2 * Core driver for the pin control subsystem
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "pinctrl core: " fmt
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
32 #include <asm-generic/gpio.h>
36 #include "devicetree.h"
41 static bool pinctrl_dummy_state;
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
70 void pinctrl_provide_dummies(void)
72 pinctrl_dummy_state = true;
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 return dev_name(pctldev->dev);
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 return pctldev->driver_data;
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 struct pinctrl_dev *pctldev = NULL;
108 mutex_lock(&pinctrldev_list_mutex);
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
118 mutex_unlock(&pinctrldev_list_mutex);
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 struct pinctrl_dev *pctldev;
127 mutex_lock(&pinctrldev_list_mutex);
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
135 mutex_unlock(&pinctrldev_list_mutex);
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 const struct pin_desc *desc;
172 desc = pin_desc_get(pctldev, pin);
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
192 struct pin_desc *pindesc;
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
201 return pindesc != NULL;
203 EXPORT_SYMBOL_GPL(pin_is_valid);
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
230 struct pin_desc *pindesc;
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n", number);
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
245 pindesc->pctldev = pctldev;
247 /* Copy basic pin info */
249 pindesc->name = name;
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
256 pindesc->dynamic_name = true;
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
298 unsigned int offset = gpio - range->base;
300 return range->pins[offset];
302 return range->pin_base + offset;
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 struct pinctrl_gpio_range *range = NULL;
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
328 mutex_unlock(&pctldev->mutex);
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
355 mutex_lock(&pinctrldev_list_mutex);
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
370 mutex_unlock(&pctldev->mutex);
373 mutex_unlock(&pinctrldev_list_mutex);
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
396 struct pinctrl_dev *pctldev = NULL;
398 mutex_lock(&pinctrldev_list_mutex);
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
404 range = pinctrl_match_gpio_range(pctldev, gpio);
408 mutex_unlock(&pinctrldev_list_mutex);
413 mutex_unlock(&pinctrldev_list_mutex);
415 return -EPROBE_DEFER;
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
449 struct pinctrl_dev *pctldev;
451 pctldev = get_pinctrl_dev_from_devname(devname);
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
459 return ERR_PTR(-EPROBE_DEFER);
461 pinctrl_add_gpio_range(pctldev, range);
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
473 if (!pctlops->get_group_pins)
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
488 struct pinctrl_gpio_range *range;
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
517 struct pinctrl_gpio_range *range;
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
542 * pinctrl_get_group_selector() - returns the group selector for a group
543 * @pctldev: the pin controller handling the group
544 * @pin_group: the pin group to look up
546 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
547 const char *pin_group)
549 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
550 unsigned ngroups = pctlops->get_groups_count(pctldev);
551 unsigned group_selector = 0;
553 while (group_selector < ngroups) {
554 const char *gname = pctlops->get_group_name(pctldev,
556 if (!strcmp(gname, pin_group)) {
557 dev_dbg(pctldev->dev,
558 "found group selector %u for %s\n",
561 return group_selector;
567 dev_err(pctldev->dev, "does not have pin group %s\n",
574 * pinctrl_request_gpio() - request a single pin to be used as GPIO
575 * @gpio: the GPIO pin number from the GPIO subsystem number space
577 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
578 * as part of their gpio_request() semantics, platforms and individual drivers
579 * shall *NOT* request GPIO pins to be muxed in.
581 int pinctrl_request_gpio(unsigned gpio)
583 struct pinctrl_dev *pctldev;
584 struct pinctrl_gpio_range *range;
588 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
590 if (pinctrl_ready_for_gpio_range(gpio))
595 mutex_lock(&pctldev->mutex);
597 /* Convert to the pin controllers number space */
598 pin = gpio_to_pin(range, gpio);
600 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
602 mutex_unlock(&pctldev->mutex);
606 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
610 * @gpio: the GPIO pin number from the GPIO subsystem number space
612 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
613 * as part of their gpio_free() semantics, platforms and individual drivers
614 * shall *NOT* request GPIO pins to be muxed out.
