1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
102 unsigned int hibernation_mode:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness = 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages;
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
197 int id, ret = -ENOMEM;
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
211 shrinker_nr_max = id + 1;
216 up_write(&shrinker_rwsem);
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
222 int id = shrinker->id;
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control *sc)
244 return !sc->target_mem_cgroup;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control *sc)
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
277 struct mem_cgroup_per_node *mn;
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
289 struct mem_cgroup_per_node *mn;
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
296 static bool global_reclaim(struct scan_control *sc)
301 static bool sane_reclaim(struct scan_control *sc)
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone *zone)
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
345 unsigned long lru_size;
348 if (!mem_cgroup_disabled())
349 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
357 if (!managed_zone(zone))
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker *shrinker)
377 size_t size = sizeof(*shrinker->nr_deferred);
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
399 void free_prealloced_shrinker(struct shrinker *shrinker)
401 if (!shrinker->nr_deferred)
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
411 void register_shrinker_prepared(struct shrinker *shrinker)
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
419 up_write(&shrinker_rwsem);
422 int register_shrinker(struct shrinker *shrinker)
424 int err = prealloc_shrinker(shrinker);
428 register_shrinker_prepared(shrinker);
431 EXPORT_SYMBOL(register_shrinker);
436 void unregister_shrinker(struct shrinker *shrinker)
438 if (!shrinker->nr_deferred)
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
445 kfree(shrinker->nr_deferred);
446 shrinker->nr_deferred = NULL;
448 EXPORT_SYMBOL(unregister_shrinker);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 struct shrinker *shrinker, int priority)
455 unsigned long freed = 0;
456 unsigned long long delta;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
464 long scanned = 0, next_deferred;
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
469 freeable = shrinker->count_objects(shrinker, shrinkctl);
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
484 do_div(delta, shrinker->seeks);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta = freeable / 2;
495 * Make sure we apply some minimal pressure on default priority
496 * even on small cgroups. Stale objects are not only consuming memory
497 * by themselves, but can also hold a reference to a dying cgroup,
498 * preventing it from being reclaimed. A dying cgroup with all
499 * corresponding structures like per-cpu stats and kmem caches
500 * can be really big, so it may lead to a significant waste of memory.
502 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
505 if (total_scan < 0) {
506 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
507 shrinker->scan_objects, total_scan);
508 total_scan = freeable;
511 next_deferred = total_scan;
514 * We need to avoid excessive windup on filesystem shrinkers
515 * due to large numbers of GFP_NOFS allocations causing the
516 * shrinkers to return -1 all the time. This results in a large
517 * nr being built up so when a shrink that can do some work
518 * comes along it empties the entire cache due to nr >>>
519 * freeable. This is bad for sustaining a working set in
522 * Hence only allow the shrinker to scan the entire cache when
523 * a large delta change is calculated directly.
525 if (delta < freeable / 4)
526 total_scan = min(total_scan, freeable / 2);
529 * Avoid risking looping forever due to too large nr value:
530 * never try to free more than twice the estimate number of
533 if (total_scan > freeable * 2)
534 total_scan = freeable * 2;
536 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
537 freeable, delta, total_scan, priority);
540 * Normally, we should not scan less than batch_size objects in one
541 * pass to avoid too frequent shrinker calls, but if the slab has less
542 * than batch_size objects in total and we are really tight on memory,
543 * we will try to reclaim all available objects, otherwise we can end
544 * up failing allocations although there are plenty of reclaimable
545 * objects spread over several slabs with usage less than the
548 * We detect the "tight on memory" situations by looking at the total
549 * number of objects we want to scan (total_scan). If it is greater
550 * than the total number of objects on slab (freeable), we must be
551 * scanning at high prio and therefore should try to reclaim as much as
554 while (total_scan >= batch_size ||
555 total_scan >= freeable) {
557 unsigned long nr_to_scan = min(batch_size, total_scan);
559 shrinkctl->nr_to_scan = nr_to_scan;
560 shrinkctl->nr_scanned = nr_to_scan;
561 ret = shrinker->scan_objects(shrinker, shrinkctl);
562 if (ret == SHRINK_STOP)
566 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
567 total_scan -= shrinkctl->nr_scanned;
568 scanned += shrinkctl->nr_scanned;
573 if (next_deferred >= scanned)
574 next_deferred -= scanned;
578 * move the unused scan count back into the shrinker in a
579 * manner that handles concurrent updates. If we exhausted the
580 * scan, there is no need to do an update.
582 if (next_deferred > 0)
583 new_nr = atomic_long_add_return(next_deferred,
584 &shrinker->nr_deferred[nid]);
586 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
588 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
592 #ifdef CONFIG_MEMCG_KMEM
593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
594 struct mem_cgroup *memcg, int priority)
596 struct memcg_shrinker_map *map;
597 unsigned long ret, freed = 0;
600 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
603 if (!down_read_trylock(&shrinker_rwsem))
606 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
611 for_each_set_bit(i, map->map, shrinker_nr_max) {
612 struct shrink_control sc = {
613 .gfp_mask = gfp_mask,
617 struct shrinker *shrinker;
619 shrinker = idr_find(&shrinker_idr, i);
620 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
622 clear_bit(i, map->map);
626 ret = do_shrink_slab(&sc, shrinker, priority);
627 if (ret == SHRINK_EMPTY) {
628 clear_bit(i, map->map);
630 * After the shrinker reported that it had no objects to
631 * free, but before we cleared the corresponding bit in
632 * the memcg shrinker map, a new object might have been
633 * added. To make sure, we have the bit set in this
634 * case, we invoke the shrinker one more time and reset
635 * the bit if it reports that it is not empty anymore.
636 * The memory barrier here pairs with the barrier in
637 * memcg_set_shrinker_bit():
639 * list_lru_add() shrink_slab_memcg()
640 * list_add_tail() clear_bit()
642 * set_bit() do_shrink_slab()
644 smp_mb__after_atomic();
645 ret = do_shrink_slab(&sc, shrinker, priority);
646 if (ret == SHRINK_EMPTY)
649 memcg_set_shrinker_bit(memcg, nid, i);
653 if (rwsem_is_contended(&shrinker_rwsem)) {
659 up_read(&shrinker_rwsem);
662 #else /* CONFIG_MEMCG_KMEM */
663 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
664 struct mem_cgroup *memcg, int priority)
668 #endif /* CONFIG_MEMCG_KMEM */
671 * shrink_slab - shrink slab caches
672 * @gfp_mask: allocation context
673 * @nid: node whose slab caches to target
674 * @memcg: memory cgroup whose slab caches to target
675 * @priority: the reclaim priority
677 * Call the shrink functions to age shrinkable caches.
679 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
680 * unaware shrinkers will receive a node id of 0 instead.
682 * @memcg specifies the memory cgroup to target. Unaware shrinkers
683 * are called only if it is the root cgroup.
685 * @priority is sc->priority, we take the number of objects and >> by priority
686 * in order to get the scan target.
688 * Returns the number of reclaimed slab objects.
690 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
691 struct mem_cgroup *memcg,
694 unsigned long ret, freed = 0;
695 struct shrinker *shrinker;
697 if (!mem_cgroup_is_root(memcg))
698 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
700 if (!down_read_trylock(&shrinker_rwsem))
703 list_for_each_entry(shrinker, &shrinker_list, list) {
704 struct shrink_control sc = {
705 .gfp_mask = gfp_mask,
710 ret = do_shrink_slab(&sc, shrinker, priority);
711 if (ret == SHRINK_EMPTY)
715 * Bail out if someone want to register a new shrinker to
716 * prevent the regsitration from being stalled for long periods
717 * by parallel ongoing shrinking.
719 if (rwsem_is_contended(&shrinker_rwsem)) {
725 up_read(&shrinker_rwsem);
731 void drop_slab_node(int nid)
736 struct mem_cgroup *memcg = NULL;
739 memcg = mem_cgroup_iter(NULL, NULL, NULL);
741 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
742 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
743 } while (freed > 10);
750 for_each_online_node(nid)
754 static inline int is_page_cache_freeable(struct page *page)
757 * A freeable page cache page is referenced only by the caller
758 * that isolated the page, the page cache and optional buffer
759 * heads at page->private.
761 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
763 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
766 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
768 if (current->flags & PF_SWAPWRITE)
770 if (!inode_write_congested(inode))
772 if (inode_to_bdi(inode) == current->backing_dev_info)
778 * We detected a synchronous write error writing a page out. Probably
779 * -ENOSPC. We need to propagate that into the address_space for a subsequent
780 * fsync(), msync() or close().
782 * The tricky part is that after writepage we cannot touch the mapping: nothing
783 * prevents it from being freed up. But we have a ref on the page and once
784 * that page is locked, the mapping is pinned.
786 * We're allowed to run sleeping lock_page() here because we know the caller has
789 static void handle_write_error(struct address_space *mapping,
790 struct page *page, int error)
793 if (page_mapping(page) == mapping)
794 mapping_set_error(mapping, error);
798 /* possible outcome of pageout() */
800 /* failed to write page out, page is locked */
802 /* move page to the active list, page is locked */
804 /* page has been sent to the disk successfully, page is unlocked */
806 /* page is clean and locked */
811 * pageout is called by shrink_page_list() for each dirty page.
812 * Calls ->writepage().
814 static pageout_t pageout(struct page *page, struct address_space *mapping,
815 struct scan_control *sc)
818 * If the page is dirty, only perform writeback if that write
819 * will be non-blocking. To prevent this allocation from being
820 * stalled by pagecache activity. But note that there may be
821 * stalls if we need to run get_block(). We could test
822 * PagePrivate for that.
824 * If this process is currently in __generic_file_write_iter() against
825 * this page's queue, we can perform writeback even if that
828 * If the page is swapcache, write it back even if that would
829 * block, for some throttling. This happens by accident, because
830 * swap_backing_dev_info is bust: it doesn't reflect the
831 * congestion state of the swapdevs. Easy to fix, if needed.
833 if (!is_page_cache_freeable(page))
837 * Some data journaling orphaned pages can have
838 * page->mapping == NULL while being dirty with clean buffers.
840 if (page_has_private(page)) {
841 if (try_to_free_buffers(page)) {
842 ClearPageDirty(page);
843 pr_info("%s: orphaned page\n", __func__);
849 if (mapping->a_ops->writepage == NULL)
850 return PAGE_ACTIVATE;
851 if (!may_write_to_inode(mapping->host, sc))
854 if (clear_page_dirty_for_io(page)) {
856 struct writeback_control wbc = {
857 .sync_mode = WB_SYNC_NONE,
858 .nr_to_write = SWAP_CLUSTER_MAX,
860 .range_end = LLONG_MAX,
864 SetPageReclaim(page);
865 res = mapping->a_ops->writepage(page, &wbc);
867 handle_write_error(mapping, page, res);
868 if (res == AOP_WRITEPAGE_ACTIVATE) {
869 ClearPageReclaim(page);
870 return PAGE_ACTIVATE;
873 if (!PageWriteback(page)) {
874 /* synchronous write or broken a_ops? */
875 ClearPageReclaim(page);
877 trace_mm_vmscan_writepage(page);
878 inc_node_page_state(page, NR_VMSCAN_WRITE);
886 * Same as remove_mapping, but if the page is removed from the mapping, it
887 * gets returned with a refcount of 0.
889 static int __remove_mapping(struct address_space *mapping, struct page *page,
895 BUG_ON(!PageLocked(page));
896 BUG_ON(mapping != page_mapping(page));
898 xa_lock_irqsave(&mapping->i_pages, flags);
900 * The non racy check for a busy page.
902 * Must be careful with the order of the tests. When someone has
903 * a ref to the page, it may be possible that they dirty it then
904 * drop the reference. So if PageDirty is tested before page_count
905 * here, then the following race may occur:
907 * get_user_pages(&page);
908 * [user mapping goes away]
910 * !PageDirty(page) [good]
911 * SetPageDirty(page);
913 * !page_count(page) [good, discard it]
915 * [oops, our write_to data is lost]
917 * Reversing the order of the tests ensures such a situation cannot
918 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
919 * load is not satisfied before that of page->_refcount.
