]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge tag 'v5.5-rc5' into next
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_dependencies;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return "i915";
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         /*
66          * The timeline struct (as part of the ppgtt underneath a context)
67          * may be freed when the request is no longer in use by the GPU.
68          * We could extend the life of a context to beyond that of all
69          * fences, possibly keeping the hw resource around indefinitely,
70          * or we just give them a false name. Since
71          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
72          * lie seems justifiable.
73          */
74         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
75                 return "signaled";
76
77         return to_request(fence)->gem_context->name ?: "[i915]";
78 }
79
80 static bool i915_fence_signaled(struct dma_fence *fence)
81 {
82         return i915_request_completed(to_request(fence));
83 }
84
85 static bool i915_fence_enable_signaling(struct dma_fence *fence)
86 {
87         return i915_request_enable_breadcrumb(to_request(fence));
88 }
89
90 static signed long i915_fence_wait(struct dma_fence *fence,
91                                    bool interruptible,
92                                    signed long timeout)
93 {
94         return i915_request_wait(to_request(fence),
95                                  interruptible | I915_WAIT_PRIORITY,
96                                  timeout);
97 }
98
99 static void i915_fence_release(struct dma_fence *fence)
100 {
101         struct i915_request *rq = to_request(fence);
102
103         /*
104          * The request is put onto a RCU freelist (i.e. the address
105          * is immediately reused), mark the fences as being freed now.
106          * Otherwise the debugobjects for the fences are only marked as
107          * freed when the slab cache itself is freed, and so we would get
108          * caught trying to reuse dead objects.
109          */
110         i915_sw_fence_fini(&rq->submit);
111         i915_sw_fence_fini(&rq->semaphore);
112
113         kmem_cache_free(global.slab_requests, rq);
114 }
115
116 const struct dma_fence_ops i915_fence_ops = {
117         .get_driver_name = i915_fence_get_driver_name,
118         .get_timeline_name = i915_fence_get_timeline_name,
119         .enable_signaling = i915_fence_enable_signaling,
120         .signaled = i915_fence_signaled,
121         .wait = i915_fence_wait,
122         .release = i915_fence_release,
123 };
124
125 static void irq_execute_cb(struct irq_work *wrk)
126 {
127         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
128
129         i915_sw_fence_complete(cb->fence);
130         kmem_cache_free(global.slab_execute_cbs, cb);
131 }
132
133 static void irq_execute_cb_hook(struct irq_work *wrk)
134 {
135         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
136
137         cb->hook(container_of(cb->fence, struct i915_request, submit),
138                  &cb->signal->fence);
139         i915_request_put(cb->signal);
140
141         irq_execute_cb(wrk);
142 }
143
144 static void __notify_execute_cb(struct i915_request *rq)
145 {
146         struct execute_cb *cb;
147
148         lockdep_assert_held(&rq->lock);
149
150         if (list_empty(&rq->execute_cb))
151                 return;
152
153         list_for_each_entry(cb, &rq->execute_cb, link)
154                 irq_work_queue(&cb->work);
155
156         /*
157          * XXX Rollback on __i915_request_unsubmit()
158          *
159          * In the future, perhaps when we have an active time-slicing scheduler,
160          * it will be interesting to unsubmit parallel execution and remove
161          * busywaits from the GPU until their master is restarted. This is
162          * quite hairy, we have to carefully rollback the fence and do a
163          * preempt-to-idle cycle on the target engine, all the while the
164          * master execute_cb may refire.
165          */
166         INIT_LIST_HEAD(&rq->execute_cb);
167 }
168
169 static inline void
170 remove_from_client(struct i915_request *request)
171 {
172         struct drm_i915_file_private *file_priv;
173
174         if (!READ_ONCE(request->file_priv))
175                 return;
176
177         rcu_read_lock();
178         file_priv = xchg(&request->file_priv, NULL);
179         if (file_priv) {
180                 spin_lock(&file_priv->mm.lock);
181                 list_del(&request->client_link);
182                 spin_unlock(&file_priv->mm.lock);
183         }
184         rcu_read_unlock();
185 }
186
187 static void free_capture_list(struct i915_request *request)
188 {
189         struct i915_capture_list *capture;
190
191         capture = request->capture_list;
192         while (capture) {
193                 struct i915_capture_list *next = capture->next;
194
195                 kfree(capture);
196                 capture = next;
197         }
198 }
199
200 static void remove_from_engine(struct i915_request *rq)
201 {
202         struct intel_engine_cs *engine, *locked;
203
204         /*
205          * Virtual engines complicate acquiring the engine timeline lock,
206          * as their rq->engine pointer is not stable until under that
207          * engine lock. The simple ploy we use is to take the lock then
208          * check that the rq still belongs to the newly locked engine.
209          */
210         locked = READ_ONCE(rq->engine);
211         spin_lock_irq(&locked->active.lock);
212         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
213                 spin_unlock(&locked->active.lock);
214                 spin_lock(&engine->active.lock);
215                 locked = engine;
216         }
217         list_del(&rq->sched.link);
218         spin_unlock_irq(&locked->active.lock);
219 }
220
221 bool i915_request_retire(struct i915_request *rq)
222 {
223         if (!i915_request_completed(rq))
224                 return false;
225
226         GEM_TRACE("%s fence %llx:%lld, current %d\n",
227                   rq->engine->name,
228                   rq->fence.context, rq->fence.seqno,
229                   hwsp_seqno(rq));
230
231         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232         trace_i915_request_retire(rq);
233
234         /*
235          * We know the GPU must have read the request to have
236          * sent us the seqno + interrupt, so use the position
237          * of tail of the request to update the last known position
238          * of the GPU head.
239          *
240          * Note this requires that we are always called in request
241          * completion order.
242          */
243         GEM_BUG_ON(!list_is_first(&rq->link,
244                                   &i915_request_timeline(rq)->requests));
245         rq->ring->head = rq->postfix;
246
247         /*
248          * We only loosely track inflight requests across preemption,
249          * and so we may find ourselves attempting to retire a _completed_
250          * request that we have removed from the HW and put back on a run
251          * queue.
