FAULT_RESULT_TRACE \
1351 { VM_FAULT_OOM, "OOM" }, \
1352 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1353 { VM_FAULT_MAJOR, "MAJOR" }, \
1354 { VM_FAULT_WRITE, "WRITE" }, \
1355 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1356 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1357 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1358 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1359 { VM_FAULT_LOCKED, "LOCKED" }, \
1360 { VM_FAULT_RETRY, "RETRY" }, \
1361 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1362 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1363 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1365 /* Encode hstate index for a hwpoisoned large page */
1366 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1367 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1370 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1372 extern void pagefault_out_of_memory(void);
1374 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1377 * Flags passed to show_mem() and show_free_areas() to suppress output in
1380 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1382 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1384 extern bool can_do_mlock(void);
1385 extern int user_shm_lock(size_t, struct user_struct *);
1386 extern void user_shm_unlock(size_t, struct user_struct *);
1389 * Parameter block passed down to zap_pte_range in exceptional cases.
1391 struct zap_details {
1392 struct address_space *check_mapping; /* Check page->mapping if set */
1393 pgoff_t first_index; /* Lowest page->index to unmap */
1394 pgoff_t last_index; /* Highest page->index to unmap */
1397 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1398 pte_t pte, bool with_public_device);
1399 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1401 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size);
1406 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1407 unsigned long size);
1408 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1409 unsigned long start, unsigned long end);
1412 * mm_walk - callbacks for walk_page_range
1413 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1414 * this handler should only handle pud_trans_huge() puds.
1415 * the pmd_entry or pte_entry callbacks will be used for
1417 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1418 * this handler is required to be able to handle
1419 * pmd_trans_huge() pmds. They may simply choose to
1420 * split_huge_page() instead of handling it explicitly.
1421 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1422 * @pte_hole: if set, called for each hole at all levels
1423 * @hugetlb_entry: if set, called for each hugetlb entry
1424 * @test_walk: caller specific callback function to determine whether
1425 * we walk over the current vma or not. Returning 0
1426 * value means "do page table walk over the current vma,"
1427 * and a negative one means "abort current page table walk
1428 * right now." 1 means "skip the current vma."
1429 * @mm: mm_struct representing the target process of page table walk
1430 * @vma: vma currently walked (NULL if walking outside vmas)
1431 * @private: private data for callbacks' usage
1433 * (see the comment on walk_page_range() for more details)
1436 int (*pud_entry)(pud_t *pud, unsigned long addr,
1437 unsigned long next, struct mm_walk *walk);
1438 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1439 unsigned long next, struct mm_walk *walk);
1440 int (*pte_entry)(pte_t *pte, unsigned long addr,
1441 unsigned long next, struct mm_walk *walk);
1442 int (*pte_hole)(unsigned long addr, unsigned long next,
1443 struct mm_walk *walk);
1444 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1445 unsigned long addr, unsigned long next,
1446 struct mm_walk *walk);
1447 int (*test_walk)(unsigned long addr, unsigned long next,
1448 struct mm_walk *walk);
1449 struct mm_struct *mm;
1450 struct vm_area_struct *vma;
1454 int walk_page_range(unsigned long addr, unsigned long end,
1455 struct mm_walk *walk);
1456 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1457 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1458 unsigned long end, unsigned long floor, unsigned long ceiling);
1459 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1460 struct vm_area_struct *vma);
1461 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1462 unsigned long *start, unsigned long *end,
1463 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1464 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1465 unsigned long *pfn);
1466 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1467 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1468 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1469 void *buf, int len, int write);
1471 extern void truncate_pagecache(struct inode *inode, loff_t new);
1472 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1473 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1474 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1475 int truncate_inode_page(struct address_space *mapping, struct page *page);
1476 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1477 int invalidate_inode_page(struct page *page);
1480 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1481 unsigned long address, unsigned int flags);
1482 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1483 unsigned long address, unsigned int fault_flags,
1485 void unmap_mapping_pages(struct address_space *mapping,
1486 pgoff_t start, pgoff_t nr, bool even_cows);
1487 void unmap_mapping_range(struct address_space *mapping,
1488 loff_t const holebegin, loff_t const holelen, int even_cows);