921 * Note that if SetPageDirty is always performed via set_page_dirty,
922 * and thus under the i_pages lock, then this ordering is not required.
924 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
925 refcount = 1 + HPAGE_PMD_NR;
928 if (!page_ref_freeze(page, refcount))
930 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
931 if (unlikely(PageDirty(page))) {
932 page_ref_unfreeze(page, refcount);
936 if (PageSwapCache(page)) {
937 swp_entry_t swap = { .val = page_private(page) };
938 mem_cgroup_swapout(page, swap);
939 __delete_from_swap_cache(page, swap);
940 xa_unlock_irqrestore(&mapping->i_pages, flags);
941 put_swap_page(page, swap);
943 void (*freepage)(struct page *);
946 freepage = mapping->a_ops->freepage;
948 * Remember a shadow entry for reclaimed file cache in
949 * order to detect refaults, thus thrashing, later on.
951 * But don't store shadows in an address space that is
952 * already exiting. This is not just an optizimation,
953 * inode reclaim needs to empty out the radix tree or
954 * the nodes are lost. Don't plant shadows behind its
957 * We also don't store shadows for DAX mappings because the
958 * only page cache pages found in these are zero pages
959 * covering holes, and because we don't want to mix DAX
960 * exceptional entries and shadow exceptional entries in the
961 * same address_space.
963 if (reclaimed && page_is_file_cache(page) &&
964 !mapping_exiting(mapping) && !dax_mapping(mapping))
965 shadow = workingset_eviction(mapping, page);
966 __delete_from_page_cache(page, shadow);
967 xa_unlock_irqrestore(&mapping->i_pages, flags);
969 if (freepage != NULL)
976 xa_unlock_irqrestore(&mapping->i_pages, flags);
981 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
982 * someone else has a ref on the page, abort and return 0. If it was
983 * successfully detached, return 1. Assumes the caller has a single ref on
986 int remove_mapping(struct address_space *mapping, struct page *page)
988 if (__remove_mapping(mapping, page, false)) {
990 * Unfreezing the refcount with 1 rather than 2 effectively
991 * drops the pagecache ref for us without requiring another
994 page_ref_unfreeze(page, 1);
1001 * putback_lru_page - put previously isolated page onto appropriate LRU list
1002 * @page: page to be put back to appropriate lru list
1004 * Add previously isolated @page to appropriate LRU list.
1005 * Page may still be unevictable for other reasons.
1007 * lru_lock must not be held, interrupts must be enabled.
1009 void putback_lru_page(struct page *page)
1011 lru_cache_add(page);
1012 put_page(page); /* drop ref from isolate */
1015 enum page_references {
1017 PAGEREF_RECLAIM_CLEAN,
1022 static enum page_references page_check_references(struct page *page,
1023 struct scan_control *sc)
1025 int referenced_ptes, referenced_page;
1026 unsigned long vm_flags;
1028 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1030 referenced_page = TestClearPageReferenced(page);
1033 * Mlock lost the isolation race with us. Let try_to_unmap()
1034 * move the page to the unevictable list.
1036 if (vm_flags & VM_LOCKED)
1037 return PAGEREF_RECLAIM;
1039 if (referenced_ptes) {
1040 if (PageSwapBacked(page))
1041 return PAGEREF_ACTIVATE;
1043 * All mapped pages start out with page table
1044 * references from the instantiating fault, so we need
1045 * to look twice if a mapped file page is used more
1048 * Mark it and spare it for another trip around the
1049 * inactive list. Another page table reference will
1050 * lead to its activation.
1052 * Note: the mark is set for activated pages as well
1053 * so that recently deactivated but used pages are
1054 * quickly recovered.
1056 SetPageReferenced(page);
1058 if (referenced_page || referenced_ptes > 1)
1059 return PAGEREF_ACTIVATE;
1062 * Activate file-backed executable pages after first usage.
1064 if (vm_flags & VM_EXEC)
1065 return PAGEREF_ACTIVATE;
1067 return PAGEREF_KEEP;
1070 /* Reclaim if clean, defer dirty pages to writeback */
1071 if (referenced_page && !PageSwapBacked(page))
1072 return PAGEREF_RECLAIM_CLEAN;
1074 return PAGEREF_RECLAIM;
1077 /* Check if a page is dirty or under writeback */
1078 static void page_check_dirty_writeback(struct page *page,
1079 bool *dirty, bool *writeback)
1081 struct address_space *mapping;
1084 * Anonymous pages are not handled by flushers and must be written
1085 * from reclaim context. Do not stall reclaim based on them
1087 if (!page_is_file_cache(page) ||
1088 (PageAnon(page) && !PageSwapBacked(page))) {
1094 /* By default assume that the page flags are accurate */
1095 *dirty = PageDirty(page);
1096 *writeback = PageWriteback(page);
1098 /* Verify dirty/writeback state if the filesystem supports it */
1099 if (!page_has_private(page))
1102 mapping = page_mapping(page);
1103 if (mapping && mapping->a_ops->is_dirty_writeback)
1104 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1108 * shrink_page_list() returns the number of reclaimed pages
1110 static unsigned long shrink_page_list(struct list_head *page_list,
1111 struct pglist_data *pgdat,
1112 struct scan_control *sc,
1113 enum ttu_flags ttu_flags,
1114 struct reclaim_stat *stat,
1117 LIST_HEAD(ret_pages);
1118 LIST_HEAD(free_pages);
1120 unsigned nr_unqueued_dirty = 0;
1121 unsigned nr_dirty = 0;
1122 unsigned nr_congested = 0;
1123 unsigned nr_reclaimed = 0;
1124 unsigned nr_writeback = 0;
1125 unsigned nr_immediate = 0;
1126 unsigned nr_ref_keep = 0;
1127 unsigned nr_unmap_fail = 0;
1131 while (!list_empty(page_list)) {
1132 struct address_space *mapping;
1135 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1136 bool dirty, writeback;
1140 page = lru_to_page(page_list);
1141 list_del(&page->lru);
1143 if (!trylock_page(page))
1146 VM_BUG_ON_PAGE(PageActive(page), page);
1150 if (unlikely(!page_evictable(page)))
1151 goto activate_locked;
1153 if (!sc->may_unmap && page_mapped(page))
1156 /* Double the slab pressure for mapped and swapcache pages */
1157 if ((page_mapped(page) || PageSwapCache(page)) &&
1158 !(PageAnon(page) && !PageSwapBacked(page)))
1161 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1162 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165 * The number of dirty pages determines if a node is marked
1166 * reclaim_congested which affects wait_iff_congested. kswapd
1167 * will stall and start writing pages if the tail of the LRU
1168 * is all dirty unqueued pages.
1170 page_check_dirty_writeback(page, &dirty, &writeback);
1171 if (dirty || writeback)
1174 if (dirty && !writeback)
1175 nr_unqueued_dirty++;
1178 * Treat this page as congested if the underlying BDI is or if
1179 * pages are cycling through the LRU so quickly that the
1180 * pages marked for immediate reclaim are making it to the
1181 * end of the LRU a second time.
1183 mapping = page_mapping(page);
1184 if (((dirty || writeback) && mapping &&
1185 inode_write_congested(mapping->host)) ||
1186 (writeback && PageReclaim(page)))
1190 * If a page at the tail of the LRU is under writeback, there
1191 * are three cases to consider.
1193 * 1) If reclaim is encountering an excessive number of pages
1194 * under writeback and this page is both under writeback and
1195 * PageReclaim then it indicates that pages are being queued
1196 * for IO but are being recycled through the LRU before the
1197 * IO can complete. Waiting on the page itself risks an
1198 * indefinite stall if it is impossible to writeback the
1199 * page due to IO error or disconnected storage so instead
1200 * note that the LRU is being scanned too quickly and the
1201 * caller can stall after page list has been processed.
1203 * 2) Global or new memcg reclaim encounters a page that is
1204 * not marked for immediate reclaim, or the caller does not
1205 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1206 * not to fs). In this case mark the page for immediate
1207 * reclaim and continue scanning.
1209 * Require may_enter_fs because we would wait on fs, which
1210 * may not have submitted IO yet. And the loop driver might
1211 * enter reclaim, and deadlock if it waits on a page for
1212 * which it is needed to do the write (loop masks off
1213 * __GFP_IO|__GFP_FS for this reason); but more thought
1214 * would probably show more reasons.
1216 * 3) Legacy memcg encounters a page that is already marked
1217 * PageReclaim. memcg does not have any dirty pages
1218 * throttling so we could easily OOM just because too many
1219 * pages are in writeback and there is nothing else to
1220 * reclaim. Wait for the writeback to complete.
1222 * In cases 1) and 2) we activate the pages to get them out of
1223 * the way while we continue scanning for clean pages on the
1224 * inactive list and refilling from the active list. The
1225 * observation here is that waiting for disk writes is more
1226 * expensive than potentially causing reloads down the line.
1227 * Since they're marked for immediate reclaim, they won't put
1228 * memory pressure on the cache working set any longer than it
1229 * takes to write them to disk.
1231 if (PageWriteback(page)) {
1233 if (current_is_kswapd() &&
1234 PageReclaim(page) &&
1235 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1237 goto activate_locked;
1240 } else if (sane_reclaim(sc) ||
1241 !PageReclaim(page) || !may_enter_fs) {
1243 * This is slightly racy - end_page_writeback()
1244 * might have just cleared PageReclaim, then
1245 * setting PageReclaim here end up interpreted
1246 * as PageReadahead - but that does not matter
1247 * enough to care. What we do want is for this
1248 * page to have PageReclaim set next time memcg
1249 * reclaim reaches the tests above, so it will
1250 * then wait_on_page_writeback() to avoid OOM;
1251 * and it's also appropriate in global reclaim.
1253 SetPageReclaim(page);
1255 goto activate_locked;
1260 wait_on_page_writeback(page);
1261 /* then go back and try same page again */
1262 list_add_tail(&page->lru, page_list);
1268 references = page_check_references(page, sc);
1270 switch (references) {
1271 case PAGEREF_ACTIVATE:
1272 goto activate_locked;
1276 case PAGEREF_RECLAIM:
1277 case PAGEREF_RECLAIM_CLEAN:
1278 ; /* try to reclaim the page below */
1282 * Anonymous process memory has backing store?
1283 * Try to allocate it some swap space here.
1284 * Lazyfree page could be freed directly
1286 if (PageAnon(page) && PageSwapBacked(page)) {
1287 if (!PageSwapCache(page)) {
1288 if (!(sc->gfp_mask & __GFP_IO))
1290 if (PageTransHuge(page)) {
1291 /* cannot split THP, skip it */
1292 if (!can_split_huge_page(page, NULL))
1293 goto activate_locked;
1295 * Split pages without a PMD map right
1296 * away. Chances are some or all of the
1297 * tail pages can be freed without IO.
1299 if (!compound_mapcount(page) &&
1300 split_huge_page_to_list(page,
1302 goto activate_locked;
1304 if (!add_to_swap(page)) {
1305 if (!PageTransHuge(page))
1306 goto activate_locked;
1307 /* Fallback to swap normal pages */
1308 if (split_huge_page_to_list(page,
1310 goto activate_locked;
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 count_vm_event(THP_SWPOUT_FALLBACK);
1314 if (!add_to_swap(page))
1315 goto activate_locked;
1320 /* Adding to swap updated mapping */
1321 mapping = page_mapping(page);
1323 } else if (unlikely(PageTransHuge(page))) {
1324 /* Split file THP */
1325 if (split_huge_page_to_list(page, page_list))
1330 * The page is mapped into the page tables of one or more
1331 * processes. Try to unmap it here.
1333 if (page_mapped(page)) {
1334 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1336 if (unlikely(PageTransHuge(page)))
1337 flags |= TTU_SPLIT_HUGE_PMD;
1338 if (!try_to_unmap(page, flags)) {
1340 goto activate_locked;
1344 if (PageDirty(page)) {
1346 * Only kswapd can writeback filesystem pages
1347 * to avoid risk of stack overflow. But avoid
1348 * injecting inefficient single-page IO into
1349 * flusher writeback as much as possible: only
1350 * write pages when we've encountered many
1351 * dirty pages, and when we've already scanned
1352 * the rest of the LRU for clean pages and see
1353 * the same dirty pages again (PageReclaim).
