1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 The full GNU General Public License is included in this distribution in
17 the file called "COPYING".
21 Documentation available at:
22 http://www.stlinux.com
24 https://bugzilla.stlinux.com/
25 *******************************************************************************/
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include "stmmac_ptp.h"
50 #include <linux/reset.h>
51 #include <linux/of_mdio.h>
52 #include "dwmac1000.h"
54 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
55 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
57 /* Module parameters */
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 static int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
72 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
74 static int flow_ctrl = FLOW_OFF;
75 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
78 static int pause = PAUSE_TIME;
79 module_param(pause, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
83 static int tc = TC_DEFAULT;
84 module_param(tc, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(tc, "DMA threshold control value");
87 #define DEFAULT_BUFSIZE 1536
88 static int buf_sz = DEFAULT_BUFSIZE;
89 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
92 #define STMMAC_RX_COPYBREAK 256
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95 NETIF_MSG_LINK | NETIF_MSG_IFUP |
96 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
98 #define STMMAC_DEFAULT_LPI_TIMER 1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
104 /* By default the driver will use the ring mode to manage tx and rx descriptors,
105 * but allow user to force to use the chain instead of the ring
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
121 * stmmac_verify_args - verify the driver parameters.
122 * Description: it checks the driver parameters and set a default in case of
125 static void stmmac_verify_args(void)
127 if (unlikely(watchdog < 0))
129 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130 buf_sz = DEFAULT_BUFSIZE;
131 if (unlikely(flow_ctrl > 1))
132 flow_ctrl = FLOW_AUTO;
133 else if (likely(flow_ctrl < 0))
134 flow_ctrl = FLOW_OFF;
135 if (unlikely((pause < 0) || (pause > 0xffff)))
138 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 * stmmac_disable_all_queues - Disable all queues
143 * @priv: driver private structure
145 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
147 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
150 for (queue = 0; queue < rx_queues_cnt; queue++) {
151 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
153 napi_disable(&rx_q->napi);
158 * stmmac_enable_all_queues - Enable all queues
159 * @priv: driver private structure
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
166 for (queue = 0; queue < rx_queues_cnt; queue++) {
167 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
169 napi_enable(&rx_q->napi);
174 * stmmac_stop_all_queues - Stop all queues
175 * @priv: driver private structure
177 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
179 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
182 for (queue = 0; queue < tx_queues_cnt; queue++)
183 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
187 * stmmac_start_all_queues - Start all queues
188 * @priv: driver private structure
190 static void stmmac_start_all_queues(struct stmmac_priv *priv)
192 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
195 for (queue = 0; queue < tx_queues_cnt; queue++)
196 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
200 * stmmac_clk_csr_set - dynamically set the MDC clock
201 * @priv: driver private structure
202 * Description: this is to dynamically set the MDC clock according to the csr
205 * If a specific clk_csr value is passed from the platform
206 * this means that the CSR Clock Range selection cannot be
207 * changed at run-time and it is fixed (as reported in the driver
208 * documentation). Viceversa the driver will try to set the MDC
209 * clock dynamically according to the actual clock input.
211 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
215 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
217 /* Platform provided default clk_csr would be assumed valid
218 * for all other cases except for the below mentioned ones.
219 * For values higher than the IEEE 802.3 specified frequency
220 * we can not estimate the proper divider as it is not known
221 * the frequency of clk_csr_i. So we do not change the default
224 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
225 if (clk_rate < CSR_F_35M)
226 priv->clk_csr = STMMAC_CSR_20_35M;
227 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
228 priv->clk_csr = STMMAC_CSR_35_60M;
229 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
230 priv->clk_csr = STMMAC_CSR_60_100M;
231 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
232 priv->clk_csr = STMMAC_CSR_100_150M;
233 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
234 priv->clk_csr = STMMAC_CSR_150_250M;
235 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
236 priv->clk_csr = STMMAC_CSR_250_300M;
239 if (priv->plat->has_sun8i) {
240 if (clk_rate > 160000000)
241 priv->clk_csr = 0x03;
242 else if (clk_rate > 80000000)
243 priv->clk_csr = 0x02;
244 else if (clk_rate > 40000000)
245 priv->clk_csr = 0x01;
251 static void print_pkt(unsigned char *buf, int len)
253 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
254 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
257 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
259 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
262 if (tx_q->dirty_tx > tx_q->cur_tx)
263 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
265 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
271 * stmmac_rx_dirty - Get RX queue dirty
272 * @priv: driver private structure
273 * @queue: RX queue index
275 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
277 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
280 if (rx_q->dirty_rx <= rx_q->cur_rx)
281 dirty = rx_q->cur_rx - rx_q->dirty_rx;
283 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
289 * stmmac_hw_fix_mac_speed - callback for speed selection
290 * @priv: driver private structure
291 * Description: on some platforms (e.g. ST), some HW system configuration
292 * registers have to be set according to the link speed negotiated.
294 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
296 struct net_device *ndev = priv->dev;
297 struct phy_device *phydev = ndev->phydev;
299 if (likely(priv->plat->fix_mac_speed))
300 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
304 * stmmac_enable_eee_mode - check and enter in LPI mode
305 * @priv: driver private structure
306 * Description: this function is to verify and enter in LPI mode in case of
309 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
311 u32 tx_cnt = priv->plat->tx_queues_to_use;
314 /* check if all TX queues have the work finished */
315 for (queue = 0; queue < tx_cnt; queue++) {
316 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
318 if (tx_q->dirty_tx != tx_q->cur_tx)
319 return; /* still unfinished work */
322 /* Check and enter in LPI mode */
323 if (!priv->tx_path_in_lpi_mode)
324 priv->hw->mac->set_eee_mode(priv->hw,
325 priv->plat->en_tx_lpi_clockgating);
329 * stmmac_disable_eee_mode - disable and exit from LPI mode
330 * @priv: driver private structure
331 * Description: this function is to exit and disable EEE in case of
332 * LPI state is true. This is called by the xmit.
334 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
336 priv->hw->mac->reset_eee_mode(priv->hw);
337 del_timer_sync(&priv->eee_ctrl_timer);
338 priv->tx_path_in_lpi_mode = false;
342 * stmmac_eee_ctrl_timer - EEE TX SW timer.
345 * if there is no data transfer and if we are not in LPI state,
346 * then MAC Transmitter can be moved to LPI state.
348 static void stmmac_eee_ctrl_timer(unsigned long arg)
350 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
352 stmmac_enable_eee_mode(priv);
353 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
357 * stmmac_eee_init - init EEE
358 * @priv: driver private structure
360 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
361 * can also manage EEE, this function enable the LPI state and start related
364 bool stmmac_eee_init(struct stmmac_priv *priv)
366 struct net_device *ndev = priv->dev;
370 /* Using PCS we cannot dial with the phy registers at this stage
371 * so we do not support extra feature like EEE.
373 if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
374 (priv->hw->pcs == STMMAC_PCS_TBI) ||
375 (priv->hw->pcs == STMMAC_PCS_RTBI))
378 /* MAC core supports the EEE feature. */
379 if (priv->dma_cap.eee) {
380 int tx_lpi_timer = priv->tx_lpi_timer;
382 /* Check if the PHY supports EEE */
383 if (phy_init_eee(ndev->phydev, 1)) {
384 /* To manage at run-time if the EEE cannot be supported
385 * anymore (for example because the lp caps have been
387 * In that case the driver disable own timers.
389 spin_lock_irqsave(&priv->lock, flags);
390 if (priv->eee_active) {
391 netdev_dbg(priv->dev, "disable EEE\n");
392 del_timer_sync(&priv->eee_ctrl_timer);
393 priv->hw->mac->set_eee_timer(priv->hw, 0,
396 priv->eee_active = 0;
397 spin_unlock_irqrestore(&priv->lock, flags);
400 /* Activate the EEE and start timers */
401 spin_lock_irqsave(&priv->lock, flags);
402 if (!priv->eee_active) {
403 priv->eee_active = 1;
404 setup_timer(&priv->eee_ctrl_timer,
405 stmmac_eee_ctrl_timer,
406 (unsigned long)priv);
407 mod_timer(&priv->eee_ctrl_timer,
408 STMMAC_LPI_T(eee_timer));
410 priv->hw->mac->set_eee_timer(priv->hw,
411 STMMAC_DEFAULT_LIT_LS,
414 /* Set HW EEE according to the speed */
415 priv->hw->mac->set_eee_pls(priv->hw, ndev->phydev->link);
418 spin_unlock_irqrestore(&priv->lock, flags);
420 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
427 * @priv: driver private structure
428 * @p : descriptor pointer
429 * @skb : the socket buffer
431 * This function will read timestamp from the descriptor & pass it to stack.
432 * and also perform some sanity checks.
434 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
435 struct dma_desc *p, struct sk_buff *skb)
437 struct skb_shared_hwtstamps shhwtstamp;
440 if (!priv->hwts_tx_en)
443 /* exit if skb doesn't support hw tstamp */
444 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
447 /* check tx tstamp status */
448 if (priv->hw->desc->get_tx_timestamp_status(p)) {
449 /* get the valid tstamp */
450 ns = priv->hw->desc->get_timestamp(p, priv->adv_ts);
452 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
453 shhwtstamp.hwtstamp = ns_to_ktime(ns);
455 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
456 /* pass tstamp to stack */
457 skb_tstamp_tx(skb, &shhwtstamp);
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464 * @priv: driver private structure
465 * @p : descriptor pointer
466 * @np : next descriptor pointer
467 * @skb : the socket buffer
469 * This function will read received packet's timestamp from the descriptor
470 * and pass it to stack. It also perform some sanity checks.
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 struct dma_desc *np, struct sk_buff *skb)
475 struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 struct dma_desc *desc = p;
479 if (!priv->hwts_rx_en)
481 /* For GMAC4, the valid timestamp is from CTX next desc. */
482 if (priv->plat->has_gmac4)
485 /* Check if timestamp is available */
486 if (priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) {
487 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
488 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 shhwtstamp = skb_hwtstamps(skb);
490 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
498 * stmmac_hwtstamp_ioctl - control hardware timestamping.
499 * @dev: device pointer.
500 * @ifr: An IOCTL specific structure, that can contain a pointer to
501 * a proprietary structure used to pass information to the driver.
503 * This function configures the MAC to enable/disable both outgoing(TX)
504 * and incoming(RX) packets time stamping based on user input.
506 * 0 on success and an appropriate -ve integer on failure.