252          */
253         remove_from_engine(rq);
254
255         spin_lock_irq(&rq->lock);
256         i915_request_mark_complete(rq);
257         if (!i915_request_signaled(rq))
258                 dma_fence_signal_locked(&rq->fence);
259         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
260                 i915_request_cancel_breadcrumb(rq);
261         if (i915_request_has_waitboost(rq)) {
262                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
263                 atomic_dec(&rq->engine->gt->rps.num_waiters);
264         }
265         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
266                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
267                 __notify_execute_cb(rq);
268         }
269         GEM_BUG_ON(!list_empty(&rq->execute_cb));
270         spin_unlock_irq(&rq->lock);
271
272         remove_from_client(rq);
273         list_del(&rq->link);
274
275         intel_context_exit(rq->hw_context);
276         intel_context_unpin(rq->hw_context);
277
278         free_capture_list(rq);
279         i915_sched_node_fini(&rq->sched);
280         i915_request_put(rq);
281
282         return true;
283 }
284
285 void i915_request_retire_upto(struct i915_request *rq)
286 {
287         struct intel_timeline * const tl = i915_request_timeline(rq);
288         struct i915_request *tmp;
289
290         GEM_TRACE("%s fence %llx:%lld, current %d\n",
291                   rq->engine->name,
292                   rq->fence.context, rq->fence.seqno,
293                   hwsp_seqno(rq));
294
295         GEM_BUG_ON(!i915_request_completed(rq));
296
297         do {
298                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299         } while (i915_request_retire(tmp) && tmp != rq);
300 }
301
302 static int
303 __await_execution(struct i915_request *rq,
304                   struct i915_request *signal,
305                   void (*hook)(struct i915_request *rq,
306                                struct dma_fence *signal),
307                   gfp_t gfp)
308 {
309         struct execute_cb *cb;
310
311         if (i915_request_is_active(signal)) {
312                 if (hook)
313                         hook(rq, &signal->fence);
314                 return 0;
315         }
316
317         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318         if (!cb)
319                 return -ENOMEM;
320
321         cb->fence = &rq->submit;
322         i915_sw_fence_await(cb->fence);
323         init_irq_work(&cb->work, irq_execute_cb);
324
325         if (hook) {
326                 cb->hook = hook;
327                 cb->signal = i915_request_get(signal);
328                 cb->work.func = irq_execute_cb_hook;
329         }
330
331         spin_lock_irq(&signal->lock);
332         if (i915_request_is_active(signal)) {
333                 if (hook) {
334                         hook(rq, &signal->fence);
335                         i915_request_put(signal);
336                 }
337                 i915_sw_fence_complete(cb->fence);
338                 kmem_cache_free(global.slab_execute_cbs, cb);
339         } else {
340                 list_add_tail(&cb->link, &signal->execute_cb);
341         }
342         spin_unlock_irq(&signal->lock);
343
344         /* Copy across semaphore status as we need the same behaviour */
345         rq->sched.flags |= signal->sched.flags;
346         return 0;
347 }
348
349 bool __i915_request_submit(struct i915_request *request)
350 {
351         struct intel_engine_cs *engine = request->engine;
352         bool result = false;
353
354         GEM_TRACE("%s fence %llx:%lld, current %d\n",
355                   engine->name,
356                   request->fence.context, request->fence.seqno,
357                   hwsp_seqno(request));
358
359         GEM_BUG_ON(!irqs_disabled());
360         lockdep_assert_held(&engine->active.lock);
361
362         /*
363          * With the advent of preempt-to-busy, we frequently encounter
364          * requests that we have unsubmitted from HW, but left running
365          * until the next ack and so have completed in the meantime. On
366          * resubmission of that completed request, we can skip
367          * updating the payload, and execlists can even skip submitting
368          * the request.
369          *
370          * We must remove the request from the caller's priority queue,
371          * and the caller must only call us when the request is in their
372          * priority queue, under the active.lock. This ensures that the
373          * request has *not* yet been retired and we can safely move
374          * the request into the engine->active.list where it will be
375          * dropped upon retiring. (Otherwise if resubmit a *retired*
376          * request, this would be a horrible use-after-free.)
377          */
378         if (i915_request_completed(request))
379                 goto xfer;
380
381         if (i915_gem_context_is_banned(request->gem_context))
382                 i915_request_skip(request, -EIO);
383
384         /*
385          * Are we using semaphores when the gpu is already saturated?
386          *
387          * Using semaphores incurs a cost in having the GPU poll a
388          * memory location, busywaiting for it to change. The continual
389          * memory reads can have a noticeable impact on the rest of the
390          * system with the extra bus traffic, stalling the cpu as it too
391          * tries to access memory across the bus (perf stat -e bus-cycles).
392          *
393          * If we installed a semaphore on this request and we only submit
394          * the request after the signaler completed, that indicates the
395          * system is overloaded and using semaphores at this time only
396          * increases the amount of work we are doing. If so, we disable
397          * further use of semaphores until we are idle again, whence we
398          * optimistically try again.
399          */
400         if (request->sched.semaphores &&
401             i915_sw_fence_signaled(&request->semaphore))
402                 engine->saturated |= request->sched.semaphores;
403
404         engine->emit_fini_breadcrumb(request,
405                                      request->ring->vaddr + request->postfix);
406
407         trace_i915_request_execute(request);
408         engine->serial++;
409         result = true;
410
411 xfer:   /* We may be recursing from the signal callback of another i915 fence */
412         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
413
414         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
415                 list_move_tail(&request->sched.link, &engine->active.requests);
416
417         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
418             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
419             !i915_request_enable_breadcrumb(request))
420                 intel_engine_queue_breadcrumbs(engine);
421
422         __notify_execute_cb(request);
423
424         spin_unlock(&request->lock);
425
426         return result;
427 }
428
429 void i915_request_submit(struct i915_request *request)
430 {
431         struct intel_engine_cs *engine = request->engine;
432         unsigned long flags;
433
434         /* Will be called from irq-context when using foreign fences. */
435         spin_lock_irqsave(&engine->active.lock, flags);
436
437         __i915_request_submit(request);
438
439         spin_unlock_irqrestore(&engine->active.lock, flags);
440 }
441
442 void __i915_request_unsubmit(struct i915_request *request)
443 {
444         struct intel_engine_cs *engine = request->engine;
445
446         GEM_TRACE("%s fence %llx:%lld, current %d\n",
447                   engine->name,
448                   request->fence.context, request->fence.seqno,
449                   hwsp_seqno(request));
450
451         GEM_BUG_ON(!irqs_disabled());
452         lockdep_assert_held(&engine->active.lock);
453
454         /*
455          * Only unwind in reverse order, required so that the per-context list
456          * is kept in seqno/ring order.