616 void pinctrl_free_gpio(unsigned gpio)
618 struct pinctrl_dev *pctldev;
619 struct pinctrl_gpio_range *range;
623 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
627 mutex_lock(&pctldev->mutex);
629 /* Convert to the pin controllers number space */
630 pin = gpio_to_pin(range, gpio);
632 pinmux_free_gpio(pctldev, pin, range);
634 mutex_unlock(&pctldev->mutex);
636 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
638 static int pinctrl_gpio_direction(unsigned gpio, bool input)
640 struct pinctrl_dev *pctldev;
641 struct pinctrl_gpio_range *range;
645 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
650 mutex_lock(&pctldev->mutex);
652 /* Convert to the pin controllers number space */
653 pin = gpio_to_pin(range, gpio);
654 ret = pinmux_gpio_direction(pctldev, range, pin, input);
656 mutex_unlock(&pctldev->mutex);
662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
663 * @gpio: the GPIO pin number from the GPIO subsystem number space
665 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
666 * as part of their gpio_direction_input() semantics, platforms and individual
667 * drivers shall *NOT* touch pin control GPIO calls.
669 int pinctrl_gpio_direction_input(unsigned gpio)
671 return pinctrl_gpio_direction(gpio, true);
673 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
677 * @gpio: the GPIO pin number from the GPIO subsystem number space
679 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
680 * as part of their gpio_direction_output() semantics, platforms and individual
681 * drivers shall *NOT* touch pin control GPIO calls.
683 int pinctrl_gpio_direction_output(unsigned gpio)
685 return pinctrl_gpio_direction(gpio, false);
687 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
689 static struct pinctrl_state *find_state(struct pinctrl *p,
692 struct pinctrl_state *state;
694 list_for_each_entry(state, &p->states, node)
695 if (!strcmp(state->name, name))
701 static struct pinctrl_state *create_state(struct pinctrl *p,
704 struct pinctrl_state *state;
706 state = kzalloc(sizeof(*state), GFP_KERNEL);
709 "failed to alloc struct pinctrl_state\n");
710 return ERR_PTR(-ENOMEM);
714 INIT_LIST_HEAD(&state->settings);
716 list_add_tail(&state->node, &p->states);
721 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
723 struct pinctrl_state *state;
724 struct pinctrl_setting *setting;
727 state = find_state(p, map->name);
729 state = create_state(p, map->name);
731 return PTR_ERR(state);
733 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
736 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
737 if (setting == NULL) {
739 "failed to alloc struct pinctrl_setting\n");
743 setting->type = map->type;
745 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
746 if (setting->pctldev == NULL) {
748 /* Do not defer probing of hogs (circular loop) */
749 if (!strcmp(map->ctrl_dev_name, map->dev_name))
752 * OK let us guess that the driver is not there yet, and
753 * let's defer obtaining this pinctrl handle to later...
755 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
757 return -EPROBE_DEFER;
760 setting->dev_name = map->dev_name;
763 case PIN_MAP_TYPE_MUX_GROUP:
764 ret = pinmux_map_to_setting(map, setting);
766 case PIN_MAP_TYPE_CONFIGS_PIN:
767 case PIN_MAP_TYPE_CONFIGS_GROUP:
768 ret = pinconf_map_to_setting(map, setting);
779 list_add_tail(&setting->node, &state->settings);
784 static struct pinctrl *find_pinctrl(struct device *dev)
788 mutex_lock(&pinctrl_list_mutex);
789 list_for_each_entry(p, &pinctrl_list, node)
791 mutex_unlock(&pinctrl_list_mutex);
795 mutex_unlock(&pinctrl_list_mutex);
799 static void pinctrl_free(struct pinctrl *p, bool inlist);
801 static struct pinctrl *create_pinctrl(struct device *dev)
805 struct pinctrl_maps *maps_node;
807 struct pinctrl_map const *map;
811 * create the state cookie holder struct pinctrl for each
812 * mapping, this is what consumers will get when requesting
813 * a pin control handle with pinctrl_get()
815 p = kzalloc(sizeof(*p), GFP_KERNEL);
817 dev_err(dev, "failed to alloc struct pinctrl\n");
818 return ERR_PTR(-ENOMEM);
821 INIT_LIST_HEAD(&p->states);
822 INIT_LIST_HEAD(&p->dt_maps);
824 ret = pinctrl_dt_to_map(p);
830 devname = dev_name(dev);
832 mutex_lock(&pinctrl_maps_mutex);
833 /* Iterate over the pin control maps to locate the right ones */
834 for_each_maps(maps_node, i, map) {
835 /* Map must be for this device */
836 if (strcmp(map->dev_name, devname))
839 ret = add_setting(p, map);
841 * At this point the adding of a setting may:
843 * - Defer, if the pinctrl device is not yet available
844 * - Fail, if the pinctrl device is not yet available,
845 * AND the setting is a hog. We cannot defer that, since
846 * the hog will kick in immediately after the device
849 * If the error returned was not -EPROBE_DEFER then we
850 * accumulate the errors to see if we end up with
851 * an -EPROBE_DEFER later, as that is the worst case.