1355 if (page_is_file_cache(page) &&
1356 (!current_is_kswapd() || !PageReclaim(page) ||
1357 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1359 * Immediately reclaim when written back.
1360 * Similar in principal to deactivate_page()
1361 * except we already have the page isolated
1362 * and know it's dirty
1364 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1365 SetPageReclaim(page);
1367 goto activate_locked;
1370 if (references == PAGEREF_RECLAIM_CLEAN)
1374 if (!sc->may_writepage)
1378 * Page is dirty. Flush the TLB if a writable entry
1379 * potentially exists to avoid CPU writes after IO
1380 * starts and then write it out here.
1382 try_to_unmap_flush_dirty();
1383 switch (pageout(page, mapping, sc)) {
1387 goto activate_locked;
1389 if (PageWriteback(page))
1391 if (PageDirty(page))
1395 * A synchronous write - probably a ramdisk. Go
1396 * ahead and try to reclaim the page.
1398 if (!trylock_page(page))
1400 if (PageDirty(page) || PageWriteback(page))
1402 mapping = page_mapping(page);
1404 ; /* try to free the page below */
1409 * If the page has buffers, try to free the buffer mappings
1410 * associated with this page. If we succeed we try to free
1413 * We do this even if the page is PageDirty().
1414 * try_to_release_page() does not perform I/O, but it is
1415 * possible for a page to have PageDirty set, but it is actually
1416 * clean (all its buffers are clean). This happens if the
1417 * buffers were written out directly, with submit_bh(). ext3
1418 * will do this, as well as the blockdev mapping.
1419 * try_to_release_page() will discover that cleanness and will
1420 * drop the buffers and mark the page clean - it can be freed.
1422 * Rarely, pages can have buffers and no ->mapping. These are
1423 * the pages which were not successfully invalidated in
1424 * truncate_complete_page(). We try to drop those buffers here
1425 * and if that worked, and the page is no longer mapped into
1426 * process address space (page_count == 1) it can be freed.
1427 * Otherwise, leave the page on the LRU so it is swappable.
1429 if (page_has_private(page)) {
1430 if (!try_to_release_page(page, sc->gfp_mask))
1431 goto activate_locked;
1432 if (!mapping && page_count(page) == 1) {
1434 if (put_page_testzero(page))
1438 * rare race with speculative reference.
1439 * the speculative reference will free
1440 * this page shortly, so we may
1441 * increment nr_reclaimed here (and
1442 * leave it off the LRU).
1450 if (PageAnon(page) && !PageSwapBacked(page)) {
1451 /* follow __remove_mapping for reference */
1452 if (!page_ref_freeze(page, 1))
1454 if (PageDirty(page)) {
1455 page_ref_unfreeze(page, 1);
1459 count_vm_event(PGLAZYFREED);
1460 count_memcg_page_event(page, PGLAZYFREED);
1461 } else if (!mapping || !__remove_mapping(mapping, page, true))
1464 * At this point, we have no other references and there is
1465 * no way to pick any more up (removed from LRU, removed
1466 * from pagecache). Can use non-atomic bitops now (and
1467 * we obviously don't have to worry about waking up a process
1468 * waiting on the page lock, because there are no references.
1470 __ClearPageLocked(page);
1475 * Is there need to periodically free_page_list? It would
1476 * appear not as the counts should be low
1478 if (unlikely(PageTransHuge(page))) {
1479 mem_cgroup_uncharge(page);
1480 (*get_compound_page_dtor(page))(page);
1482 list_add(&page->lru, &free_pages);
1486 /* Not a candidate for swapping, so reclaim swap space. */
1487 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1489 try_to_free_swap(page);
1490 VM_BUG_ON_PAGE(PageActive(page), page);
1491 if (!PageMlocked(page)) {
1492 SetPageActive(page);
1494 count_memcg_page_event(page, PGACTIVATE);
1499 list_add(&page->lru, &ret_pages);
1500 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1503 mem_cgroup_uncharge_list(&free_pages);
1504 try_to_unmap_flush();
1505 free_unref_page_list(&free_pages);
1507 list_splice(&ret_pages, page_list);
1508 count_vm_events(PGACTIVATE, pgactivate);
1511 stat->nr_dirty = nr_dirty;
1512 stat->nr_congested = nr_congested;
1513 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1514 stat->nr_writeback = nr_writeback;
1515 stat->nr_immediate = nr_immediate;
1516 stat->nr_activate = pgactivate;
1517 stat->nr_ref_keep = nr_ref_keep;
1518 stat->nr_unmap_fail = nr_unmap_fail;
1520 return nr_reclaimed;
1523 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1524 struct list_head *page_list)
1526 struct scan_control sc = {
1527 .gfp_mask = GFP_KERNEL,
1528 .priority = DEF_PRIORITY,
1532 struct page *page, *next;
1533 LIST_HEAD(clean_pages);
1535 list_for_each_entry_safe(page, next, page_list, lru) {
1536 if (page_is_file_cache(page) && !PageDirty(page) &&
1537 !__PageMovable(page)) {
1538 ClearPageActive(page);
1539 list_move(&page->lru, &clean_pages);
1543 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1544 TTU_IGNORE_ACCESS, NULL, true);
1545 list_splice(&clean_pages, page_list);
1546 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1551 * Attempt to remove the specified page from its LRU. Only take this page
1552 * if it is of the appropriate PageActive status. Pages which are being
1553 * freed elsewhere are also ignored.
1555 * page: page to consider
1556 * mode: one of the LRU isolation modes defined above
1558 * returns 0 on success, -ve errno on failure.
1560 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1564 /* Only take pages on the LRU. */
1568 /* Compaction should not handle unevictable pages but CMA can do so */
1569 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1575 * To minimise LRU disruption, the caller can indicate that it only
1576 * wants to isolate pages it will be able to operate on without
1577 * blocking - clean pages for the most part.
1579 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1580 * that it is possible to migrate without blocking
1582 if (mode & ISOLATE_ASYNC_MIGRATE) {
1583 /* All the caller can do on PageWriteback is block */
1584 if (PageWriteback(page))
1587 if (PageDirty(page)) {
1588 struct address_space *mapping;
1592 * Only pages without mappings or that have a
1593 * ->migratepage callback are possible to migrate
1594 * without blocking. However, we can be racing with
1595 * truncation so it's necessary to lock the page
1596 * to stabilise the mapping as truncation holds
1597 * the page lock until after the page is removed
1598 * from the page cache.
1600 if (!trylock_page(page))
1603 mapping = page_mapping(page);
1604 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1611 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1614 if (likely(get_page_unless_zero(page))) {
1616 * Be careful not to clear PageLRU until after we're
1617 * sure the page is not being freed elsewhere -- the
1618 * page release code relies on it.
1629 * Update LRU sizes after isolating pages. The LRU size updates must
1630 * be complete before mem_cgroup_update_lru_size due to a santity check.
1632 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1633 enum lru_list lru, unsigned long *nr_zone_taken)
1637 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1638 if (!nr_zone_taken[zid])
1641 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1643 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1650 * zone_lru_lock is heavily contended. Some of the functions that
1651 * shrink the lists perform better by taking out a batch of pages
1652 * and working on them outside the LRU lock.
1654 * For pagecache intensive workloads, this function is the hottest
1655 * spot in the kernel (apart from copy_*_user functions).
1657 * Appropriate locks must be held before calling this function.
1659 * @nr_to_scan: The number of eligible pages to look through on the list.
1660 * @lruvec: The LRU vector to pull pages from.
1661 * @dst: The temp list to put pages on to.
1662 * @nr_scanned: The number of pages that were scanned.
1663 * @sc: The scan_control struct for this reclaim session
1664 * @mode: One of the LRU isolation modes
1665 * @lru: LRU list id for isolating
1667 * returns how many pages were moved onto *@dst.
1669 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1670 struct lruvec *lruvec, struct list_head *dst,
1671 unsigned long *nr_scanned, struct scan_control *sc,
1672 isolate_mode_t mode, enum lru_list lru)
1674 struct list_head *src = &lruvec->lists[lru];
1675 unsigned long nr_taken = 0;
1676 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1677 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1678 unsigned long skipped = 0;
1679 unsigned long scan, total_scan, nr_pages;
1680 LIST_HEAD(pages_skipped);
1683 for (total_scan = 0;
1684 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1688 page = lru_to_page(src);
1689 prefetchw_prev_lru_page(page, src, flags);
1691 VM_BUG_ON_PAGE(!PageLRU(page), page);
1693 if (page_zonenum(page) > sc->reclaim_idx) {
1694 list_move(&page->lru, &pages_skipped);
1695 nr_skipped[page_zonenum(page)]++;
1700 * Do not count skipped pages because that makes the function
1701 * return with no isolated pages if the LRU mostly contains
1702 * ineligible pages. This causes the VM to not reclaim any
1703 * pages, triggering a premature OOM.
1706 switch (__isolate_lru_page(page, mode)) {
1708 nr_pages = hpage_nr_pages(page);
1709 nr_taken += nr_pages;
1710 nr_zone_taken[page_zonenum(page)] += nr_pages;
1711 list_move(&page->lru, dst);
1715 /* else it is being freed elsewhere */
1716 list_move(&page->lru, src);
1725 * Splice any skipped pages to the start of the LRU list. Note that
1726 * this disrupts the LRU order when reclaiming for lower zones but
1727 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1728 * scanning would soon rescan the same pages to skip and put the
1729 * system at risk of premature OOM.
1731 if (!list_empty(&pages_skipped)) {
1734 list_splice(&pages_skipped, src);
1735 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1736 if (!nr_skipped[zid])
1739 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1740 skipped += nr_skipped[zid];
1743 *nr_scanned = total_scan;
1744 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1745 total_scan, skipped, nr_taken, mode, lru);
1746 update_lru_sizes(lruvec, lru, nr_zone_taken);
1751 * isolate_lru_page - tries to isolate a page from its LRU list
1752 * @page: page to isolate from its LRU list
1754 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1755 * vmstat statistic corresponding to whatever LRU list the page was on.
1757 * Returns 0 if the page was removed from an LRU list.
1758 * Returns -EBUSY if the page was not on an LRU list.
1760 * The returned page will have PageLRU() cleared. If it was found on
1761 * the active list, it will have PageActive set. If it was found on
1762 * the unevictable list, it will have the PageUnevictable bit set. That flag
1763 * may need to be cleared by the caller before letting the page go.
1765 * The vmstat statistic corresponding to the list on which the page was
1766 * found will be decremented.
1770 * (1) Must be called with an elevated refcount on the page. This is a
1771 * fundamentnal difference from isolate_lru_pages (which is called
1772 * without a stable reference).
1773 * (2) the lru_lock must not be held.
1774 * (3) interrupts must be enabled.
1776 int isolate_lru_page(struct page *page)
1780 VM_BUG_ON_PAGE(!page_count(page), page);
1781 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1783 if (PageLRU(page)) {
1784 struct zone *zone = page_zone(page);
1785 struct lruvec *lruvec;
1787 spin_lock_irq(zone_lru_lock(zone));
1788 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1789 if (PageLRU(page)) {
1790 int lru = page_lru(page);
1793 del_page_from_lru_list(page, lruvec, lru);
1796 spin_unlock_irq(zone_lru_lock(zone));
1802 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1803 * then get resheduled. When there are massive number of tasks doing page
1804 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1805 * the LRU list will go small and be scanned faster than necessary, leading to
1806 * unnecessary swapping, thrashing and OOM.
1808 static int too_many_isolated(struct pglist_data *pgdat, int file,
1809 struct scan_control *sc)
1811 unsigned long inactive, isolated;
1813 if (current_is_kswapd())
1816 if (!sane_reclaim(sc))
1820 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1821 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1823 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1824 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1828 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1829 * won't get blocked by normal direct-reclaimers, forming a circular
1832 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1835 return isolated > inactive;
1838 static noinline_for_stack void
1839 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1841 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1842 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1843 LIST_HEAD(pages_to_free);
1846 * Put back any unfreeable pages.