508 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
510 struct stmmac_priv *priv = netdev_priv(dev);
511 struct hwtstamp_config config;
512 struct timespec64 now;
516 u32 ptp_over_ipv4_udp = 0;
517 u32 ptp_over_ipv6_udp = 0;
518 u32 ptp_over_ethernet = 0;
519 u32 snap_type_sel = 0;
520 u32 ts_master_en = 0;
525 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
526 netdev_alert(priv->dev, "No support for HW time stamping\n");
527 priv->hwts_tx_en = 0;
528 priv->hwts_rx_en = 0;
533 if (copy_from_user(&config, ifr->ifr_data,
534 sizeof(struct hwtstamp_config)))
537 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
538 __func__, config.flags, config.tx_type, config.rx_filter);
540 /* reserved for future extensions */
544 if (config.tx_type != HWTSTAMP_TX_OFF &&
545 config.tx_type != HWTSTAMP_TX_ON)
549 switch (config.rx_filter) {
550 case HWTSTAMP_FILTER_NONE:
551 /* time stamp no incoming packet at all */
552 config.rx_filter = HWTSTAMP_FILTER_NONE;
555 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
556 /* PTP v1, UDP, any kind of event packet */
557 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
558 /* take time stamp for all event messages */
559 if (priv->plat->has_gmac4)
560 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
562 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
564 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
565 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
569 /* PTP v1, UDP, Sync packet */
570 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
571 /* take time stamp for SYNC messages only */
572 ts_event_en = PTP_TCR_TSEVNTENA;
574 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
575 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
578 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
579 /* PTP v1, UDP, Delay_req packet */
580 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
581 /* take time stamp for Delay_Req messages only */
582 ts_master_en = PTP_TCR_TSMSTRENA;
583 ts_event_en = PTP_TCR_TSEVNTENA;
585 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
586 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
589 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
590 /* PTP v2, UDP, any kind of event packet */
591 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
592 ptp_v2 = PTP_TCR_TSVER2ENA;
593 /* take time stamp for all event messages */
594 if (priv->plat->has_gmac4)
595 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
597 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 /* PTP v2, UDP, Sync packet */
605 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 ptp_v2 = PTP_TCR_TSVER2ENA;
607 /* take time stamp for SYNC messages only */
608 ts_event_en = PTP_TCR_TSEVNTENA;
610 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 /* PTP v2, UDP, Delay_req packet */
616 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 ptp_v2 = PTP_TCR_TSVER2ENA;
618 /* take time stamp for Delay_Req messages only */
619 ts_master_en = PTP_TCR_TSMSTRENA;
620 ts_event_en = PTP_TCR_TSEVNTENA;
622 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 /* PTP v2/802.AS1 any layer, any kind of event packet */
628 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 ptp_v2 = PTP_TCR_TSVER2ENA;
630 /* take time stamp for all event messages */
631 if (priv->plat->has_gmac4)
632 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
634 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
636 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
637 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
638 ptp_over_ethernet = PTP_TCR_TSIPENA;
641 case HWTSTAMP_FILTER_PTP_V2_SYNC:
642 /* PTP v2/802.AS1, any layer, Sync packet */
643 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
644 ptp_v2 = PTP_TCR_TSVER2ENA;
645 /* take time stamp for SYNC messages only */
646 ts_event_en = PTP_TCR_TSEVNTENA;
648 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
649 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
650 ptp_over_ethernet = PTP_TCR_TSIPENA;
653 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
654 /* PTP v2/802.AS1, any layer, Delay_req packet */
655 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
656 ptp_v2 = PTP_TCR_TSVER2ENA;
657 /* take time stamp for Delay_Req messages only */
658 ts_master_en = PTP_TCR_TSMSTRENA;
659 ts_event_en = PTP_TCR_TSEVNTENA;
661 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
662 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
663 ptp_over_ethernet = PTP_TCR_TSIPENA;
666 case HWTSTAMP_FILTER_NTP_ALL:
667 case HWTSTAMP_FILTER_ALL:
668 /* time stamp any incoming packet */
669 config.rx_filter = HWTSTAMP_FILTER_ALL;
670 tstamp_all = PTP_TCR_TSENALL;
677 switch (config.rx_filter) {
678 case HWTSTAMP_FILTER_NONE:
679 config.rx_filter = HWTSTAMP_FILTER_NONE;
682 /* PTP v1, UDP, any kind of event packet */
683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
687 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
688 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
690 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
691 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, 0);
693 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
694 tstamp_all | ptp_v2 | ptp_over_ethernet |
695 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
696 ts_master_en | snap_type_sel);
697 priv->hw->ptp->config_hw_tstamping(priv->ptpaddr, value);
699 /* program Sub Second Increment reg */
700 sec_inc = priv->hw->ptp->config_sub_second_increment(
701 priv->ptpaddr, priv->plat->clk_ptp_rate,
702 priv->plat->has_gmac4);
703 temp = div_u64(1000000000ULL, sec_inc);
705 /* calculate default added value:
707 * addend = (2^32)/freq_div_ratio;
708 * where, freq_div_ratio = 1e9ns/sec_inc
710 temp = (u64)(temp << 32);
711 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
712 priv->hw->ptp->config_addend(priv->ptpaddr,
713 priv->default_addend);
715 /* initialize system time */
716 ktime_get_real_ts64(&now);
718 /* lower 32 bits of tv_sec are safe until y2106 */
719 priv->hw->ptp->init_systime(priv->ptpaddr, (u32)now.tv_sec,
723 return copy_to_user(ifr->ifr_data, &config,
724 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
728 * stmmac_init_ptp - init PTP
729 * @priv: driver private structure
730 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
731 * This is done by looking at the HW cap. register.
732 * This function also registers the ptp driver.
734 static int stmmac_init_ptp(struct stmmac_priv *priv)
736 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
740 /* Check if adv_ts can be enabled for dwmac 4.x core */
741 if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
743 /* Dwmac 3.x core with extend_desc can support adv_ts */
744 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
747 if (priv->dma_cap.time_stamp)
748 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
751 netdev_info(priv->dev,
752 "IEEE 1588-2008 Advanced Timestamp supported\n");
754 priv->hw->ptp = &stmmac_ptp;
755 priv->hwts_tx_en = 0;
756 priv->hwts_rx_en = 0;
758 stmmac_ptp_register(priv);
763 static void stmmac_release_ptp(struct stmmac_priv *priv)
765 if (priv->plat->clk_ptp_ref)
766 clk_disable_unprepare(priv->plat->clk_ptp_ref);
767 stmmac_ptp_unregister(priv);
771 * stmmac_mac_flow_ctrl - Configure flow control in all queues
772 * @priv: driver private structure
773 * Description: It is used for configuring the flow control in all queues
775 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
777 u32 tx_cnt = priv->plat->tx_queues_to_use;
779 priv->hw->mac->flow_ctrl(priv->hw, duplex, priv->flow_ctrl,
780 priv->pause, tx_cnt);
784 * stmmac_adjust_link - adjusts the link parameters
785 * @dev: net device structure
786 * Description: this is the helper called by the physical abstraction layer
787 * drivers to communicate the phy link status. According the speed and duplex
788 * this driver can invoke registered glue-logic as well.
789 * It also invoke the eee initialization because it could happen when switch
790 * on different networks (that are eee capable).
792 static void stmmac_adjust_link(struct net_device *dev)
794 struct stmmac_priv *priv = netdev_priv(dev);
795 struct phy_device *phydev = dev->phydev;
797 bool new_state = false;
802 spin_lock_irqsave(&priv->lock, flags);
805 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
807 /* Now we make sure that we can be in full duplex mode.
808 * If not, we operate in half-duplex mode. */
809 if (phydev->duplex != priv->oldduplex) {
812 ctrl &= ~priv->hw->link.duplex;
814 ctrl |= priv->hw->link.duplex;
815 priv->oldduplex = phydev->duplex;
817 /* Flow Control operation */
819 stmmac_mac_flow_ctrl(priv, phydev->duplex);
821 if (phydev->speed != priv->speed) {
823 ctrl &= ~priv->hw->link.speed_mask;
824 switch (phydev->speed) {
826 ctrl |= priv->hw->link.speed1000;
829 ctrl |= priv->hw->link.speed100;
832 ctrl |= priv->hw->link.speed10;
835 netif_warn(priv, link, priv->dev,
836 "broken speed: %d\n", phydev->speed);
837 phydev->speed = SPEED_UNKNOWN;
840 if (phydev->speed != SPEED_UNKNOWN)
841 stmmac_hw_fix_mac_speed(priv);
842 priv->speed = phydev->speed;
845 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
847 if (!priv->oldlink) {
849 priv->oldlink = true;
851 } else if (priv->oldlink) {
853 priv->oldlink = false;
854 priv->speed = SPEED_UNKNOWN;
855 priv->oldduplex = DUPLEX_UNKNOWN;
858 if (new_state && netif_msg_link(priv))
859 phy_print_status(phydev);
861 spin_unlock_irqrestore(&priv->lock, flags);
863 if (phydev->is_pseudo_fixed_link)
864 /* Stop PHY layer to call the hook to adjust the link in case
865 * of a switch is attached to the stmmac driver.
867 phydev->irq = PHY_IGNORE_INTERRUPT;
869 /* At this stage, init the EEE if supported.
870 * Never called in case of fixed_link.
872 priv->eee_enabled = stmmac_eee_init(priv);
876 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
877 * @priv: driver private structure
878 * Description: this is to verify if the HW supports the PCS.
879 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
880 * configured for the TBI, RTBI, or SGMII PHY interface.
882 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
884 int interface = priv->plat->interface;
886 if (priv->dma_cap.pcs) {
887 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
888 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
889 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
890 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
891 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
892 priv->hw->pcs = STMMAC_PCS_RGMII;
893 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
894 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
895 priv->hw->pcs = STMMAC_PCS_SGMII;
901 * stmmac_init_phy - PHY initialization
902 * @dev: net device structure
903 * Description: it initializes the driver's PHY state, and attaches the PHY
908 static int stmmac_init_phy(struct net_device *dev)
910 struct stmmac_priv *priv = netdev_priv(dev);
911 struct phy_device *phydev;
912 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
913 char bus_id[MII_BUS_ID_SIZE];
914 int interface = priv->plat->interface;
915 int max_speed = priv->plat->max_speed;
916 priv->oldlink = false;
917 priv->speed = SPEED_UNKNOWN;
918 priv->oldduplex = DUPLEX_UNKNOWN;
920 if (priv->plat->phy_node) {
921 phydev = of_phy_connect(dev, priv->plat->phy_node,
922 &stmmac_adjust_link, 0, interface);
924 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
927 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
928 priv->plat->phy_addr);
929 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
932 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
936 if (IS_ERR_OR_NULL(phydev)) {
937 netdev_err(priv->dev, "Could not attach to PHY\n");
941 return PTR_ERR(phydev);
944 /* Stop Advertising 1000BASE Capability if interface is not GMII */
945 if ((interface == PHY_INTERFACE_MODE_MII) ||
946 (interface == PHY_INTERFACE_MODE_RMII) ||
947 (max_speed < 1000 && max_speed > 0))
948 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
949 SUPPORTED_1000baseT_Full);
952 * Broken HW is sometimes missing the pull-up resistor on the
953 * MDIO line, which results in reads to non-existent devices returning
954 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
956 * Note: phydev->phy_id is the result of reading the UID PHY registers.