853 if (ret == -EPROBE_DEFER) {
854 pinctrl_free(p, false);
855 mutex_unlock(&pinctrl_maps_mutex);
859 mutex_unlock(&pinctrl_maps_mutex);
862 /* If some other error than deferral occured, return here */
863 pinctrl_free(p, false);
867 kref_init(&p->users);
869 /* Add the pinctrl handle to the global list */
870 mutex_lock(&pinctrl_list_mutex);
871 list_add_tail(&p->node, &pinctrl_list);
872 mutex_unlock(&pinctrl_list_mutex);
878 * pinctrl_get() - retrieves the pinctrl handle for a device
879 * @dev: the device to obtain the handle for
881 struct pinctrl *pinctrl_get(struct device *dev)
886 return ERR_PTR(-EINVAL);
889 * See if somebody else (such as the device core) has already
890 * obtained a handle to the pinctrl for this device. In that case,
891 * return another pointer to it.
893 p = find_pinctrl(dev);
895 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
900 return create_pinctrl(dev);
902 EXPORT_SYMBOL_GPL(pinctrl_get);
904 static void pinctrl_free_setting(bool disable_setting,
905 struct pinctrl_setting *setting)
907 switch (setting->type) {
908 case PIN_MAP_TYPE_MUX_GROUP:
910 pinmux_disable_setting(setting);
911 pinmux_free_setting(setting);
913 case PIN_MAP_TYPE_CONFIGS_PIN:
914 case PIN_MAP_TYPE_CONFIGS_GROUP:
915 pinconf_free_setting(setting);
922 static void pinctrl_free(struct pinctrl *p, bool inlist)
924 struct pinctrl_state *state, *n1;
925 struct pinctrl_setting *setting, *n2;
927 mutex_lock(&pinctrl_list_mutex);
928 list_for_each_entry_safe(state, n1, &p->states, node) {
929 list_for_each_entry_safe(setting, n2, &state->settings, node) {
930 pinctrl_free_setting(state == p->state, setting);
931 list_del(&setting->node);
934 list_del(&state->node);
938 pinctrl_dt_free_maps(p);
943 mutex_unlock(&pinctrl_list_mutex);
947 * pinctrl_release() - release the pinctrl handle
948 * @kref: the kref in the pinctrl being released
950 static void pinctrl_release(struct kref *kref)
952 struct pinctrl *p = container_of(kref, struct pinctrl, users);
954 pinctrl_free(p, true);
958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
959 * @p: the pinctrl handle to release
961 void pinctrl_put(struct pinctrl *p)
963 kref_put(&p->users, pinctrl_release);
965 EXPORT_SYMBOL_GPL(pinctrl_put);
968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
969 * @p: the pinctrl handle to retrieve the state from
970 * @name: the state name to retrieve
972 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
975 struct pinctrl_state *state;
977 state = find_state(p, name);
979 if (pinctrl_dummy_state) {
980 /* create dummy state */
981 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
983 state = create_state(p, name);
985 state = ERR_PTR(-ENODEV);
990 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
994 * @p: the pinctrl handle for the device that requests configuration
995 * @state: the state handle to select/activate/program
997 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
999 struct pinctrl_setting *setting, *setting2;
1000 struct pinctrl_state *old_state = p->state;
1003 if (p->state == state)
1008 * For each pinmux setting in the old state, forget SW's record
1009 * of mux owner for that pingroup. Any pingroups which are
1010 * still owned by the new state will be re-acquired by the call
1011 * to pinmux_enable_setting() in the loop below.