457          */
458
459         /* We may be recursing from the signal callback of another i915 fence */
460         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
461
462         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
463                 i915_request_cancel_breadcrumb(request);
464
465         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
466         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
467
468         spin_unlock(&request->lock);
469
470         /* We've already spun, don't charge on resubmitting. */
471         if (request->sched.semaphores && i915_request_started(request)) {
472                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
473                 request->sched.semaphores = 0;
474         }
475
476         /*
477          * We don't need to wake_up any waiters on request->execute, they
478          * will get woken by any other event or us re-adding this request
479          * to the engine timeline (__i915_request_submit()). The waiters
480          * should be quite adapt at finding that the request now has a new
481          * global_seqno to the one they went to sleep on.
482          */
483 }
484
485 void i915_request_unsubmit(struct i915_request *request)
486 {
487         struct intel_engine_cs *engine = request->engine;
488         unsigned long flags;
489
490         /* Will be called from irq-context when using foreign fences. */
491         spin_lock_irqsave(&engine->active.lock, flags);
492
493         __i915_request_unsubmit(request);
494
495         spin_unlock_irqrestore(&engine->active.lock, flags);
496 }
497
498 static int __i915_sw_fence_call
499 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
500 {
501         struct i915_request *request =
502                 container_of(fence, typeof(*request), submit);
503
504         switch (state) {
505         case FENCE_COMPLETE:
506                 trace_i915_request_submit(request);
507
508                 if (unlikely(fence->error))
509                         i915_request_skip(request, fence->error);
510
511                 /*
512                  * We need to serialize use of the submit_request() callback
513                  * with its hotplugging performed during an emergency
514                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
515                  * critical section in order to force i915_gem_set_wedged() to
516                  * wait until the submit_request() is completed before
517                  * proceeding.
518                  */
519                 rcu_read_lock();
520                 request->engine->submit_request(request);
521                 rcu_read_unlock();
522                 break;
523
524         case FENCE_FREE:
525                 i915_request_put(request);
526                 break;
527         }
528
529         return NOTIFY_DONE;
530 }
531
532 static int __i915_sw_fence_call
533 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
534 {
535         struct i915_request *request =
536                 container_of(fence, typeof(*request), semaphore);
537
538         switch (state) {
539         case FENCE_COMPLETE:
540                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
541                 break;
542
543         case FENCE_FREE:
544                 i915_request_put(request);
545                 break;
546         }
547
548         return NOTIFY_DONE;
549 }
550
551 static void retire_requests(struct intel_timeline *tl)
552 {
553         struct i915_request *rq, *rn;
554
555         list_for_each_entry_safe(rq, rn, &tl->requests, link)
556                 if (!i915_request_retire(rq))
557                         break;
558 }
559
560 static noinline struct i915_request *
561 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
562 {
563         struct i915_request *rq;
564
565         if (list_empty(&tl->requests))
566                 goto out;
567
568         if (!gfpflags_allow_blocking(gfp))
569                 goto out;
570
571         /* Move our oldest request to the slab-cache (if not in use!) */
572         rq = list_first_entry(&tl->requests, typeof(*rq), link);
573         i915_request_retire(rq);
574
575         rq = kmem_cache_alloc(global.slab_requests,
576                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
577         if (rq)
578                 return rq;
579
580         /* Ratelimit ourselves to prevent oom from malicious clients */
581         rq = list_last_entry(&tl->requests, typeof(*rq), link);
582         cond_synchronize_rcu(rq->rcustate);
583
584         /* Retire our old requests in the hope that we free some */
585         retire_requests(tl);
586
587 out:
588         return kmem_cache_alloc(global.slab_requests, gfp);
589 }
590
591 struct i915_request *
592 __i915_request_create(struct intel_context *ce, gfp_t gfp)
593 {
594         struct intel_timeline *tl = ce->timeline;
595         struct i915_request *rq;
596         u32 seqno;
597         int ret;
598
599         might_sleep_if(gfpflags_allow_blocking(gfp));
600
601         /* Check that the caller provided an already pinned context */
602         __intel_context_pin(ce);
603
604         /*
605          * Beware: Dragons be flying overhead.
606          *
607          * We use RCU to look up requests in flight. The lookups may
608          * race with the request being allocated from the slab freelist.
609          * That is the request we are writing to here, may be in the process
610          * of being read by __i915_active_request_get_rcu(). As such,
611          * we have to be very careful when overwriting the contents. During
612          * the RCU lookup, we change chase the request->engine pointer,
613          * read the request->global_seqno and increment the reference count.
614          *
615          * The reference count is incremented atomically. If it is zero,
616          * the lookup knows the request is unallocated and complete. Otherwise,
617          * it is either still in use, or has been reallocated and reset
618          * with dma_fence_init(). This increment is safe for release as we
619          * check that the request we have a reference to and matches the active
620          * request.
621          *
622          * Before we increment the refcount, we chase the request->engine
623          * pointer. We must not call kmem_cache_zalloc() or else we set
624          * that pointer to NULL and cause a crash during the lookup. If
625          * we see the request is completed (based on the value of the
626          * old engine and seqno), the lookup is complete and reports NULL.
627          * If we decide the request is not completed (new engine or seqno),
628          * then we grab a reference and double check that it is still the
629          * active request - which it won't be and restart the lookup.
630          *
631          * Do not use kmem_cache_zalloc() here!
632          */
633         rq = kmem_cache_alloc(global.slab_requests,
634                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
635         if (unlikely(!rq)) {
636                 rq = request_alloc_slow(tl, gfp);
637                 if (!rq) {
638                         ret = -ENOMEM;
639                         goto err_unreserve;
640                 }
641         }
642
643         ret = intel_timeline_get_seqno(tl, rq, &seqno);
644         if (ret)
645                 goto err_free;
646
647         rq->i915 = ce->engine->i915;
648         rq->hw_context = ce;
649         rq->gem_context = ce->gem_context;
650         rq->engine = ce->engine;
651         rq->ring = ce->ring;
652         rq->execution_mask = ce->engine->mask;
653
654         rcu_assign_pointer(rq->timeline, tl);
655         rq->hwsp_seqno = tl->hwsp_seqno;
656         rq->hwsp_cacheline = tl->hwsp_cacheline;
657
658         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
659
660         spin_lock_init(&rq->lock);
661         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
662                        tl->fence_context, seqno);
663
664         /* We bump the ref for the fence chain */
665         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
666         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
667
668         i915_sched_node_init(&rq->sched);
669
670         /* No zalloc, must clear what we need by hand */
671         rq->file_priv = NULL;
672         rq->batch = NULL;
673         rq->capture_list = NULL;
674         rq->flags = 0;
675
676         INIT_LIST_HEAD(&rq->execute_cb);
677
678         /*
679          * Reserve space in the ring buffer for all the commands required to
680          * eventually emit this request. This is to guarantee that the
681          * i915_request_add() call can't fail. Note that the reserve may need
682          * to be redone if the request is not actually submitted straight
683          * away, e.g. because a GPU scheduler has deferred it.
