2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount *shm_mnt;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages / 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 return sb->s_fs_info;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags)
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
199 static int shmem_reserve_inode(struct super_block *sb)
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
214 static void shmem_free_inode(struct super_block *sb)
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
234 * It has to be called with the spinlock held.
236 static void shmem_recalc_inode(struct inode *inode)
238 struct shmem_inode_info *info = SHMEM_I(inode);
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
253 * Replace item expected in radix tree by a new item, while holding tree lock.
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
269 radix_tree_replace_slot(pslot, replacement);
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
286 item = radix_tree_lookup(&mapping->page_tree, index);
288 return item == swp_to_radix_entry(swap);
292 * Like add_to_page_cache_locked, but error if expected item has gone.
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
303 page_cache_get(page);
304 page->mapping = mapping;
307 spin_lock_irq(&mapping->tree_lock);
309 error = radix_tree_insert(&mapping->page_tree, index, page);
311 error = shmem_radix_tree_replace(mapping, index, expected,
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
327 * Like delete_from_page_cache, but substitutes swap for page.
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
331 struct address_space *mapping = page->mapping;
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
346 * Remove swap entry from radix tree, free the swap and its page cache.
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
358 free_swap_and_cache(radix_to_swp_entry(radswap));
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
372 struct radix_tree_iter iter;
375 unsigned long swapped = 0;
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
384 page = radix_tree_deref_slot(slot);
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
391 if (radix_tree_deref_retry(page))
394 if (radix_tree_exceptional_entry(page))
397 if (need_resched()) {
399 start = iter.index + 1;
406 return swapped << PAGE_SHIFT;
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
446 void shmem_unlock_mapping(struct address_space *mapping)
449 pgoff_t indices[PAGEVEC_SIZE];
452 pagevec_init(&pvec, 0);
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
456 while (!mapping_unevictable(mapping)) {
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
465 index = indices[pvec.nr - 1] + 1;
466 pagevec_remove_exceptionals(&pvec);
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
474 * Remove range of pages and swap entries from radix tree, and free them.
475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
480 struct address_space *mapping = inode->i_mapping;
481 struct shmem_inode_info *info = SHMEM_I(inode);
482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
493 end = -1; /* unsigned, so actually very big */
495 pagevec_init(&pvec, 0);
497 while (index < end) {
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
510 if (radix_tree_exceptional_entry(page)) {
513 nr_swaps_freed += !shmem_free_swap(mapping,
518 if (!trylock_page(page))
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
522 VM_BUG_ON_PAGE(PageWriteback(page), page);
523 truncate_inode_page(mapping, page);
528 pagevec_remove_exceptionals(&pvec);
529 pagevec_release(&pvec);
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
538 unsigned int top = PAGE_CACHE_SIZE;
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
546 page_cache_release(page);
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
553 zero_user_segment(page, 0, partial_end);
554 set_page_dirty(page);
556 page_cache_release(page);
563 while (index < end) {
566 pvec.nr = find_get_entries(mapping, index,
567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568 pvec.pages, indices);
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
573 /* But if truncating, restart to make sure all gone */
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
584 if (radix_tree_exceptional_entry(page)) {
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
599 VM_BUG_ON_PAGE(PageWriteback(page), page);
600 truncate_inode_page(mapping, page);
602 /* Page was replaced by swap: retry */
610 pagevec_remove_exceptionals(&pvec);
611 pagevec_release(&pvec);
615 spin_lock(&info->lock);
616 info->swapped -= nr_swaps_freed;
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
623 shmem_undo_range(inode, lstart, lend, false);
624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
639 generic_fillattr(inode, stat);
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
645 struct inode *inode = d_inode(dentry);
646 struct shmem_inode_info *info = SHMEM_I(inode);
649 error = inode_change_ok(inode, attr);
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
662 if (newsize != oldsize) {
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
670 if (newsize <= oldsize) {
671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
678 /* unmap again to remove racily COWed private pages */
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
685 setattr_copy(inode, attr);
686 if (attr->ia_valid & ATTR_MODE)
687 error = posix_acl_chmod(inode, inode->i_mode);
691 static void shmem_evict_inode(struct inode *inode)
693 struct shmem_inode_info *info = SHMEM_I(inode);
695 if (inode->i_mapping->a_ops == &shmem_aops) {
696 shmem_unacct_size(info->flags, inode->i_size);
698 shmem_truncate_range(inode, 0, (loff_t)-1);
699 if (!list_empty(&info->swaplist)) {
700 mutex_lock(&shmem_swaplist_mutex);
701 list_del_init(&info->swaplist);
702 mutex_unlock(&shmem_swaplist_mutex);
705 kfree(info->symlink);
707 simple_xattrs_free(&info->xattrs);
708 WARN_ON(inode->i_blocks);
709 shmem_free_inode(inode->i_sb);
714 * If swap found in inode, free it and move page from swapcache to filecache.
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717 swp_entry_t swap, struct page **pagep)
719 struct address_space *mapping = info->vfs_inode.i_mapping;
725 radswap = swp_to_radix_entry(swap);
726 index = radix_tree_locate_item(&mapping->page_tree, radswap);
728 return -EAGAIN; /* tell shmem_unuse we found nothing */
731 * Move _head_ to start search for next from here.
732 * But be careful: shmem_evict_inode checks list_empty without taking
733 * mutex, and there's an instant in list_move_tail when info->swaplist
734 * would appear empty, if it were the only one on shmem_swaplist.
736 if (shmem_swaplist.next != &info->swaplist)
737 list_move_tail(&shmem_swaplist, &info->swaplist);
739 gfp = mapping_gfp_mask(mapping);
740 if (shmem_should_replace_page(*pagep, gfp)) {
741 mutex_unlock(&shmem_swaplist_mutex);
742 error = shmem_replace_page(pagep, gfp, info, index);
743 mutex_lock(&shmem_swaplist_mutex);
745 * We needed to drop mutex to make that restrictive page
746 * allocation, but the inode might have been freed while we
747 * dropped it: although a racing shmem_evict_inode() cannot
748 * complete without emptying the radix_tree, our page lock
749 * on this swapcache page is not enough to prevent that -
750 * free_swap_and_cache() of our swap entry will only
751 * trylock_page(), removing swap from radix_tree whatever.
753 * We must not proceed to shmem_add_to_page_cache() if the
754 * inode has been freed, but of course we cannot rely on
755 * inode or mapping or info to check that. However, we can
756 * safely check if our swap entry is still in use (and here
757 * it can't have got reused for another page): if it's still
758 * in use, then the inode cannot have been freed yet, and we
759 * can safely proceed (if it's no longer in use, that tells
760 * nothing about the inode, but we don't need to unuse swap).
762 if (!page_swapcount(*pagep))
767 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768 * but also to hold up shmem_evict_inode(): so inode cannot be freed
769 * beneath us (pagelock doesn't help until the page is in pagecache).
772 error = shmem_add_to_page_cache(*pagep, mapping, index,
774 if (error != -ENOMEM) {
776 * Truncation and eviction use free_swap_and_cache(), which
777 * only does trylock page: if we raced, best clean up here.
779 delete_from_swap_cache(*pagep);
780 set_page_dirty(*pagep);
782 spin_lock(&info->lock);
784 spin_unlock(&info->lock);
792 * Search through swapped inodes to find and replace swap by page.
794 int shmem_unuse(swp_entry_t swap, struct page *page)
796 struct list_head *this, *next;
797 struct shmem_inode_info *info;
798 struct mem_cgroup *memcg;
802 * There's a faint possibility that swap page was replaced before
803 * caller locked it: caller will come back later with the right page.
805 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
809 * Charge page using GFP_KERNEL while we can wait, before taking
810 * the shmem_swaplist_mutex which might hold up shmem_writepage().
811 * Charged back to the user (not to caller) when swap account is used.
813 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
816 /* No radix_tree_preload: swap entry keeps a place for page in tree */
819 mutex_lock(&shmem_swaplist_mutex);
820 list_for_each_safe(this, next, &shmem_swaplist) {
821 info = list_entry(this, struct shmem_inode_info, swaplist);
823 error = shmem_unuse_inode(info, swap, &page);
825 list_del_init(&info->swaplist);
827 if (error != -EAGAIN)
829 /* found nothing in this: move on to search the next */
831 mutex_unlock(&shmem_swaplist_mutex);
834 if (error != -ENOMEM)
836 mem_cgroup_cancel_charge(page, memcg);
838 mem_cgroup_commit_charge(page, memcg, true);
841 page_cache_release(page);
846 * Move the page from the page cache to the swap cache.