1490 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1491 unsigned long address, unsigned int flags)
1493 /* should never happen if there's no MMU */
1495 return VM_FAULT_SIGBUS;
1497 static inline int fixup_user_fault(struct task_struct *tsk,
1498 struct mm_struct *mm, unsigned long address,
1499 unsigned int fault_flags, bool *unlocked)
1501 /* should never happen if there's no MMU */
1505 static inline void unmap_mapping_pages(struct address_space *mapping,
1506 pgoff_t start, pgoff_t nr, bool even_cows) { }
1507 static inline void unmap_mapping_range(struct address_space *mapping,
1508 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1511 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1512 loff_t const holebegin, loff_t const holelen)
1514 unmap_mapping_range(mapping, holebegin, holelen, 0);
1517 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1518 void *buf, int len, unsigned int gup_flags);
1519 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1520 void *buf, int len, unsigned int gup_flags);
1521 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1522 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1524 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1525 unsigned long start, unsigned long nr_pages,
1526 unsigned int gup_flags, struct page **pages,
1527 struct vm_area_struct **vmas, int *locked);
1528 long get_user_pages(unsigned long start, unsigned long nr_pages,
1529 unsigned int gup_flags, struct page **pages,
1530 struct vm_area_struct **vmas);
1531 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1532 unsigned int gup_flags, struct page **pages, int *locked);
1533 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1534 struct page **pages, unsigned int gup_flags);
1535 #ifdef CONFIG_FS_DAX
1536 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1537 unsigned int gup_flags, struct page **pages,
1538 struct vm_area_struct **vmas);
1540 static inline long get_user_pages_longterm(unsigned long start,
1541 unsigned long nr_pages, unsigned int gup_flags,
1542 struct page **pages, struct vm_area_struct **vmas)
1544 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1546 #endif /* CONFIG_FS_DAX */
1548 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1549 struct page **pages);
1551 /* Container for pinned pfns / pages */
1552 struct frame_vector {
1553 unsigned int nr_allocated; /* Number of frames we have space for */
1554 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1555 bool got_ref; /* Did we pin pages by getting page ref? */
1556 bool is_pfns; /* Does array contain pages or pfns? */
1557 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1558 * pfns_vector_pages() or pfns_vector_pfns()
1562 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1563 void frame_vector_destroy(struct frame_vector *vec);
1564 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1565 unsigned int gup_flags, struct frame_vector *vec);
1566 void put_vaddr_frames(struct frame_vector *vec);
1567 int frame_vector_to_pages(struct frame_vector *vec);
1568 void frame_vector_to_pfns(struct frame_vector *vec);
1570 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1572 return vec->nr_frames;
1575 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1578 int err = frame_vector_to_pages(vec);
1581 return ERR_PTR(err);
1583 return (struct page **)(vec->ptrs);
1586 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1589 frame_vector_to_pfns(vec);
1590 return (unsigned long *)(vec->ptrs);
1594 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1595 struct page **pages);
1596 int get_kernel_page(unsigned long start, int write, struct page **pages);
1597 struct page *get_dump_page(unsigned long addr);
1599 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1600 extern void do_invalidatepage(struct page *page, unsigned int offset,
1601 unsigned int length);
1603 void __set_page_dirty(struct page *, struct address_space *, int warn);
1604 int __set_page_dirty_nobuffers(struct page *page);
1605 int __set_page_dirty_no_writeback(struct page *page);
1606 int redirty_page_for_writepage(struct writeback_control *wbc,
1608 void account_page_dirtied(struct page *page, struct address_space *mapping);
1609 void account_page_cleaned(struct page *page, struct address_space *mapping,
1610 struct bdi_writeback *wb);
1611 int set_page_dirty(struct page *page);
1612 int set_page_dirty_lock(struct page *page);
1613 void __cancel_dirty_page(struct page *page);
1614 static inline void cancel_dirty_page(struct page *page)
1616 /* Avoid atomic ops, locking, etc. when not actually needed. */
1617 if (PageDirty(page))
1618 __cancel_dirty_page(page);
1620 int clear_page_dirty_for_io(struct page *page);
1622 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1624 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1626 return !vma->vm_ops;
1631 * The vma_is_shmem is not inline because it is used only by slow
1632 * paths in userfault.
1634 bool vma_is_shmem(struct vm_area_struct *vma);
1636 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1639 int vma_is_stack_for_current(struct vm_area_struct *vma);
1641 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1642 unsigned long old_addr, struct vm_area_struct *new_vma,
1643 unsigned long new_addr, unsigned long len,
1644 bool need_rmap_locks);
1645 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1646 unsigned long end, pgprot_t newprot,
1647 int dirty_accountable, int prot_numa);
1648 extern int mprotect_fixup(struct vm_area_struct *vma,
1649 struct vm_area_struct **pprev, unsigned long start,
1650 unsigned long end, unsigned long newflags);
1653 * doesn't attempt to fault and will return short.