958 if (!priv->plat->phy_node && phydev->phy_id == 0) {
959 phy_disconnect(phydev);
963 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
964 * subsequent PHY polling, make sure we force a link transition if
965 * we have a UP/DOWN/UP transition
967 if (phydev->is_pseudo_fixed_link)
968 phydev->irq = PHY_POLL;
970 phy_attached_info(phydev);
974 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
976 u32 rx_cnt = priv->plat->rx_queues_to_use;
980 /* Display RX rings */
981 for (queue = 0; queue < rx_cnt; queue++) {
982 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
984 pr_info("\tRX Queue %u rings\n", queue);
986 if (priv->extend_desc)
987 head_rx = (void *)rx_q->dma_erx;
989 head_rx = (void *)rx_q->dma_rx;
991 /* Display RX ring */
992 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
996 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
998 u32 tx_cnt = priv->plat->tx_queues_to_use;
1002 /* Display TX rings */
1003 for (queue = 0; queue < tx_cnt; queue++) {
1004 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1006 pr_info("\tTX Queue %d rings\n", queue);
1008 if (priv->extend_desc)
1009 head_tx = (void *)tx_q->dma_etx;
1011 head_tx = (void *)tx_q->dma_tx;
1013 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
1017 static void stmmac_display_rings(struct stmmac_priv *priv)
1019 /* Display RX ring */
1020 stmmac_display_rx_rings(priv);
1022 /* Display TX ring */
1023 stmmac_display_tx_rings(priv);
1026 static int stmmac_set_bfsize(int mtu, int bufsize)
1030 if (mtu >= BUF_SIZE_4KiB)
1031 ret = BUF_SIZE_8KiB;
1032 else if (mtu >= BUF_SIZE_2KiB)
1033 ret = BUF_SIZE_4KiB;
1034 else if (mtu > DEFAULT_BUFSIZE)
1035 ret = BUF_SIZE_2KiB;
1037 ret = DEFAULT_BUFSIZE;
1043 * stmmac_clear_rx_descriptors - clear RX descriptors
1044 * @priv: driver private structure
1045 * @queue: RX queue index
1046 * Description: this function is called to clear the RX descriptors
1047 * in case of both basic and extended descriptors are used.
1049 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1051 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1054 /* Clear the RX descriptors */
1055 for (i = 0; i < DMA_RX_SIZE; i++)
1056 if (priv->extend_desc)
1057 priv->hw->desc->init_rx_desc(&rx_q->dma_erx[i].basic,
1058 priv->use_riwt, priv->mode,
1059 (i == DMA_RX_SIZE - 1));
1061 priv->hw->desc->init_rx_desc(&rx_q->dma_rx[i],
1062 priv->use_riwt, priv->mode,
1063 (i == DMA_RX_SIZE - 1));
1067 * stmmac_clear_tx_descriptors - clear tx descriptors
1068 * @priv: driver private structure
1069 * @queue: TX queue index.
1070 * Description: this function is called to clear the TX descriptors
1071 * in case of both basic and extended descriptors are used.
1073 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1075 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1078 /* Clear the TX descriptors */
1079 for (i = 0; i < DMA_TX_SIZE; i++)
1080 if (priv->extend_desc)
1081 priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
1083 (i == DMA_TX_SIZE - 1));
1085 priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
1087 (i == DMA_TX_SIZE - 1));
1091 * stmmac_clear_descriptors - clear descriptors
1092 * @priv: driver private structure
1093 * Description: this function is called to clear the TX and RX descriptors
1094 * in case of both basic and extended descriptors are used.
1096 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1098 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1099 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1102 /* Clear the RX descriptors */
1103 for (queue = 0; queue < rx_queue_cnt; queue++)
1104 stmmac_clear_rx_descriptors(priv, queue);
1106 /* Clear the TX descriptors */
1107 for (queue = 0; queue < tx_queue_cnt; queue++)
1108 stmmac_clear_tx_descriptors(priv, queue);
1112 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1113 * @priv: driver private structure
1114 * @p: descriptor pointer
1115 * @i: descriptor index
1117 * @queue: RX queue index
1118 * Description: this function is called to allocate a receive buffer, perform
1119 * the DMA mapping and init the descriptor.
1121 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1122 int i, gfp_t flags, u32 queue)
1124 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1125 struct sk_buff *skb;
1127 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1129 netdev_err(priv->dev,
1130 "%s: Rx init fails; skb is NULL\n", __func__);
1133 rx_q->rx_skbuff[i] = skb;
1134 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1137 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1138 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1139 dev_kfree_skb_any(skb);
1143 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1144 p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
1146 p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
1148 if ((priv->hw->mode->init_desc3) &&
1149 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1150 priv->hw->mode->init_desc3(p);
1156 * stmmac_free_rx_buffer - free RX dma buffers
1157 * @priv: private structure
1158 * @queue: RX queue index
1161 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1163 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1165 if (rx_q->rx_skbuff[i]) {
1166 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1167 priv->dma_buf_sz, DMA_FROM_DEVICE);
1168 dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1170 rx_q->rx_skbuff[i] = NULL;
1174 * stmmac_free_tx_buffer - free RX dma buffers
1175 * @priv: private structure
1176 * @queue: RX queue index
1179 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1181 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1183 if (tx_q->tx_skbuff_dma[i].buf) {
1184 if (tx_q->tx_skbuff_dma[i].map_as_page)
1185 dma_unmap_page(priv->device,
1186 tx_q->tx_skbuff_dma[i].buf,
1187 tx_q->tx_skbuff_dma[i].len,
1190 dma_unmap_single(priv->device,
1191 tx_q->tx_skbuff_dma[i].buf,
1192 tx_q->tx_skbuff_dma[i].len,
1196 if (tx_q->tx_skbuff[i]) {
1197 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1198 tx_q->tx_skbuff[i] = NULL;
1199 tx_q->tx_skbuff_dma[i].buf = 0;
1200 tx_q->tx_skbuff_dma[i].map_as_page = false;
1205 * init_dma_rx_desc_rings - init the RX descriptor rings
1206 * @dev: net device structure
1208 * Description: this function initializes the DMA RX descriptors
1209 * and allocates the socket buffers. It supports the chained and ring
1212 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1214 struct stmmac_priv *priv = netdev_priv(dev);
1215 u32 rx_count = priv->plat->rx_queues_to_use;
1216 unsigned int bfsize = 0;
1221 if (priv->hw->mode->set_16kib_bfsize)
1222 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1224 if (bfsize < BUF_SIZE_16KiB)
1225 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1227 priv->dma_buf_sz = bfsize;
1229 /* RX INITIALIZATION */
1230 netif_dbg(priv, probe, priv->dev,
1231 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1233 for (queue = 0; queue < rx_count; queue++) {
1234 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1236 netif_dbg(priv, probe, priv->dev,
1237 "(%s) dma_rx_phy=0x%08x\n", __func__,
1238 (u32)rx_q->dma_rx_phy);
1240 for (i = 0; i < DMA_RX_SIZE; i++) {
1243 if (priv->extend_desc)
1244 p = &((rx_q->dma_erx + i)->basic);
1246 p = rx_q->dma_rx + i;
1248 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1251 goto err_init_rx_buffers;
1253 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1254 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1255 (unsigned int)rx_q->rx_skbuff_dma[i]);
1259 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1261 stmmac_clear_rx_descriptors(priv, queue);
1263 /* Setup the chained descriptor addresses */
1264 if (priv->mode == STMMAC_CHAIN_MODE) {
1265 if (priv->extend_desc)
1266 priv->hw->mode->init(rx_q->dma_erx,
1270 priv->hw->mode->init(rx_q->dma_rx,
1280 err_init_rx_buffers:
1281 while (queue >= 0) {
1283 stmmac_free_rx_buffer(priv, queue, i);
1296 * init_dma_tx_desc_rings - init the TX descriptor rings
1297 * @dev: net device structure.
1298 * Description: this function initializes the DMA TX descriptors
1299 * and allocates the socket buffers. It supports the chained and ring
1302 static int init_dma_tx_desc_rings(struct net_device *dev)
1304 struct stmmac_priv *priv = netdev_priv(dev);
1305 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1309 for (queue = 0; queue < tx_queue_cnt; queue++) {
1310 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1312 netif_dbg(priv, probe, priv->dev,
1313 "(%s) dma_tx_phy=0x%08x\n", __func__,
1314 (u32)tx_q->dma_tx_phy);
1316 /* Setup the chained descriptor addresses */
1317 if (priv->mode == STMMAC_CHAIN_MODE) {
1318 if (priv->extend_desc)
1319 priv->hw->mode->init(tx_q->dma_etx,
1323 priv->hw->mode->init(tx_q->dma_tx,
1328 for (i = 0; i < DMA_TX_SIZE; i++) {
1330 if (priv->extend_desc)
1331 p = &((tx_q->dma_etx + i)->basic);
1333 p = tx_q->dma_tx + i;
1335 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1344 tx_q->tx_skbuff_dma[i].buf = 0;
1345 tx_q->tx_skbuff_dma[i].map_as_page = false;
1346 tx_q->tx_skbuff_dma[i].len = 0;
1347 tx_q->tx_skbuff_dma[i].last_segment = false;
1348 tx_q->tx_skbuff[i] = NULL;
1354 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1361 * init_dma_desc_rings - init the RX/TX descriptor rings
1362 * @dev: net device structure
1364 * Description: this function initializes the DMA RX/TX descriptors
1365 * and allocates the socket buffers. It supports the chained and ring
1368 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1370 struct stmmac_priv *priv = netdev_priv(dev);
1373 ret = init_dma_rx_desc_rings(dev, flags);
1377 ret = init_dma_tx_desc_rings(dev);
1379 stmmac_clear_descriptors(priv);
1381 if (netif_msg_hw(priv))
1382 stmmac_display_rings(priv);
1388 * dma_free_rx_skbufs - free RX dma buffers
1389 * @priv: private structure
1390 * @queue: RX queue index
1392 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1396 for (i = 0; i < DMA_RX_SIZE; i++)
1397 stmmac_free_rx_buffer(priv, queue, i);
1401 * dma_free_tx_skbufs - free TX dma buffers
1402 * @priv: private structure
1403 * @queue: TX queue index
1405 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1409 for (i = 0; i < DMA_TX_SIZE; i++)
1410 stmmac_free_tx_buffer(priv, queue, i);
1414 * free_dma_rx_desc_resources - free RX dma desc resources
1415 * @priv: private structure
1417 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1419 u32 rx_count = priv->plat->rx_queues_to_use;
1422 /* Free RX queue resources */
1423 for (queue = 0; queue < rx_count; queue++) {
1424 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1426 /* Release the DMA RX socket buffers */
1427 dma_free_rx_skbufs(priv, queue);
1429 /* Free DMA regions of consistent memory previously allocated */
1430 if (!priv->extend_desc)
1431 dma_free_coherent(priv->device,
1432 DMA_RX_SIZE * sizeof(struct dma_desc),
1433 rx_q->dma_rx, rx_q->dma_rx_phy);
1435 dma_free_coherent(priv->device, DMA_RX_SIZE *
1436 sizeof(struct dma_extended_desc),
1437 rx_q->dma_erx, rx_q->dma_rx_phy);
1439 kfree(rx_q->rx_skbuff_dma);
1440 kfree(rx_q->rx_skbuff);
1445 * free_dma_tx_desc_resources - free TX dma desc resources
1446 * @priv: private structure
1448 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1450 u32 tx_count = priv->plat->tx_queues_to_use;
1453 /* Free TX queue resources */
1454 for (queue = 0; queue < tx_count; queue++) {
1455 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1457 /* Release the DMA TX socket buffers */
1458 dma_free_tx_skbufs(priv, queue);
1460 /* Free DMA regions of consistent memory previously allocated */
1461 if (!priv->extend_desc)
1462 dma_free_coherent(priv->device,
1463 DMA_TX_SIZE * sizeof(struct dma_desc),
1464 tx_q->dma_tx, tx_q->dma_tx_phy);
1466 dma_free_coherent(priv->device, DMA_TX_SIZE *
1467 sizeof(struct dma_extended_desc),
1468 tx_q->dma_etx, tx_q->dma_tx_phy);
1470 kfree(tx_q->tx_skbuff_dma);
1471 kfree(tx_q->tx_skbuff);
1476 * alloc_dma_rx_desc_resources - alloc RX resources.