684          *
685          * Note that due to how we add reserved_space to intel_ring_begin()
686          * we need to double our request to ensure that if we need to wrap
687          * around inside i915_request_add() there is sufficient space at
688          * the beginning of the ring as well.
689          */
690         rq->reserved_space =
691                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
692
693         /*
694          * Record the position of the start of the request so that
695          * should we detect the updated seqno part-way through the
696          * GPU processing the request, we never over-estimate the
697          * position of the head.
698          */
699         rq->head = rq->ring->emit;
700
701         ret = rq->engine->request_alloc(rq);
702         if (ret)
703                 goto err_unwind;
704
705         rq->infix = rq->ring->emit; /* end of header; start of user payload */
706
707         intel_context_mark_active(ce);
708         return rq;
709
710 err_unwind:
711         ce->ring->emit = rq->head;
712
713         /* Make sure we didn't add ourselves to external state before freeing */
714         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
715         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
716
717 err_free:
718         kmem_cache_free(global.slab_requests, rq);
719 err_unreserve:
720         intel_context_unpin(ce);
721         return ERR_PTR(ret);
722 }
723
724 struct i915_request *
725 i915_request_create(struct intel_context *ce)
726 {
727         struct i915_request *rq;
728         struct intel_timeline *tl;
729
730         tl = intel_context_timeline_lock(ce);
731         if (IS_ERR(tl))
732                 return ERR_CAST(tl);
733
734         /* Move our oldest request to the slab-cache (if not in use!) */
735         rq = list_first_entry(&tl->requests, typeof(*rq), link);
736         if (!list_is_last(&rq->link, &tl->requests))
737                 i915_request_retire(rq);
738
739         intel_context_enter(ce);
740         rq = __i915_request_create(ce, GFP_KERNEL);
741         intel_context_exit(ce); /* active reference transferred to request */
742         if (IS_ERR(rq))
743                 goto err_unlock;
744
745         /* Check that we do not interrupt ourselves with a new request */
746         rq->cookie = lockdep_pin_lock(&tl->mutex);
747
748         return rq;
749
750 err_unlock:
751         intel_context_timeline_unlock(tl);
752         return rq;
753 }
754
755 static int
756 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
757 {
758         struct intel_timeline *tl;
759         struct dma_fence *fence;
760         int err;
761
762         GEM_BUG_ON(i915_request_timeline(rq) ==
763                    rcu_access_pointer(signal->timeline));
764
765         rcu_read_lock();
766         tl = rcu_dereference(signal->timeline);
767         if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
768                 tl = NULL;
769         rcu_read_unlock();
770         if (!tl) /* already started or maybe even completed */
771                 return 0;
772
773         fence = ERR_PTR(-EBUSY);
774         if (mutex_trylock(&tl->mutex)) {
775                 fence = NULL;
776                 if (!i915_request_started(signal) &&
777                     !list_is_first(&signal->link, &tl->requests)) {
778                         signal = list_prev_entry(signal, link);
779                         fence = dma_fence_get(&signal->fence);
780                 }
781                 mutex_unlock(&tl->mutex);
782         }
783         intel_timeline_put(tl);
784         if (IS_ERR_OR_NULL(fence))
785                 return PTR_ERR_OR_ZERO(fence);
786
787         err = 0;
788         if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
789                 err = i915_sw_fence_await_dma_fence(&rq->submit,
790                                                     fence, 0,
791                                                     I915_FENCE_GFP);
792         dma_fence_put(fence);
793
794         return err;
795 }
796
797 static intel_engine_mask_t
798 already_busywaiting(struct i915_request *rq)
799 {
800         /*
801          * Polling a semaphore causes bus traffic, delaying other users of
802          * both the GPU and CPU. We want to limit the impact on others,
803          * while taking advantage of early submission to reduce GPU
804          * latency. Therefore we restrict ourselves to not using more
805          * than one semaphore from each source, and not using a semaphore
806          * if we have detected the engine is saturated (i.e. would not be
807          * submitted early and cause bus traffic reading an already passed
808          * semaphore).
809          *
810          * See the are-we-too-late? check in __i915_request_submit().
811          */
812         return rq->sched.semaphores | rq->engine->saturated;
813 }
814
815 static int
816 __emit_semaphore_wait(struct i915_request *to,
817                       struct i915_request *from,
818                       u32 seqno)
819 {
820         const int has_token = INTEL_GEN(to->i915) >= 12;
821         u32 hwsp_offset;
822         int len, err;
823         u32 *cs;
824
825         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
826
827         /* We need to pin the signaler's HWSP until we are finished reading. */
828         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
829         if (err)
830                 return err;
831
832         len = 4;
833         if (has_token)
834                 len += 2;
835
836         cs = intel_ring_begin(to, len);
837         if (IS_ERR(cs))
838                 return PTR_ERR(cs);
839
840         /*
841          * Using greater-than-or-equal here means we have to worry
842          * about seqno wraparound. To side step that issue, we swap
843          * the timeline HWSP upon wrapping, so that everyone listening
844          * for the old (pre-wrap) values do not see the much smaller
845          * (post-wrap) values than they were expecting (and so wait
846          * forever).