848 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
850 struct shmem_inode_info *info;
851 struct address_space *mapping;
856 BUG_ON(!PageLocked(page));
857 mapping = page->mapping;
859 inode = mapping->host;
860 info = SHMEM_I(inode);
861 if (info->flags & VM_LOCKED)
863 if (!total_swap_pages)
867 * Our capabilities prevent regular writeback or sync from ever calling
868 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 * its underlying filesystem, in which case tmpfs should write out to
870 * swap only in response to memory pressure, and not for the writeback
873 if (!wbc->for_reclaim) {
874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 * value into swapfile.c, the only way we can correctly account for a
881 * fallocated page arriving here is now to initialize it and write it.
883 * That's okay for a page already fallocated earlier, but if we have
884 * not yet completed the fallocation, then (a) we want to keep track
885 * of this page in case we have to undo it, and (b) it may not be a
886 * good idea to continue anyway, once we're pushing into swap. So
887 * reactivate the page, and let shmem_fallocate() quit when too many.
889 if (!PageUptodate(page)) {
890 if (inode->i_private) {
891 struct shmem_falloc *shmem_falloc;
892 spin_lock(&inode->i_lock);
893 shmem_falloc = inode->i_private;
895 !shmem_falloc->waitq &&
896 index >= shmem_falloc->start &&
897 index < shmem_falloc->next)
898 shmem_falloc->nr_unswapped++;
901 spin_unlock(&inode->i_lock);
905 clear_highpage(page);
906 flush_dcache_page(page);
907 SetPageUptodate(page);
910 swap = get_swap_page();
915 * Add inode to shmem_unuse()'s list of swapped-out inodes,
916 * if it's not already there. Do it now before the page is
917 * moved to swap cache, when its pagelock no longer protects
918 * the inode from eviction. But don't unlock the mutex until
919 * we've incremented swapped, because shmem_unuse_inode() will
920 * prune a !swapped inode from the swaplist under this mutex.
922 mutex_lock(&shmem_swaplist_mutex);
923 if (list_empty(&info->swaplist))
924 list_add_tail(&info->swaplist, &shmem_swaplist);
926 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
927 spin_lock(&info->lock);
928 shmem_recalc_inode(inode);
930 spin_unlock(&info->lock);
932 swap_shmem_alloc(swap);
933 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
935 mutex_unlock(&shmem_swaplist_mutex);
936 BUG_ON(page_mapped(page));
937 swap_writepage(page, wbc);
941 mutex_unlock(&shmem_swaplist_mutex);
942 swapcache_free(swap);
944 set_page_dirty(page);
945 if (wbc->for_reclaim)
946 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
953 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
957 if (!mpol || mpol->mode == MPOL_DEFAULT)
958 return; /* show nothing */
960 mpol_to_str(buffer, sizeof(buffer), mpol);
962 seq_printf(seq, ",mpol=%s", buffer);
965 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 struct mempolicy *mpol = NULL;
969 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
972 spin_unlock(&sbinfo->stat_lock);
976 #endif /* CONFIG_TMPFS */
978 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
981 struct vm_area_struct pvma;
984 /* Create a pseudo vma that just contains the policy */
986 /* Bias interleave by inode number to distribute better across nodes */
987 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
989 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
991 page = swapin_readahead(swap, gfp, &pvma, 0);
993 /* Drop reference taken by mpol_shared_policy_lookup() */
994 mpol_cond_put(pvma.vm_policy);
999 static struct page *shmem_alloc_page(gfp_t gfp,
1000 struct shmem_inode_info *info, pgoff_t index)
1002 struct vm_area_struct pvma;
1005 /* Create a pseudo vma that just contains the policy */
1007 /* Bias interleave by inode number to distribute better across nodes */
1008 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1010 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1012 page = alloc_page_vma(gfp, &pvma, 0);
1014 /* Drop reference taken by mpol_shared_policy_lookup() */
1015 mpol_cond_put(pvma.vm_policy);
1019 #else /* !CONFIG_NUMA */
1021 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1024 #endif /* CONFIG_TMPFS */
1026 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1027 struct shmem_inode_info *info, pgoff_t index)
1029 return swapin_readahead(swap, gfp, NULL, 0);
1032 static inline struct page *shmem_alloc_page(gfp_t gfp,
1033 struct shmem_inode_info *info, pgoff_t index)
1035 return alloc_page(gfp);
1037 #endif /* CONFIG_NUMA */
1039 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1040 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1047 * When a page is moved from swapcache to shmem filecache (either by the
1048 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1049 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1050 * ignorance of the mapping it belongs to. If that mapping has special
1051 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1052 * we may need to copy to a suitable page before moving to filecache.
1054 * In a future release, this may well be extended to respect cpuset and
1055 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1056 * but for now it is a simple matter of zone.
1058 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1060 return page_zonenum(page) > gfp_zone(gfp);
1063 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1064 struct shmem_inode_info *info, pgoff_t index)
1066 struct page *oldpage, *newpage;
1067 struct address_space *swap_mapping;
1072 swap_index = page_private(oldpage);
1073 swap_mapping = page_mapping(oldpage);
1076 * We have arrived here because our zones are constrained, so don't
1077 * limit chance of success by further cpuset and node constraints.
1079 gfp &= ~GFP_CONSTRAINT_MASK;
1080 newpage = shmem_alloc_page(gfp, info, index);
1084 page_cache_get(newpage);
1085 copy_highpage(newpage, oldpage);
1086 flush_dcache_page(newpage);
1088 __SetPageLocked(newpage);
1089 SetPageUptodate(newpage);
1090 SetPageSwapBacked(newpage);
1091 set_page_private(newpage, swap_index);
1092 SetPageSwapCache(newpage);
1095 * Our caller will very soon move newpage out of swapcache, but it's
1096 * a nice clean interface for us to replace oldpage by newpage there.
1098 spin_lock_irq(&swap_mapping->tree_lock);
1099 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1102 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1103 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1105 spin_unlock_irq(&swap_mapping->tree_lock);
1107 if (unlikely(error)) {
1109 * Is this possible? I think not, now that our callers check
1110 * both PageSwapCache and page_private after getting page lock;
1111 * but be defensive. Reverse old to newpage for clear and free.
1115 mem_cgroup_replace_page(oldpage, newpage);
1116 lru_cache_add_anon(newpage);
1120 ClearPageSwapCache(oldpage);
1121 set_page_private(oldpage, 0);
1123 unlock_page(oldpage);
1124 page_cache_release(oldpage);
1125 page_cache_release(oldpage);
1130 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1132 * If we allocate a new one we do not mark it dirty. That's up to the
1133 * vm. If we swap it in we mark it dirty since we also free the swap
1134 * entry since a page cannot live in both the swap and page cache
1136 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1137 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1139 struct address_space *mapping = inode->i_mapping;
1140 struct shmem_inode_info *info;
1141 struct shmem_sb_info *sbinfo;
1142 struct mem_cgroup *memcg;
1149 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1153 page = find_lock_entry(mapping, index);
1154 if (radix_tree_exceptional_entry(page)) {
1155 swap = radix_to_swp_entry(page);
1159 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1160 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1165 if (page && sgp == SGP_WRITE)
1166 mark_page_accessed(page);
1168 /* fallocated page? */
1169 if (page && !PageUptodate(page)) {
1170 if (sgp != SGP_READ)
1173 page_cache_release(page);
1176 if (page || (sgp == SGP_READ && !swap.val)) {
1182 * Fast cache lookup did not find it:
1183 * bring it back from swap or allocate.
1185 info = SHMEM_I(inode);
1186 sbinfo = SHMEM_SB(inode->i_sb);
1189 /* Look it up and read it in.. */
1190 page = lookup_swap_cache(swap);
1192 /* here we actually do the io */
1194 *fault_type |= VM_FAULT_MAJOR;
1195 page = shmem_swapin(swap, gfp, info, index);
1202 /* We have to do this with page locked to prevent races */
1204 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1205 !shmem_confirm_swap(mapping, index, swap)) {
1206 error = -EEXIST; /* try again */
1209 if (!PageUptodate(page)) {
1213 wait_on_page_writeback(page);
1215 if (shmem_should_replace_page(page, gfp)) {
1216 error = shmem_replace_page(&page, gfp, info, index);
1221 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1223 error = shmem_add_to_page_cache(page, mapping, index,
1224 swp_to_radix_entry(swap));
1226 * We already confirmed swap under page lock, and make
1227 * no memory allocation here, so usually no possibility
1228 * of error; but free_swap_and_cache() only trylocks a
1229 * page, so it is just possible that the entry has been
1230 * truncated or holepunched since swap was confirmed.