1013 list_for_each_entry(setting, &p->state->settings, node) {
1014 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1016 pinmux_disable_setting(setting);
1022 /* Apply all the settings for the new state */
1023 list_for_each_entry(setting, &state->settings, node) {
1024 switch (setting->type) {
1025 case PIN_MAP_TYPE_MUX_GROUP:
1026 ret = pinmux_enable_setting(setting);
1028 case PIN_MAP_TYPE_CONFIGS_PIN:
1029 case PIN_MAP_TYPE_CONFIGS_GROUP:
1030 ret = pinconf_apply_setting(setting);
1038 goto unapply_new_state;
1047 dev_err(p->dev, "Error applying setting, reverse things back\n");
1049 list_for_each_entry(setting2, &state->settings, node) {
1050 if (&setting2->node == &setting->node)
1053 * All we can do here is pinmux_disable_setting.
1054 * That means that some pins are muxed differently now
1055 * than they were before applying the setting (We can't
1056 * "unmux a pin"!), but it's not a big deal since the pins
1057 * are free to be muxed by another apply_setting.
1059 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1060 pinmux_disable_setting(setting2);
1063 /* There's no infinite recursive loop here because p->state is NULL */
1065 pinctrl_select_state(p, old_state);
1069 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1071 static void devm_pinctrl_release(struct device *dev, void *res)
1073 pinctrl_put(*(struct pinctrl **)res);
1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1078 * @dev: the device to obtain the handle for
1080 * If there is a need to explicitly destroy the returned struct pinctrl,
1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1083 struct pinctrl *devm_pinctrl_get(struct device *dev)
1085 struct pinctrl **ptr, *p;
1087 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1089 return ERR_PTR(-ENOMEM);
1091 p = pinctrl_get(dev);
1094 devres_add(dev, ptr);
1101 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1103 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1105 struct pinctrl **p = res;
1111 * devm_pinctrl_put() - Resource managed pinctrl_put()
1112 * @p: the pinctrl handle to release
1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1115 * this function will not need to be called and the resource management
1116 * code will ensure that the resource is freed.
1118 void devm_pinctrl_put(struct pinctrl *p)
1120 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121 devm_pinctrl_match, p));
1123 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1125 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1129 struct pinctrl_maps *maps_node;
1131 pr_debug("add %u pinctrl maps\n", num_maps);
1133 /* First sanity check the new mapping */
1134 for (i = 0; i < num_maps; i++) {
1135 if (!maps[i].dev_name) {
1136 pr_err("failed to register map %s (%d): no device given\n",
1141 if (!maps[i].name) {
1142 pr_err("failed to register map %d: no map name given\n",
1147 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1148 !maps[i].ctrl_dev_name) {
1149 pr_err("failed to register map %s (%d): no pin control device given\n",
1154 switch (maps[i].type) {
1155 case PIN_MAP_TYPE_DUMMY_STATE:
1157 case PIN_MAP_TYPE_MUX_GROUP:
1158 ret = pinmux_validate_map(&maps[i], i);
1162 case PIN_MAP_TYPE_CONFIGS_PIN:
1163 case PIN_MAP_TYPE_CONFIGS_GROUP:
1164 ret = pinconf_validate_map(&maps[i], i);
1169 pr_err("failed to register map %s (%d): invalid type given\n",
1175 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1177 pr_err("failed to alloc struct pinctrl_maps\n");
1181 maps_node->num_maps = num_maps;
1183 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1185 if (!maps_node->maps) {
1186 pr_err("failed to duplicate mapping table\n");
1191 maps_node->maps = maps;
1194 mutex_lock(&pinctrl_maps_mutex);
1195 list_add_tail(&maps_node->node, &pinctrl_maps);
1196 mutex_unlock(&pinctrl_maps_mutex);
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 * marked with __initdata so it can be discarded after boot. This
1205 * function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1208 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1211 return pinctrl_register_map(maps, num_maps, true);
1214 void pinctrl_unregister_map(struct pinctrl_map const *map)
1216 struct pinctrl_maps *maps_node;
1218 mutex_lock(&pinctrl_maps_mutex);
1219 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220 if (maps_node->maps == map) {
1221 list_del(&maps_node->node);
1223 mutex_unlock(&pinctrl_maps_mutex);
1227 mutex_unlock(&pinctrl_maps_mutex);
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1234 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1240 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1246 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1252 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1255 * pinctrl_init_done() - tell pinctrl probe is done
1257 * We'll use this time to switch the pins from "init" to "default" unless the
1258 * driver selected some other state.