1655 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1656 struct page **pages);
1658 * per-process(per-mm_struct) statistics.
1660 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1662 long val = atomic_long_read(&mm->rss_stat.count[member]);
1664 #ifdef SPLIT_RSS_COUNTING
1666 * counter is updated in asynchronous manner and may go to minus.
1667 * But it's never be expected number for users.
1672 return (unsigned long)val;
1675 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1677 atomic_long_add(value, &mm->rss_stat.count[member]);
1680 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1682 atomic_long_inc(&mm->rss_stat.count[member]);
1685 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1687 atomic_long_dec(&mm->rss_stat.count[member]);
1690 /* Optimized variant when page is already known not to be PageAnon */
1691 static inline int mm_counter_file(struct page *page)
1693 if (PageSwapBacked(page))
1694 return MM_SHMEMPAGES;
1695 return MM_FILEPAGES;
1698 static inline int mm_counter(struct page *page)
1701 return MM_ANONPAGES;
1702 return mm_counter_file(page);
1705 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1707 return get_mm_counter(mm, MM_FILEPAGES) +
1708 get_mm_counter(mm, MM_ANONPAGES) +
1709 get_mm_counter(mm, MM_SHMEMPAGES);
1712 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1714 return max(mm->hiwater_rss, get_mm_rss(mm));
1717 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1719 return max(mm->hiwater_vm, mm->total_vm);
1722 static inline void update_hiwater_rss(struct mm_struct *mm)
1724 unsigned long _rss = get_mm_rss(mm);
1726 if ((mm)->hiwater_rss < _rss)
1727 (mm)->hiwater_rss = _rss;
1730 static inline void update_hiwater_vm(struct mm_struct *mm)
1732 if (mm->hiwater_vm < mm->total_vm)
1733 mm->hiwater_vm = mm->total_vm;
1736 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1738 mm->hiwater_rss = get_mm_rss(mm);
1741 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1742 struct mm_struct *mm)
1744 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1746 if (*maxrss < hiwater_rss)
1747 *maxrss = hiwater_rss;
1750 #if defined(SPLIT_RSS_COUNTING)
1751 void sync_mm_rss(struct mm_struct *mm);
1753 static inline void sync_mm_rss(struct mm_struct *mm)
1758 #ifndef __HAVE_ARCH_PTE_DEVMAP
1759 static inline int pte_devmap(pte_t pte)
1765 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1767 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1769 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1773 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1777 #ifdef __PAGETABLE_P4D_FOLDED
1778 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1779 unsigned long address)
1784 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1787 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1788 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1789 unsigned long address)
1793 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1794 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1797 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1799 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1801 if (mm_pud_folded(mm))
1803 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1806 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1808 if (mm_pud_folded(mm))
1810 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1814 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1815 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1816 unsigned long address)
1821 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1822 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1825 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1827 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1829 if (mm_pmd_folded(mm))
1831 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1834 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1836 if (mm_pmd_folded(mm))
1838 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1843 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1845 atomic_long_set(&mm->pgtables_bytes, 0);
1848 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1850 return atomic_long_read(&mm->pgtables_bytes);
1853 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1855 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1858 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1860 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1864 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1865 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1870 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1871 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1874 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1875 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1878 * The following ifdef needed to get the 4level-fixup.h header to work.
1879 * Remove it when 4level-fixup.h has been removed.
1881 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1883 #ifndef __ARCH_HAS_5LEVEL_HACK
1884 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1885 unsigned long address)
1887 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1888 NULL : p4d_offset(pgd, address);
1891 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1892 unsigned long address)
1894 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1895 NULL : pud_offset(p4d, address);
1897 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1899 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1901 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1902 NULL: pmd_offset(pud, address);
1904 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1906 #if USE_SPLIT_PTE_PTLOCKS
1907 #if ALLOC_SPLIT_PTLOCKS
1908 void __init ptlock_cache_init(void);
1909 extern bool ptlock_alloc(struct page *page);
1910 extern void ptlock_free(struct page *page);
1912 static inline spinlock_t *ptlock_ptr(struct page *page)
1916 #else /* ALLOC_SPLIT_PTLOCKS */
1917 static inline void ptlock_cache_init(void)
1921 static inline bool ptlock_alloc(struct page *page)
1926 static inline void ptlock_free(struct page *page)
1930 static inline spinlock_t *ptlock_ptr(struct page *page)
1934 #endif /* ALLOC_SPLIT_PTLOCKS */
1936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938 return ptlock_ptr(pmd_page(*pmd));
1941 static inline bool ptlock_init(struct page *page)
1944 * prep_new_page() initialize page->private (and therefore page->ptl)
1945 * with 0. Make sure nobody took it in use in between.