1231 * shmem_undo_range() will have done some of the
1232 * unaccounting, now delete_from_swap_cache() will do
1234 * Reset swap.val? No, leave it so "failed" goes back to
1235 * "repeat": reading a hole and writing should succeed.
1238 mem_cgroup_cancel_charge(page, memcg);
1239 delete_from_swap_cache(page);
1245 mem_cgroup_commit_charge(page, memcg, true);
1247 spin_lock(&info->lock);
1249 shmem_recalc_inode(inode);
1250 spin_unlock(&info->lock);
1252 if (sgp == SGP_WRITE)
1253 mark_page_accessed(page);
1255 delete_from_swap_cache(page);
1256 set_page_dirty(page);
1260 if (shmem_acct_block(info->flags)) {
1264 if (sbinfo->max_blocks) {
1265 if (percpu_counter_compare(&sbinfo->used_blocks,
1266 sbinfo->max_blocks) >= 0) {
1270 percpu_counter_inc(&sbinfo->used_blocks);
1273 page = shmem_alloc_page(gfp, info, index);
1279 __SetPageSwapBacked(page);
1280 __SetPageLocked(page);
1281 if (sgp == SGP_WRITE)
1282 __SetPageReferenced(page);
1284 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1287 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1289 error = shmem_add_to_page_cache(page, mapping, index,
1291 radix_tree_preload_end();
1294 mem_cgroup_cancel_charge(page, memcg);
1297 mem_cgroup_commit_charge(page, memcg, false);
1298 lru_cache_add_anon(page);
1300 spin_lock(&info->lock);
1302 inode->i_blocks += BLOCKS_PER_PAGE;
1303 shmem_recalc_inode(inode);
1304 spin_unlock(&info->lock);
1308 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1310 if (sgp == SGP_FALLOC)
1314 * Let SGP_WRITE caller clear ends if write does not fill page;
1315 * but SGP_FALLOC on a page fallocated earlier must initialize
1316 * it now, lest undo on failure cancel our earlier guarantee.
1318 if (sgp != SGP_WRITE) {
1319 clear_highpage(page);
1320 flush_dcache_page(page);
1321 SetPageUptodate(page);
1323 if (sgp == SGP_DIRTY)
1324 set_page_dirty(page);
1327 /* Perhaps the file has been truncated since we checked */
1328 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1329 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1331 ClearPageDirty(page);
1332 delete_from_page_cache(page);
1333 spin_lock(&info->lock);
1334 shmem_recalc_inode(inode);
1335 spin_unlock(&info->lock);
1347 if (sbinfo->max_blocks)
1348 percpu_counter_add(&sbinfo->used_blocks, -1);
1350 shmem_unacct_blocks(info->flags, 1);
1352 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1357 page_cache_release(page);
1359 if (error == -ENOSPC && !once++) {
1360 info = SHMEM_I(inode);
1361 spin_lock(&info->lock);
1362 shmem_recalc_inode(inode);
1363 spin_unlock(&info->lock);
1366 if (error == -EEXIST) /* from above or from radix_tree_insert */
1371 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1373 struct inode *inode = file_inode(vma->vm_file);
1375 int ret = VM_FAULT_LOCKED;
1378 * Trinity finds that probing a hole which tmpfs is punching can
1379 * prevent the hole-punch from ever completing: which in turn
1380 * locks writers out with its hold on i_mutex. So refrain from
1381 * faulting pages into the hole while it's being punched. Although
1382 * shmem_undo_range() does remove the additions, it may be unable to
1383 * keep up, as each new page needs its own unmap_mapping_range() call,
1384 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1386 * It does not matter if we sometimes reach this check just before the
1387 * hole-punch begins, so that one fault then races with the punch:
1388 * we just need to make racing faults a rare case.
1390 * The implementation below would be much simpler if we just used a
1391 * standard mutex or completion: but we cannot take i_mutex in fault,
1392 * and bloating every shmem inode for this unlikely case would be sad.
1394 if (unlikely(inode->i_private)) {
1395 struct shmem_falloc *shmem_falloc;
1397 spin_lock(&inode->i_lock);
1398 shmem_falloc = inode->i_private;
1400 shmem_falloc->waitq &&
1401 vmf->pgoff >= shmem_falloc->start &&
1402 vmf->pgoff < shmem_falloc->next) {
1403 wait_queue_head_t *shmem_falloc_waitq;
1404 DEFINE_WAIT(shmem_fault_wait);
1406 ret = VM_FAULT_NOPAGE;
1407 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1408 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1409 /* It's polite to up mmap_sem if we can */
1410 up_read(&vma->vm_mm->mmap_sem);
1411 ret = VM_FAULT_RETRY;
1414 shmem_falloc_waitq = shmem_falloc->waitq;
1415 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1416 TASK_UNINTERRUPTIBLE);
1417 spin_unlock(&inode->i_lock);
1421 * shmem_falloc_waitq points into the shmem_fallocate()
1422 * stack of the hole-punching task: shmem_falloc_waitq
1423 * is usually invalid by the time we reach here, but
1424 * finish_wait() does not dereference it in that case;
1425 * though i_lock needed lest racing with wake_up_all().
1427 spin_lock(&inode->i_lock);
1428 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1429 spin_unlock(&inode->i_lock);
1432 spin_unlock(&inode->i_lock);
1435 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1437 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1439 if (ret & VM_FAULT_MAJOR) {
1440 count_vm_event(PGMAJFAULT);
1441 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1447 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1449 struct inode *inode = file_inode(vma->vm_file);
1450 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1453 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1456 struct inode *inode = file_inode(vma->vm_file);
1459 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1460 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1464 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1466 struct inode *inode = file_inode(file);
1467 struct shmem_inode_info *info = SHMEM_I(inode);
1468 int retval = -ENOMEM;
1470 spin_lock(&info->lock);
1471 if (lock && !(info->flags & VM_LOCKED)) {
1472 if (!user_shm_lock(inode->i_size, user))
1474 info->flags |= VM_LOCKED;
1475 mapping_set_unevictable(file->f_mapping);
1477 if (!lock && (info->flags & VM_LOCKED) && user) {
1478 user_shm_unlock(inode->i_size, user);
1479 info->flags &= ~VM_LOCKED;
1480 mapping_clear_unevictable(file->f_mapping);
1485 spin_unlock(&info->lock);
1489 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1491 file_accessed(file);
1492 vma->vm_ops = &shmem_vm_ops;
1496 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1497 umode_t mode, dev_t dev, unsigned long flags)
1499 struct inode *inode;
1500 struct shmem_inode_info *info;
1501 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1503 if (shmem_reserve_inode(sb))
1506 inode = new_inode(sb);
1508 inode->i_ino = get_next_ino();
1509 inode_init_owner(inode, dir, mode);
1510 inode->i_blocks = 0;
1511 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1512 inode->i_generation = get_seconds();
1513 info = SHMEM_I(inode);
1514 memset(info, 0, (char *)inode - (char *)info);
1515 spin_lock_init(&info->lock);
1516 info->seals = F_SEAL_SEAL;
1517 info->flags = flags & VM_NORESERVE;
1518 INIT_LIST_HEAD(&info->swaplist);
1519 simple_xattrs_init(&info->xattrs);
1520 cache_no_acl(inode);
1522 switch (mode & S_IFMT) {
1524 inode->i_op = &shmem_special_inode_operations;
1525 init_special_inode(inode, mode, dev);
1528 inode->i_mapping->a_ops = &shmem_aops;
1529 inode->i_op = &shmem_inode_operations;
1530 inode->i_fop = &shmem_file_operations;
1531 mpol_shared_policy_init(&info->policy,
1532 shmem_get_sbmpol(sbinfo));
1536 /* Some things misbehave if size == 0 on a directory */
1537 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1538 inode->i_op = &shmem_dir_inode_operations;
1539 inode->i_fop = &simple_dir_operations;
1543 * Must not load anything in the rbtree,
1544 * mpol_free_shared_policy will not be called.