1848 while (!list_empty(page_list)) {
1849 struct page *page = lru_to_page(page_list);
1852 VM_BUG_ON_PAGE(PageLRU(page), page);
1853 list_del(&page->lru);
1854 if (unlikely(!page_evictable(page))) {
1855 spin_unlock_irq(&pgdat->lru_lock);
1856 putback_lru_page(page);
1857 spin_lock_irq(&pgdat->lru_lock);
1861 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1864 lru = page_lru(page);
1865 add_page_to_lru_list(page, lruvec, lru);
1867 if (is_active_lru(lru)) {
1868 int file = is_file_lru(lru);
1869 int numpages = hpage_nr_pages(page);
1870 reclaim_stat->recent_rotated[file] += numpages;
1872 if (put_page_testzero(page)) {
1873 __ClearPageLRU(page);
1874 __ClearPageActive(page);
1875 del_page_from_lru_list(page, lruvec, lru);
1877 if (unlikely(PageCompound(page))) {
1878 spin_unlock_irq(&pgdat->lru_lock);
1879 mem_cgroup_uncharge(page);
1880 (*get_compound_page_dtor(page))(page);
1881 spin_lock_irq(&pgdat->lru_lock);
1883 list_add(&page->lru, &pages_to_free);
1888 * To save our caller's stack, now use input list for pages to free.
1890 list_splice(&pages_to_free, page_list);
1894 * If a kernel thread (such as nfsd for loop-back mounts) services
1895 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1896 * In that case we should only throttle if the backing device it is
1897 * writing to is congested. In other cases it is safe to throttle.
1899 static int current_may_throttle(void)
1901 return !(current->flags & PF_LESS_THROTTLE) ||
1902 current->backing_dev_info == NULL ||
1903 bdi_write_congested(current->backing_dev_info);
1907 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1908 * of reclaimed pages
1910 static noinline_for_stack unsigned long
1911 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1912 struct scan_control *sc, enum lru_list lru)
1914 LIST_HEAD(page_list);
1915 unsigned long nr_scanned;
1916 unsigned long nr_reclaimed = 0;
1917 unsigned long nr_taken;
1918 struct reclaim_stat stat = {};
1919 isolate_mode_t isolate_mode = 0;
1920 int file = is_file_lru(lru);
1921 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1923 bool stalled = false;
1925 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1929 /* wait a bit for the reclaimer. */
1933 /* We are about to die and free our memory. Return now. */
1934 if (fatal_signal_pending(current))
1935 return SWAP_CLUSTER_MAX;
1941 isolate_mode |= ISOLATE_UNMAPPED;
1943 spin_lock_irq(&pgdat->lru_lock);
1945 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1946 &nr_scanned, sc, isolate_mode, lru);
1948 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949 reclaim_stat->recent_scanned[file] += nr_taken;
1951 if (current_is_kswapd()) {
1952 if (global_reclaim(sc))
1953 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1954 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1957 if (global_reclaim(sc))
1958 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1959 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1962 spin_unlock_irq(&pgdat->lru_lock);
1967 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1970 spin_lock_irq(&pgdat->lru_lock);
1972 if (current_is_kswapd()) {
1973 if (global_reclaim(sc))
1974 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1975 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1978 if (global_reclaim(sc))
1979 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1980 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1984 putback_inactive_pages(lruvec, &page_list);
1986 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1988 spin_unlock_irq(&pgdat->lru_lock);
1990 mem_cgroup_uncharge_list(&page_list);
1991 free_unref_page_list(&page_list);
1994 * If dirty pages are scanned that are not queued for IO, it
1995 * implies that flushers are not doing their job. This can
1996 * happen when memory pressure pushes dirty pages to the end of
1997 * the LRU before the dirty limits are breached and the dirty
1998 * data has expired. It can also happen when the proportion of
1999 * dirty pages grows not through writes but through memory
2000 * pressure reclaiming all the clean cache. And in some cases,
2001 * the flushers simply cannot keep up with the allocation
2002 * rate. Nudge the flusher threads in case they are asleep.
2004 if (stat.nr_unqueued_dirty == nr_taken)
2005 wakeup_flusher_threads(WB_REASON_VMSCAN);
2007 sc->nr.dirty += stat.nr_dirty;
2008 sc->nr.congested += stat.nr_congested;
2009 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2010 sc->nr.writeback += stat.nr_writeback;
2011 sc->nr.immediate += stat.nr_immediate;
2012 sc->nr.taken += nr_taken;
2014 sc->nr.file_taken += nr_taken;
2016 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2017 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2018 return nr_reclaimed;
2022 * This moves pages from the active list to the inactive list.
2024 * We move them the other way if the page is referenced by one or more
2025 * processes, from rmap.
2027 * If the pages are mostly unmapped, the processing is fast and it is
2028 * appropriate to hold zone_lru_lock across the whole operation. But if
2029 * the pages are mapped, the processing is slow (page_referenced()) so we
2030 * should drop zone_lru_lock around each page. It's impossible to balance
2031 * this, so instead we remove the pages from the LRU while processing them.
2032 * It is safe to rely on PG_active against the non-LRU pages in here because
2033 * nobody will play with that bit on a non-LRU page.
2035 * The downside is that we have to touch page->_refcount against each page.
2036 * But we had to alter page->flags anyway.
2038 * Returns the number of pages moved to the given lru.
2041 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2042 struct list_head *list,
2043 struct list_head *pages_to_free,
2046 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2051 while (!list_empty(list)) {
2052 page = lru_to_page(list);
2053 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2055 VM_BUG_ON_PAGE(PageLRU(page), page);
2058 nr_pages = hpage_nr_pages(page);
2059 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2060 list_move(&page->lru, &lruvec->lists[lru]);
2062 if (put_page_testzero(page)) {
2063 __ClearPageLRU(page);
2064 __ClearPageActive(page);
2065 del_page_from_lru_list(page, lruvec, lru);
2067 if (unlikely(PageCompound(page))) {
2068 spin_unlock_irq(&pgdat->lru_lock);
2069 mem_cgroup_uncharge(page);
2070 (*get_compound_page_dtor(page))(page);
2071 spin_lock_irq(&pgdat->lru_lock);
2073 list_add(&page->lru, pages_to_free);
2075 nr_moved += nr_pages;
2079 if (!is_active_lru(lru)) {
2080 __count_vm_events(PGDEACTIVATE, nr_moved);
2081 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2088 static void shrink_active_list(unsigned long nr_to_scan,
2089 struct lruvec *lruvec,
2090 struct scan_control *sc,
2093 unsigned long nr_taken;
2094 unsigned long nr_scanned;
2095 unsigned long vm_flags;
2096 LIST_HEAD(l_hold); /* The pages which were snipped off */
2097 LIST_HEAD(l_active);
2098 LIST_HEAD(l_inactive);
2100 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2101 unsigned nr_deactivate, nr_activate;
2102 unsigned nr_rotated = 0;
2103 isolate_mode_t isolate_mode = 0;
2104 int file = is_file_lru(lru);
2105 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2110 isolate_mode |= ISOLATE_UNMAPPED;
2112 spin_lock_irq(&pgdat->lru_lock);
2114 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2115 &nr_scanned, sc, isolate_mode, lru);
2117 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2118 reclaim_stat->recent_scanned[file] += nr_taken;
2120 __count_vm_events(PGREFILL, nr_scanned);
2121 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2123 spin_unlock_irq(&pgdat->lru_lock);
2125 while (!list_empty(&l_hold)) {
2127 page = lru_to_page(&l_hold);
2128 list_del(&page->lru);
2130 if (unlikely(!page_evictable(page))) {
2131 putback_lru_page(page);
2135 if (unlikely(buffer_heads_over_limit)) {
2136 if (page_has_private(page) && trylock_page(page)) {
2137 if (page_has_private(page))
2138 try_to_release_page(page, 0);
2143 if (page_referenced(page, 0, sc->target_mem_cgroup,
2145 nr_rotated += hpage_nr_pages(page);
2147 * Identify referenced, file-backed active pages and
2148 * give them one more trip around the active list. So
2149 * that executable code get better chances to stay in
2150 * memory under moderate memory pressure. Anon pages
2151 * are not likely to be evicted by use-once streaming
2152 * IO, plus JVM can create lots of anon VM_EXEC pages,
2153 * so we ignore them here.
2155 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2156 list_add(&page->lru, &l_active);
2161 ClearPageActive(page); /* we are de-activating */
2162 SetPageWorkingset(page);
2163 list_add(&page->lru, &l_inactive);
2167 * Move pages back to the lru list.
2169 spin_lock_irq(&pgdat->lru_lock);
2171 * Count referenced pages from currently used mappings as rotated,
2172 * even though only some of them are actually re-activated. This
2173 * helps balance scan pressure between file and anonymous pages in
2176 reclaim_stat->recent_rotated[file] += nr_rotated;
2178 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2179 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2180 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2181 spin_unlock_irq(&pgdat->lru_lock);
2183 mem_cgroup_uncharge_list(&l_hold);
2184 free_unref_page_list(&l_hold);
2185 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2186 nr_deactivate, nr_rotated, sc->priority, file);
2190 * The inactive anon list should be small enough that the VM never has
2191 * to do too much work.
2193 * The inactive file list should be small enough to leave most memory
2194 * to the established workingset on the scan-resistant active list,
2195 * but large enough to avoid thrashing the aggregate readahead window.
2197 * Both inactive lists should also be large enough that each inactive
2198 * page has a chance to be referenced again before it is reclaimed.
2200 * If that fails and refaulting is observed, the inactive list grows.
2202 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2203 * on this LRU, maintained by the pageout code. An inactive_ratio
2204 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2207 * memory ratio inactive
2208 * -------------------------------------
2217 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2218 struct mem_cgroup *memcg,
2219 struct scan_control *sc, bool actual_reclaim)
2221 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2222 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2223 enum lru_list inactive_lru = file * LRU_FILE;
2224 unsigned long inactive, active;
2225 unsigned long inactive_ratio;
2226 unsigned long refaults;
2230 * If we don't have swap space, anonymous page deactivation
2233 if (!file && !total_swap_pages)
2236 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2237 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2240 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2242 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2245 * When refaults are being observed, it means a new workingset
2246 * is being established. Disable active list protection to get
2247 * rid of the stale workingset quickly.
2249 if (file && actual_reclaim && lruvec->refaults != refaults) {
2252 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2254 inactive_ratio = int_sqrt(10 * gb);
2260 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2261 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2262 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2263 inactive_ratio, file);
2265 return inactive * inactive_ratio < active;
2268 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2269 struct lruvec *lruvec, struct mem_cgroup *memcg,
2270 struct scan_control *sc)
2272 if (is_active_lru(lru)) {
2273 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2275 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2279 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2290 * Determine how aggressively the anon and file LRU lists should be
2291 * scanned. The relative value of each set of LRU lists is determined
2292 * by looking at the fraction of the pages scanned we did rotate back
2293 * onto the active list instead of evict.
2295 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2296 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2298 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2299 struct scan_control *sc, unsigned long *nr,
2300 unsigned long *lru_pages)
2302 int swappiness = mem_cgroup_swappiness(memcg);
2303 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2305 u64 denominator = 0; /* gcc */
2306 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2307 unsigned long anon_prio, file_prio;
2308 enum scan_balance scan_balance;
2309 unsigned long anon, file;
2310 unsigned long ap, fp;
2313 /* If we have no swap space, do not bother scanning anon pages. */
2314 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2315 scan_balance = SCAN_FILE;
2320 * Global reclaim will swap to prevent OOM even with no
2321 * swappiness, but memcg users want to use this knob to
2322 * disable swapping for individual groups completely when
2323 * using the memory controller's swap limit feature would be
2326 if (!global_reclaim(sc) && !swappiness) {
2327 scan_balance = SCAN_FILE;
2332 * Do not apply any pressure balancing cleverness when the
2333 * system is close to OOM, scan both anon and file equally
2334 * (unless the swappiness setting disagrees with swapping).
2336 if (!sc->priority && swappiness) {
2337 scan_balance = SCAN_EQUAL;
2342 * Prevent the reclaimer from falling into the cache trap: as
2343 * cache pages start out inactive, every cache fault will tip
2344 * the scan balance towards the file LRU. And as the file LRU
2345 * shrinks, so does the window for rotation from references.