1947 * It can happen if arch try to use slab for page table allocation:
1948 * slab code uses page->slab_cache, which share storage with page->ptl.
1950 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1951 if (!ptlock_alloc(page))
1953 spin_lock_init(ptlock_ptr(page));
1957 /* Reset page->mapping so free_pages_check won't complain. */
1958 static inline void pte_lock_deinit(struct page *page)
1960 page->mapping = NULL;
1964 #else /* !USE_SPLIT_PTE_PTLOCKS */
1966 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1968 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1970 return &mm->page_table_lock;
1972 static inline void ptlock_cache_init(void) {}
1973 static inline bool ptlock_init(struct page *page) { return true; }
1974 static inline void pte_lock_deinit(struct page *page) {}
1975 #endif /* USE_SPLIT_PTE_PTLOCKS */
1977 static inline void pgtable_init(void)
1979 ptlock_cache_init();
1980 pgtable_cache_init();
1983 static inline bool pgtable_page_ctor(struct page *page)
1985 if (!ptlock_init(page))
1987 __SetPageTable(page);
1988 inc_zone_page_state(page, NR_PAGETABLE);
1992 static inline void pgtable_page_dtor(struct page *page)
1994 pte_lock_deinit(page);
1995 __ClearPageTable(page);
1996 dec_zone_page_state(page, NR_PAGETABLE);
1999 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2001 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2002 pte_t *__pte = pte_offset_map(pmd, address); \
2008 #define pte_unmap_unlock(pte, ptl) do { \
2013 #define pte_alloc(mm, pmd, address) \
2014 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
2016 #define pte_alloc_map(mm, pmd, address) \
2017 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
2019 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2020 (pte_alloc(mm, pmd, address) ? \
2021 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2023 #define pte_alloc_kernel(pmd, address) \
2024 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
2025 NULL: pte_offset_kernel(pmd, address))
2027 #if USE_SPLIT_PMD_PTLOCKS
2029 static struct page *pmd_to_page(pmd_t *pmd)
2031 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2032 return virt_to_page((void *)((unsigned long) pmd & mask));
2035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2037 return ptlock_ptr(pmd_to_page(pmd));
2040 static inline bool pgtable_pmd_page_ctor(struct page *page)
2042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2043 page->pmd_huge_pte = NULL;
2045 return ptlock_init(page);
2048 static inline void pgtable_pmd_page_dtor(struct page *page)
2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2051 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2056 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2060 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2062 return &mm->page_table_lock;
2065 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2066 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2068 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2072 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2074 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2080 * No scalability reason to split PUD locks yet, but follow the same pattern
2081 * as the PMD locks to make it easier if we decide to. The VM should not be
2082 * considered ready to switch to split PUD locks yet; there may be places
2083 * which need to be converted from page_table_lock.
2085 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2087 return &mm->page_table_lock;
2090 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2092 spinlock_t *ptl = pud_lockptr(mm, pud);
2098 extern void __init pagecache_init(void);
2099 extern void free_area_init(unsigned long * zones_size);
2100 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2101 unsigned long zone_start_pfn, unsigned long *zholes_size);
2102 extern void free_initmem(void);
2105 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2106 * into the buddy system. The freed pages will be poisoned with pattern
2107 * "poison" if it's within range [0, UCHAR_MAX].
2108 * Return pages freed into the buddy system.
2110 extern unsigned long free_reserved_area(void *start, void *end,
2111 int poison, char *s);
2113 #ifdef CONFIG_HIGHMEM
2115 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2116 * and totalram_pages.
2118 extern void free_highmem_page(struct page *page);
2121 extern void adjust_managed_page_count(struct page *page, long count);
2122 extern void mem_init_print_info(const char *str);
2124 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2126 /* Free the reserved page into the buddy system, so it gets managed. */
2127 static inline void __free_reserved_page(struct page *page)
2129 ClearPageReserved(page);
2130 init_page_count(page);
2134 static inline void free_reserved_page(struct page *page)
2136 __free_reserved_page(page);
2137 adjust_managed_page_count(page, 1);
2140 static inline void mark_page_reserved(struct page *page)
2142 SetPageReserved(page);
2143 adjust_managed_page_count(page, -1);
2147 * Default method to free all the __init memory into the buddy system.
2148 * The freed pages will be poisoned with pattern "poison" if it's within
2149 * range [0, UCHAR_MAX].
2150 * Return pages freed into the buddy system.