1260 * @dev: device to that's done probing
1262 int pinctrl_init_done(struct device *dev)
1264 struct dev_pin_info *pins = dev->pins;
1270 if (IS_ERR(pins->init_state))
1271 return 0; /* No such state */
1273 if (pins->p->state != pins->init_state)
1274 return 0; /* Not at init anyway */
1276 if (IS_ERR(pins->default_state))
1277 return 0; /* No default state */
1279 ret = pinctrl_select_state(pins->p, pins->default_state);
1281 dev_err(dev, "failed to activate default pinctrl state\n");
1289 * pinctrl_pm_select_state() - select pinctrl state for PM
1290 * @dev: device to select default state for
1291 * @state: state to set
1293 static int pinctrl_pm_select_state(struct device *dev,
1294 struct pinctrl_state *state)
1296 struct dev_pin_info *pins = dev->pins;
1300 return 0; /* No such state */
1301 ret = pinctrl_select_state(pins->p, state);
1303 dev_err(dev, "failed to activate pinctrl state %s\n",
1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1310 * @dev: device to select default state for
1312 int pinctrl_pm_select_default_state(struct device *dev)
1317 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1319 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1323 * @dev: device to select sleep state for
1325 int pinctrl_pm_select_sleep_state(struct device *dev)
1330 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1332 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1336 * @dev: device to select idle state for
1338 int pinctrl_pm_select_idle_state(struct device *dev)
1343 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1345 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1348 #ifdef CONFIG_DEBUG_FS
1350 static int pinctrl_pins_show(struct seq_file *s, void *what)
1352 struct pinctrl_dev *pctldev = s->private;
1353 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1356 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1358 mutex_lock(&pctldev->mutex);
1360 /* The pin number can be retrived from the pin controller descriptor */
1361 for (i = 0; i < pctldev->desc->npins; i++) {
1362 struct pin_desc *desc;
1364 pin = pctldev->desc->pins[i].number;
1365 desc = pin_desc_get(pctldev, pin);
1366 /* Pin space may be sparse */
1370 seq_printf(s, "pin %d (%s) ", pin,
1371 desc->name ? desc->name : "unnamed");
1373 /* Driver-specific info per pin */
1374 if (ops->pin_dbg_show)
1375 ops->pin_dbg_show(pctldev, s, pin);
1380 mutex_unlock(&pctldev->mutex);
1385 static int pinctrl_groups_show(struct seq_file *s, void *what)
1387 struct pinctrl_dev *pctldev = s->private;
1388 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1389 unsigned ngroups, selector = 0;
1391 mutex_lock(&pctldev->mutex);
1393 ngroups = ops->get_groups_count(pctldev);
1395 seq_puts(s, "registered pin groups:\n");
1396 while (selector < ngroups) {
1397 const unsigned *pins = NULL;
1398 unsigned num_pins = 0;
1399 const char *gname = ops->get_group_name(pctldev, selector);
1404 if (ops->get_group_pins)
1405 ret = ops->get_group_pins(pctldev, selector,
1408 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1411 seq_printf(s, "group: %s\n", gname);
1412 for (i = 0; i < num_pins; i++) {
1413 pname = pin_get_name(pctldev, pins[i]);
1414 if (WARN_ON(!pname)) {
1415 mutex_unlock(&pctldev->mutex);
1418 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1425 mutex_unlock(&pctldev->mutex);
1430 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1432 struct pinctrl_dev *pctldev = s->private;
1433 struct pinctrl_gpio_range *range = NULL;
1435 seq_puts(s, "GPIO ranges handled:\n");
1437 mutex_lock(&pctldev->mutex);
1439 /* Loop over the ranges */
1440 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1443 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1444 range->id, range->name,
1445 range->base, (range->base + range->npins - 1));