1477 * @priv: private structure
1478 * Description: according to which descriptor can be used (extend or basic)
1479 * this function allocates the resources for TX and RX paths. In case of
1480 * reception, for example, it pre-allocated the RX socket buffer in order to
1481 * allow zero-copy mechanism.
1483 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1485 u32 rx_count = priv->plat->rx_queues_to_use;
1489 /* RX queues buffers and DMA */
1490 for (queue = 0; queue < rx_count; queue++) {
1491 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1493 rx_q->queue_index = queue;
1494 rx_q->priv_data = priv;
1496 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1499 if (!rx_q->rx_skbuff_dma)
1502 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1503 sizeof(struct sk_buff *),
1505 if (!rx_q->rx_skbuff)
1508 if (priv->extend_desc) {
1509 rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1519 rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1533 free_dma_rx_desc_resources(priv);
1539 * alloc_dma_tx_desc_resources - alloc TX resources.
1540 * @priv: private structure
1541 * Description: according to which descriptor can be used (extend or basic)
1542 * this function allocates the resources for TX and RX paths. In case of
1543 * reception, for example, it pre-allocated the RX socket buffer in order to
1544 * allow zero-copy mechanism.
1546 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1548 u32 tx_count = priv->plat->tx_queues_to_use;
1552 /* TX queues buffers and DMA */
1553 for (queue = 0; queue < tx_count; queue++) {
1554 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1556 tx_q->queue_index = queue;
1557 tx_q->priv_data = priv;
1559 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1560 sizeof(*tx_q->tx_skbuff_dma),
1562 if (!tx_q->tx_skbuff_dma)
1565 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1566 sizeof(struct sk_buff *),
1568 if (!tx_q->tx_skbuff)
1571 if (priv->extend_desc) {
1572 tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1581 tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1595 free_dma_tx_desc_resources(priv);
1601 * alloc_dma_desc_resources - alloc TX/RX resources.
1602 * @priv: private structure
1603 * Description: according to which descriptor can be used (extend or basic)
1604 * this function allocates the resources for TX and RX paths. In case of
1605 * reception, for example, it pre-allocated the RX socket buffer in order to
1606 * allow zero-copy mechanism.
1608 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1611 int ret = alloc_dma_rx_desc_resources(priv);
1616 ret = alloc_dma_tx_desc_resources(priv);
1622 * free_dma_desc_resources - free dma desc resources
1623 * @priv: private structure
1625 static void free_dma_desc_resources(struct stmmac_priv *priv)
1627 /* Release the DMA RX socket buffers */
1628 free_dma_rx_desc_resources(priv);
1630 /* Release the DMA TX socket buffers */
1631 free_dma_tx_desc_resources(priv);
1635 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1636 * @priv: driver private structure
1637 * Description: It is used for enabling the rx queues in the MAC
1639 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1641 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1645 for (queue = 0; queue < rx_queues_count; queue++) {
1646 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1647 priv->hw->mac->rx_queue_enable(priv->hw, mode, queue);
1652 * stmmac_start_rx_dma - start RX DMA channel
1653 * @priv: driver private structure
1654 * @chan: RX channel index
1656 * This starts a RX DMA channel
1658 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1660 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1661 priv->hw->dma->start_rx(priv->ioaddr, chan);
1665 * stmmac_start_tx_dma - start TX DMA channel
1666 * @priv: driver private structure
1667 * @chan: TX channel index
1669 * This starts a TX DMA channel
1671 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1673 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1674 priv->hw->dma->start_tx(priv->ioaddr, chan);
1678 * stmmac_stop_rx_dma - stop RX DMA channel
1679 * @priv: driver private structure
1680 * @chan: RX channel index
1682 * This stops a RX DMA channel
1684 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1686 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1687 priv->hw->dma->stop_rx(priv->ioaddr, chan);
1691 * stmmac_stop_tx_dma - stop TX DMA channel
1692 * @priv: driver private structure
1693 * @chan: TX channel index
1695 * This stops a TX DMA channel
1697 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1699 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1700 priv->hw->dma->stop_tx(priv->ioaddr, chan);
1704 * stmmac_start_all_dma - start all RX and TX DMA channels
1705 * @priv: driver private structure
1707 * This starts all the RX and TX DMA channels
1709 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1711 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1712 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1715 for (chan = 0; chan < rx_channels_count; chan++)
1716 stmmac_start_rx_dma(priv, chan);
1718 for (chan = 0; chan < tx_channels_count; chan++)
1719 stmmac_start_tx_dma(priv, chan);
1723 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1724 * @priv: driver private structure
1726 * This stops the RX and TX DMA channels
1728 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1730 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1731 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1734 for (chan = 0; chan < rx_channels_count; chan++)
1735 stmmac_stop_rx_dma(priv, chan);
1737 for (chan = 0; chan < tx_channels_count; chan++)
1738 stmmac_stop_tx_dma(priv, chan);
1742 * stmmac_dma_operation_mode - HW DMA operation mode
1743 * @priv: driver private structure
1744 * Description: it is used for configuring the DMA operation mode register in
1745 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1747 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1749 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1750 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1751 int rxfifosz = priv->plat->rx_fifo_size;
1752 int txfifosz = priv->plat->tx_fifo_size;
1759 rxfifosz = priv->dma_cap.rx_fifo_size;
1761 txfifosz = priv->dma_cap.tx_fifo_size;
1763 /* Adjust for real per queue fifo size */
1764 rxfifosz /= rx_channels_count;
1765 txfifosz /= tx_channels_count;
1767 if (priv->plat->force_thresh_dma_mode) {
1770 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1772 * In case of GMAC, SF mode can be enabled
1773 * to perform the TX COE in HW. This depends on:
1774 * 1) TX COE if actually supported
1775 * 2) There is no bugged Jumbo frame support
1776 * that needs to not insert csum in the TDES.
1778 txmode = SF_DMA_MODE;
1779 rxmode = SF_DMA_MODE;
1780 priv->xstats.threshold = SF_DMA_MODE;
1783 rxmode = SF_DMA_MODE;
1786 /* configure all channels */
1787 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1788 for (chan = 0; chan < rx_channels_count; chan++) {
1789 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1791 priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1795 for (chan = 0; chan < tx_channels_count; chan++) {
1796 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1798 priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan,
1802 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1808 * stmmac_tx_clean - to manage the transmission completion
1809 * @priv: driver private structure
1810 * @queue: TX queue index
1811 * Description: it reclaims the transmit resources after transmission completes.
1813 static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue)
1815 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1816 unsigned int bytes_compl = 0, pkts_compl = 0;
1819 netif_tx_lock(priv->dev);
1821 priv->xstats.tx_clean++;
1823 entry = tx_q->dirty_tx;
1824 while (entry != tx_q->cur_tx) {
1825 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1829 if (priv->extend_desc)
1830 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1832 p = tx_q->dma_tx + entry;
1834 status = priv->hw->desc->tx_status(&priv->dev->stats,
1837 /* Check if the descriptor is owned by the DMA */
1838 if (unlikely(status & tx_dma_own))
1841 /* Just consider the last segment and ...*/
1842 if (likely(!(status & tx_not_ls))) {
1843 /* ... verify the status error condition */
1844 if (unlikely(status & tx_err)) {
1845 priv->dev->stats.tx_errors++;
1847 priv->dev->stats.tx_packets++;
1848 priv->xstats.tx_pkt_n++;
1850 stmmac_get_tx_hwtstamp(priv, p, skb);
1853 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1854 if (tx_q->tx_skbuff_dma[entry].map_as_page)
1855 dma_unmap_page(priv->device,
1856 tx_q->tx_skbuff_dma[entry].buf,
1857 tx_q->tx_skbuff_dma[entry].len,
1860 dma_unmap_single(priv->device,
1861 tx_q->tx_skbuff_dma[entry].buf,
1862 tx_q->tx_skbuff_dma[entry].len,
1864 tx_q->tx_skbuff_dma[entry].buf = 0;
1865 tx_q->tx_skbuff_dma[entry].len = 0;
1866 tx_q->tx_skbuff_dma[entry].map_as_page = false;
1869 if (priv->hw->mode->clean_desc3)
1870 priv->hw->mode->clean_desc3(tx_q, p);
1872 tx_q->tx_skbuff_dma[entry].last_segment = false;
1873 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1875 if (likely(skb != NULL)) {
1877 bytes_compl += skb->len;
1878 dev_consume_skb_any(skb);
1879 tx_q->tx_skbuff[entry] = NULL;
1882 priv->hw->desc->release_tx_desc(p, priv->mode);
1884 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1886 tx_q->dirty_tx = entry;
1888 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1889 pkts_compl, bytes_compl);
1891 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1893 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1895 netif_dbg(priv, tx_done, priv->dev,
1896 "%s: restart transmit\n", __func__);
1897 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1900 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1901 stmmac_enable_eee_mode(priv);
1902 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1904 netif_tx_unlock(priv->dev);
1907 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv, u32 chan)
1909 priv->hw->dma->enable_dma_irq(priv->ioaddr, chan);
1912 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan)
1914 priv->hw->dma->disable_dma_irq(priv->ioaddr, chan);
1918 * stmmac_tx_err - to manage the tx error
1919 * @priv: driver private structure
1920 * @chan: channel index
1921 * Description: it cleans the descriptors and restarts the transmission
1922 * in case of transmission errors.