2152 static inline unsigned long free_initmem_default(int poison)
2154 extern char __init_begin[], __init_end[];
2156 return free_reserved_area(&__init_begin, &__init_end,
2157 poison, "unused kernel");
2160 static inline unsigned long get_num_physpages(void)
2163 unsigned long phys_pages = 0;
2165 for_each_online_node(nid)
2166 phys_pages += node_present_pages(nid);
2171 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2173 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2174 * zones, allocate the backing mem_map and account for memory holes in a more
2175 * architecture independent manner. This is a substitute for creating the
2176 * zone_sizes[] and zholes_size[] arrays and passing them to
2177 * free_area_init_node()
2179 * An architecture is expected to register range of page frames backed by
2180 * physical memory with memblock_add[_node]() before calling
2181 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2182 * usage, an architecture is expected to do something like
2184 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2186 * for_each_valid_physical_page_range()
2187 * memblock_add_node(base, size, nid)
2188 * free_area_init_nodes(max_zone_pfns);
2190 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2191 * registered physical page range. Similarly
2192 * sparse_memory_present_with_active_regions() calls memory_present() for
2193 * each range when SPARSEMEM is enabled.
2195 * See mm/page_alloc.c for more information on each function exposed by
2196 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2198 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2199 unsigned long node_map_pfn_alignment(void);
2200 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2201 unsigned long end_pfn);
2202 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2203 unsigned long end_pfn);
2204 extern void get_pfn_range_for_nid(unsigned int nid,
2205 unsigned long *start_pfn, unsigned long *end_pfn);
2206 extern unsigned long find_min_pfn_with_active_regions(void);
2207 extern void free_bootmem_with_active_regions(int nid,
2208 unsigned long max_low_pfn);
2209 extern void sparse_memory_present_with_active_regions(int nid);
2211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2213 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2214 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2215 static inline int __early_pfn_to_nid(unsigned long pfn,
2216 struct mminit_pfnnid_cache *state)
2221 /* please see mm/page_alloc.c */
2222 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2223 /* there is a per-arch backend function. */
2224 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2225 struct mminit_pfnnid_cache *state);
2228 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2229 void zero_resv_unavail(void);
2231 static inline void zero_resv_unavail(void) {}
2234 extern void set_dma_reserve(unsigned long new_dma_reserve);
2235 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2236 enum memmap_context, struct vmem_altmap *);
2237 extern void setup_per_zone_wmarks(void);
2238 extern int __meminit init_per_zone_wmark_min(void);
2239 extern void mem_init(void);
2240 extern void __init mmap_init(void);
2241 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2242 extern long si_mem_available(void);
2243 extern void si_meminfo(struct sysinfo * val);
2244 extern void si_meminfo_node(struct sysinfo *val, int nid);
2245 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2246 extern unsigned long arch_reserved_kernel_pages(void);
2249 extern __printf(3, 4)
2250 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2252 extern void setup_per_cpu_pageset(void);
2254 extern void zone_pcp_update(struct zone *zone);
2255 extern void zone_pcp_reset(struct zone *zone);
2258 extern int min_free_kbytes;
2259 extern int watermark_boost_factor;
2260 extern int watermark_scale_factor;
2263 extern atomic_long_t mmap_pages_allocated;
2264 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2266 /* interval_tree.c */
2267 void vma_interval_tree_insert(struct vm_area_struct *node,
2268 struct rb_root_cached *root);
2269 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2270 struct vm_area_struct *prev,
2271 struct rb_root_cached *root);
2272 void vma_interval_tree_remove(struct vm_area_struct *node,
2273 struct rb_root_cached *root);
2274 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2275 unsigned long start, unsigned long last);
2276 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2277 unsigned long start, unsigned long last);
2279 #define vma_interval_tree_foreach(vma, root, start, last) \
2280 for (vma = vma_interval_tree_iter_first(root, start, last); \
2281 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2283 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2284 struct rb_root_cached *root);
2285 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2286 struct rb_root_cached *root);
2287 struct anon_vma_chain *
2288 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2289 unsigned long start, unsigned long last);
2290 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2291 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2292 #ifdef CONFIG_DEBUG_VM_RB
2293 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2296 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2297 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2298 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2301 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2302 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2304 struct vm_area_struct *expand);