1446 for (a = 0; a < range->npins - 1; a++)
1447 seq_printf(s, "%u, ", range->pins[a]);
1448 seq_printf(s, "%u}\n", range->pins[a]);
1451 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1452 range->id, range->name,
1453 range->base, (range->base + range->npins - 1),
1455 (range->pin_base + range->npins - 1));
1458 mutex_unlock(&pctldev->mutex);
1463 static int pinctrl_devices_show(struct seq_file *s, void *what)
1465 struct pinctrl_dev *pctldev;
1467 seq_puts(s, "name [pinmux] [pinconf]\n");
1469 mutex_lock(&pinctrldev_list_mutex);
1471 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1472 seq_printf(s, "%s ", pctldev->desc->name);
1473 if (pctldev->desc->pmxops)
1474 seq_puts(s, "yes ");
1477 if (pctldev->desc->confops)
1484 mutex_unlock(&pinctrldev_list_mutex);
1489 static inline const char *map_type(enum pinctrl_map_type type)
1491 static const char * const names[] = {
1499 if (type >= ARRAY_SIZE(names))
1505 static int pinctrl_maps_show(struct seq_file *s, void *what)
1507 struct pinctrl_maps *maps_node;
1509 struct pinctrl_map const *map;
1511 seq_puts(s, "Pinctrl maps:\n");
1513 mutex_lock(&pinctrl_maps_mutex);
1514 for_each_maps(maps_node, i, map) {
1515 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1516 map->dev_name, map->name, map_type(map->type),
1519 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1520 seq_printf(s, "controlling device %s\n",
1521 map->ctrl_dev_name);
1523 switch (map->type) {
1524 case PIN_MAP_TYPE_MUX_GROUP:
1525 pinmux_show_map(s, map);
1527 case PIN_MAP_TYPE_CONFIGS_PIN:
1528 case PIN_MAP_TYPE_CONFIGS_GROUP:
1529 pinconf_show_map(s, map);
1535 seq_printf(s, "\n");
1537 mutex_unlock(&pinctrl_maps_mutex);
1542 static int pinctrl_show(struct seq_file *s, void *what)
1545 struct pinctrl_state *state;
1546 struct pinctrl_setting *setting;
1548 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1550 mutex_lock(&pinctrl_list_mutex);
1552 list_for_each_entry(p, &pinctrl_list, node) {
1553 seq_printf(s, "device: %s current state: %s\n",
1555 p->state ? p->state->name : "none");
1557 list_for_each_entry(state, &p->states, node) {
1558 seq_printf(s, " state: %s\n", state->name);
1560 list_for_each_entry(setting, &state->settings, node) {
1561 struct pinctrl_dev *pctldev = setting->pctldev;
1563 seq_printf(s, " type: %s controller %s ",
1564 map_type(setting->type),
1565 pinctrl_dev_get_name(pctldev));
1567 switch (setting->type) {
1568 case PIN_MAP_TYPE_MUX_GROUP:
1569 pinmux_show_setting(s, setting);
1571 case PIN_MAP_TYPE_CONFIGS_PIN:
1572 case PIN_MAP_TYPE_CONFIGS_GROUP:
1573 pinconf_show_setting(s, setting);
1582 mutex_unlock(&pinctrl_list_mutex);
1587 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1589 return single_open(file, pinctrl_pins_show, inode->i_private);
1592 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1594 return single_open(file, pinctrl_groups_show, inode->i_private);
1597 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1599 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1602 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1604 return single_open(file, pinctrl_devices_show, NULL);
1607 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1609 return single_open(file, pinctrl_maps_show, NULL);
1612 static int pinctrl_open(struct inode *inode, struct file *file)
1614 return single_open(file, pinctrl_show, NULL);
1617 static const struct file_operations pinctrl_pins_ops = {
1618 .open = pinctrl_pins_open,
1620 .llseek = seq_lseek,
1621 .release = single_release,
1624 static const struct file_operations pinctrl_groups_ops = {
1625 .open = pinctrl_groups_open,
1627 .llseek = seq_lseek,
1628 .release = single_release,
1631 static const struct file_operations pinctrl_gpioranges_ops = {
1632 .open = pinctrl_gpioranges_open,
1634 .llseek = seq_lseek,
1635 .release = single_release,