1924 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1926 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1929 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1931 stmmac_stop_tx_dma(priv, chan);
1932 dma_free_tx_skbufs(priv, chan);
1933 for (i = 0; i < DMA_TX_SIZE; i++)
1934 if (priv->extend_desc)
1935 priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
1937 (i == DMA_TX_SIZE - 1));
1939 priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
1941 (i == DMA_TX_SIZE - 1));
1944 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1945 stmmac_start_tx_dma(priv, chan);
1947 priv->dev->stats.tx_errors++;
1948 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1952 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1953 * @priv: driver private structure
1954 * @txmode: TX operating mode
1955 * @rxmode: RX operating mode
1956 * @chan: channel index
1957 * Description: it is used for configuring of the DMA operation mode in
1958 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1961 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1962 u32 rxmode, u32 chan)
1964 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1965 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1966 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1967 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1968 int rxfifosz = priv->plat->rx_fifo_size;
1969 int txfifosz = priv->plat->tx_fifo_size;
1972 rxfifosz = priv->dma_cap.rx_fifo_size;
1974 txfifosz = priv->dma_cap.tx_fifo_size;
1976 /* Adjust for real per queue fifo size */
1977 rxfifosz /= rx_channels_count;
1978 txfifosz /= tx_channels_count;
1980 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1981 priv->hw->dma->dma_rx_mode(priv->ioaddr, rxmode, chan,
1983 priv->hw->dma->dma_tx_mode(priv->ioaddr, txmode, chan,
1986 priv->hw->dma->dma_mode(priv->ioaddr, txmode, rxmode,
1992 * stmmac_dma_interrupt - DMA ISR
1993 * @priv: driver private structure
1994 * Description: this is the DMA ISR. It is called by the main ISR.
1995 * It calls the dwmac dma routine and schedule poll method in case of some
1998 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2000 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2004 for (chan = 0; chan < tx_channel_count; chan++) {
2005 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2007 status = priv->hw->dma->dma_interrupt(priv->ioaddr,
2008 &priv->xstats, chan);
2009 if (likely((status & handle_rx)) || (status & handle_tx)) {
2010 if (likely(napi_schedule_prep(&rx_q->napi))) {
2011 stmmac_disable_dma_irq(priv, chan);
2012 __napi_schedule(&rx_q->napi);
2016 if (unlikely(status & tx_hard_error_bump_tc)) {
2017 /* Try to bump up the dma threshold on this failure */
2018 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2021 if (priv->plat->force_thresh_dma_mode)
2022 stmmac_set_dma_operation_mode(priv,
2027 stmmac_set_dma_operation_mode(priv,
2031 priv->xstats.threshold = tc;
2033 } else if (unlikely(status == tx_hard_error)) {
2034 stmmac_tx_err(priv, chan);
2040 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2041 * @priv: driver private structure
2042 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2044 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2046 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2047 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2049 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2050 priv->ptpaddr = priv->ioaddr + PTP_GMAC4_OFFSET;
2051 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
2053 priv->ptpaddr = priv->ioaddr + PTP_GMAC3_X_OFFSET;
2054 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
2057 dwmac_mmc_intr_all_mask(priv->mmcaddr);
2059 if (priv->dma_cap.rmon) {
2060 dwmac_mmc_ctrl(priv->mmcaddr, mode);
2061 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2063 netdev_info(priv->dev, "No MAC Management Counters available\n");
2067 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
2068 * @priv: driver private structure
2069 * Description: select the Enhanced/Alternate or Normal descriptors.
2070 * In case of Enhanced/Alternate, it checks if the extended descriptors are
2071 * supported by the HW capability register.
2073 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
2075 if (priv->plat->enh_desc) {
2076 dev_info(priv->device, "Enhanced/Alternate descriptors\n");
2078 /* GMAC older than 3.50 has no extended descriptors */
2079 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
2080 dev_info(priv->device, "Enabled extended descriptors\n");
2081 priv->extend_desc = 1;
2083 dev_warn(priv->device, "Extended descriptors not supported\n");
2085 priv->hw->desc = &enh_desc_ops;
2087 dev_info(priv->device, "Normal descriptors\n");
2088 priv->hw->desc = &ndesc_ops;
2093 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2094 * @priv: driver private structure
2096 * new GMAC chip generations have a new register to indicate the
2097 * presence of the optional feature/functions.
2098 * This can be also used to override the value passed through the
2099 * platform and necessary for old MAC10/100 and GMAC chips.
2101 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2105 if (priv->hw->dma->get_hw_feature) {
2106 priv->hw->dma->get_hw_feature(priv->ioaddr,
2115 * stmmac_check_ether_addr - check if the MAC addr is valid
2116 * @priv: driver private structure
2118 * it is to verify if the MAC address is valid, in case of failures it
2119 * generates a random MAC address
2121 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2123 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2124 priv->hw->mac->get_umac_addr(priv->hw,
2125 priv->dev->dev_addr, 0);
2126 if (!is_valid_ether_addr(priv->dev->dev_addr))
2127 eth_hw_addr_random(priv->dev);
2128 netdev_info(priv->dev, "device MAC address %pM\n",
2129 priv->dev->dev_addr);
2134 * stmmac_init_dma_engine - DMA init.
2135 * @priv: driver private structure
2137 * It inits the DMA invoking the specific MAC/GMAC callback.
2138 * Some DMA parameters can be passed from the platform;
2139 * in case of these are not passed a default is kept for the MAC or GMAC.
2141 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2143 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2144 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2145 struct stmmac_rx_queue *rx_q;
2146 struct stmmac_tx_queue *tx_q;
2147 u32 dummy_dma_rx_phy = 0;
2148 u32 dummy_dma_tx_phy = 0;
2153 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2154 dev_err(priv->device, "Invalid DMA configuration\n");
2158 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2161 ret = priv->hw->dma->reset(priv->ioaddr);
2163 dev_err(priv->device, "Failed to reset the dma\n");
2167 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2168 /* DMA Configuration */
2169 priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
2170 dummy_dma_tx_phy, dummy_dma_rx_phy, atds);
2172 /* DMA RX Channel Configuration */
2173 for (chan = 0; chan < rx_channels_count; chan++) {
2174 rx_q = &priv->rx_queue[chan];
2176 priv->hw->dma->init_rx_chan(priv->ioaddr,
2177 priv->plat->dma_cfg,
2178 rx_q->dma_rx_phy, chan);
2180 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2181 (DMA_RX_SIZE * sizeof(struct dma_desc));
2182 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2187 /* DMA TX Channel Configuration */
2188 for (chan = 0; chan < tx_channels_count; chan++) {
2189 tx_q = &priv->tx_queue[chan];
2191 priv->hw->dma->init_chan(priv->ioaddr,
2192 priv->plat->dma_cfg,
2195 priv->hw->dma->init_tx_chan(priv->ioaddr,
2196 priv->plat->dma_cfg,
2197 tx_q->dma_tx_phy, chan);
2199 tx_q->tx_tail_addr = tx_q->dma_tx_phy +
2200 (DMA_TX_SIZE * sizeof(struct dma_desc));
2201 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr,
2206 rx_q = &priv->rx_queue[chan];
2207 tx_q = &priv->tx_queue[chan];
2208 priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
2209 tx_q->dma_tx_phy, rx_q->dma_rx_phy, atds);
2212 if (priv->plat->axi && priv->hw->dma->axi)
2213 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
2219 * stmmac_tx_timer - mitigation sw timer for tx.
2220 * @data: data pointer
2222 * This is the timer handler to directly invoke the stmmac_tx_clean.
2224 static void stmmac_tx_timer(unsigned long data)
2226 struct stmmac_priv *priv = (struct stmmac_priv *)data;
2227 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2230 /* let's scan all the tx queues */
2231 for (queue = 0; queue < tx_queues_count; queue++)
2232 stmmac_tx_clean(priv, queue);
2236 * stmmac_init_tx_coalesce - init tx mitigation options.
2237 * @priv: driver private structure
2239 * This inits the transmit coalesce parameters: i.e. timer rate,
2240 * timer handler and default threshold used for enabling the
2241 * interrupt on completion bit.
2243 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2245 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2246 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2247 setup_timer(&priv->txtimer, stmmac_tx_timer, (unsigned long)priv);
2248 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
2249 add_timer(&priv->txtimer);
2252 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2254 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2255 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2258 /* set TX ring length */
2259 if (priv->hw->dma->set_tx_ring_len) {
2260 for (chan = 0; chan < tx_channels_count; chan++)
2261 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
2262 (DMA_TX_SIZE - 1), chan);
2265 /* set RX ring length */
2266 if (priv->hw->dma->set_rx_ring_len) {
2267 for (chan = 0; chan < rx_channels_count; chan++)
2268 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
2269 (DMA_RX_SIZE - 1), chan);
2274 * stmmac_set_tx_queue_weight - Set TX queue weight
2275 * @priv: driver private structure
2276 * Description: It is used for setting TX queues weight
2278 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2280 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2284 for (queue = 0; queue < tx_queues_count; queue++) {
2285 weight = priv->plat->tx_queues_cfg[queue].weight;
2286 priv->hw->mac->set_mtl_tx_queue_weight(priv->hw, weight, queue);
2291 * stmmac_configure_cbs - Configure CBS in TX queue
2292 * @priv: driver private structure
2293 * Description: It is used for configuring CBS in AVB TX queues
2295 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2297 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2301 /* queue 0 is reserved for legacy traffic */
2302 for (queue = 1; queue < tx_queues_count; queue++) {
2303 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2304 if (mode_to_use == MTL_QUEUE_DCB)
2307 priv->hw->mac->config_cbs(priv->hw,
2308 priv->plat->tx_queues_cfg[queue].send_slope,
2309 priv->plat->tx_queues_cfg[queue].idle_slope,
2310 priv->plat->tx_queues_cfg[queue].high_credit,
2311 priv->plat->tx_queues_cfg[queue].low_credit,
2317 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2318 * @priv: driver private structure
2319 * Description: It is used for mapping RX queues to RX dma channels
2321 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2323 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2327 for (queue = 0; queue < rx_queues_count; queue++) {
2328 chan = priv->plat->rx_queues_cfg[queue].chan;
2329 priv->hw->mac->map_mtl_to_dma(priv->hw, queue, chan);
2334 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2335 * @priv: driver private structure
2336 * Description: It is used for configuring the RX Queue Priority
2338 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2340 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2344 for (queue = 0; queue < rx_queues_count; queue++) {
2345 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2348 prio = priv->plat->rx_queues_cfg[queue].prio;
2349 priv->hw->mac->rx_queue_prio(priv->hw, prio, queue);
2354 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2355 * @priv: driver private structure
2356 * Description: It is used for configuring the TX Queue Priority
2358 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2360 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2364 for (queue = 0; queue < tx_queues_count; queue++) {
2365 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2368 prio = priv->plat->tx_queues_cfg[queue].prio;
2369 priv->hw->mac->tx_queue_prio(priv->hw, prio, queue);
2374 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2375 * @priv: driver private structure
2376 * Description: It is used for configuring the RX queue routing
2378 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2380 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2384 for (queue = 0; queue < rx_queues_count; queue++) {
2385 /* no specific packet type routing specified for the queue */
2386 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2389 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2390 priv->hw->mac->rx_queue_prio(priv->hw, packet, queue);
2395 * stmmac_mtl_configuration - Configure MTL
2396 * @priv: driver private structure
2397 * Description: It is used for configurring MTL
2399 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2401 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2402 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2404 if (tx_queues_count > 1 && priv->hw->mac->set_mtl_tx_queue_weight)
2405 stmmac_set_tx_queue_weight(priv);
2407 /* Configure MTL RX algorithms */
2408 if (rx_queues_count > 1 && priv->hw->mac->prog_mtl_rx_algorithms)
2409 priv->hw->mac->prog_mtl_rx_algorithms(priv->hw,
2410 priv->plat->rx_sched_algorithm);
2412 /* Configure MTL TX algorithms */
2413 if (tx_queues_count > 1 && priv->hw->mac->prog_mtl_tx_algorithms)
2414 priv->hw->mac->prog_mtl_tx_algorithms(priv->hw,
2415 priv->plat->tx_sched_algorithm);
2417 /* Configure CBS in AVB TX queues */
2418 if (tx_queues_count > 1 && priv->hw->mac->config_cbs)
2419 stmmac_configure_cbs(priv);
2421 /* Map RX MTL to DMA channels */
2422 if (priv->hw->mac->map_mtl_to_dma)
2423 stmmac_rx_queue_dma_chan_map(priv);
2425 /* Enable MAC RX Queues */
2426 if (priv->hw->mac->rx_queue_enable)
2427 stmmac_mac_enable_rx_queues(priv);
2429 /* Set RX priorities */
2430 if (rx_queues_count > 1 && priv->hw->mac->rx_queue_prio)
2431 stmmac_mac_config_rx_queues_prio(priv);
2433 /* Set TX priorities */
2434 if (tx_queues_count > 1 && priv->hw->mac->tx_queue_prio)
2435 stmmac_mac_config_tx_queues_prio(priv);
2437 /* Set RX routing */
2438 if (rx_queues_count > 1 && priv->hw->mac->rx_queue_routing)
2439 stmmac_mac_config_rx_queues_routing(priv);
2443 * stmmac_hw_setup - setup mac in a usable state.