2346 * This means we have a runaway feedback loop where a tiny
2347 * thrashing file LRU becomes infinitely more attractive than
2348 * anon pages. Try to detect this based on file LRU size.
2350 if (global_reclaim(sc)) {
2351 unsigned long pgdatfile;
2352 unsigned long pgdatfree;
2354 unsigned long total_high_wmark = 0;
2356 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2357 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2358 node_page_state(pgdat, NR_INACTIVE_FILE);
2360 for (z = 0; z < MAX_NR_ZONES; z++) {
2361 struct zone *zone = &pgdat->node_zones[z];
2362 if (!managed_zone(zone))
2365 total_high_wmark += high_wmark_pages(zone);
2368 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2370 * Force SCAN_ANON if there are enough inactive
2371 * anonymous pages on the LRU in eligible zones.
2372 * Otherwise, the small LRU gets thrashed.
2374 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2375 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2377 scan_balance = SCAN_ANON;
2384 * If there is enough inactive page cache, i.e. if the size of the
2385 * inactive list is greater than that of the active list *and* the
2386 * inactive list actually has some pages to scan on this priority, we
2387 * do not reclaim anything from the anonymous working set right now.
2388 * Without the second condition we could end up never scanning an
2389 * lruvec even if it has plenty of old anonymous pages unless the
2390 * system is under heavy pressure.
2392 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2393 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2394 scan_balance = SCAN_FILE;
2398 scan_balance = SCAN_FRACT;
2401 * With swappiness at 100, anonymous and file have the same priority.
2402 * This scanning priority is essentially the inverse of IO cost.
2404 anon_prio = swappiness;
2405 file_prio = 200 - anon_prio;
2408 * OK, so we have swap space and a fair amount of page cache
2409 * pages. We use the recently rotated / recently scanned
2410 * ratios to determine how valuable each cache is.
2412 * Because workloads change over time (and to avoid overflow)
2413 * we keep these statistics as a floating average, which ends
2414 * up weighing recent references more than old ones.
2416 * anon in [0], file in [1]
2419 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2420 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2421 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2422 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2424 spin_lock_irq(&pgdat->lru_lock);
2425 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2426 reclaim_stat->recent_scanned[0] /= 2;
2427 reclaim_stat->recent_rotated[0] /= 2;
2430 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2431 reclaim_stat->recent_scanned[1] /= 2;
2432 reclaim_stat->recent_rotated[1] /= 2;
2436 * The amount of pressure on anon vs file pages is inversely
2437 * proportional to the fraction of recently scanned pages on
2438 * each list that were recently referenced and in active use.
2440 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2441 ap /= reclaim_stat->recent_rotated[0] + 1;
2443 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2444 fp /= reclaim_stat->recent_rotated[1] + 1;
2445 spin_unlock_irq(&pgdat->lru_lock);
2449 denominator = ap + fp + 1;
2452 for_each_evictable_lru(lru) {
2453 int file = is_file_lru(lru);
2457 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2458 scan = size >> sc->priority;
2460 * If the cgroup's already been deleted, make sure to
2461 * scrape out the remaining cache.
2463 if (!scan && !mem_cgroup_online(memcg))
2464 scan = min(size, SWAP_CLUSTER_MAX);
2466 switch (scan_balance) {
2468 /* Scan lists relative to size */
2472 * Scan types proportional to swappiness and
2473 * their relative recent reclaim efficiency.
2474 * Make sure we don't miss the last page
2475 * because of a round-off error.
2477 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2482 /* Scan one type exclusively */
2483 if ((scan_balance == SCAN_FILE) != file) {
2489 /* Look ma, no brain */
2499 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2501 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2502 struct scan_control *sc, unsigned long *lru_pages)
2504 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2505 unsigned long nr[NR_LRU_LISTS];
2506 unsigned long targets[NR_LRU_LISTS];
2507 unsigned long nr_to_scan;
2509 unsigned long nr_reclaimed = 0;
2510 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2511 struct blk_plug plug;
2514 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2516 /* Record the original scan target for proportional adjustments later */
2517 memcpy(targets, nr, sizeof(nr));
2520 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2521 * event that can occur when there is little memory pressure e.g.
2522 * multiple streaming readers/writers. Hence, we do not abort scanning
2523 * when the requested number of pages are reclaimed when scanning at
2524 * DEF_PRIORITY on the assumption that the fact we are direct
2525 * reclaiming implies that kswapd is not keeping up and it is best to
2526 * do a batch of work at once. For memcg reclaim one check is made to
2527 * abort proportional reclaim if either the file or anon lru has already
2528 * dropped to zero at the first pass.
2530 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2531 sc->priority == DEF_PRIORITY);
2533 blk_start_plug(&plug);
2534 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2535 nr[LRU_INACTIVE_FILE]) {
2536 unsigned long nr_anon, nr_file, percentage;
2537 unsigned long nr_scanned;
2539 for_each_evictable_lru(lru) {
2541 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2542 nr[lru] -= nr_to_scan;
2544 nr_reclaimed += shrink_list(lru, nr_to_scan,
2551 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2555 * For kswapd and memcg, reclaim at least the number of pages
2556 * requested. Ensure that the anon and file LRUs are scanned
2557 * proportionally what was requested by get_scan_count(). We
2558 * stop reclaiming one LRU and reduce the amount scanning
2559 * proportional to the original scan target.
2561 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2562 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2565 * It's just vindictive to attack the larger once the smaller
2566 * has gone to zero. And given the way we stop scanning the
2567 * smaller below, this makes sure that we only make one nudge
2568 * towards proportionality once we've got nr_to_reclaim.
2570 if (!nr_file || !nr_anon)
2573 if (nr_file > nr_anon) {
2574 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2575 targets[LRU_ACTIVE_ANON] + 1;
2577 percentage = nr_anon * 100 / scan_target;
2579 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2580 targets[LRU_ACTIVE_FILE] + 1;
2582 percentage = nr_file * 100 / scan_target;
2585 /* Stop scanning the smaller of the LRU */
2587 nr[lru + LRU_ACTIVE] = 0;
2590 * Recalculate the other LRU scan count based on its original
2591 * scan target and the percentage scanning already complete
2593 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2594 nr_scanned = targets[lru] - nr[lru];
2595 nr[lru] = targets[lru] * (100 - percentage) / 100;
2596 nr[lru] -= min(nr[lru], nr_scanned);
2599 nr_scanned = targets[lru] - nr[lru];
2600 nr[lru] = targets[lru] * (100 - percentage) / 100;
2601 nr[lru] -= min(nr[lru], nr_scanned);
2603 scan_adjusted = true;
2605 blk_finish_plug(&plug);
2606 sc->nr_reclaimed += nr_reclaimed;
2609 * Even if we did not try to evict anon pages at all, we want to
2610 * rebalance the anon lru active/inactive ratio.
2612 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2613 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2614 sc, LRU_ACTIVE_ANON);
2617 /* Use reclaim/compaction for costly allocs or under memory pressure */
2618 static bool in_reclaim_compaction(struct scan_control *sc)
2620 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2621 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2622 sc->priority < DEF_PRIORITY - 2))
2629 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2630 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2631 * true if more pages should be reclaimed such that when the page allocator
2632 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2633 * It will give up earlier than that if there is difficulty reclaiming pages.
2635 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2636 unsigned long nr_reclaimed,
2637 unsigned long nr_scanned,
2638 struct scan_control *sc)
2640 unsigned long pages_for_compaction;
2641 unsigned long inactive_lru_pages;
2644 /* If not in reclaim/compaction mode, stop */
2645 if (!in_reclaim_compaction(sc))
2648 /* Consider stopping depending on scan and reclaim activity */
2649 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2651 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2652 * full LRU list has been scanned and we are still failing
2653 * to reclaim pages. This full LRU scan is potentially
2654 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2656 if (!nr_reclaimed && !nr_scanned)
2660 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2661 * fail without consequence, stop if we failed to reclaim
2662 * any pages from the last SWAP_CLUSTER_MAX number of
2663 * pages that were scanned. This will return to the
2664 * caller faster at the risk reclaim/compaction and
2665 * the resulting allocation attempt fails
2672 * If we have not reclaimed enough pages for compaction and the
2673 * inactive lists are large enough, continue reclaiming
2675 pages_for_compaction = compact_gap(sc->order);
2676 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2677 if (get_nr_swap_pages() > 0)
2678 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2679 if (sc->nr_reclaimed < pages_for_compaction &&
2680 inactive_lru_pages > pages_for_compaction)
2683 /* If compaction would go ahead or the allocation would succeed, stop */
2684 for (z = 0; z <= sc->reclaim_idx; z++) {
2685 struct zone *zone = &pgdat->node_zones[z];
2686 if (!managed_zone(zone))
2689 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2690 case COMPACT_SUCCESS:
2691 case COMPACT_CONTINUE:
2694 /* check next zone */
2701 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2703 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2704 (memcg && memcg_congested(pgdat, memcg));
2707 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2709 struct reclaim_state *reclaim_state = current->reclaim_state;
2710 unsigned long nr_reclaimed, nr_scanned;
2711 bool reclaimable = false;
2714 struct mem_cgroup *root = sc->target_mem_cgroup;
2715 struct mem_cgroup_reclaim_cookie reclaim = {
2717 .priority = sc->priority,
2719 unsigned long node_lru_pages = 0;
2720 struct mem_cgroup *memcg;
2722 memset(&sc->nr, 0, sizeof(sc->nr));
2724 nr_reclaimed = sc->nr_reclaimed;
2725 nr_scanned = sc->nr_scanned;
2727 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2729 unsigned long lru_pages;
2730 unsigned long reclaimed;
2731 unsigned long scanned;
2733 switch (mem_cgroup_protected(root, memcg)) {
2734 case MEMCG_PROT_MIN:
2737 * If there is no reclaimable memory, OOM.
2740 case MEMCG_PROT_LOW:
2743 * Respect the protection only as long as
2744 * there is an unprotected supply
2745 * of reclaimable memory from other cgroups.
2747 if (!sc->memcg_low_reclaim) {
2748 sc->memcg_low_skipped = 1;
2751 memcg_memory_event(memcg, MEMCG_LOW);
2753 case MEMCG_PROT_NONE:
2757 reclaimed = sc->nr_reclaimed;
2758 scanned = sc->nr_scanned;
2759 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2760 node_lru_pages += lru_pages;
2762 if (sc->may_shrinkslab) {
2763 shrink_slab(sc->gfp_mask, pgdat->node_id,
2764 memcg, sc->priority);
2767 /* Record the group's reclaim efficiency */
2768 vmpressure(sc->gfp_mask, memcg, false,
2769 sc->nr_scanned - scanned,
2770 sc->nr_reclaimed - reclaimed);
2773 * Direct reclaim and kswapd have to scan all memory
2774 * cgroups to fulfill the overall scan target for the
2777 * Limit reclaim, on the other hand, only cares about
2778 * nr_to_reclaim pages to be reclaimed and it will
2779 * retry with decreasing priority if one round over the
2780 * whole hierarchy is not sufficient.
2782 if (!global_reclaim(sc) &&
2783 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2784 mem_cgroup_iter_break(root, memcg);
2787 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2789 if (reclaim_state) {
2790 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2791 reclaim_state->reclaimed_slab = 0;
2794 /* Record the subtree's reclaim efficiency */
2795 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2796 sc->nr_scanned - nr_scanned,
2797 sc->nr_reclaimed - nr_reclaimed);
2799 if (sc->nr_reclaimed - nr_reclaimed)
2802 if (current_is_kswapd()) {
2804 * If reclaim is isolating dirty pages under writeback,
2805 * it implies that the long-lived page allocation rate
2806 * is exceeding the page laundering rate. Either the
2807 * global limits are not being effective at throttling
2808 * processes due to the page distribution throughout
2809 * zones or there is heavy usage of a slow backing
2810 * device. The only option is to throttle from reclaim
2811 * context which is not ideal as there is no guarantee
2812 * the dirtying process is throttled in the same way
2813 * balance_dirty_pages() manages.
2815 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2816 * count the number of pages under pages flagged for
2817 * immediate reclaim and stall if any are encountered
2818 * in the nr_immediate check below.
2820 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2821 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2824 * Tag a node as congested if all the dirty pages
2825 * scanned were backed by a congested BDI and
2826 * wait_iff_congested will stall.