1638 static const struct file_operations pinctrl_devices_ops = {
1639 .open = pinctrl_devices_open,
1641 .llseek = seq_lseek,
1642 .release = single_release,
1645 static const struct file_operations pinctrl_maps_ops = {
1646 .open = pinctrl_maps_open,
1648 .llseek = seq_lseek,
1649 .release = single_release,
1652 static const struct file_operations pinctrl_ops = {
1653 .open = pinctrl_open,
1655 .llseek = seq_lseek,
1656 .release = single_release,
1659 static struct dentry *debugfs_root;
1661 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1663 struct dentry *device_root;
1665 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1667 pctldev->device_root = device_root;
1669 if (IS_ERR(device_root) || !device_root) {
1670 pr_warn("failed to create debugfs directory for %s\n",
1671 dev_name(pctldev->dev));
1674 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1675 device_root, pctldev, &pinctrl_pins_ops);
1676 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1677 device_root, pctldev, &pinctrl_groups_ops);
1678 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1679 device_root, pctldev, &pinctrl_gpioranges_ops);
1680 if (pctldev->desc->pmxops)
1681 pinmux_init_device_debugfs(device_root, pctldev);
1682 if (pctldev->desc->confops)
1683 pinconf_init_device_debugfs(device_root, pctldev);
1686 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1688 debugfs_remove_recursive(pctldev->device_root);
1691 static void pinctrl_init_debugfs(void)
1693 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1694 if (IS_ERR(debugfs_root) || !debugfs_root) {
1695 pr_warn("failed to create debugfs directory\n");
1696 debugfs_root = NULL;
1700 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1701 debugfs_root, NULL, &pinctrl_devices_ops);
1702 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1703 debugfs_root, NULL, &pinctrl_maps_ops);
1704 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1705 debugfs_root, NULL, &pinctrl_ops);
1708 #else /* CONFIG_DEBUG_FS */
1710 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1714 static void pinctrl_init_debugfs(void)
1718 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1724 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1726 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1729 !ops->get_groups_count ||
1730 !ops->get_group_name)
1733 if (ops->dt_node_to_map && !ops->dt_free_map)
1740 * pinctrl_register() - register a pin controller device
1741 * @pctldesc: descriptor for this pin controller
1742 * @dev: parent device for this pin controller
1743 * @driver_data: private pin controller data for this pin controller
1745 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1746 struct device *dev, void *driver_data)
1748 struct pinctrl_dev *pctldev;
1752 return ERR_PTR(-EINVAL);
1753 if (!pctldesc->name)
1754 return ERR_PTR(-EINVAL);
1756 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1757 if (pctldev == NULL) {
1758 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1759 return ERR_PTR(-ENOMEM);
1762 /* Initialize pin control device struct */
1763 pctldev->owner = pctldesc->owner;
1764 pctldev->desc = pctldesc;
1765 pctldev->driver_data = driver_data;
1766 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1767 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1769 mutex_init(&pctldev->mutex);
1771 /* check core ops for sanity */
1772 ret = pinctrl_check_ops(pctldev);
1774 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1778 /* If we're implementing pinmuxing, check the ops for sanity */
1779 if (pctldesc->pmxops) {
1780 ret = pinmux_check_ops(pctldev);
1785 /* If we're implementing pinconfig, check the ops for sanity */
1786 if (pctldesc->confops) {
1787 ret = pinconf_check_ops(pctldev);
1792 /* Register all the pins */