847          */
848         *cs++ = (MI_SEMAPHORE_WAIT |
849                  MI_SEMAPHORE_GLOBAL_GTT |
850                  MI_SEMAPHORE_POLL |
851                  MI_SEMAPHORE_SAD_GTE_SDD) +
852                 has_token;
853         *cs++ = seqno;
854         *cs++ = hwsp_offset;
855         *cs++ = 0;
856         if (has_token) {
857                 *cs++ = 0;
858                 *cs++ = MI_NOOP;
859         }
860
861         intel_ring_advance(to, cs);
862         return 0;
863 }
864
865 static int
866 emit_semaphore_wait(struct i915_request *to,
867                     struct i915_request *from,
868                     gfp_t gfp)
869 {
870         /* Just emit the first semaphore we see as request space is limited. */
871         if (already_busywaiting(to) & from->engine->mask)
872                 goto await_fence;
873
874         if (i915_request_await_start(to, from) < 0)
875                 goto await_fence;
876
877         /* Only submit our spinner after the signaler is running! */
878         if (__await_execution(to, from, NULL, gfp))
879                 goto await_fence;
880
881         if (__emit_semaphore_wait(to, from, from->fence.seqno))
882                 goto await_fence;
883
884         to->sched.semaphores |= from->engine->mask;
885         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
886         return 0;
887
888 await_fence:
889         return i915_sw_fence_await_dma_fence(&to->submit,
890                                              &from->fence, 0,
891                                              I915_FENCE_GFP);
892 }
893
894 static int
895 i915_request_await_request(struct i915_request *to, struct i915_request *from)
896 {
897         int ret;
898
899         GEM_BUG_ON(to == from);
900         GEM_BUG_ON(to->timeline == from->timeline);
901
902         if (i915_request_completed(from))
903                 return 0;
904
905         if (to->engine->schedule) {
906                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
907                 if (ret < 0)
908                         return ret;
909         }
910
911         if (to->engine == from->engine) {
912                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
913                                                        &from->submit,
914                                                        I915_FENCE_GFP);
915         } else if (intel_engine_has_semaphores(to->engine) &&
916                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
917                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
918         } else {
919                 ret = i915_sw_fence_await_dma_fence(&to->submit,
920                                                     &from->fence, 0,
921                                                     I915_FENCE_GFP);
922         }
923         if (ret < 0)
924                 return ret;
925
926         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
927                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
928                                                     &from->fence, 0,
929                                                     I915_FENCE_GFP);
930                 if (ret < 0)
931                         return ret;
932         }
933
934         return 0;
935 }
936
937 int
938 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
939 {
940         struct dma_fence **child = &fence;
941         unsigned int nchild = 1;
942         int ret;
943
944         /*
945          * Note that if the fence-array was created in signal-on-any mode,
946          * we should *not* decompose it into its individual fences. However,
947          * we don't currently store which mode the fence-array is operating
948          * in. Fortunately, the only user of signal-on-any is private to
949          * amdgpu and we should not see any incoming fence-array from
950          * sync-file being in signal-on-any mode.
951          */
952         if (dma_fence_is_array(fence)) {
953                 struct dma_fence_array *array = to_dma_fence_array(fence);
954
955                 child = array->fences;
956                 nchild = array->num_fences;
957                 GEM_BUG_ON(!nchild);
958         }
959
960         do {
961                 fence = *child++;
962                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
963                         continue;
964
965                 /*
966                  * Requests on the same timeline are explicitly ordered, along
967                  * with their dependencies, by i915_request_add() which ensures
968                  * that requests are submitted in-order through each ring.
969                  */
970                 if (fence->context == rq->fence.context)
971                         continue;
972
973                 /* Squash repeated waits to the same timelines */
974                 if (fence->context &&
975                     intel_timeline_sync_is_later(i915_request_timeline(rq),
976                                                  fence))
977                         continue;
978
979                 if (dma_fence_is_i915(fence))
980                         ret = i915_request_await_request(rq, to_request(fence));
981                 else
982                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
983                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
984                                                             I915_FENCE_GFP);
985                 if (ret < 0)
986                         return ret;
987
988                 /* Record the latest fence used against each timeline */
989                 if (fence->context)
990                         intel_timeline_sync_set(i915_request_timeline(rq),
991                                                 fence);
992         } while (--nchild);
993
994         return 0;
995 }
996
997 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
998                                           struct dma_fence *fence)
999 {
1000         return __intel_timeline_sync_is_later(tl,
1001                                               fence->context,
1002                                               fence->seqno - 1);
1003 }
1004
1005 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1006                                          const struct dma_fence *fence)
1007 {
1008         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1009 }
1010
1011 static int
1012 __i915_request_await_execution(struct i915_request *to,
1013                                struct i915_request *from,
1014                                void (*hook)(struct i915_request *rq,
1015                                             struct dma_fence *signal))
1016 {
1017         int err;
1018
1019         /* Submit both requests at the same time */
1020         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1021         if (err)
1022                 return err;
1023
1024         /* Squash repeated depenendices to the same timelines */
1025         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1026                                           &from->fence))
1027                 return 0;
1028
1029         /* Ensure both start together [after all semaphores in signal] */
1030         if (intel_engine_has_semaphores(to->engine))
1031                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1032         else
1033                 err = i915_request_await_start(to, from);
1034         if (err < 0)
1035                 return err;
1036
1037         /* Couple the dependency tree for PI on this exposed to->fence */
1038         if (to->engine->schedule) {
1039                 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1040                 if (err < 0)
1041                         return err;
1042         }
1043
1044         return intel_timeline_sync_set_start(i915_request_timeline(to),
1045                                              &from->fence);
1046 }
1047
1048 int
1049 i915_request_await_execution(struct i915_request *rq,
1050                              struct dma_fence *fence,
1051                              void (*hook)(struct i915_request *rq,
1052                                           struct dma_fence *signal))
1053 {
1054         struct dma_fence **child = &fence;
1055         unsigned int nchild = 1;
1056         int ret;
1057
1058         if (dma_fence_is_array(fence)) {
1059                 struct dma_fence_array *array = to_dma_fence_array(fence);
1060
1061                 /* XXX Error for signal-on-any fence arrays */
1062
1063                 child = array->fences;
1064                 nchild = array->num_fences;
1065                 GEM_BUG_ON(!nchild);
1066         }
1067
1068         do {
1069                 fence = *child++;
1070                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1071                         continue;
1072
1073                 /*
1074                  * We don't squash repeated fence dependencies here as we
1075                  * want to run our callback in all cases.