2305 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2306 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2308 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2310 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2311 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2312 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2313 struct mempolicy *, struct vm_userfaultfd_ctx);
2314 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2315 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2316 unsigned long addr, int new_below);
2317 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2318 unsigned long addr, int new_below);
2319 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2320 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2321 struct rb_node **, struct rb_node *);
2322 extern void unlink_file_vma(struct vm_area_struct *);
2323 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2324 unsigned long addr, unsigned long len, pgoff_t pgoff,
2325 bool *need_rmap_locks);
2326 extern void exit_mmap(struct mm_struct *);
2328 static inline int check_data_rlimit(unsigned long rlim,
2330 unsigned long start,
2331 unsigned long end_data,
2332 unsigned long start_data)
2334 if (rlim < RLIM_INFINITY) {
2335 if (((new - start) + (end_data - start_data)) > rlim)
2342 extern int mm_take_all_locks(struct mm_struct *mm);
2343 extern void mm_drop_all_locks(struct mm_struct *mm);
2345 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2346 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2347 extern struct file *get_task_exe_file(struct task_struct *task);
2349 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2350 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2352 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2353 const struct vm_special_mapping *sm);
2354 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2355 unsigned long addr, unsigned long len,
2356 unsigned long flags,
2357 const struct vm_special_mapping *spec);
2358 /* This is an obsolete alternative to _install_special_mapping. */
2359 extern int install_special_mapping(struct mm_struct *mm,
2360 unsigned long addr, unsigned long len,
2361 unsigned long flags, struct page **pages);
2363 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2365 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2366 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2367 struct list_head *uf);
2368 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2369 unsigned long len, unsigned long prot, unsigned long flags,
2370 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2371 struct list_head *uf);
2372 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2373 struct list_head *uf, bool downgrade);
2374 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2375 struct list_head *uf);
2377 static inline unsigned long
2378 do_mmap_pgoff(struct file *file, unsigned long addr,
2379 unsigned long len, unsigned long prot, unsigned long flags,
2380 unsigned long pgoff, unsigned long *populate,
2381 struct list_head *uf)
2383 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2387 extern int __mm_populate(unsigned long addr, unsigned long len,
2389 static inline void mm_populate(unsigned long addr, unsigned long len)
2392 (void) __mm_populate(addr, len, 1);
2395 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2398 /* These take the mm semaphore themselves */
2399 extern int __must_check vm_brk(unsigned long, unsigned long);
2400 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2401 extern int vm_munmap(unsigned long, size_t);
2402 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2403 unsigned long, unsigned long,
2404 unsigned long, unsigned long);
2406 struct vm_unmapped_area_info {
2407 #define VM_UNMAPPED_AREA_TOPDOWN 1
2408 unsigned long flags;
2409 unsigned long length;
2410 unsigned long low_limit;
2411 unsigned long high_limit;
2412 unsigned long align_mask;
2413 unsigned long align_offset;
2416 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2417 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2420 * Search for an unmapped address range.
2422 * We are looking for a range that:
2423 * - does not intersect with any VMA;
2424 * - is contained within the [low_limit, high_limit) interval;
2425 * - is at least the desired size.
2426 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2428 static inline unsigned long
2429 vm_unmapped_area(struct vm_unmapped_area_info *info)
2431 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2432 return unmapped_area_topdown(info);
2434 return unmapped_area(info);
2438 extern void truncate_inode_pages(struct address_space *, loff_t);
2439 extern void truncate_inode_pages_range(struct address_space *,
2440 loff_t lstart, loff_t lend);
2441 extern void truncate_inode_pages_final(struct address_space *);
2443 /* generic vm_area_ops exported for stackable file systems */
2444 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2445 extern void filemap_map_pages(struct vm_fault *vmf,
2446 pgoff_t start_pgoff, pgoff_t end_pgoff);
2447 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2449 /* mm/page-writeback.c */
2450 int __must_check write_one_page(struct page *page);
2451 void task_dirty_inc(struct task_struct *tsk);
2454 #define VM_MAX_READAHEAD 128 /* kbytes */
2455 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2457 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2458 pgoff_t offset, unsigned long nr_to_read);
2460 void page_cache_sync_readahead(struct address_space *mapping,