1546 mpol_shared_policy_init(&info->policy, NULL);
1550 shmem_free_inode(sb);
1554 bool shmem_mapping(struct address_space *mapping)
1559 return mapping->host->i_sb->s_op == &shmem_ops;
1563 static const struct inode_operations shmem_symlink_inode_operations;
1564 static const struct inode_operations shmem_short_symlink_operations;
1566 #ifdef CONFIG_TMPFS_XATTR
1567 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1569 #define shmem_initxattrs NULL
1573 shmem_write_begin(struct file *file, struct address_space *mapping,
1574 loff_t pos, unsigned len, unsigned flags,
1575 struct page **pagep, void **fsdata)
1577 struct inode *inode = mapping->host;
1578 struct shmem_inode_info *info = SHMEM_I(inode);
1579 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1581 /* i_mutex is held by caller */
1582 if (unlikely(info->seals)) {
1583 if (info->seals & F_SEAL_WRITE)
1585 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1589 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1593 shmem_write_end(struct file *file, struct address_space *mapping,
1594 loff_t pos, unsigned len, unsigned copied,
1595 struct page *page, void *fsdata)
1597 struct inode *inode = mapping->host;
1599 if (pos + copied > inode->i_size)
1600 i_size_write(inode, pos + copied);
1602 if (!PageUptodate(page)) {
1603 if (copied < PAGE_CACHE_SIZE) {
1604 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1605 zero_user_segments(page, 0, from,
1606 from + copied, PAGE_CACHE_SIZE);
1608 SetPageUptodate(page);
1610 set_page_dirty(page);
1612 page_cache_release(page);
1617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1619 struct file *file = iocb->ki_filp;
1620 struct inode *inode = file_inode(file);
1621 struct address_space *mapping = inode->i_mapping;
1623 unsigned long offset;
1624 enum sgp_type sgp = SGP_READ;
1627 loff_t *ppos = &iocb->ki_pos;
1630 * Might this read be for a stacking filesystem? Then when reading
1631 * holes of a sparse file, we actually need to allocate those pages,
1632 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1634 if (!iter_is_iovec(to))
1637 index = *ppos >> PAGE_CACHE_SHIFT;
1638 offset = *ppos & ~PAGE_CACHE_MASK;
1641 struct page *page = NULL;
1643 unsigned long nr, ret;
1644 loff_t i_size = i_size_read(inode);
1646 end_index = i_size >> PAGE_CACHE_SHIFT;
1647 if (index > end_index)
1649 if (index == end_index) {
1650 nr = i_size & ~PAGE_CACHE_MASK;
1655 error = shmem_getpage(inode, index, &page, sgp, NULL);
1657 if (error == -EINVAL)
1665 * We must evaluate after, since reads (unlike writes)
1666 * are called without i_mutex protection against truncate
1668 nr = PAGE_CACHE_SIZE;
1669 i_size = i_size_read(inode);
1670 end_index = i_size >> PAGE_CACHE_SHIFT;
1671 if (index == end_index) {
1672 nr = i_size & ~PAGE_CACHE_MASK;
1675 page_cache_release(page);
1683 * If users can be writing to this page using arbitrary
1684 * virtual addresses, take care about potential aliasing
1685 * before reading the page on the kernel side.
1687 if (mapping_writably_mapped(mapping))
1688 flush_dcache_page(page);
1690 * Mark the page accessed if we read the beginning.
1693 mark_page_accessed(page);
1695 page = ZERO_PAGE(0);
1696 page_cache_get(page);
1700 * Ok, we have the page, and it's up-to-date, so
1701 * now we can copy it to user space...
1703 ret = copy_page_to_iter(page, offset, nr, to);
1706 index += offset >> PAGE_CACHE_SHIFT;
1707 offset &= ~PAGE_CACHE_MASK;
1709 page_cache_release(page);
1710 if (!iov_iter_count(to))
1719 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1720 file_accessed(file);
1721 return retval ? retval : error;
1724 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1725 struct pipe_inode_info *pipe, size_t len,
1728 struct address_space *mapping = in->f_mapping;
1729 struct inode *inode = mapping->host;
1730 unsigned int loff, nr_pages, req_pages;
1731 struct page *pages[PIPE_DEF_BUFFERS];
1732 struct partial_page partial[PIPE_DEF_BUFFERS];
1734 pgoff_t index, end_index;
1737 struct splice_pipe_desc spd = {
1740 .nr_pages_max = PIPE_DEF_BUFFERS,
1742 .ops = &page_cache_pipe_buf_ops,
1743 .spd_release = spd_release_page,
1746 isize = i_size_read(inode);
1747 if (unlikely(*ppos >= isize))
1750 left = isize - *ppos;
1751 if (unlikely(left < len))
1754 if (splice_grow_spd(pipe, &spd))
1757 index = *ppos >> PAGE_CACHE_SHIFT;
1758 loff = *ppos & ~PAGE_CACHE_MASK;
1759 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1760 nr_pages = min(req_pages, spd.nr_pages_max);
1762 spd.nr_pages = find_get_pages_contig(mapping, index,
1763 nr_pages, spd.pages);
1764 index += spd.nr_pages;
1767 while (spd.nr_pages < nr_pages) {
1768 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1772 spd.pages[spd.nr_pages++] = page;
1776 index = *ppos >> PAGE_CACHE_SHIFT;
1777 nr_pages = spd.nr_pages;
1780 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1781 unsigned int this_len;
1786 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1787 page = spd.pages[page_nr];
1789 if (!PageUptodate(page) || page->mapping != mapping) {
1790 error = shmem_getpage(inode, index, &page,
1795 page_cache_release(spd.pages[page_nr]);
1796 spd.pages[page_nr] = page;
1799 isize = i_size_read(inode);
1800 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1801 if (unlikely(!isize || index > end_index))
1804 if (end_index == index) {
1807 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1811 this_len = min(this_len, plen - loff);
1815 spd.partial[page_nr].offset = loff;
1816 spd.partial[page_nr].len = this_len;
1823 while (page_nr < nr_pages)
1824 page_cache_release(spd.pages[page_nr++]);
1827 error = splice_to_pipe(pipe, &spd);
1829 splice_shrink_spd(&spd);
1839 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1841 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1842 pgoff_t index, pgoff_t end, int whence)
1845 struct pagevec pvec;
1846 pgoff_t indices[PAGEVEC_SIZE];
1850 pagevec_init(&pvec, 0);
1851 pvec.nr = 1; /* start small: we may be there already */
1853 pvec.nr = find_get_entries(mapping, index,
1854 pvec.nr, pvec.pages, indices);
1856 if (whence == SEEK_DATA)
1860 for (i = 0; i < pvec.nr; i++, index++) {
1861 if (index < indices[i]) {
1862 if (whence == SEEK_HOLE) {
1868 page = pvec.pages[i];
1869 if (page && !radix_tree_exceptional_entry(page)) {
1870 if (!PageUptodate(page))
1874 (page && whence == SEEK_DATA) ||
1875 (!page && whence == SEEK_HOLE)) {
1880 pagevec_remove_exceptionals(&pvec);
1881 pagevec_release(&pvec);
1882 pvec.nr = PAGEVEC_SIZE;
1888 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1890 struct address_space *mapping = file->f_mapping;
1891 struct inode *inode = mapping->host;
1895 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1896 return generic_file_llseek_size(file, offset, whence,
1897 MAX_LFS_FILESIZE, i_size_read(inode));
1898 mutex_lock(&inode->i_mutex);
1899 /* We're holding i_mutex so we can access i_size directly */
1903 else if (offset >= inode->i_size)
1906 start = offset >> PAGE_CACHE_SHIFT;
1907 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1908 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1909 new_offset <<= PAGE_CACHE_SHIFT;
1910 if (new_offset > offset) {
1911 if (new_offset < inode->i_size)
1912 offset = new_offset;
1913 else if (whence == SEEK_DATA)
1916 offset = inode->i_size;
1921 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1922 mutex_unlock(&inode->i_mutex);
1927 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1928 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1930 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1931 #define LAST_SCAN 4 /* about 150ms max */
1933 static void shmem_tag_pins(struct address_space *mapping)
1935 struct radix_tree_iter iter;
1945 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1946 page = radix_tree_deref_slot(slot);
1947 if (!page || radix_tree_exception(page)) {
1948 if (radix_tree_deref_retry(page))
1950 } else if (page_count(page) - page_mapcount(page) > 1) {
1951 spin_lock_irq(&mapping->tree_lock);
1952 radix_tree_tag_set(&mapping->page_tree, iter.index,
1954 spin_unlock_irq(&mapping->tree_lock);
1957 if (need_resched()) {
1959 start = iter.index + 1;
1967 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1968 * via get_user_pages(), drivers might have some pending I/O without any active
1969 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1970 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1971 * them to be dropped.