2828 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2829 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2831 /* Allow kswapd to start writing pages during reclaim.*/
2832 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2833 set_bit(PGDAT_DIRTY, &pgdat->flags);
2836 * If kswapd scans pages marked marked for immediate
2837 * reclaim and under writeback (nr_immediate), it
2838 * implies that pages are cycling through the LRU
2839 * faster than they are written so also forcibly stall.
2841 if (sc->nr.immediate)
2842 congestion_wait(BLK_RW_ASYNC, HZ/10);
2846 * Legacy memcg will stall in page writeback so avoid forcibly
2847 * stalling in wait_iff_congested().
2849 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2850 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2851 set_memcg_congestion(pgdat, root, true);
2854 * Stall direct reclaim for IO completions if underlying BDIs
2855 * and node is congested. Allow kswapd to continue until it
2856 * starts encountering unqueued dirty pages or cycling through
2857 * the LRU too quickly.
2859 if (!sc->hibernation_mode && !current_is_kswapd() &&
2860 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2861 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2863 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2864 sc->nr_scanned - nr_scanned, sc));
2867 * Kswapd gives up on balancing particular nodes after too
2868 * many failures to reclaim anything from them and goes to
2869 * sleep. On reclaim progress, reset the failure counter. A
2870 * successful direct reclaim run will revive a dormant kswapd.
2873 pgdat->kswapd_failures = 0;
2879 * Returns true if compaction should go ahead for a costly-order request, or
2880 * the allocation would already succeed without compaction. Return false if we
2881 * should reclaim first.
2883 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2885 unsigned long watermark;
2886 enum compact_result suitable;
2888 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2889 if (suitable == COMPACT_SUCCESS)
2890 /* Allocation should succeed already. Don't reclaim. */
2892 if (suitable == COMPACT_SKIPPED)
2893 /* Compaction cannot yet proceed. Do reclaim. */
2897 * Compaction is already possible, but it takes time to run and there
2898 * are potentially other callers using the pages just freed. So proceed
2899 * with reclaim to make a buffer of free pages available to give
2900 * compaction a reasonable chance of completing and allocating the page.
2901 * Note that we won't actually reclaim the whole buffer in one attempt
2902 * as the target watermark in should_continue_reclaim() is lower. But if
2903 * we are already above the high+gap watermark, don't reclaim at all.
2905 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2907 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2911 * This is the direct reclaim path, for page-allocating processes. We only
2912 * try to reclaim pages from zones which will satisfy the caller's allocation
2915 * If a zone is deemed to be full of pinned pages then just give it a light
2916 * scan then give up on it.
2918 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2922 unsigned long nr_soft_reclaimed;
2923 unsigned long nr_soft_scanned;
2925 pg_data_t *last_pgdat = NULL;
2928 * If the number of buffer_heads in the machine exceeds the maximum
2929 * allowed level, force direct reclaim to scan the highmem zone as
2930 * highmem pages could be pinning lowmem pages storing buffer_heads
2932 orig_mask = sc->gfp_mask;
2933 if (buffer_heads_over_limit) {
2934 sc->gfp_mask |= __GFP_HIGHMEM;
2935 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2938 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2939 sc->reclaim_idx, sc->nodemask) {
2941 * Take care memory controller reclaiming has small influence
2944 if (global_reclaim(sc)) {
2945 if (!cpuset_zone_allowed(zone,
2946 GFP_KERNEL | __GFP_HARDWALL))
2950 * If we already have plenty of memory free for
2951 * compaction in this zone, don't free any more.
2952 * Even though compaction is invoked for any
2953 * non-zero order, only frequent costly order
2954 * reclamation is disruptive enough to become a
2955 * noticeable problem, like transparent huge
2958 if (IS_ENABLED(CONFIG_COMPACTION) &&
2959 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2960 compaction_ready(zone, sc)) {
2961 sc->compaction_ready = true;
2966 * Shrink each node in the zonelist once. If the
2967 * zonelist is ordered by zone (not the default) then a
2968 * node may be shrunk multiple times but in that case
2969 * the user prefers lower zones being preserved.
2971 if (zone->zone_pgdat == last_pgdat)
2975 * This steals pages from memory cgroups over softlimit
2976 * and returns the number of reclaimed pages and
2977 * scanned pages. This works for global memory pressure
2978 * and balancing, not for a memcg's limit.
2980 nr_soft_scanned = 0;
2981 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2982 sc->order, sc->gfp_mask,
2984 sc->nr_reclaimed += nr_soft_reclaimed;
2985 sc->nr_scanned += nr_soft_scanned;
2986 /* need some check for avoid more shrink_zone() */
2989 /* See comment about same check for global reclaim above */
2990 if (zone->zone_pgdat == last_pgdat)
2992 last_pgdat = zone->zone_pgdat;
2993 shrink_node(zone->zone_pgdat, sc);
2997 * Restore to original mask to avoid the impact on the caller if we
2998 * promoted it to __GFP_HIGHMEM.
3000 sc->gfp_mask = orig_mask;
3003 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3005 struct mem_cgroup *memcg;
3007 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3009 unsigned long refaults;
3010 struct lruvec *lruvec;
3013 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3015 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3017 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3018 lruvec->refaults = refaults;
3019 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3023 * This is the main entry point to direct page reclaim.
3025 * If a full scan of the inactive list fails to free enough memory then we
3026 * are "out of memory" and something needs to be killed.
3028 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3029 * high - the zone may be full of dirty or under-writeback pages, which this
3030 * caller can't do much about. We kick the writeback threads and take explicit
3031 * naps in the hope that some of these pages can be written. But if the
3032 * allocating task holds filesystem locks which prevent writeout this might not
3033 * work, and the allocation attempt will fail.
3035 * returns: 0, if no pages reclaimed
3036 * else, the number of pages reclaimed
3038 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3039 struct scan_control *sc)
3041 int initial_priority = sc->priority;
3042 pg_data_t *last_pgdat;
3046 delayacct_freepages_start();
3048 if (global_reclaim(sc))
3049 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3052 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3055 shrink_zones(zonelist, sc);
3057 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3060 if (sc->compaction_ready)
3064 * If we're getting trouble reclaiming, start doing
3065 * writepage even in laptop mode.
3067 if (sc->priority < DEF_PRIORITY - 2)
3068 sc->may_writepage = 1;
3069 } while (--sc->priority >= 0);
3072 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3074 if (zone->zone_pgdat == last_pgdat)
3076 last_pgdat = zone->zone_pgdat;
3077 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3078 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3081 delayacct_freepages_end();
3083 if (sc->nr_reclaimed)
3084 return sc->nr_reclaimed;
3086 /* Aborted reclaim to try compaction? don't OOM, then */
3087 if (sc->compaction_ready)
3090 /* Untapped cgroup reserves? Don't OOM, retry. */
3091 if (sc->memcg_low_skipped) {
3092 sc->priority = initial_priority;
3093 sc->memcg_low_reclaim = 1;
3094 sc->memcg_low_skipped = 0;
3101 static bool allow_direct_reclaim(pg_data_t *pgdat)
3104 unsigned long pfmemalloc_reserve = 0;
3105 unsigned long free_pages = 0;
3109 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3112 for (i = 0; i <= ZONE_NORMAL; i++) {
3113 zone = &pgdat->node_zones[i];
3114 if (!managed_zone(zone))
3117 if (!zone_reclaimable_pages(zone))
3120 pfmemalloc_reserve += min_wmark_pages(zone);
3121 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3124 /* If there are no reserves (unexpected config) then do not throttle */
3125 if (!pfmemalloc_reserve)
3128 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3130 /* kswapd must be awake if processes are being throttled */
3131 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3132 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3133 (enum zone_type)ZONE_NORMAL);
3134 wake_up_interruptible(&pgdat->kswapd_wait);
3141 * Throttle direct reclaimers if backing storage is backed by the network
3142 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3143 * depleted. kswapd will continue to make progress and wake the processes
3144 * when the low watermark is reached.
3146 * Returns true if a fatal signal was delivered during throttling. If this
3147 * happens, the page allocator should not consider triggering the OOM killer.
3149 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3150 nodemask_t *nodemask)
3154 pg_data_t *pgdat = NULL;
3157 * Kernel threads should not be throttled as they may be indirectly
3158 * responsible for cleaning pages necessary for reclaim to make forward
3159 * progress. kjournald for example may enter direct reclaim while
3160 * committing a transaction where throttling it could forcing other
3161 * processes to block on log_wait_commit().
3163 if (current->flags & PF_KTHREAD)
3167 * If a fatal signal is pending, this process should not throttle.
3168 * It should return quickly so it can exit and free its memory
3170 if (fatal_signal_pending(current))
3174 * Check if the pfmemalloc reserves are ok by finding the first node
3175 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3176 * GFP_KERNEL will be required for allocating network buffers when
3177 * swapping over the network so ZONE_HIGHMEM is unusable.
3179 * Throttling is based on the first usable node and throttled processes
3180 * wait on a queue until kswapd makes progress and wakes them. There
3181 * is an affinity then between processes waking up and where reclaim
3182 * progress has been made assuming the process wakes on the same node.
3183 * More importantly, processes running on remote nodes will not compete
3184 * for remote pfmemalloc reserves and processes on different nodes
3185 * should make reasonable progress.
3187 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3188 gfp_zone(gfp_mask), nodemask) {
3189 if (zone_idx(zone) > ZONE_NORMAL)
3192 /* Throttle based on the first usable node */
3193 pgdat = zone->zone_pgdat;
3194 if (allow_direct_reclaim(pgdat))
3199 /* If no zone was usable by the allocation flags then do not throttle */
3203 /* Account for the throttling */
3204 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3207 * If the caller cannot enter the filesystem, it's possible that it
3208 * is due to the caller holding an FS lock or performing a journal
3209 * transaction in the case of a filesystem like ext[3|4]. In this case,
3210 * it is not safe to block on pfmemalloc_wait as kswapd could be
3211 * blocked waiting on the same lock. Instead, throttle for up to a
3212 * second before continuing.
3214 if (!(gfp_mask & __GFP_FS)) {
3215 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3216 allow_direct_reclaim(pgdat), HZ);
3221 /* Throttle until kswapd wakes the process */
3222 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3223 allow_direct_reclaim(pgdat));
3226 if (fatal_signal_pending(current))
3233 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3234 gfp_t gfp_mask, nodemask_t *nodemask)
3236 unsigned long nr_reclaimed;
3237 struct scan_control sc = {
3238 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3239 .gfp_mask = current_gfp_context(gfp_mask),
3240 .reclaim_idx = gfp_zone(gfp_mask),
3242 .nodemask = nodemask,
3243 .priority = DEF_PRIORITY,
3244 .may_writepage = !laptop_mode,
3247 .may_shrinkslab = 1,
3251 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3252 * Confirm they are large enough for max values.
3254 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3255 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3256 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3259 * Do not enter reclaim if fatal signal was delivered while throttled.
3260 * 1 is returned so that the page allocator does not OOM kill at this
3263 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3266 trace_mm_vmscan_direct_reclaim_begin(order,
3271 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3273 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3275 return nr_reclaimed;
3280 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3281 gfp_t gfp_mask, bool noswap,
3283 unsigned long *nr_scanned)
3285 struct scan_control sc = {
3286 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3287 .target_mem_cgroup = memcg,
3288 .may_writepage = !laptop_mode,
3290 .reclaim_idx = MAX_NR_ZONES - 1,
3291 .may_swap = !noswap,
3292 .may_shrinkslab = 1,
3294 unsigned long lru_pages;
3296 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3297 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3299 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3305 * NOTE: Although we can get the priority field, using it
3306 * here is not a good idea, since it limits the pages we can scan.
3307 * if we don't reclaim here, the shrink_node from balance_pgdat
3308 * will pick up pages from other mem cgroup's as well. We hack
3309 * the priority and make it zero.