2444 * @dev : pointer to the device structure.
2446 * this is the main function to setup the HW in a usable state because the
2447 * dma engine is reset, the core registers are configured (e.g. AXI,
2448 * Checksum features, timers). The DMA is ready to start receiving and
2451 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2454 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2456 struct stmmac_priv *priv = netdev_priv(dev);
2457 u32 rx_cnt = priv->plat->rx_queues_to_use;
2458 u32 tx_cnt = priv->plat->tx_queues_to_use;
2462 /* DMA initialization and SW reset */
2463 ret = stmmac_init_dma_engine(priv);
2465 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2470 /* Copy the MAC addr into the HW */
2471 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
2473 /* PS and related bits will be programmed according to the speed */
2474 if (priv->hw->pcs) {
2475 int speed = priv->plat->mac_port_sel_speed;
2477 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2478 (speed == SPEED_1000)) {
2479 priv->hw->ps = speed;
2481 dev_warn(priv->device, "invalid port speed\n");
2486 /* Initialize the MAC Core */
2487 priv->hw->mac->core_init(priv->hw, dev->mtu);
2490 if (priv->synopsys_id >= DWMAC_CORE_4_00)
2491 stmmac_mtl_configuration(priv);
2493 ret = priv->hw->mac->rx_ipc(priv->hw);
2495 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2496 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2497 priv->hw->rx_csum = 0;
2500 /* Enable the MAC Rx/Tx */
2501 priv->hw->mac->set_mac(priv->ioaddr, true);
2503 /* Set the HW DMA mode and the COE */
2504 stmmac_dma_operation_mode(priv);
2506 stmmac_mmc_setup(priv);
2509 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2511 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2513 ret = stmmac_init_ptp(priv);
2514 if (ret == -EOPNOTSUPP)
2515 netdev_warn(priv->dev, "PTP not supported by HW\n");
2517 netdev_warn(priv->dev, "PTP init failed\n");
2520 #ifdef CONFIG_DEBUG_FS
2521 ret = stmmac_init_fs(dev);
2523 netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2526 /* Start the ball rolling... */
2527 stmmac_start_all_dma(priv);
2529 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2531 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
2532 priv->rx_riwt = MAX_DMA_RIWT;
2533 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2536 if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
2537 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
2539 /* set TX and RX rings length */
2540 stmmac_set_rings_length(priv);
2544 for (chan = 0; chan < tx_cnt; chan++)
2545 priv->hw->dma->enable_tso(priv->ioaddr, 1, chan);
2551 static void stmmac_hw_teardown(struct net_device *dev)
2553 struct stmmac_priv *priv = netdev_priv(dev);
2555 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2559 * stmmac_open - open entry point of the driver
2560 * @dev : pointer to the device structure.
2562 * This function is the open entry point of the driver.
2564 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2567 static int stmmac_open(struct net_device *dev)
2569 struct stmmac_priv *priv = netdev_priv(dev);
2572 stmmac_check_ether_addr(priv);
2574 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2575 priv->hw->pcs != STMMAC_PCS_TBI &&
2576 priv->hw->pcs != STMMAC_PCS_RTBI) {
2577 ret = stmmac_init_phy(dev);
2579 netdev_err(priv->dev,
2580 "%s: Cannot attach to PHY (error: %d)\n",
2586 /* Extra statistics */
2587 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2588 priv->xstats.threshold = tc;
2590 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2591 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2593 ret = alloc_dma_desc_resources(priv);
2595 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2597 goto dma_desc_error;
2600 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2602 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2607 ret = stmmac_hw_setup(dev, true);
2609 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2613 stmmac_init_tx_coalesce(priv);
2616 phy_start(dev->phydev);
2618 /* Request the IRQ lines */
2619 ret = request_irq(dev->irq, stmmac_interrupt,
2620 IRQF_SHARED, dev->name, dev);
2621 if (unlikely(ret < 0)) {
2622 netdev_err(priv->dev,
2623 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2624 __func__, dev->irq, ret);
2628 /* Request the Wake IRQ in case of another line is used for WoL */
2629 if (priv->wol_irq != dev->irq) {
2630 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2631 IRQF_SHARED, dev->name, dev);
2632 if (unlikely(ret < 0)) {
2633 netdev_err(priv->dev,
2634 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2635 __func__, priv->wol_irq, ret);
2640 /* Request the IRQ lines */
2641 if (priv->lpi_irq > 0) {
2642 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2644 if (unlikely(ret < 0)) {
2645 netdev_err(priv->dev,
2646 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2647 __func__, priv->lpi_irq, ret);
2652 stmmac_enable_all_queues(priv);
2653 stmmac_start_all_queues(priv);
2658 if (priv->wol_irq != dev->irq)
2659 free_irq(priv->wol_irq, dev);
2661 free_irq(dev->irq, dev);
2664 phy_stop(dev->phydev);
2666 del_timer_sync(&priv->txtimer);
2667 stmmac_hw_teardown(dev);
2669 free_dma_desc_resources(priv);
2672 phy_disconnect(dev->phydev);
2678 * stmmac_release - close entry point of the driver
2679 * @dev : device pointer.
2681 * This is the stop entry point of the driver.
2683 static int stmmac_release(struct net_device *dev)
2685 struct stmmac_priv *priv = netdev_priv(dev);
2687 if (priv->eee_enabled)
2688 del_timer_sync(&priv->eee_ctrl_timer);
2690 /* Stop and disconnect the PHY */
2692 phy_stop(dev->phydev);
2693 phy_disconnect(dev->phydev);
2696 stmmac_stop_all_queues(priv);
2698 stmmac_disable_all_queues(priv);
2700 del_timer_sync(&priv->txtimer);
2702 /* Free the IRQ lines */
2703 free_irq(dev->irq, dev);
2704 if (priv->wol_irq != dev->irq)
2705 free_irq(priv->wol_irq, dev);
2706 if (priv->lpi_irq > 0)
2707 free_irq(priv->lpi_irq, dev);
2709 /* Stop TX/RX DMA and clear the descriptors */
2710 stmmac_stop_all_dma(priv);
2712 /* Release and free the Rx/Tx resources */
2713 free_dma_desc_resources(priv);
2715 /* Disable the MAC Rx/Tx */
2716 priv->hw->mac->set_mac(priv->ioaddr, false);
2718 netif_carrier_off(dev);
2720 #ifdef CONFIG_DEBUG_FS
2721 stmmac_exit_fs(dev);
2724 stmmac_release_ptp(priv);
2730 * stmmac_tso_allocator - close entry point of the driver
2731 * @priv: driver private structure
2732 * @des: buffer start address
2733 * @total_len: total length to fill in descriptors
2734 * @last_segmant: condition for the last descriptor
2735 * @queue: TX queue index
2737 * This function fills descriptor and request new descriptors according to
2738 * buffer length to fill
2740 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2741 int total_len, bool last_segment, u32 queue)
2743 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2744 struct dma_desc *desc;
2748 tmp_len = total_len;
2750 while (tmp_len > 0) {
2751 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2752 desc = tx_q->dma_tx + tx_q->cur_tx;
2754 desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2755 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2756 TSO_MAX_BUFF_SIZE : tmp_len;
2758 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
2760 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2763 tmp_len -= TSO_MAX_BUFF_SIZE;
2768 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2769 * @skb : the socket buffer
2770 * @dev : device pointer
2771 * Description: this is the transmit function that is called on TSO frames
2772 * (support available on GMAC4 and newer chips).
2773 * Diagram below show the ring programming in case of TSO frames:
2777 * | DES0 |---> buffer1 = L2/L3/L4 header
2778 * | DES1 |---> TCP Payload (can continue on next descr...)
2779 * | DES2 |---> buffer 1 and 2 len
2780 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2786 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
2788 * | DES2 | --> buffer 1 and 2 len
2792 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2794 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2796 struct dma_desc *desc, *first, *mss_desc = NULL;
2797 struct stmmac_priv *priv = netdev_priv(dev);
2798 int nfrags = skb_shinfo(skb)->nr_frags;
2799 u32 queue = skb_get_queue_mapping(skb);
2800 unsigned int first_entry, des;
2801 struct stmmac_tx_queue *tx_q;
2802 int tmp_pay_len = 0;
2807 tx_q = &priv->tx_queue[queue];
2809 /* Compute header lengths */
2810 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2812 /* Desc availability based on threshold should be enough safe */
2813 if (unlikely(stmmac_tx_avail(priv, queue) <
2814 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2815 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2816 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2818 /* This is a hard error, log it. */
2819 netdev_err(priv->dev,
2820 "%s: Tx Ring full when queue awake\n",
2823 return NETDEV_TX_BUSY;
2826 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2828 mss = skb_shinfo(skb)->gso_size;
2830 /* set new MSS value if needed */
2831 if (mss != priv->mss) {
2832 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2833 priv->hw->desc->set_mss(mss_desc, mss);
2835 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2838 if (netif_msg_tx_queued(priv)) {
2839 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2840 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2841 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2845 first_entry = tx_q->cur_tx;
2847 desc = tx_q->dma_tx + first_entry;
2850 /* first descriptor: fill Headers on Buf1 */
2851 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2853 if (dma_mapping_error(priv->device, des))
2856 tx_q->tx_skbuff_dma[first_entry].buf = des;
2857 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2859 first->des0 = cpu_to_le32(des);
2861 /* Fill start of payload in buff2 of first descriptor */
2863 first->des1 = cpu_to_le32(des + proto_hdr_len);
2865 /* If needed take extra descriptors to fill the remaining payload */
2866 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2868 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2870 /* Prepare fragments */
2871 for (i = 0; i < nfrags; i++) {
2872 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2874 des = skb_frag_dma_map(priv->device, frag, 0,
2875 skb_frag_size(frag),
2877 if (dma_mapping_error(priv->device, des))
2880 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2881 (i == nfrags - 1), queue);
2883 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2884 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2885 tx_q->tx_skbuff[tx_q->cur_tx] = NULL;
2886 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2889 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2891 /* Only the last descriptor gets to point to the skb. */
2892 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2894 /* We've used all descriptors we need for this skb, however,
2895 * advance cur_tx so that it references a fresh descriptor.