1972 * The caller must guarantee that no new user will acquire writable references
1973 * to those pages to avoid races.
1975 static int shmem_wait_for_pins(struct address_space *mapping)
1977 struct radix_tree_iter iter;
1983 shmem_tag_pins(mapping);
1986 for (scan = 0; scan <= LAST_SCAN; scan++) {
1987 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1991 lru_add_drain_all();
1992 else if (schedule_timeout_killable((HZ << scan) / 200))
1998 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1999 start, SHMEM_TAG_PINNED) {
2001 page = radix_tree_deref_slot(slot);
2002 if (radix_tree_exception(page)) {
2003 if (radix_tree_deref_retry(page))
2010 page_count(page) - page_mapcount(page) != 1) {
2011 if (scan < LAST_SCAN)
2012 goto continue_resched;
2015 * On the last scan, we clean up all those tags
2016 * we inserted; but make a note that we still
2017 * found pages pinned.
2022 spin_lock_irq(&mapping->tree_lock);
2023 radix_tree_tag_clear(&mapping->page_tree,
2024 iter.index, SHMEM_TAG_PINNED);
2025 spin_unlock_irq(&mapping->tree_lock);
2027 if (need_resched()) {
2029 start = iter.index + 1;
2039 #define F_ALL_SEALS (F_SEAL_SEAL | \
2044 int shmem_add_seals(struct file *file, unsigned int seals)
2046 struct inode *inode = file_inode(file);
2047 struct shmem_inode_info *info = SHMEM_I(inode);
2052 * Sealing allows multiple parties to share a shmem-file but restrict
2053 * access to a specific subset of file operations. Seals can only be
2054 * added, but never removed. This way, mutually untrusted parties can
2055 * share common memory regions with a well-defined policy. A malicious
2056 * peer can thus never perform unwanted operations on a shared object.
2058 * Seals are only supported on special shmem-files and always affect
2059 * the whole underlying inode. Once a seal is set, it may prevent some
2060 * kinds of access to the file. Currently, the following seals are
2062 * SEAL_SEAL: Prevent further seals from being set on this file
2063 * SEAL_SHRINK: Prevent the file from shrinking
2064 * SEAL_GROW: Prevent the file from growing
2065 * SEAL_WRITE: Prevent write access to the file
2067 * As we don't require any trust relationship between two parties, we
2068 * must prevent seals from being removed. Therefore, sealing a file
2069 * only adds a given set of seals to the file, it never touches
2070 * existing seals. Furthermore, the "setting seals"-operation can be
2071 * sealed itself, which basically prevents any further seal from being
2074 * Semantics of sealing are only defined on volatile files. Only
2075 * anonymous shmem files support sealing. More importantly, seals are
2076 * never written to disk. Therefore, there's no plan to support it on
2080 if (file->f_op != &shmem_file_operations)
2082 if (!(file->f_mode & FMODE_WRITE))
2084 if (seals & ~(unsigned int)F_ALL_SEALS)
2087 mutex_lock(&inode->i_mutex);
2089 if (info->seals & F_SEAL_SEAL) {
2094 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2095 error = mapping_deny_writable(file->f_mapping);
2099 error = shmem_wait_for_pins(file->f_mapping);
2101 mapping_allow_writable(file->f_mapping);
2106 info->seals |= seals;
2110 mutex_unlock(&inode->i_mutex);
2113 EXPORT_SYMBOL_GPL(shmem_add_seals);
2115 int shmem_get_seals(struct file *file)
2117 if (file->f_op != &shmem_file_operations)
2120 return SHMEM_I(file_inode(file))->seals;
2122 EXPORT_SYMBOL_GPL(shmem_get_seals);
2124 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2130 /* disallow upper 32bit */
2134 error = shmem_add_seals(file, arg);
2137 error = shmem_get_seals(file);
2147 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2150 struct inode *inode = file_inode(file);
2151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2152 struct shmem_inode_info *info = SHMEM_I(inode);
2153 struct shmem_falloc shmem_falloc;
2154 pgoff_t start, index, end;
2157 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2160 mutex_lock(&inode->i_mutex);
2162 if (mode & FALLOC_FL_PUNCH_HOLE) {
2163 struct address_space *mapping = file->f_mapping;
2164 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2165 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2166 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2168 /* protected by i_mutex */
2169 if (info->seals & F_SEAL_WRITE) {
2174 shmem_falloc.waitq = &shmem_falloc_waitq;
2175 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2176 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2177 spin_lock(&inode->i_lock);
2178 inode->i_private = &shmem_falloc;
2179 spin_unlock(&inode->i_lock);
2181 if ((u64)unmap_end > (u64)unmap_start)
2182 unmap_mapping_range(mapping, unmap_start,
2183 1 + unmap_end - unmap_start, 0);
2184 shmem_truncate_range(inode, offset, offset + len - 1);
2185 /* No need to unmap again: hole-punching leaves COWed pages */
2187 spin_lock(&inode->i_lock);
2188 inode->i_private = NULL;
2189 wake_up_all(&shmem_falloc_waitq);
2190 spin_unlock(&inode->i_lock);
2195 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2196 error = inode_newsize_ok(inode, offset + len);
2200 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2205 start = offset >> PAGE_CACHE_SHIFT;
2206 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2207 /* Try to avoid a swapstorm if len is impossible to satisfy */
2208 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2213 shmem_falloc.waitq = NULL;
2214 shmem_falloc.start = start;
2215 shmem_falloc.next = start;
2216 shmem_falloc.nr_falloced = 0;
2217 shmem_falloc.nr_unswapped = 0;
2218 spin_lock(&inode->i_lock);
2219 inode->i_private = &shmem_falloc;
2220 spin_unlock(&inode->i_lock);
2222 for (index = start; index < end; index++) {
2226 * Good, the fallocate(2) manpage permits EINTR: we may have
2227 * been interrupted because we are using up too much memory.
2229 if (signal_pending(current))
2231 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2234 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2237 /* Remove the !PageUptodate pages we added */
2238 shmem_undo_range(inode,
2239 (loff_t)start << PAGE_CACHE_SHIFT,
2240 (loff_t)index << PAGE_CACHE_SHIFT, true);
2245 * Inform shmem_writepage() how far we have reached.
2246 * No need for lock or barrier: we have the page lock.
2248 shmem_falloc.next++;
2249 if (!PageUptodate(page))
2250 shmem_falloc.nr_falloced++;
2253 * If !PageUptodate, leave it that way so that freeable pages
2254 * can be recognized if we need to rollback on error later.
2255 * But set_page_dirty so that memory pressure will swap rather
2256 * than free the pages we are allocating (and SGP_CACHE pages
2257 * might still be clean: we now need to mark those dirty too).
2259 set_page_dirty(page);
2261 page_cache_release(page);
2265 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2266 i_size_write(inode, offset + len);
2267 inode->i_ctime = CURRENT_TIME;
2269 spin_lock(&inode->i_lock);
2270 inode->i_private = NULL;
2271 spin_unlock(&inode->i_lock);
2273 mutex_unlock(&inode->i_mutex);
2277 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2279 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2281 buf->f_type = TMPFS_MAGIC;
2282 buf->f_bsize = PAGE_CACHE_SIZE;
2283 buf->f_namelen = NAME_MAX;
2284 if (sbinfo->max_blocks) {
2285 buf->f_blocks = sbinfo->max_blocks;
2287 buf->f_bfree = sbinfo->max_blocks -
2288 percpu_counter_sum(&sbinfo->used_blocks);
2290 if (sbinfo->max_inodes) {
2291 buf->f_files = sbinfo->max_inodes;
2292 buf->f_ffree = sbinfo->free_inodes;
2294 /* else leave those fields 0 like simple_statfs */
2299 * File creation. Allocate an inode, and we're done..
2302 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2304 struct inode *inode;
2305 int error = -ENOSPC;
2307 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2309 error = simple_acl_create(dir, inode);
2312 error = security_inode_init_security(inode, dir,
2314 shmem_initxattrs, NULL);
2315 if (error && error != -EOPNOTSUPP)
2319 dir->i_size += BOGO_DIRENT_SIZE;
2320 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2321 d_instantiate(dentry, inode);
2322 dget(dentry); /* Extra count - pin the dentry in core */
2331 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2333 struct inode *inode;
2334 int error = -ENOSPC;
2336 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2338 error = security_inode_init_security(inode, dir,
2340 shmem_initxattrs, NULL);
2341 if (error && error != -EOPNOTSUPP)
2343 error = simple_acl_create(dir, inode);
2346 d_tmpfile(dentry, inode);
2354 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2358 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2364 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2367 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2373 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2375 struct inode *inode = d_inode(old_dentry);
2379 * No ordinary (disk based) filesystem counts links as inodes;
2380 * but each new link needs a new dentry, pinning lowmem, and
2381 * tmpfs dentries cannot be pruned until they are unlinked.