2461 struct file_ra_state *ra,
2464 unsigned long size);
2466 void page_cache_async_readahead(struct address_space *mapping,
2467 struct file_ra_state *ra,
2471 unsigned long size);
2473 extern unsigned long stack_guard_gap;
2474 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2475 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2477 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2478 extern int expand_downwards(struct vm_area_struct *vma,
2479 unsigned long address);
2481 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2483 #define expand_upwards(vma, address) (0)
2486 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2487 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2488 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2489 struct vm_area_struct **pprev);
2491 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2492 NULL if none. Assume start_addr < end_addr. */
2493 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2495 struct vm_area_struct * vma = find_vma(mm,start_addr);
2497 if (vma && end_addr <= vma->vm_start)
2502 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2504 unsigned long vm_start = vma->vm_start;
2506 if (vma->vm_flags & VM_GROWSDOWN) {
2507 vm_start -= stack_guard_gap;
2508 if (vm_start > vma->vm_start)
2514 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2516 unsigned long vm_end = vma->vm_end;
2518 if (vma->vm_flags & VM_GROWSUP) {
2519 vm_end += stack_guard_gap;
2520 if (vm_end < vma->vm_end)
2521 vm_end = -PAGE_SIZE;
2526 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2528 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2531 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2532 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2533 unsigned long vm_start, unsigned long vm_end)
2535 struct vm_area_struct *vma = find_vma(mm, vm_start);
2537 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2543 static inline bool range_in_vma(struct vm_area_struct *vma,
2544 unsigned long start, unsigned long end)
2546 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2550 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2551 void vma_set_page_prot(struct vm_area_struct *vma);
2553 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2557 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2559 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2563 #ifdef CONFIG_NUMA_BALANCING
2564 unsigned long change_prot_numa(struct vm_area_struct *vma,
2565 unsigned long start, unsigned long end);
2568 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2569 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2570 unsigned long pfn, unsigned long size, pgprot_t);
2571 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2572 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2574 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2575 unsigned long pfn, pgprot_t pgprot);
2576 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2578 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2579 unsigned long addr, pfn_t pfn);
2580 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2582 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2583 unsigned long addr, struct page *page)
2585 int err = vm_insert_page(vma, addr, page);
2588 return VM_FAULT_OOM;
2589 if (err < 0 && err != -EBUSY)
2590 return VM_FAULT_SIGBUS;
2592 return VM_FAULT_NOPAGE;
2595 static inline vm_fault_t vmf_error(int err)
2598 return VM_FAULT_OOM;
2599 return VM_FAULT_SIGBUS;
2602 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2603 unsigned int foll_flags);
2605 #define FOLL_WRITE 0x01 /* check pte is writable */
2606 #define FOLL_TOUCH 0x02 /* mark page accessed */
2607 #define FOLL_GET 0x04 /* do get_page on page */
2608 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2609 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2610 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2611 * and return without waiting upon it */
2612 #define FOLL_POPULATE 0x40 /* fault in page */
2613 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2614 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2615 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2616 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2617 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2618 #define FOLL_MLOCK 0x1000 /* lock present pages */
2619 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2620 #define FOLL_COW 0x4000 /* internal GUP flag */
2621 #define FOLL_ANON 0x8000 /* don't do file mappings */
2623 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2625 if (vm_fault & VM_FAULT_OOM)
2627 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2628 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2629 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2634 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2636 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2637 unsigned long size, pte_fn_t fn, void *data);
2640 #ifdef CONFIG_PAGE_POISONING
2641 extern bool page_poisoning_enabled(void);
2642 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2644 static inline bool page_poisoning_enabled(void) { return false; }
2645 static inline void kernel_poison_pages(struct page *page, int numpages,
2649 #ifdef CONFIG_DEBUG_PAGEALLOC
2650 extern bool _debug_pagealloc_enabled;
2651 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2653 static inline bool debug_pagealloc_enabled(void)
2655 return _debug_pagealloc_enabled;
2659 kernel_map_pages(struct page *page, int numpages, int enable)