2896 * ndo_start_xmit will fill this descriptor the next time it's
2897 * called and stmmac_tx_clean may clean up to this descriptor.
2899 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2901 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2902 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2904 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2907 dev->stats.tx_bytes += skb->len;
2908 priv->xstats.tx_tso_frames++;
2909 priv->xstats.tx_tso_nfrags += nfrags;
2911 /* Manage tx mitigation */
2912 priv->tx_count_frames += nfrags + 1;
2913 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2914 mod_timer(&priv->txtimer,
2915 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2917 priv->tx_count_frames = 0;
2918 priv->hw->desc->set_tx_ic(desc);
2919 priv->xstats.tx_set_ic_bit++;
2922 skb_tx_timestamp(skb);
2924 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2925 priv->hwts_tx_en)) {
2926 /* declare that device is doing timestamping */
2927 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2928 priv->hw->desc->enable_tx_timestamp(first);
2931 /* Complete the first descriptor before granting the DMA */
2932 priv->hw->desc->prepare_tso_tx_desc(first, 1,
2935 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2936 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2938 /* If context desc is used to change MSS */
2940 priv->hw->desc->set_tx_owner(mss_desc);
2942 /* The own bit must be the latest setting done when prepare the
2943 * descriptor and then barrier is needed to make sure that
2944 * all is coherent before granting the DMA engine.
2948 if (netif_msg_pktdata(priv)) {
2949 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2950 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2951 tx_q->cur_tx, first, nfrags);
2953 priv->hw->desc->display_ring((void *)tx_q->dma_tx, DMA_TX_SIZE,
2956 pr_info(">>> frame to be transmitted: ");
2957 print_pkt(skb->data, skb_headlen(skb));
2960 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2962 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
2965 return NETDEV_TX_OK;
2968 dev_err(priv->device, "Tx dma map failed\n");
2970 priv->dev->stats.tx_dropped++;
2971 return NETDEV_TX_OK;
2975 * stmmac_xmit - Tx entry point of the driver
2976 * @skb : the socket buffer
2977 * @dev : device pointer
2978 * Description : this is the tx entry point of the driver.
2979 * It programs the chain or the ring and supports oversized frames
2982 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2984 struct stmmac_priv *priv = netdev_priv(dev);
2985 unsigned int nopaged_len = skb_headlen(skb);
2986 int i, csum_insertion = 0, is_jumbo = 0;
2987 u32 queue = skb_get_queue_mapping(skb);
2988 int nfrags = skb_shinfo(skb)->nr_frags;
2990 unsigned int first_entry;
2991 struct dma_desc *desc, *first;
2992 struct stmmac_tx_queue *tx_q;
2993 unsigned int enh_desc;
2996 tx_q = &priv->tx_queue[queue];
2998 /* Manage oversized TCP frames for GMAC4 device */
2999 if (skb_is_gso(skb) && priv->tso) {
3000 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3001 return stmmac_tso_xmit(skb, dev);
3004 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3005 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3006 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3008 /* This is a hard error, log it. */
3009 netdev_err(priv->dev,
3010 "%s: Tx Ring full when queue awake\n",
3013 return NETDEV_TX_BUSY;
3016 if (priv->tx_path_in_lpi_mode)
3017 stmmac_disable_eee_mode(priv);
3019 entry = tx_q->cur_tx;
3020 first_entry = entry;
3022 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3024 if (likely(priv->extend_desc))
3025 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3027 desc = tx_q->dma_tx + entry;
3031 enh_desc = priv->plat->enh_desc;
3032 /* To program the descriptors according to the size of the frame */
3034 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
3036 if (unlikely(is_jumbo) && likely(priv->synopsys_id <
3038 entry = priv->hw->mode->jumbo_frm(tx_q, skb, csum_insertion);
3039 if (unlikely(entry < 0))
3043 for (i = 0; i < nfrags; i++) {
3044 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3045 int len = skb_frag_size(frag);
3046 bool last_segment = (i == (nfrags - 1));
3048 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3050 if (likely(priv->extend_desc))
3051 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3053 desc = tx_q->dma_tx + entry;
3055 des = skb_frag_dma_map(priv->device, frag, 0, len,
3057 if (dma_mapping_error(priv->device, des))
3058 goto dma_map_err; /* should reuse desc w/o issues */
3060 tx_q->tx_skbuff[entry] = NULL;
3062 tx_q->tx_skbuff_dma[entry].buf = des;
3063 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3064 desc->des0 = cpu_to_le32(des);
3066 desc->des2 = cpu_to_le32(des);
3068 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3069 tx_q->tx_skbuff_dma[entry].len = len;
3070 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3072 /* Prepare the descriptor and set the own bit too */
3073 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
3074 priv->mode, 1, last_segment,
3078 /* Only the last descriptor gets to point to the skb. */
3079 tx_q->tx_skbuff[entry] = skb;
3081 /* We've used all descriptors we need for this skb, however,
3082 * advance cur_tx so that it references a fresh descriptor.
3083 * ndo_start_xmit will fill this descriptor the next time it's
3084 * called and stmmac_tx_clean may clean up to this descriptor.
3086 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3087 tx_q->cur_tx = entry;
3089 if (netif_msg_pktdata(priv)) {
3092 netdev_dbg(priv->dev,
3093 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3094 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3095 entry, first, nfrags);
3097 if (priv->extend_desc)
3098 tx_head = (void *)tx_q->dma_etx;
3100 tx_head = (void *)tx_q->dma_tx;
3102 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
3104 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3105 print_pkt(skb->data, skb->len);
3108 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3109 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3111 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3114 dev->stats.tx_bytes += skb->len;
3116 /* According to the coalesce parameter the IC bit for the latest
3117 * segment is reset and the timer re-started to clean the tx status.
3118 * This approach takes care about the fragments: desc is the first
3119 * element in case of no SG.
3121 priv->tx_count_frames += nfrags + 1;
3122 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
3123 mod_timer(&priv->txtimer,
3124 STMMAC_COAL_TIMER(priv->tx_coal_timer));
3126 priv->tx_count_frames = 0;
3127 priv->hw->desc->set_tx_ic(desc);
3128 priv->xstats.tx_set_ic_bit++;
3131 skb_tx_timestamp(skb);
3133 /* Ready to fill the first descriptor and set the OWN bit w/o any
3134 * problems because all the descriptors are actually ready to be
3135 * passed to the DMA engine.
3137 if (likely(!is_jumbo)) {
3138 bool last_segment = (nfrags == 0);
3140 des = dma_map_single(priv->device, skb->data,
3141 nopaged_len, DMA_TO_DEVICE);
3142 if (dma_mapping_error(priv->device, des))
3145 tx_q->tx_skbuff_dma[first_entry].buf = des;
3146 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3147 first->des0 = cpu_to_le32(des);
3149 first->des2 = cpu_to_le32(des);
3151 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3152 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3154 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3155 priv->hwts_tx_en)) {
3156 /* declare that device is doing timestamping */
3157 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3158 priv->hw->desc->enable_tx_timestamp(first);
3161 /* Prepare the first descriptor setting the OWN bit too */
3162 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
3163 csum_insertion, priv->mode, 1,
3164 last_segment, skb->len);
3166 /* The own bit must be the latest setting done when prepare the
3167 * descriptor and then barrier is needed to make sure that
3168 * all is coherent before granting the DMA engine.
3173 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3175 if (priv->synopsys_id < DWMAC_CORE_4_00)
3176 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
3178 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
3181 return NETDEV_TX_OK;
3184 netdev_err(priv->dev, "Tx DMA map failed\n");
3186 priv->dev->stats.tx_dropped++;
3187 return NETDEV_TX_OK;
3190 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3192 struct ethhdr *ehdr;
3195 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
3196 NETIF_F_HW_VLAN_CTAG_RX &&
3197 !__vlan_get_tag(skb, &vlanid)) {
3198 /* pop the vlan tag */
3199 ehdr = (struct ethhdr *)skb->data;
3200 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
3201 skb_pull(skb, VLAN_HLEN);
3202 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
3207 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3209 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3216 * stmmac_rx_refill - refill used skb preallocated buffers
3217 * @priv: driver private structure
3218 * @queue: RX queue index
3219 * Description : this is to reallocate the skb for the reception process
3220 * that is based on zero-copy.
3222 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3224 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3225 int dirty = stmmac_rx_dirty(priv, queue);
3226 unsigned int entry = rx_q->dirty_rx;
3228 int bfsize = priv->dma_buf_sz;
3230 while (dirty-- > 0) {
3233 if (priv->extend_desc)
3234 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3236 p = rx_q->dma_rx + entry;
3238 if (likely(!rx_q->rx_skbuff[entry])) {
3239 struct sk_buff *skb;
3241 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3242 if (unlikely(!skb)) {
3243 /* so for a while no zero-copy! */
3244 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3245 if (unlikely(net_ratelimit()))
3246 dev_err(priv->device,
3247 "fail to alloc skb entry %d\n",
3252 rx_q->rx_skbuff[entry] = skb;
3253 rx_q->rx_skbuff_dma[entry] =
3254 dma_map_single(priv->device, skb->data, bfsize,
3256 if (dma_mapping_error(priv->device,
3257 rx_q->rx_skbuff_dma[entry])) {
3258 netdev_err(priv->dev, "Rx DMA map failed\n");
3263 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
3264 p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
3267 p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
3269 if (priv->hw->mode->refill_desc3)
3270 priv->hw->mode->refill_desc3(rx_q, p);
3272 if (rx_q->rx_zeroc_thresh > 0)
3273 rx_q->rx_zeroc_thresh--;
3275 netif_dbg(priv, rx_status, priv->dev,
3276 "refill entry #%d\n", entry);
3280 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3281 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
3283 priv->hw->desc->set_rx_owner(p);
3287 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3289 rx_q->dirty_rx = entry;
3293 * stmmac_rx - manage the receive process
3294 * @priv: driver private structure
3295 * @limit: napi bugget
3296 * @queue: RX queue index.
3297 * Description : this the function called by the napi poll method.
3298 * It gets all the frames inside the ring.