2383 ret = shmem_reserve_inode(inode->i_sb);
2387 dir->i_size += BOGO_DIRENT_SIZE;
2388 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2390 ihold(inode); /* New dentry reference */
2391 dget(dentry); /* Extra pinning count for the created dentry */
2392 d_instantiate(dentry, inode);
2397 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2399 struct inode *inode = d_inode(dentry);
2401 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2402 shmem_free_inode(inode->i_sb);
2404 dir->i_size -= BOGO_DIRENT_SIZE;
2405 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2407 dput(dentry); /* Undo the count from "create" - this does all the work */
2411 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2413 if (!simple_empty(dentry))
2416 drop_nlink(d_inode(dentry));
2418 return shmem_unlink(dir, dentry);
2421 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2423 bool old_is_dir = d_is_dir(old_dentry);
2424 bool new_is_dir = d_is_dir(new_dentry);
2426 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2428 drop_nlink(old_dir);
2431 drop_nlink(new_dir);
2435 old_dir->i_ctime = old_dir->i_mtime =
2436 new_dir->i_ctime = new_dir->i_mtime =
2437 d_inode(old_dentry)->i_ctime =
2438 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2443 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2445 struct dentry *whiteout;
2448 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2452 error = shmem_mknod(old_dir, whiteout,
2453 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2459 * Cheat and hash the whiteout while the old dentry is still in
2460 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2462 * d_lookup() will consistently find one of them at this point,
2463 * not sure which one, but that isn't even important.
2470 * The VFS layer already does all the dentry stuff for rename,
2471 * we just have to decrement the usage count for the target if
2472 * it exists so that the VFS layer correctly free's it when it
2475 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2477 struct inode *inode = d_inode(old_dentry);
2478 int they_are_dirs = S_ISDIR(inode->i_mode);
2480 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2483 if (flags & RENAME_EXCHANGE)
2484 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2486 if (!simple_empty(new_dentry))
2489 if (flags & RENAME_WHITEOUT) {
2492 error = shmem_whiteout(old_dir, old_dentry);
2497 if (d_really_is_positive(new_dentry)) {
2498 (void) shmem_unlink(new_dir, new_dentry);
2499 if (they_are_dirs) {
2500 drop_nlink(d_inode(new_dentry));
2501 drop_nlink(old_dir);
2503 } else if (they_are_dirs) {
2504 drop_nlink(old_dir);
2508 old_dir->i_size -= BOGO_DIRENT_SIZE;
2509 new_dir->i_size += BOGO_DIRENT_SIZE;
2510 old_dir->i_ctime = old_dir->i_mtime =
2511 new_dir->i_ctime = new_dir->i_mtime =
2512 inode->i_ctime = CURRENT_TIME;
2516 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2520 struct inode *inode;
2522 struct shmem_inode_info *info;
2524 len = strlen(symname) + 1;
2525 if (len > PAGE_CACHE_SIZE)
2526 return -ENAMETOOLONG;
2528 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2532 error = security_inode_init_security(inode, dir, &dentry->d_name,
2533 shmem_initxattrs, NULL);
2535 if (error != -EOPNOTSUPP) {
2542 info = SHMEM_I(inode);
2543 inode->i_size = len-1;
2544 if (len <= SHORT_SYMLINK_LEN) {
2545 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2546 if (!info->symlink) {
2550 inode->i_op = &shmem_short_symlink_operations;
2551 inode->i_link = info->symlink;
2553 inode_nohighmem(inode);
2554 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2559 inode->i_mapping->a_ops = &shmem_aops;
2560 inode->i_op = &shmem_symlink_inode_operations;
2561 memcpy(page_address(page), symname, len);
2562 SetPageUptodate(page);
2563 set_page_dirty(page);
2565 page_cache_release(page);
2567 dir->i_size += BOGO_DIRENT_SIZE;
2568 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2569 d_instantiate(dentry, inode);
2574 static void shmem_put_link(void *arg)
2576 mark_page_accessed(arg);
2580 static const char *shmem_get_link(struct dentry *dentry,
2581 struct inode *inode,
2582 struct delayed_call *done)
2584 struct page *page = NULL;
2587 page = find_get_page(inode->i_mapping, 0);
2589 return ERR_PTR(-ECHILD);
2590 if (!PageUptodate(page)) {
2592 return ERR_PTR(-ECHILD);
2595 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2597 return ERR_PTR(error);
2600 set_delayed_call(done, shmem_put_link, page);
2601 return page_address(page);
2604 #ifdef CONFIG_TMPFS_XATTR
2606 * Superblocks without xattr inode operations may get some security.* xattr
2607 * support from the LSM "for free". As soon as we have any other xattrs
2608 * like ACLs, we also need to implement the security.* handlers at
2609 * filesystem level, though.
2613 * Callback for security_inode_init_security() for acquiring xattrs.
2615 static int shmem_initxattrs(struct inode *inode,
2616 const struct xattr *xattr_array,
2619 struct shmem_inode_info *info = SHMEM_I(inode);
2620 const struct xattr *xattr;
2621 struct simple_xattr *new_xattr;
2624 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2625 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2629 len = strlen(xattr->name) + 1;
2630 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2632 if (!new_xattr->name) {
2637 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2638 XATTR_SECURITY_PREFIX_LEN);
2639 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2642 simple_xattr_list_add(&info->xattrs, new_xattr);
2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2649 struct dentry *dentry, const char *name,
2650 void *buffer, size_t size)
2652 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2654 name = xattr_full_name(handler, name);
2655 return simple_xattr_get(&info->xattrs, name, buffer, size);
2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2659 struct dentry *dentry, const char *name,
2660 const void *value, size_t size, int flags)
2662 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2664 name = xattr_full_name(handler, name);
2665 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2668 static const struct xattr_handler shmem_security_xattr_handler = {
2669 .prefix = XATTR_SECURITY_PREFIX,
2670 .get = shmem_xattr_handler_get,
2671 .set = shmem_xattr_handler_set,
2674 static const struct xattr_handler shmem_trusted_xattr_handler = {
2675 .prefix = XATTR_TRUSTED_PREFIX,
2676 .get = shmem_xattr_handler_get,
2677 .set = shmem_xattr_handler_set,
2680 static const struct xattr_handler *shmem_xattr_handlers[] = {
2681 #ifdef CONFIG_TMPFS_POSIX_ACL
2682 &posix_acl_access_xattr_handler,
2683 &posix_acl_default_xattr_handler,
2685 &shmem_security_xattr_handler,
2686 &shmem_trusted_xattr_handler,
2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2692 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2693 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2695 #endif /* CONFIG_TMPFS_XATTR */
2697 static const struct inode_operations shmem_short_symlink_operations = {
2698 .readlink = generic_readlink,
2699 .get_link = simple_get_link,
2700 #ifdef CONFIG_TMPFS_XATTR
2701 .setxattr = generic_setxattr,
2702 .getxattr = generic_getxattr,
2703 .listxattr = shmem_listxattr,
2704 .removexattr = generic_removexattr,
2708 static const struct inode_operations shmem_symlink_inode_operations = {
2709 .readlink = generic_readlink,
2710 .get_link = shmem_get_link,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 .setxattr = generic_setxattr,
2713 .getxattr = generic_getxattr,
2714 .listxattr = shmem_listxattr,
2715 .removexattr = generic_removexattr,
2719 static struct dentry *shmem_get_parent(struct dentry *child)
2721 return ERR_PTR(-ESTALE);
2724 static int shmem_match(struct inode *ino, void *vfh)
2728 inum = (inum << 32) | fh[1];
2729 return ino->i_ino == inum && fh[0] == ino->i_generation;
2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2733 struct fid *fid, int fh_len, int fh_type)
2735 struct inode *inode;
2736 struct dentry *dentry = NULL;
2743 inum = (inum << 32) | fid->raw[1];
2745 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2746 shmem_match, fid->raw);
2748 dentry = d_find_alias(inode);
2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2756 struct inode *parent)
2760 return FILEID_INVALID;
2763 if (inode_unhashed(inode)) {
2764 /* Unfortunately insert_inode_hash is not idempotent,
2765 * so as we hash inodes here rather than at creation
2766 * time, we need a lock to ensure we only try
2769 static DEFINE_SPINLOCK(lock);
2771 if (inode_unhashed(inode))
2772 __insert_inode_hash(inode,
2773 inode->i_ino + inode->i_generation);
2777 fh[0] = inode->i_generation;
2778 fh[1] = inode->i_ino;
2779 fh[2] = ((__u64)inode->i_ino) >> 32;
2785 static const struct export_operations shmem_export_ops = {
2786 .get_parent = shmem_get_parent,
2787 .encode_fh = shmem_encode_fh,
2788 .fh_to_dentry = shmem_fh_to_dentry,
2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2794 char *this_char, *value, *rest;
2795 struct mempolicy *mpol = NULL;
2799 while (options != NULL) {
2800 this_char = options;
2803 * NUL-terminate this option: unfortunately,
2804 * mount options form a comma-separated list,
2805 * but mpol's nodelist may also contain commas.