2661 if (!debug_pagealloc_enabled())
2664 __kernel_map_pages(page, numpages, enable);
2666 #ifdef CONFIG_HIBERNATION
2667 extern bool kernel_page_present(struct page *page);
2668 #endif /* CONFIG_HIBERNATION */
2669 #else /* CONFIG_DEBUG_PAGEALLOC */
2671 kernel_map_pages(struct page *page, int numpages, int enable) {}
2672 #ifdef CONFIG_HIBERNATION
2673 static inline bool kernel_page_present(struct page *page) { return true; }
2674 #endif /* CONFIG_HIBERNATION */
2675 static inline bool debug_pagealloc_enabled(void)
2679 #endif /* CONFIG_DEBUG_PAGEALLOC */
2681 #ifdef __HAVE_ARCH_GATE_AREA
2682 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2683 extern int in_gate_area_no_mm(unsigned long addr);
2684 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2686 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2690 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2691 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2695 #endif /* __HAVE_ARCH_GATE_AREA */
2697 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2699 #ifdef CONFIG_SYSCTL
2700 extern int sysctl_drop_caches;
2701 int drop_caches_sysctl_handler(struct ctl_table *, int,
2702 void __user *, size_t *, loff_t *);
2705 void drop_slab(void);
2706 void drop_slab_node(int nid);
2709 #define randomize_va_space 0
2711 extern int randomize_va_space;
2714 const char * arch_vma_name(struct vm_area_struct *vma);
2715 void print_vma_addr(char *prefix, unsigned long rip);
2717 void *sparse_buffer_alloc(unsigned long size);
2718 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2719 struct vmem_altmap *altmap);
2720 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2721 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2722 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2723 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2724 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2725 void *vmemmap_alloc_block(unsigned long size, int node);
2727 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2728 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2729 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2730 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2732 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2733 struct vmem_altmap *altmap);
2734 void vmemmap_populate_print_last(void);
2735 #ifdef CONFIG_MEMORY_HOTPLUG
2736 void vmemmap_free(unsigned long start, unsigned long end,
2737 struct vmem_altmap *altmap);
2739 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2740 unsigned long nr_pages);
2743 MF_COUNT_INCREASED = 1 << 0,
2744 MF_ACTION_REQUIRED = 1 << 1,
2745 MF_MUST_KILL = 1 << 2,
2746 MF_SOFT_OFFLINE = 1 << 3,
2748 extern int memory_failure(unsigned long pfn, int flags);
2749 extern void memory_failure_queue(unsigned long pfn, int flags);
2750 extern int unpoison_memory(unsigned long pfn);
2751 extern int get_hwpoison_page(struct page *page);
2752 #define put_hwpoison_page(page) put_page(page)
2753 extern int sysctl_memory_failure_early_kill;
2754 extern int sysctl_memory_failure_recovery;
2755 extern void shake_page(struct page *p, int access);
2756 extern atomic_long_t num_poisoned_pages __read_mostly;
2757 extern int soft_offline_page(struct page *page, int flags);
2761 * Error handlers for various types of pages.
2764 MF_IGNORED, /* Error: cannot be handled */
2765 MF_FAILED, /* Error: handling failed */
2766 MF_DELAYED, /* Will be handled later */
2767 MF_RECOVERED, /* Successfully recovered */
2770 enum mf_action_page_type {
2772 MF_MSG_KERNEL_HIGH_ORDER,
2774 MF_MSG_DIFFERENT_COMPOUND,
2775 MF_MSG_POISONED_HUGE,
2778 MF_MSG_NON_PMD_HUGE,
2779 MF_MSG_UNMAP_FAILED,
2780 MF_MSG_DIRTY_SWAPCACHE,
2781 MF_MSG_CLEAN_SWAPCACHE,
2782 MF_MSG_DIRTY_MLOCKED_LRU,
2783 MF_MSG_CLEAN_MLOCKED_LRU,
2784 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2785 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2788 MF_MSG_TRUNCATED_LRU,
2795 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2796 extern void clear_huge_page(struct page *page,
2797 unsigned long addr_hint,
2798 unsigned int pages_per_huge_page);
2799 extern void copy_user_huge_page(struct page *dst, struct page *src,
2800 unsigned long addr_hint,
2801 struct vm_area_struct *vma,
2802 unsigned int pages_per_huge_page);
2803 extern long copy_huge_page_from_user(struct page *dst_page,
2804 const void __user *usr_src,
2805 unsigned int pages_per_huge_page,
2806 bool allow_pagefault);
2807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2809 extern struct page_ext_operations debug_guardpage_ops;
2811 #ifdef CONFIG_DEBUG_PAGEALLOC
2812 extern unsigned int _debug_guardpage_minorder;
2813 extern bool _debug_guardpage_enabled;
2815 static inline unsigned int debug_guardpage_minorder(void)
2817 return _debug_guardpage_minorder;
2820 static inline bool debug_guardpage_enabled(void)
2822 return _debug_guardpage_enabled;
2825 static inline bool page_is_guard(struct page *page)
2827 struct page_ext *page_ext;
2829 if (!debug_guardpage_enabled())
2832 page_ext = lookup_page_ext(page);
2833 if (unlikely(!page_ext))
2836 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2839 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2840 static inline bool debug_guardpage_enabled(void) { return false; }
2841 static inline bool page_is_guard(struct page *page) { return false; }
2842 #endif /* CONFIG_DEBUG_PAGEALLOC */
2844 #if MAX_NUMNODES > 1
2845 void __init setup_nr_node_ids(void);
2847 static inline void setup_nr_node_ids(void) {}
2850 #endif /* __KERNEL__ */
2851 #endif /* _LINUX_MM_H */