3311 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3313 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3315 *nr_scanned = sc.nr_scanned;
3316 return sc.nr_reclaimed;
3319 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3320 unsigned long nr_pages,
3324 struct zonelist *zonelist;
3325 unsigned long nr_reclaimed;
3326 unsigned long pflags;
3328 unsigned int noreclaim_flag;
3329 struct scan_control sc = {
3330 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3331 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3332 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3333 .reclaim_idx = MAX_NR_ZONES - 1,
3334 .target_mem_cgroup = memcg,
3335 .priority = DEF_PRIORITY,
3336 .may_writepage = !laptop_mode,
3338 .may_swap = may_swap,
3339 .may_shrinkslab = 1,
3343 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3344 * take care of from where we get pages. So the node where we start the
3345 * scan does not need to be the current node.
3347 nid = mem_cgroup_select_victim_node(memcg);
3349 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3351 trace_mm_vmscan_memcg_reclaim_begin(0,
3356 psi_memstall_enter(&pflags);
3357 noreclaim_flag = memalloc_noreclaim_save();
3359 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3361 memalloc_noreclaim_restore(noreclaim_flag);
3362 psi_memstall_leave(&pflags);
3364 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3366 return nr_reclaimed;
3370 static void age_active_anon(struct pglist_data *pgdat,
3371 struct scan_control *sc)
3373 struct mem_cgroup *memcg;
3375 if (!total_swap_pages)
3378 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3380 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3382 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3383 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3384 sc, LRU_ACTIVE_ANON);
3386 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3390 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3396 * Check for watermark boosts top-down as the higher zones
3397 * are more likely to be boosted. Both watermarks and boosts
3398 * should not be checked at the time time as reclaim would
3399 * start prematurely when there is no boosting and a lower
3402 for (i = classzone_idx; i >= 0; i--) {
3403 zone = pgdat->node_zones + i;
3404 if (!managed_zone(zone))
3407 if (zone->watermark_boost)
3415 * Returns true if there is an eligible zone balanced for the request order
3418 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3421 unsigned long mark = -1;
3425 * Check watermarks bottom-up as lower zones are more likely to
3428 for (i = 0; i <= classzone_idx; i++) {
3429 zone = pgdat->node_zones + i;
3431 if (!managed_zone(zone))
3434 mark = high_wmark_pages(zone);
3435 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3440 * If a node has no populated zone within classzone_idx, it does not
3441 * need balancing by definition. This can happen if a zone-restricted
3442 * allocation tries to wake a remote kswapd.
3450 /* Clear pgdat state for congested, dirty or under writeback. */
3451 static void clear_pgdat_congested(pg_data_t *pgdat)
3453 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3454 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3455 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3459 * Prepare kswapd for sleeping. This verifies that there are no processes
3460 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3462 * Returns true if kswapd is ready to sleep
3464 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3467 * The throttled processes are normally woken up in balance_pgdat() as
3468 * soon as allow_direct_reclaim() is true. But there is a potential
3469 * race between when kswapd checks the watermarks and a process gets
3470 * throttled. There is also a potential race if processes get
3471 * throttled, kswapd wakes, a large process exits thereby balancing the
3472 * zones, which causes kswapd to exit balance_pgdat() before reaching
3473 * the wake up checks. If kswapd is going to sleep, no process should
3474 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3475 * the wake up is premature, processes will wake kswapd and get
3476 * throttled again. The difference from wake ups in balance_pgdat() is
3477 * that here we are under prepare_to_wait().
3479 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3480 wake_up_all(&pgdat->pfmemalloc_wait);
3482 /* Hopeless node, leave it to direct reclaim */
3483 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3486 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3487 clear_pgdat_congested(pgdat);
3495 * kswapd shrinks a node of pages that are at or below the highest usable
3496 * zone that is currently unbalanced.
3498 * Returns true if kswapd scanned at least the requested number of pages to
3499 * reclaim or if the lack of progress was due to pages under writeback.
3500 * This is used to determine if the scanning priority needs to be raised.
3502 static bool kswapd_shrink_node(pg_data_t *pgdat,
3503 struct scan_control *sc)
3508 /* Reclaim a number of pages proportional to the number of zones */
3509 sc->nr_to_reclaim = 0;
3510 for (z = 0; z <= sc->reclaim_idx; z++) {
3511 zone = pgdat->node_zones + z;
3512 if (!managed_zone(zone))
3515 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3519 * Historically care was taken to put equal pressure on all zones but
3520 * now pressure is applied based on node LRU order.
3522 shrink_node(pgdat, sc);
3525 * Fragmentation may mean that the system cannot be rebalanced for
3526 * high-order allocations. If twice the allocation size has been
3527 * reclaimed then recheck watermarks only at order-0 to prevent
3528 * excessive reclaim. Assume that a process requested a high-order
3529 * can direct reclaim/compact.
3531 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3534 return sc->nr_scanned >= sc->nr_to_reclaim;
3538 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3539 * that are eligible for use by the caller until at least one zone is
3542 * Returns the order kswapd finished reclaiming at.
3544 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3545 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3546 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3547 * or lower is eligible for reclaim until at least one usable zone is
3550 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3553 unsigned long nr_soft_reclaimed;
3554 unsigned long nr_soft_scanned;
3555 unsigned long pflags;
3556 unsigned long nr_boost_reclaim;
3557 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3560 struct scan_control sc = {
3561 .gfp_mask = GFP_KERNEL,
3566 psi_memstall_enter(&pflags);
3567 __fs_reclaim_acquire();
3569 count_vm_event(PAGEOUTRUN);
3572 * Account for the reclaim boost. Note that the zone boost is left in
3573 * place so that parallel allocations that are near the watermark will
3574 * stall or direct reclaim until kswapd is finished.
3576 nr_boost_reclaim = 0;
3577 for (i = 0; i <= classzone_idx; i++) {
3578 zone = pgdat->node_zones + i;
3579 if (!managed_zone(zone))
3582 nr_boost_reclaim += zone->watermark_boost;
3583 zone_boosts[i] = zone->watermark_boost;
3585 boosted = nr_boost_reclaim;
3588 sc.priority = DEF_PRIORITY;
3590 unsigned long nr_reclaimed = sc.nr_reclaimed;
3591 bool raise_priority = true;
3595 sc.reclaim_idx = classzone_idx;
3598 * If the number of buffer_heads exceeds the maximum allowed
3599 * then consider reclaiming from all zones. This has a dual
3600 * purpose -- on 64-bit systems it is expected that
3601 * buffer_heads are stripped during active rotation. On 32-bit
3602 * systems, highmem pages can pin lowmem memory and shrinking
3603 * buffers can relieve lowmem pressure. Reclaim may still not
3604 * go ahead if all eligible zones for the original allocation
3605 * request are balanced to avoid excessive reclaim from kswapd.
3607 if (buffer_heads_over_limit) {
3608 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3609 zone = pgdat->node_zones + i;
3610 if (!managed_zone(zone))
3619 * If the pgdat is imbalanced then ignore boosting and preserve
3620 * the watermarks for a later time and restart. Note that the
3621 * zone watermarks will be still reset at the end of balancing
3622 * on the grounds that the normal reclaim should be enough to
3623 * re-evaluate if boosting is required when kswapd next wakes.
3625 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3626 if (!balanced && nr_boost_reclaim) {
3627 nr_boost_reclaim = 0;
3632 * If boosting is not active then only reclaim if there are no
3633 * eligible zones. Note that sc.reclaim_idx is not used as
3634 * buffer_heads_over_limit may have adjusted it.
3636 if (!nr_boost_reclaim && balanced)
3639 /* Limit the priority of boosting to avoid reclaim writeback */
3640 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3641 raise_priority = false;
3644 * Do not writeback or swap pages for boosted reclaim. The
3645 * intent is to relieve pressure not issue sub-optimal IO
3646 * from reclaim context. If no pages are reclaimed, the
3647 * reclaim will be aborted.
3649 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3650 sc.may_swap = !nr_boost_reclaim;
3651 sc.may_shrinkslab = !nr_boost_reclaim;
3654 * Do some background aging of the anon list, to give
3655 * pages a chance to be referenced before reclaiming. All
3656 * pages are rotated regardless of classzone as this is
3657 * about consistent aging.
3659 age_active_anon(pgdat, &sc);
3662 * If we're getting trouble reclaiming, start doing writepage
3663 * even in laptop mode.
3665 if (sc.priority < DEF_PRIORITY - 2)
3666 sc.may_writepage = 1;
3668 /* Call soft limit reclaim before calling shrink_node. */
3670 nr_soft_scanned = 0;
3671 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3672 sc.gfp_mask, &nr_soft_scanned);
3673 sc.nr_reclaimed += nr_soft_reclaimed;
3676 * There should be no need to raise the scanning priority if
3677 * enough pages are already being scanned that that high
3678 * watermark would be met at 100% efficiency.
3680 if (kswapd_shrink_node(pgdat, &sc))
3681 raise_priority = false;
3684 * If the low watermark is met there is no need for processes
3685 * to be throttled on pfmemalloc_wait as they should not be
3686 * able to safely make forward progress. Wake them
3688 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3689 allow_direct_reclaim(pgdat))
3690 wake_up_all(&pgdat->pfmemalloc_wait);
3692 /* Check if kswapd should be suspending */
3693 __fs_reclaim_release();
3694 ret = try_to_freeze();
3695 __fs_reclaim_acquire();
3696 if (ret || kthread_should_stop())
3700 * Raise priority if scanning rate is too low or there was no
3701 * progress in reclaiming pages
3703 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3704 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3707 * If reclaim made no progress for a boost, stop reclaim as
3708 * IO cannot be queued and it could be an infinite loop in
3709 * extreme circumstances.
3711 if (nr_boost_reclaim && !nr_reclaimed)
3714 if (raise_priority || !nr_reclaimed)
3716 } while (sc.priority >= 1);
3718 if (!sc.nr_reclaimed)
3719 pgdat->kswapd_failures++;
3722 /* If reclaim was boosted, account for the reclaim done in this pass */
3724 unsigned long flags;
3726 for (i = 0; i <= classzone_idx; i++) {
3727 if (!zone_boosts[i])
3730 /* Increments are under the zone lock */
3731 zone = pgdat->node_zones + i;
3732 spin_lock_irqsave(&zone->lock, flags);
3733 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3734 spin_unlock_irqrestore(&zone->lock, flags);
3738 * As there is now likely space, wakeup kcompact to defragment
3741 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3744 snapshot_refaults(NULL, pgdat);
3745 __fs_reclaim_release();
3746 psi_memstall_leave(&pflags);
3748 * Return the order kswapd stopped reclaiming at as
3749 * prepare_kswapd_sleep() takes it into account. If another caller
3750 * entered the allocator slow path while kswapd was awake, order will
3751 * remain at the higher level.
3757 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3758 * allocation request woke kswapd for. When kswapd has not woken recently,
3759 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3760 * given classzone and returns it or the highest classzone index kswapd
3761 * was recently woke for.
3763 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3764 enum zone_type classzone_idx)
3766 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3767 return classzone_idx;
3769 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3772 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3773 unsigned int classzone_idx)
3778 if (freezing(current) || kthread_should_stop())
3781 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3784 * Try to sleep for a short interval. Note that kcompactd will only be
3785 * woken if it is possible to sleep for a short interval. This is
3786 * deliberate on the assumption that if reclaim cannot keep an
3787 * eligible zone balanced that it's also unlikely that compaction will
3790 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3792 * Compaction records what page blocks it recently failed to
3793 * isolate pages from and skips them in the future scanning.
3794 * When kswapd is going to sleep, it is reasonable to assume
3795 * that pages and compaction may succeed so reset the cache.
3797 reset_isolation_suitable(pgdat);
3800 * We have freed the memory, now we should compact it to make
3801 * allocation of the requested order possible.
3803 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3805 remaining = schedule_timeout(HZ/10);
3808 * If woken prematurely then reset kswapd_classzone_idx and
3809 * order. The values will either be from a wakeup request or
3810 * the previous request that slept prematurely.
3813 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3814 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3817 finish_wait(&pgdat->kswapd_wait, &wait);
3818 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3822 * After a short sleep, check if it was a premature sleep. If not, then
3823 * go fully to sleep until explicitly woken up.
3826 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3827 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3830 * vmstat counters are not perfectly accurate and the estimated
3831 * value for counters such as NR_FREE_PAGES can deviate from the
3832 * true value by nr_online_cpus * threshold. To avoid the zone
3833 * watermarks being breached while under pressure, we reduce the
3834 * per-cpu vmstat threshold while kswapd is awake and restore
3835 * them before going back to sleep.