2807 options = strchr(options, ',');
2808 if (options == NULL)
2811 if (!isdigit(*options)) {
2818 if ((value = strchr(this_char,'=')) != NULL) {
2822 "tmpfs: No value for mount option '%s'\n",
2827 if (!strcmp(this_char,"size")) {
2828 unsigned long long size;
2829 size = memparse(value,&rest);
2831 size <<= PAGE_SHIFT;
2832 size *= totalram_pages;
2838 sbinfo->max_blocks =
2839 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2840 } else if (!strcmp(this_char,"nr_blocks")) {
2841 sbinfo->max_blocks = memparse(value, &rest);
2844 } else if (!strcmp(this_char,"nr_inodes")) {
2845 sbinfo->max_inodes = memparse(value, &rest);
2848 } else if (!strcmp(this_char,"mode")) {
2851 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2854 } else if (!strcmp(this_char,"uid")) {
2857 uid = simple_strtoul(value, &rest, 0);
2860 sbinfo->uid = make_kuid(current_user_ns(), uid);
2861 if (!uid_valid(sbinfo->uid))
2863 } else if (!strcmp(this_char,"gid")) {
2866 gid = simple_strtoul(value, &rest, 0);
2869 sbinfo->gid = make_kgid(current_user_ns(), gid);
2870 if (!gid_valid(sbinfo->gid))
2872 } else if (!strcmp(this_char,"mpol")) {
2875 if (mpol_parse_str(value, &mpol))
2878 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2883 sbinfo->mpol = mpol;
2887 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2895 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2897 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2898 struct shmem_sb_info config = *sbinfo;
2899 unsigned long inodes;
2900 int error = -EINVAL;
2903 if (shmem_parse_options(data, &config, true))
2906 spin_lock(&sbinfo->stat_lock);
2907 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2908 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2910 if (config.max_inodes < inodes)
2913 * Those tests disallow limited->unlimited while any are in use;
2914 * but we must separately disallow unlimited->limited, because
2915 * in that case we have no record of how much is already in use.
2917 if (config.max_blocks && !sbinfo->max_blocks)
2919 if (config.max_inodes && !sbinfo->max_inodes)
2923 sbinfo->max_blocks = config.max_blocks;
2924 sbinfo->max_inodes = config.max_inodes;
2925 sbinfo->free_inodes = config.max_inodes - inodes;
2928 * Preserve previous mempolicy unless mpol remount option was specified.
2931 mpol_put(sbinfo->mpol);
2932 sbinfo->mpol = config.mpol; /* transfers initial ref */
2935 spin_unlock(&sbinfo->stat_lock);
2939 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2941 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2943 if (sbinfo->max_blocks != shmem_default_max_blocks())
2944 seq_printf(seq, ",size=%luk",
2945 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2946 if (sbinfo->max_inodes != shmem_default_max_inodes())
2947 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2948 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2949 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2950 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2951 seq_printf(seq, ",uid=%u",
2952 from_kuid_munged(&init_user_ns, sbinfo->uid));
2953 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2954 seq_printf(seq, ",gid=%u",
2955 from_kgid_munged(&init_user_ns, sbinfo->gid));
2956 shmem_show_mpol(seq, sbinfo->mpol);
2960 #define MFD_NAME_PREFIX "memfd:"
2961 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2962 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2964 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2966 SYSCALL_DEFINE2(memfd_create,
2967 const char __user *, uname,
2968 unsigned int, flags)
2970 struct shmem_inode_info *info;
2976 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2979 /* length includes terminating zero */
2980 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2983 if (len > MFD_NAME_MAX_LEN + 1)
2986 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2990 strcpy(name, MFD_NAME_PREFIX);
2991 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2996 /* terminating-zero may have changed after strnlen_user() returned */
2997 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3002 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3008 file = shmem_file_setup(name, 0, VM_NORESERVE);
3010 error = PTR_ERR(file);
3013 info = SHMEM_I(file_inode(file));
3014 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3015 file->f_flags |= O_RDWR | O_LARGEFILE;
3016 if (flags & MFD_ALLOW_SEALING)
3017 info->seals &= ~F_SEAL_SEAL;
3019 fd_install(fd, file);
3030 #endif /* CONFIG_TMPFS */
3032 static void shmem_put_super(struct super_block *sb)
3034 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3036 percpu_counter_destroy(&sbinfo->used_blocks);
3037 mpol_put(sbinfo->mpol);
3039 sb->s_fs_info = NULL;
3042 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3044 struct inode *inode;
3045 struct shmem_sb_info *sbinfo;
3048 /* Round up to L1_CACHE_BYTES to resist false sharing */
3049 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3050 L1_CACHE_BYTES), GFP_KERNEL);
3054 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3055 sbinfo->uid = current_fsuid();
3056 sbinfo->gid = current_fsgid();
3057 sb->s_fs_info = sbinfo;
3061 * Per default we only allow half of the physical ram per
3062 * tmpfs instance, limiting inodes to one per page of lowmem;
3063 * but the internal instance is left unlimited.