1076                  */
1077
1078                 if (dma_fence_is_i915(fence))
1079                         ret = __i915_request_await_execution(rq,
1080                                                              to_request(fence),
1081                                                              hook);
1082                 else
1083                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1084                                                             I915_FENCE_TIMEOUT,
1085                                                             GFP_KERNEL);
1086                 if (ret < 0)
1087                         return ret;
1088         } while (--nchild);
1089
1090         return 0;
1091 }
1092
1093 /**
1094  * i915_request_await_object - set this request to (async) wait upon a bo
1095  * @to: request we are wishing to use
1096  * @obj: object which may be in use on another ring.
1097  * @write: whether the wait is on behalf of a writer
1098  *
1099  * This code is meant to abstract object synchronization with the GPU.
1100  * Conceptually we serialise writes between engines inside the GPU.
1101  * We only allow one engine to write into a buffer at any time, but
1102  * multiple readers. To ensure each has a coherent view of memory, we must:
1103  *
1104  * - If there is an outstanding write request to the object, the new
1105  *   request must wait for it to complete (either CPU or in hw, requests
1106  *   on the same ring will be naturally ordered).
1107  *
1108  * - If we are a write request (pending_write_domain is set), the new
1109  *   request must wait for outstanding read requests to complete.
1110  *
1111  * Returns 0 if successful, else propagates up the lower layer error.
1112  */
1113 int
1114 i915_request_await_object(struct i915_request *to,
1115                           struct drm_i915_gem_object *obj,
1116                           bool write)
1117 {
1118         struct dma_fence *excl;
1119         int ret = 0;
1120
1121         if (write) {
1122                 struct dma_fence **shared;
1123                 unsigned int count, i;
1124
1125                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1126                                                         &excl, &count, &shared);
1127                 if (ret)
1128                         return ret;
1129
1130                 for (i = 0; i < count; i++) {
1131                         ret = i915_request_await_dma_fence(to, shared[i]);
1132                         if (ret)
1133                                 break;
1134
1135                         dma_fence_put(shared[i]);
1136                 }
1137
1138                 for (; i < count; i++)
1139                         dma_fence_put(shared[i]);
1140                 kfree(shared);
1141         } else {
1142                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1143         }
1144
1145         if (excl) {
1146                 if (ret == 0)
1147                         ret = i915_request_await_dma_fence(to, excl);
1148
1149                 dma_fence_put(excl);
1150         }
1151
1152         return ret;
1153 }
1154
1155 void i915_request_skip(struct i915_request *rq, int error)
1156 {
1157         void *vaddr = rq->ring->vaddr;
1158         u32 head;
1159
1160         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1161         dma_fence_set_error(&rq->fence, error);
1162
1163         if (rq->infix == rq->postfix)
1164                 return;
1165
1166         /*
1167          * As this request likely depends on state from the lost
1168          * context, clear out all the user operations leaving the
1169          * breadcrumb at the end (so we get the fence notifications).
1170          */
1171         head = rq->infix;
1172         if (rq->postfix < head) {
1173                 memset(vaddr + head, 0, rq->ring->size - head);
1174                 head = 0;
1175         }
1176         memset(vaddr + head, 0, rq->postfix - head);
1177         rq->infix = rq->postfix;
1178 }
1179
1180 static struct i915_request *
1181 __i915_request_add_to_timeline(struct i915_request *rq)
1182 {
1183         struct intel_timeline *timeline = i915_request_timeline(rq);
1184         struct i915_request *prev;
1185
1186         /*
1187          * Dependency tracking and request ordering along the timeline
1188          * is special cased so that we can eliminate redundant ordering
1189          * operations while building the request (we know that the timeline
1190          * itself is ordered, and here we guarantee it).
1191          *
1192          * As we know we will need to emit tracking along the timeline,
1193          * we embed the hooks into our request struct -- at the cost of
1194          * having to have specialised no-allocation interfaces (which will
1195          * be beneficial elsewhere).
1196          *
1197          * A second benefit to open-coding i915_request_await_request is
1198          * that we can apply a slight variant of the rules specialised
1199          * for timelines that jump between engines (such as virtual engines).
1200          * If we consider the case of virtual engine, we must emit a dma-fence
1201          * to prevent scheduling of the second request until the first is
1202          * complete (to maximise our greedy late load balancing) and this
1203          * precludes optimising to use semaphores serialisation of a single
1204          * timeline across engines.
1205          */
1206         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1207                                                   &rq->fence));
1208         if (prev && !i915_request_completed(prev)) {
1209                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1210                         i915_sw_fence_await_sw_fence(&rq->submit,
1211                                                      &prev->submit,
1212                                                      &rq->submitq);
1213                 else
1214                         __i915_sw_fence_await_dma_fence(&rq->submit,
1215                                                         &prev->fence,
1216                                                         &rq->dmaq);
1217                 if (rq->engine->schedule)
1218                         __i915_sched_node_add_dependency(&rq->sched,
1219                                                          &prev->sched,
1220                                                          &rq->dep,
1221                                                          0);
1222         }
1223
1224         list_add_tail(&rq->link, &timeline->requests);
1225
1226         /*
1227          * Make sure that no request gazumped us - if it was allocated after
1228          * our i915_request_alloc() and called __i915_request_add() before
1229          * us, the timeline will hold its seqno which is later than ours.
1230          */
1231         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1232
1233         return prev;
1234 }
1235
1236 /*
1237  * NB: This function is not allowed to fail. Doing so would mean the the
1238  * request is not being tracked for completion but the work itself is
1239  * going to happen on the hardware. This would be a Bad Thing(tm).
1240  */
1241 struct i915_request *__i915_request_commit(struct i915_request *rq)
1242 {
1243         struct intel_engine_cs *engine = rq->engine;
1244         struct intel_ring *ring = rq->ring;
1245         u32 *cs;
1246
1247         GEM_TRACE("%s fence %llx:%lld\n",
1248                   engine->name, rq->fence.context, rq->fence.seqno);
1249
1250         /*
1251          * To ensure that this call will not fail, space for its emissions
1252          * should already have been reserved in the ring buffer. Let the ring
1253          * know that it is time to use that space up.
1254          */
1255         GEM_BUG_ON(rq->reserved_space > ring->space);
1256         rq->reserved_space = 0;
1257         rq->emitted_jiffies = jiffies;
1258
1259         /*
1260          * Record the position of the start of the breadcrumb so that
1261          * should we detect the updated seqno part-way through the
1262          * GPU processing the request, we never over-estimate the
1263          * position of the ring's HEAD.