3837 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3839 if (!kthread_should_stop())
3842 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3845 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3847 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3849 finish_wait(&pgdat->kswapd_wait, &wait);
3853 * The background pageout daemon, started as a kernel thread
3854 * from the init process.
3856 * This basically trickles out pages so that we have _some_
3857 * free memory available even if there is no other activity
3858 * that frees anything up. This is needed for things like routing
3859 * etc, where we otherwise might have all activity going on in
3860 * asynchronous contexts that cannot page things out.
3862 * If there are applications that are active memory-allocators
3863 * (most normal use), this basically shouldn't matter.
3865 static int kswapd(void *p)
3867 unsigned int alloc_order, reclaim_order;
3868 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3869 pg_data_t *pgdat = (pg_data_t*)p;
3870 struct task_struct *tsk = current;
3872 struct reclaim_state reclaim_state = {
3873 .reclaimed_slab = 0,
3875 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3877 if (!cpumask_empty(cpumask))
3878 set_cpus_allowed_ptr(tsk, cpumask);
3879 current->reclaim_state = &reclaim_state;
3882 * Tell the memory management that we're a "memory allocator",
3883 * and that if we need more memory we should get access to it
3884 * regardless (see "__alloc_pages()"). "kswapd" should
3885 * never get caught in the normal page freeing logic.
3887 * (Kswapd normally doesn't need memory anyway, but sometimes
3888 * you need a small amount of memory in order to be able to
3889 * page out something else, and this flag essentially protects
3890 * us from recursively trying to free more memory as we're
3891 * trying to free the first piece of memory in the first place).
3893 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3896 pgdat->kswapd_order = 0;
3897 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3901 alloc_order = reclaim_order = pgdat->kswapd_order;
3902 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3905 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3908 /* Read the new order and classzone_idx */
3909 alloc_order = reclaim_order = pgdat->kswapd_order;
3910 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3911 pgdat->kswapd_order = 0;
3912 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3914 ret = try_to_freeze();
3915 if (kthread_should_stop())
3919 * We can speed up thawing tasks if we don't call balance_pgdat
3920 * after returning from the refrigerator
3926 * Reclaim begins at the requested order but if a high-order
3927 * reclaim fails then kswapd falls back to reclaiming for
3928 * order-0. If that happens, kswapd will consider sleeping
3929 * for the order it finished reclaiming at (reclaim_order)
3930 * but kcompactd is woken to compact for the original
3931 * request (alloc_order).
3933 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3935 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3936 if (reclaim_order < alloc_order)
3937 goto kswapd_try_sleep;
3940 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3941 current->reclaim_state = NULL;
3947 * A zone is low on free memory or too fragmented for high-order memory. If
3948 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3949 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3950 * has failed or is not needed, still wake up kcompactd if only compaction is
3953 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3954 enum zone_type classzone_idx)
3958 if (!managed_zone(zone))
3961 if (!cpuset_zone_allowed(zone, gfp_flags))
3963 pgdat = zone->zone_pgdat;
3964 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3966 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3967 if (!waitqueue_active(&pgdat->kswapd_wait))
3970 /* Hopeless node, leave it to direct reclaim if possible */
3971 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3972 (pgdat_balanced(pgdat, order, classzone_idx) &&
3973 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3975 * There may be plenty of free memory available, but it's too
3976 * fragmented for high-order allocations. Wake up kcompactd
3977 * and rely on compaction_suitable() to determine if it's
3978 * needed. If it fails, it will defer subsequent attempts to
3979 * ratelimit its work.
3981 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3982 wakeup_kcompactd(pgdat, order, classzone_idx);
3986 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3988 wake_up_interruptible(&pgdat->kswapd_wait);
3991 #ifdef CONFIG_HIBERNATION
3993 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3996 * Rather than trying to age LRUs the aim is to preserve the overall
3997 * LRU order by reclaiming preferentially
3998 * inactive > active > active referenced > active mapped
4000 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4002 struct reclaim_state reclaim_state;
4003 struct scan_control sc = {
4004 .nr_to_reclaim = nr_to_reclaim,
4005 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4006 .reclaim_idx = MAX_NR_ZONES - 1,
4007 .priority = DEF_PRIORITY,
4011 .hibernation_mode = 1,
4013 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014 struct task_struct *p = current;
4015 unsigned long nr_reclaimed;
4016 unsigned int noreclaim_flag;
4018 fs_reclaim_acquire(sc.gfp_mask);
4019 noreclaim_flag = memalloc_noreclaim_save();
4020 reclaim_state.reclaimed_slab = 0;
4021 p->reclaim_state = &reclaim_state;
4023 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4025 p->reclaim_state = NULL;
4026 memalloc_noreclaim_restore(noreclaim_flag);
4027 fs_reclaim_release(sc.gfp_mask);
4029 return nr_reclaimed;
4031 #endif /* CONFIG_HIBERNATION */
4033 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4034 not required for correctness. So if the last cpu in a node goes
4035 away, we get changed to run anywhere: as the first one comes back,
4036 restore their cpu bindings. */
4037 static int kswapd_cpu_online(unsigned int cpu)
4041 for_each_node_state(nid, N_MEMORY) {
4042 pg_data_t *pgdat = NODE_DATA(nid);
4043 const struct cpumask *mask;
4045 mask = cpumask_of_node(pgdat->node_id);
4047 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4048 /* One of our CPUs online: restore mask */
4049 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4055 * This kswapd start function will be called by init and node-hot-add.
4056 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4058 int kswapd_run(int nid)
4060 pg_data_t *pgdat = NODE_DATA(nid);
4066 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4067 if (IS_ERR(pgdat->kswapd)) {
4068 /* failure at boot is fatal */
4069 BUG_ON(system_state < SYSTEM_RUNNING);
4070 pr_err("Failed to start kswapd on node %d\n", nid);
4071 ret = PTR_ERR(pgdat->kswapd);
4072 pgdat->kswapd = NULL;
4078 * Called by memory hotplug when all memory in a node is offlined. Caller must
4079 * hold mem_hotplug_begin/end().
4081 void kswapd_stop(int nid)
4083 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4086 kthread_stop(kswapd);
4087 NODE_DATA(nid)->kswapd = NULL;
4091 static int __init kswapd_init(void)
4096 for_each_node_state(nid, N_MEMORY)
4098 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4099 "mm/vmscan:online", kswapd_cpu_online,
4105 module_init(kswapd_init)
4111 * If non-zero call node_reclaim when the number of free pages falls below
4114 int node_reclaim_mode __read_mostly;
4116 #define RECLAIM_OFF 0
4117 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4118 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4119 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4122 * Priority for NODE_RECLAIM. This determines the fraction of pages
4123 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4126 #define NODE_RECLAIM_PRIORITY 4
4129 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4132 int sysctl_min_unmapped_ratio = 1;
4135 * If the number of slab pages in a zone grows beyond this percentage then
4136 * slab reclaim needs to occur.
4138 int sysctl_min_slab_ratio = 5;
4140 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4142 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4143 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4144 node_page_state(pgdat, NR_ACTIVE_FILE);
4147 * It's possible for there to be more file mapped pages than
4148 * accounted for by the pages on the file LRU lists because
4149 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4151 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4154 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4155 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4157 unsigned long nr_pagecache_reclaimable;
4158 unsigned long delta = 0;
4161 * If RECLAIM_UNMAP is set, then all file pages are considered
4162 * potentially reclaimable. Otherwise, we have to worry about
4163 * pages like swapcache and node_unmapped_file_pages() provides
4166 if (node_reclaim_mode & RECLAIM_UNMAP)
4167 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4169 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4171 /* If we can't clean pages, remove dirty pages from consideration */
4172 if (!(node_reclaim_mode & RECLAIM_WRITE))
4173 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4175 /* Watch for any possible underflows due to delta */
4176 if (unlikely(delta > nr_pagecache_reclaimable))
4177 delta = nr_pagecache_reclaimable;
4179 return nr_pagecache_reclaimable - delta;
4183 * Try to free up some pages from this node through reclaim.
4185 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4187 /* Minimum pages needed in order to stay on node */
4188 const unsigned long nr_pages = 1 << order;
4189 struct task_struct *p = current;
4190 struct reclaim_state reclaim_state;
4191 unsigned int noreclaim_flag;
4192 struct scan_control sc = {
4193 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4194 .gfp_mask = current_gfp_context(gfp_mask),
4196 .priority = NODE_RECLAIM_PRIORITY,
4197 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4198 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4200 .reclaim_idx = gfp_zone(gfp_mask),
4204 fs_reclaim_acquire(sc.gfp_mask);
4206 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4207 * and we also need to be able to write out pages for RECLAIM_WRITE
4208 * and RECLAIM_UNMAP.
4210 noreclaim_flag = memalloc_noreclaim_save();
4211 p->flags |= PF_SWAPWRITE;
4212 reclaim_state.reclaimed_slab = 0;
4213 p->reclaim_state = &reclaim_state;
4215 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4217 * Free memory by calling shrink node with increasing
4218 * priorities until we have enough memory freed.
4221 shrink_node(pgdat, &sc);
4222 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4225 p->reclaim_state = NULL;
4226 current->flags &= ~PF_SWAPWRITE;
4227 memalloc_noreclaim_restore(noreclaim_flag);
4228 fs_reclaim_release(sc.gfp_mask);
4229 return sc.nr_reclaimed >= nr_pages;
4232 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4237 * Node reclaim reclaims unmapped file backed pages and
4238 * slab pages if we are over the defined limits.
4240 * A small portion of unmapped file backed pages is needed for
4241 * file I/O otherwise pages read by file I/O will be immediately
4242 * thrown out if the node is overallocated. So we do not reclaim
4243 * if less than a specified percentage of the node is used by
4244 * unmapped file backed pages.
4246 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4247 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4248 return NODE_RECLAIM_FULL;
4251 * Do not scan if the allocation should not be delayed.
4253 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4254 return NODE_RECLAIM_NOSCAN;
4257 * Only run node reclaim on the local node or on nodes that do not
4258 * have associated processors. This will favor the local processor
4259 * over remote processors and spread off node memory allocations
4260 * as wide as possible.
4262 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4263 return NODE_RECLAIM_NOSCAN;
4265 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4266 return NODE_RECLAIM_NOSCAN;
4268 ret = __node_reclaim(pgdat, gfp_mask, order);
4269 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4272 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4279 * page_evictable - test whether a page is evictable
4280 * @page: the page to test
4282 * Test whether page is evictable--i.e., should be placed on active/inactive
4283 * lists vs unevictable list.
4285 * Reasons page might not be evictable:
4286 * (1) page's mapping marked unevictable
4287 * (2) page is part of an mlocked VMA
4290 int page_evictable(struct page *page)
4294 /* Prevent address_space of inode and swap cache from being freed */
4296 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4302 * check_move_unevictable_pages - check pages for evictability and move to
4303 * appropriate zone lru list
4304 * @pvec: pagevec with lru pages to check
4306 * Checks pages for evictability, if an evictable page is in the unevictable
4307 * lru list, moves it to the appropriate evictable lru list. This function
4308 * should be only used for lru pages.
4310 void check_move_unevictable_pages(struct pagevec *pvec)
4312 struct lruvec *lruvec;
4313 struct pglist_data *pgdat = NULL;
4318 for (i = 0; i < pvec->nr; i++) {
4319 struct page *page = pvec->pages[i];
4320 struct pglist_data *pagepgdat = page_pgdat(page);
4323 if (pagepgdat != pgdat) {
4325 spin_unlock_irq(&pgdat->lru_lock);
4327 spin_lock_irq(&pgdat->lru_lock);
4329 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4331 if (!PageLRU(page) || !PageUnevictable(page))
4334 if (page_evictable(page)) {
4335 enum lru_list lru = page_lru_base_type(page);
4337 VM_BUG_ON_PAGE(PageActive(page), page);
4338 ClearPageUnevictable(page);
4339 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4340 add_page_to_lru_list(page, lruvec, lru);
4346 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4347 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4348 spin_unlock_irq(&pgdat->lru_lock);
4351 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);