3065 if (!(sb->s_flags & MS_KERNMOUNT)) {
3066 sbinfo->max_blocks = shmem_default_max_blocks();
3067 sbinfo->max_inodes = shmem_default_max_inodes();
3068 if (shmem_parse_options(data, sbinfo, false)) {
3073 sb->s_flags |= MS_NOUSER;
3075 sb->s_export_op = &shmem_export_ops;
3076 sb->s_flags |= MS_NOSEC;
3078 sb->s_flags |= MS_NOUSER;
3081 spin_lock_init(&sbinfo->stat_lock);
3082 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3084 sbinfo->free_inodes = sbinfo->max_inodes;
3086 sb->s_maxbytes = MAX_LFS_FILESIZE;
3087 sb->s_blocksize = PAGE_CACHE_SIZE;
3088 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3089 sb->s_magic = TMPFS_MAGIC;
3090 sb->s_op = &shmem_ops;
3091 sb->s_time_gran = 1;
3092 #ifdef CONFIG_TMPFS_XATTR
3093 sb->s_xattr = shmem_xattr_handlers;
3095 #ifdef CONFIG_TMPFS_POSIX_ACL
3096 sb->s_flags |= MS_POSIXACL;
3099 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3102 inode->i_uid = sbinfo->uid;
3103 inode->i_gid = sbinfo->gid;
3104 sb->s_root = d_make_root(inode);
3110 shmem_put_super(sb);
3114 static struct kmem_cache *shmem_inode_cachep;
3116 static struct inode *shmem_alloc_inode(struct super_block *sb)
3118 struct shmem_inode_info *info;
3119 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3122 return &info->vfs_inode;
3125 static void shmem_destroy_callback(struct rcu_head *head)
3127 struct inode *inode = container_of(head, struct inode, i_rcu);
3128 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3131 static void shmem_destroy_inode(struct inode *inode)
3133 if (S_ISREG(inode->i_mode))
3134 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3135 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3138 static void shmem_init_inode(void *foo)
3140 struct shmem_inode_info *info = foo;
3141 inode_init_once(&info->vfs_inode);
3144 static int shmem_init_inodecache(void)
3146 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3147 sizeof(struct shmem_inode_info),
3148 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3152 static void shmem_destroy_inodecache(void)
3154 kmem_cache_destroy(shmem_inode_cachep);
3157 static const struct address_space_operations shmem_aops = {
3158 .writepage = shmem_writepage,
3159 .set_page_dirty = __set_page_dirty_no_writeback,
3161 .write_begin = shmem_write_begin,
3162 .write_end = shmem_write_end,
3164 #ifdef CONFIG_MIGRATION
3165 .migratepage = migrate_page,
3167 .error_remove_page = generic_error_remove_page,
3170 static const struct file_operations shmem_file_operations = {
3173 .llseek = shmem_file_llseek,
3174 .read_iter = shmem_file_read_iter,
3175 .write_iter = generic_file_write_iter,
3176 .fsync = noop_fsync,
3177 .splice_read = shmem_file_splice_read,
3178 .splice_write = iter_file_splice_write,
3179 .fallocate = shmem_fallocate,
3183 static const struct inode_operations shmem_inode_operations = {
3184 .getattr = shmem_getattr,
3185 .setattr = shmem_setattr,
3186 #ifdef CONFIG_TMPFS_XATTR
3187 .setxattr = generic_setxattr,
3188 .getxattr = generic_getxattr,
3189 .listxattr = shmem_listxattr,
3190 .removexattr = generic_removexattr,
3191 .set_acl = simple_set_acl,
3195 static const struct inode_operations shmem_dir_inode_operations = {
3197 .create = shmem_create,
3198 .lookup = simple_lookup,
3200 .unlink = shmem_unlink,
3201 .symlink = shmem_symlink,
3202 .mkdir = shmem_mkdir,
3203 .rmdir = shmem_rmdir,
3204 .mknod = shmem_mknod,
3205 .rename2 = shmem_rename2,
3206 .tmpfile = shmem_tmpfile,
3208 #ifdef CONFIG_TMPFS_XATTR
3209 .setxattr = generic_setxattr,
3210 .getxattr = generic_getxattr,
3211 .listxattr = shmem_listxattr,
3212 .removexattr = generic_removexattr,
3214 #ifdef CONFIG_TMPFS_POSIX_ACL
3215 .setattr = shmem_setattr,
3216 .set_acl = simple_set_acl,
3220 static const struct inode_operations shmem_special_inode_operations = {
3221 #ifdef CONFIG_TMPFS_XATTR
3222 .setxattr = generic_setxattr,
3223 .getxattr = generic_getxattr,
3224 .listxattr = shmem_listxattr,
3225 .removexattr = generic_removexattr,
3227 #ifdef CONFIG_TMPFS_POSIX_ACL
3228 .setattr = shmem_setattr,
3229 .set_acl = simple_set_acl,
3233 static const struct super_operations shmem_ops = {
3234 .alloc_inode = shmem_alloc_inode,
3235 .destroy_inode = shmem_destroy_inode,
3237 .statfs = shmem_statfs,
3238 .remount_fs = shmem_remount_fs,
3239 .show_options = shmem_show_options,
3241 .evict_inode = shmem_evict_inode,
3242 .drop_inode = generic_delete_inode,
3243 .put_super = shmem_put_super,
3246 static const struct vm_operations_struct shmem_vm_ops = {
3247 .fault = shmem_fault,
3248 .map_pages = filemap_map_pages,
3250 .set_policy = shmem_set_policy,
3251 .get_policy = shmem_get_policy,
3255 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3256 int flags, const char *dev_name, void *data)
3258 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3261 static struct file_system_type shmem_fs_type = {
3262 .owner = THIS_MODULE,
3264 .mount = shmem_mount,
3265 .kill_sb = kill_litter_super,
3266 .fs_flags = FS_USERNS_MOUNT,
3269 int __init shmem_init(void)
3273 /* If rootfs called this, don't re-init */
3274 if (shmem_inode_cachep)
3277 error = shmem_init_inodecache();
3281 error = register_filesystem(&shmem_fs_type);
3283 printk(KERN_ERR "Could not register tmpfs\n");
3287 shm_mnt = kern_mount(&shmem_fs_type);
3288 if (IS_ERR(shm_mnt)) {
3289 error = PTR_ERR(shm_mnt);
3290 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3296 unregister_filesystem(&shmem_fs_type);
3298 shmem_destroy_inodecache();
3300 shm_mnt = ERR_PTR(error);
3304 #else /* !CONFIG_SHMEM */
3307 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3309 * This is intended for small system where the benefits of the full
3310 * shmem code (swap-backed and resource-limited) are outweighed by
3311 * their complexity. On systems without swap this code should be
3312 * effectively equivalent, but much lighter weight.
3315 static struct file_system_type shmem_fs_type = {
3317 .mount = ramfs_mount,
3318 .kill_sb = kill_litter_super,
3319 .fs_flags = FS_USERNS_MOUNT,
3322 int __init shmem_init(void)
3324 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3326 shm_mnt = kern_mount(&shmem_fs_type);
3327 BUG_ON(IS_ERR(shm_mnt));
3332 int shmem_unuse(swp_entry_t swap, struct page *page)
3337 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3342 void shmem_unlock_mapping(struct address_space *mapping)
3346 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3348 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3350 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3352 #define shmem_vm_ops generic_file_vm_ops
3353 #define shmem_file_operations ramfs_file_operations
3354 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3355 #define shmem_acct_size(flags, size) 0
3356 #define shmem_unacct_size(flags, size) do {} while (0)
3358 #endif /* CONFIG_SHMEM */
3362 static struct dentry_operations anon_ops = {
3363 .d_dname = simple_dname
3366 static struct file *__shmem_file_setup(const char *name, loff_t size,
3367 unsigned long flags, unsigned int i_flags)
3370 struct inode *inode;
3372 struct super_block *sb;
3375 if (IS_ERR(shm_mnt))
3376 return ERR_CAST(shm_mnt);
3378 if (size < 0 || size > MAX_LFS_FILESIZE)
3379 return ERR_PTR(-EINVAL);
3381 if (shmem_acct_size(flags, size))
3382 return ERR_PTR(-ENOMEM);
3384 res = ERR_PTR(-ENOMEM);
3386 this.len = strlen(name);
3387 this.hash = 0; /* will go */
3388 sb = shm_mnt->mnt_sb;
3389 path.mnt = mntget(shm_mnt);
3390 path.dentry = d_alloc_pseudo(sb, &this);
3393 d_set_d_op(path.dentry, &anon_ops);
3395 res = ERR_PTR(-ENOSPC);
3396 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3400 inode->i_flags |= i_flags;
3401 d_instantiate(path.dentry, inode);
3402 inode->i_size = size;
3403 clear_nlink(inode); /* It is unlinked */
3404 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3408 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3409 &shmem_file_operations);
3416 shmem_unacct_size(flags, size);
3423 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3424 * kernel internal. There will be NO LSM permission checks against the
3425 * underlying inode. So users of this interface must do LSM checks at a
3426 * higher layer. The users are the big_key and shm implementations. LSM
3427 * checks are provided at the key or shm level rather than the inode.
3428 * @name: name for dentry (to be seen in /proc/<pid>/maps
3429 * @size: size to be set for the file
3430 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3432 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3434 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3438 * shmem_file_setup - get an unlinked file living in tmpfs
3439 * @name: name for dentry (to be seen in /proc/<pid>/maps
3440 * @size: size to be set for the file
3441 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3443 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3445 return __shmem_file_setup(name, size, flags, 0);
3447 EXPORT_SYMBOL_GPL(shmem_file_setup);
3450 * shmem_zero_setup - setup a shared anonymous mapping
3451 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3453 int shmem_zero_setup(struct vm_area_struct *vma)
3456 loff_t size = vma->vm_end - vma->vm_start;
3459 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3460 * between XFS directory reading and selinux: since this file is only
3461 * accessible to the user through its mapping, use S_PRIVATE flag to
3462 * bypass file security, in the same way as shmem_kernel_file_setup().
3464 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3466 return PTR_ERR(file);
3470 vma->vm_file = file;
3471 vma->vm_ops = &shmem_vm_ops;
3476 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3477 * @mapping: the page's address_space
3478 * @index: the page index
3479 * @gfp: the page allocator flags to use if allocating
3481 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3482 * with any new page allocations done using the specified allocation flags.
3483 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3484 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3485 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3487 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3488 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3490 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3491 pgoff_t index, gfp_t gfp)
3494 struct inode *inode = mapping->host;
3498 BUG_ON(mapping->a_ops != &shmem_aops);
3499 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3501 page = ERR_PTR(error);
3507 * The tiny !SHMEM case uses ramfs without swap
3509 return read_cache_page_gfp(mapping, index, gfp);
3512 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);