1264          */
1265         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1266         GEM_BUG_ON(IS_ERR(cs));
1267         rq->postfix = intel_ring_offset(rq, cs);
1268
1269         return __i915_request_add_to_timeline(rq);
1270 }
1271
1272 void __i915_request_queue(struct i915_request *rq,
1273                           const struct i915_sched_attr *attr)
1274 {
1275         /*
1276          * Let the backend know a new request has arrived that may need
1277          * to adjust the existing execution schedule due to a high priority
1278          * request - i.e. we may want to preempt the current request in order
1279          * to run a high priority dependency chain *before* we can execute this
1280          * request.
1281          *
1282          * This is called before the request is ready to run so that we can
1283          * decide whether to preempt the entire chain so that it is ready to
1284          * run at the earliest possible convenience.
1285          */
1286         i915_sw_fence_commit(&rq->semaphore);
1287         if (attr && rq->engine->schedule)
1288                 rq->engine->schedule(rq, attr);
1289         i915_sw_fence_commit(&rq->submit);
1290 }
1291
1292 void i915_request_add(struct i915_request *rq)
1293 {
1294         struct i915_sched_attr attr = rq->gem_context->sched;
1295         struct intel_timeline * const tl = i915_request_timeline(rq);
1296         struct i915_request *prev;
1297
1298         lockdep_assert_held(&tl->mutex);
1299         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1300
1301         trace_i915_request_add(rq);
1302
1303         prev = __i915_request_commit(rq);
1304
1305         /*
1306          * Boost actual workloads past semaphores!
1307          *
1308          * With semaphores we spin on one engine waiting for another,
1309          * simply to reduce the latency of starting our work when
1310          * the signaler completes. However, if there is any other
1311          * work that we could be doing on this engine instead, that
1312          * is better utilisation and will reduce the overall duration
1313          * of the current work. To avoid PI boosting a semaphore
1314          * far in the distance past over useful work, we keep a history
1315          * of any semaphore use along our dependency chain.
1316          */
1317         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1318                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1319
1320         /*
1321          * Boost priorities to new clients (new request flows).
1322          *
1323          * Allow interactive/synchronous clients to jump ahead of
1324          * the bulk clients. (FQ_CODEL)
1325          */
1326         if (list_empty(&rq->sched.signalers_list))
1327                 attr.priority |= I915_PRIORITY_WAIT;
1328
1329         local_bh_disable();
1330         __i915_request_queue(rq, &attr);
1331         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1332
1333         /*
1334          * In typical scenarios, we do not expect the previous request on
1335          * the timeline to be still tracked by timeline->last_request if it
1336          * has been completed. If the completed request is still here, that
1337          * implies that request retirement is a long way behind submission,
1338          * suggesting that we haven't been retiring frequently enough from
1339          * the combination of retire-before-alloc, waiters and the background
1340          * retirement worker. So if the last request on this timeline was
1341          * already completed, do a catch up pass, flushing the retirement queue
1342          * up to this client. Since we have now moved the heaviest operations
1343          * during retirement onto secondary workers, such as freeing objects
1344          * or contexts, retiring a bunch of requests is mostly list management
1345          * (and cache misses), and so we should not be overly penalizing this
1346          * client by performing excess work, though we may still performing
1347          * work on behalf of others -- but instead we should benefit from
1348          * improved resource management. (Well, that's the theory at least.)
1349          */
1350         if (prev &&
1351             i915_request_completed(prev) &&
1352             rcu_access_pointer(prev->timeline) == tl)
1353                 i915_request_retire_upto(prev);
1354
1355         mutex_unlock(&tl->mutex);
1356 }
1357
1358 static unsigned long local_clock_us(unsigned int *cpu)
1359 {
1360         unsigned long t;
1361
1362         /*
1363          * Cheaply and approximately convert from nanoseconds to microseconds.
1364          * The result and subsequent calculations are also defined in the same
1365          * approximate microseconds units. The principal source of timing
1366          * error here is from the simple truncation.
1367          *
1368          * Note that local_clock() is only defined wrt to the current CPU;
1369          * the comparisons are no longer valid if we switch CPUs. Instead of
1370          * blocking preemption for the entire busywait, we can detect the CPU
1371          * switch and use that as indicator of system load and a reason to
1372          * stop busywaiting, see busywait_stop().
1373          */
1374         *cpu = get_cpu();
1375         t = local_clock() >> 10;
1376         put_cpu();
1377
1378         return t;
1379 }
1380
1381 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1382 {
1383         unsigned int this_cpu;
1384
1385         if (time_after(local_clock_us(&this_cpu), timeout))
1386                 return true;
1387
1388         return this_cpu != cpu;
1389 }
1390
1391 static bool __i915_spin_request(const struct i915_request * const rq,
1392                                 int state, unsigned long timeout_us)
1393 {
1394         unsigned int cpu;
1395
1396         /*
1397          * Only wait for the request if we know it is likely to complete.
1398          *
1399          * We don't track the timestamps around requests, nor the average
1400          * request length, so we do not have a good indicator that this
1401          * request will complete within the timeout. What we do know is the
1402          * order in which requests are executed by the context and so we can
1403          * tell if the request has been started. If the request is not even
1404          * running yet, it is a fair assumption that it will not complete
1405          * within our relatively short timeout.
1406          */
1407         if (!i915_request_is_running(rq))
1408                 return false;
1409
1410         /*
1411          * When waiting for high frequency requests, e.g. during synchronous
1412          * rendering split between the CPU and GPU, the finite amount of time
1413          * required to set up the irq and wait upon it limits the response
1414          * rate. By busywaiting on the request completion for a short while we
1415          * can service the high frequency waits as quick as possible. However,
1416          * if it is a slow request, we want to sleep as quickly as possible.
1417          * The tradeoff between waiting and sleeping is roughly the time it
1418          * takes to sleep on a request, on the order of a microsecond.
1419          */
1420
1421         timeout_us += local_clock_us(&cpu);
1422         do {
1423                 if (i915_request_completed(rq))
1424                         return true;
1425
1426                 if (signal_pending_state(state, current))
1427                         break;
1428
1429                 if (busywait_stop(timeout_us, cpu))
1430                         break;
1431
1432                 cpu_relax();
1433         } while (!need_resched());
1434
1435         return false;
1436 }
1437
1438 struct request_wait {
1439         struct dma_fence_cb cb;
1440         struct task_struct *tsk;
1441 };
1442
1443 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1444 {
1445         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1446
1447         wake_up_process(wait->tsk);
1448 }
1449
1450 /**
1451  * i915_request_wait - wait until execution of request has finished
1452  * @rq: the request to wait upon
1453  * @flags: how to wait
1454  * @timeout: how long to wait in jiffies
1455  *
1456  * i915_request_wait() waits for the request to be completed, for a
1457  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1458  * unbounded wait).