1793 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1794 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1796 dev_err(dev, "error during pin registration\n");
1797 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1802 mutex_lock(&pinctrldev_list_mutex);
1803 list_add_tail(&pctldev->node, &pinctrldev_list);
1804 mutex_unlock(&pinctrldev_list_mutex);
1806 pctldev->p = pinctrl_get(pctldev->dev);
1808 if (!IS_ERR(pctldev->p)) {
1809 pctldev->hog_default =
1810 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1811 if (IS_ERR(pctldev->hog_default)) {
1812 dev_dbg(dev, "failed to lookup the default state\n");
1814 if (pinctrl_select_state(pctldev->p,
1815 pctldev->hog_default))
1817 "failed to select default state\n");
1820 pctldev->hog_sleep =
1821 pinctrl_lookup_state(pctldev->p,
1822 PINCTRL_STATE_SLEEP);
1823 if (IS_ERR(pctldev->hog_sleep))
1824 dev_dbg(dev, "failed to lookup the sleep state\n");
1827 pinctrl_init_device_debugfs(pctldev);
1832 mutex_destroy(&pctldev->mutex);
1834 return ERR_PTR(ret);
1836 EXPORT_SYMBOL_GPL(pinctrl_register);
1839 * pinctrl_unregister() - unregister pinmux
1840 * @pctldev: pin controller to unregister
1842 * Called by pinmux drivers to unregister a pinmux.
1844 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1846 struct pinctrl_gpio_range *range, *n;
1847 if (pctldev == NULL)
1850 mutex_lock(&pctldev->mutex);
1851 pinctrl_remove_device_debugfs(pctldev);
1852 mutex_unlock(&pctldev->mutex);
1854 if (!IS_ERR(pctldev->p))
1855 pinctrl_put(pctldev->p);
1857 mutex_lock(&pinctrldev_list_mutex);
1858 mutex_lock(&pctldev->mutex);
1859 /* TODO: check that no pinmuxes are still active? */
1860 list_del(&pctldev->node);
1861 /* Destroy descriptor tree */
1862 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1863 pctldev->desc->npins);
1864 /* remove gpio ranges map */
1865 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1866 list_del(&range->node);
1868 mutex_unlock(&pctldev->mutex);
1869 mutex_destroy(&pctldev->mutex);
1871 mutex_unlock(&pinctrldev_list_mutex);
1873 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1875 static void devm_pinctrl_dev_release(struct device *dev, void *res)
1877 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
1879 pinctrl_unregister(pctldev);
1882 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
1884 struct pctldev **r = res;
1886 if (WARN_ON(!r || !*r))
1893 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
1894 * @dev: parent device for this pin controller
1895 * @pctldesc: descriptor for this pin controller
1896 * @driver_data: private pin controller data for this pin controller
1898 * Returns an error pointer if pincontrol register failed. Otherwise
1899 * it returns valid pinctrl handle.
1901 * The pinctrl device will be automatically released when the device is unbound.
1903 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
1904 struct pinctrl_desc *pctldesc,
1907 struct pinctrl_dev **ptr, *pctldev;
1909 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
1911 return ERR_PTR(-ENOMEM);
1913 pctldev = pinctrl_register(pctldesc, dev, driver_data);
1914 if (IS_ERR(pctldev)) {
1920 devres_add(dev, ptr);
1924 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
1927 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
1928 * @dev: device for which which resource was allocated
1929 * @pctldev: the pinctrl device to unregister.
1931 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
1933 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
1934 devm_pinctrl_dev_match, pctldev));
1936 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
1938 static int __init pinctrl_init(void)
1940 pr_info("initialized pinctrl subsystem\n");
1941 pinctrl_init_debugfs();
1945 /* init early since many drivers really need to initialized pinmux early */
1946 core_initcall(pinctrl_init);