1459  *
1460  * Returns the remaining time (in jiffies) if the request completed, which may
1461  * be zero or -ETIME if the request is unfinished after the timeout expires.
1462  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1463  * pending before the request completes.
1464  */
1465 long i915_request_wait(struct i915_request *rq,
1466                        unsigned int flags,
1467                        long timeout)
1468 {
1469         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1470                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1471         struct request_wait wait;
1472
1473         might_sleep();
1474         GEM_BUG_ON(timeout < 0);
1475
1476         if (dma_fence_is_signaled(&rq->fence))
1477                 return timeout;
1478
1479         if (!timeout)
1480                 return -ETIME;
1481
1482         trace_i915_request_wait_begin(rq, flags);
1483
1484         /*
1485          * We must never wait on the GPU while holding a lock as we
1486          * may need to perform a GPU reset. So while we don't need to
1487          * serialise wait/reset with an explicit lock, we do want
1488          * lockdep to detect potential dependency cycles.
1489          */
1490         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1491
1492         /*
1493          * Optimistic spin before touching IRQs.
1494          *
1495          * We may use a rather large value here to offset the penalty of
1496          * switching away from the active task. Frequently, the client will
1497          * wait upon an old swapbuffer to throttle itself to remain within a
1498          * frame of the gpu. If the client is running in lockstep with the gpu,
1499          * then it should not be waiting long at all, and a sleep now will incur
1500          * extra scheduler latency in producing the next frame. To try to
1501          * avoid adding the cost of enabling/disabling the interrupt to the
1502          * short wait, we first spin to see if the request would have completed
1503          * in the time taken to setup the interrupt.
1504          *
1505          * We need upto 5us to enable the irq, and upto 20us to hide the
1506          * scheduler latency of a context switch, ignoring the secondary
1507          * impacts from a context switch such as cache eviction.
1508          *
1509          * The scheme used for low-latency IO is called "hybrid interrupt
1510          * polling". The suggestion there is to sleep until just before you
1511          * expect to be woken by the device interrupt and then poll for its
1512          * completion. That requires having a good predictor for the request
1513          * duration, which we currently lack.
1514          */
1515         if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1516             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1517                 dma_fence_signal(&rq->fence);
1518                 goto out;
1519         }
1520
1521         /*
1522          * This client is about to stall waiting for the GPU. In many cases
1523          * this is undesirable and limits the throughput of the system, as
1524          * many clients cannot continue processing user input/output whilst
1525          * blocked. RPS autotuning may take tens of milliseconds to respond
1526          * to the GPU load and thus incurs additional latency for the client.
1527          * We can circumvent that by promoting the GPU frequency to maximum
1528          * before we sleep. This makes the GPU throttle up much more quickly
1529          * (good for benchmarks and user experience, e.g. window animations),
1530          * but at a cost of spending more power processing the workload
1531          * (bad for battery).
1532          */
1533         if (flags & I915_WAIT_PRIORITY) {
1534                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1535                         intel_rps_boost(rq);
1536                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1537         }
1538
1539         wait.tsk = current;
1540         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1541                 goto out;
1542
1543         for (;;) {
1544                 set_current_state(state);
1545
1546                 if (i915_request_completed(rq)) {
1547                         dma_fence_signal(&rq->fence);
1548                         break;
1549                 }
1550
1551                 if (signal_pending_state(state, current)) {
1552                         timeout = -ERESTARTSYS;
1553                         break;
1554                 }
1555
1556                 if (!timeout) {
1557                         timeout = -ETIME;
1558                         break;
1559                 }
1560
1561                 intel_engine_flush_submission(rq->engine);
1562                 timeout = io_schedule_timeout(timeout);
1563         }
1564         __set_current_state(TASK_RUNNING);
1565
1566         dma_fence_remove_callback(&rq->fence, &wait.cb);
1567
1568 out:
1569         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1570         trace_i915_request_wait_end(rq);
1571         return timeout;
1572 }
1573
1574 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1575 #include "selftests/mock_request.c"
1576 #include "selftests/i915_request.c"
1577 #endif
1578
1579 static void i915_global_request_shrink(void)
1580 {
1581         kmem_cache_shrink(global.slab_dependencies);
1582         kmem_cache_shrink(global.slab_execute_cbs);
1583         kmem_cache_shrink(global.slab_requests);
1584 }
1585
1586 static void i915_global_request_exit(void)
1587 {
1588         kmem_cache_destroy(global.slab_dependencies);
1589         kmem_cache_destroy(global.slab_execute_cbs);
1590         kmem_cache_destroy(global.slab_requests);
1591 }
1592
1593 static struct i915_global_request global = { {
1594         .shrink = i915_global_request_shrink,
1595         .exit = i915_global_request_exit,
1596 } };
1597
1598 int __init i915_global_request_init(void)
1599 {
1600         global.slab_requests = KMEM_CACHE(i915_request,
1601                                           SLAB_HWCACHE_ALIGN |
1602                                           SLAB_RECLAIM_ACCOUNT |
1603                                           SLAB_TYPESAFE_BY_RCU);
1604         if (!global.slab_requests)
1605                 return -ENOMEM;
1606
1607         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1608                                              SLAB_HWCACHE_ALIGN |
1609                                              SLAB_RECLAIM_ACCOUNT |
1610                                              SLAB_TYPESAFE_BY_RCU);
1611         if (!global.slab_execute_cbs)
1612                 goto err_requests;
1613
1614         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1615                                               SLAB_HWCACHE_ALIGN |
1616                                               SLAB_RECLAIM_ACCOUNT);
1617         if (!global.slab_dependencies)
1618                 goto err_execute_cbs;
1619
1620         i915_global_register(&global.base);
1621         return 0;
1622
1623 err_execute_cbs:
1624         kmem_cache_destroy(global.slab_execute_cbs);
1625 err_requests:
1626         kmem_cache_destroy(global.slab_requests);
1627         return -ENOMEM;
1628 }
This page took 0.13149 seconds and 4 git commands to generate.