3300 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3302 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3303 unsigned int entry = rx_q->cur_rx;
3304 int coe = priv->hw->rx_csum;
3305 unsigned int next_entry;
3306 unsigned int count = 0;
3308 if (netif_msg_rx_status(priv)) {
3311 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3312 if (priv->extend_desc)
3313 rx_head = (void *)rx_q->dma_erx;
3315 rx_head = (void *)rx_q->dma_rx;
3317 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
3319 while (count < limit) {
3322 struct dma_desc *np;
3324 if (priv->extend_desc)
3325 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3327 p = rx_q->dma_rx + entry;
3329 /* read the status of the incoming frame */
3330 status = priv->hw->desc->rx_status(&priv->dev->stats,
3332 /* check if managed by the DMA otherwise go ahead */
3333 if (unlikely(status & dma_own))
3338 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3339 next_entry = rx_q->cur_rx;
3341 if (priv->extend_desc)
3342 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3344 np = rx_q->dma_rx + next_entry;
3348 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
3349 priv->hw->desc->rx_extended_status(&priv->dev->stats,
3353 if (unlikely(status == discard_frame)) {
3354 priv->dev->stats.rx_errors++;
3355 if (priv->hwts_rx_en && !priv->extend_desc) {
3356 /* DESC2 & DESC3 will be overwritten by device
3357 * with timestamp value, hence reinitialize
3358 * them in stmmac_rx_refill() function so that
3359 * device can reuse it.
3361 dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3362 rx_q->rx_skbuff[entry] = NULL;
3363 dma_unmap_single(priv->device,
3364 rx_q->rx_skbuff_dma[entry],
3369 struct sk_buff *skb;
3373 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
3374 des = le32_to_cpu(p->des0);
3376 des = le32_to_cpu(p->des2);
3378 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
3380 /* If frame length is greater than skb buffer size
3381 * (preallocated during init) then the packet is
3384 if (frame_len > priv->dma_buf_sz) {
3385 netdev_err(priv->dev,
3386 "len %d larger than size (%d)\n",
3387 frame_len, priv->dma_buf_sz);
3388 priv->dev->stats.rx_length_errors++;
3392 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3393 * Type frames (LLC/LLC-SNAP)
3395 if (unlikely(status != llc_snap))
3396 frame_len -= ETH_FCS_LEN;
3398 if (netif_msg_rx_status(priv)) {
3399 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3401 if (frame_len > ETH_FRAME_LEN)
3402 netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3406 /* The zero-copy is always used for all the sizes
3407 * in case of GMAC4 because it needs
3408 * to refill the used descriptors, always.
3410 if (unlikely(!priv->plat->has_gmac4 &&
3411 ((frame_len < priv->rx_copybreak) ||
3412 stmmac_rx_threshold_count(rx_q)))) {
3413 skb = netdev_alloc_skb_ip_align(priv->dev,
3415 if (unlikely(!skb)) {
3416 if (net_ratelimit())
3417 dev_warn(priv->device,
3418 "packet dropped\n");
3419 priv->dev->stats.rx_dropped++;
3423 dma_sync_single_for_cpu(priv->device,
3427 skb_copy_to_linear_data(skb,
3429 rx_skbuff[entry]->data,
3432 skb_put(skb, frame_len);
3433 dma_sync_single_for_device(priv->device,
3438 skb = rx_q->rx_skbuff[entry];
3439 if (unlikely(!skb)) {
3440 netdev_err(priv->dev,
3441 "%s: Inconsistent Rx chain\n",
3443 priv->dev->stats.rx_dropped++;
3446 prefetch(skb->data - NET_IP_ALIGN);
3447 rx_q->rx_skbuff[entry] = NULL;
3448 rx_q->rx_zeroc_thresh++;
3450 skb_put(skb, frame_len);
3451 dma_unmap_single(priv->device,
3452 rx_q->rx_skbuff_dma[entry],
3457 if (netif_msg_pktdata(priv)) {
3458 netdev_dbg(priv->dev, "frame received (%dbytes)",
3460 print_pkt(skb->data, frame_len);
3463 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3465 stmmac_rx_vlan(priv->dev, skb);
3467 skb->protocol = eth_type_trans(skb, priv->dev);
3470 skb_checksum_none_assert(skb);
3472 skb->ip_summed = CHECKSUM_UNNECESSARY;
3474 napi_gro_receive(&rx_q->napi, skb);
3476 priv->dev->stats.rx_packets++;
3477 priv->dev->stats.rx_bytes += frame_len;
3482 stmmac_rx_refill(priv, queue);
3484 priv->xstats.rx_pkt_n += count;
3490 * stmmac_poll - stmmac poll method (NAPI)
3491 * @napi : pointer to the napi structure.
3492 * @budget : maximum number of packets that the current CPU can receive from
3495 * To look at the incoming frames and clear the tx resources.
3497 static int stmmac_poll(struct napi_struct *napi, int budget)
3499 struct stmmac_rx_queue *rx_q =
3500 container_of(napi, struct stmmac_rx_queue, napi);
3501 struct stmmac_priv *priv = rx_q->priv_data;
3502 u32 tx_count = priv->plat->tx_queues_to_use;
3503 u32 chan = rx_q->queue_index;
3507 priv->xstats.napi_poll++;
3509 /* check all the queues */
3510 for (queue = 0; queue < tx_count; queue++)
3511 stmmac_tx_clean(priv, queue);
3513 work_done = stmmac_rx(priv, budget, rx_q->queue_index);
3514 if (work_done < budget) {
3515 napi_complete_done(napi, work_done);
3516 stmmac_enable_dma_irq(priv, chan);
3523 * @dev : Pointer to net device structure
3524 * Description: this function is called when a packet transmission fails to
3525 * complete within a reasonable time. The driver will mark the error in the
3526 * netdev structure and arrange for the device to be reset to a sane state
3527 * in order to transmit a new packet.
3529 static void stmmac_tx_timeout(struct net_device *dev)
3531 struct stmmac_priv *priv = netdev_priv(dev);
3532 u32 tx_count = priv->plat->tx_queues_to_use;
3535 /* Clear Tx resources and restart transmitting again */
3536 for (chan = 0; chan < tx_count; chan++)
3537 stmmac_tx_err(priv, chan);
3541 * stmmac_set_rx_mode - entry point for multicast addressing
3542 * @dev : pointer to the device structure
3544 * This function is a driver entry point which gets called by the kernel
3545 * whenever multicast addresses must be enabled/disabled.
3549 static void stmmac_set_rx_mode(struct net_device *dev)
3551 struct stmmac_priv *priv = netdev_priv(dev);
3553 priv->hw->mac->set_filter(priv->hw, dev);
3557 * stmmac_change_mtu - entry point to change MTU size for the device.
3558 * @dev : device pointer.
3559 * @new_mtu : the new MTU size for the device.
3560 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3561 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3562 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3564 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3567 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3569 struct stmmac_priv *priv = netdev_priv(dev);
3571 if (netif_running(dev)) {
3572 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3578 netdev_update_features(dev);
3583 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3584 netdev_features_t features)
3586 struct stmmac_priv *priv = netdev_priv(dev);
3588 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3589 features &= ~NETIF_F_RXCSUM;
3591 if (!priv->plat->tx_coe)
3592 features &= ~NETIF_F_CSUM_MASK;
3594 /* Some GMAC devices have a bugged Jumbo frame support that
3595 * needs to have the Tx COE disabled for oversized frames
3596 * (due to limited buffer sizes). In this case we disable
3597 * the TX csum insertion in the TDES and not use SF.
3599 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3600 features &= ~NETIF_F_CSUM_MASK;
3602 /* Disable tso if asked by ethtool */
3603 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3604 if (features & NETIF_F_TSO)
3613 static int stmmac_set_features(struct net_device *netdev,
3614 netdev_features_t features)
3616 struct stmmac_priv *priv = netdev_priv(netdev);
3618 /* Keep the COE Type in case of csum is supporting */
3619 if (features & NETIF_F_RXCSUM)
3620 priv->hw->rx_csum = priv->plat->rx_coe;
3622 priv->hw->rx_csum = 0;
3623 /* No check needed because rx_coe has been set before and it will be
3624 * fixed in case of issue.
3626 priv->hw->mac->rx_ipc(priv->hw);
3632 * stmmac_interrupt - main ISR
3633 * @irq: interrupt number.
3634 * @dev_id: to pass the net device pointer.
3635 * Description: this is the main driver interrupt service routine.
3637 * o DMA service routine (to manage incoming frame reception and transmission
3639 * o Core interrupts to manage: remote wake-up, management counter, LPI
3642 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3644 struct net_device *dev = (struct net_device *)dev_id;
3645 struct stmmac_priv *priv = netdev_priv(dev);
3646 u32 rx_cnt = priv->plat->rx_queues_to_use;
3647 u32 tx_cnt = priv->plat->tx_queues_to_use;
3651 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3654 pm_wakeup_event(priv->device, 0);
3656 if (unlikely(!dev)) {
3657 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3661 /* To handle GMAC own interrupts */
3662 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
3663 int status = priv->hw->mac->host_irq_status(priv->hw,
3666 if (unlikely(status)) {
3667 /* For LPI we need to save the tx status */
3668 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3669 priv->tx_path_in_lpi_mode = true;
3670 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3671 priv->tx_path_in_lpi_mode = false;
3674 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3675 for (queue = 0; queue < queues_count; queue++) {
3676 struct stmmac_rx_queue *rx_q =
3677 &priv->rx_queue[queue];
3680 priv->hw->mac->host_mtl_irq_status(priv->hw,
3683 if (status & CORE_IRQ_MTL_RX_OVERFLOW &&
3684 priv->hw->dma->set_rx_tail_ptr)
3685 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
3691 /* PCS link status */
3692 if (priv->hw->pcs) {
3693 if (priv->xstats.pcs_link)
3694 netif_carrier_on(dev);
3696 netif_carrier_off(dev);
3700 /* To handle DMA interrupts */
3701 stmmac_dma_interrupt(priv);
3706 #ifdef CONFIG_NET_POLL_CONTROLLER
3707 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3708 * to allow network I/O with interrupts disabled.
3710 static void stmmac_poll_controller(struct net_device *dev)
3712 disable_irq(dev->irq);
3713 stmmac_interrupt(dev->irq, dev);
3714 enable_irq(dev->irq);
3719 * stmmac_ioctl - Entry point for the Ioctl
3720 * @dev: Device pointer.
3721 * @rq: An IOCTL specefic structure, that can contain a pointer to
3722 * a proprietary structure used to pass information to the driver.
3723 * @cmd: IOCTL command
3725 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3727 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3729 int ret = -EOPNOTSUPP;
3731 if (!netif_running(dev))
3740 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3743 ret = stmmac_hwtstamp_ioctl(dev, rq);
3752 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3754 struct stmmac_priv *priv = netdev_priv(ndev);
3757 ret = eth_mac_addr(ndev, addr);
3761 priv->hw->mac->set_umac_addr(priv->hw, ndev->dev_addr, 0);
3766 #ifdef CONFIG_DEBUG_FS
3767 static struct dentry *stmmac_fs_dir;
3769 static void sysfs_display_ring(void *head, int size, int extend_desc,
3770 struct seq_file *seq)
3773 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3774 struct dma_desc *p = (struct dma_desc *)head;
3776 for (i = 0; i < size; i++) {
3778 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3779 i, (unsigned int)virt_to_phys(ep),
3780 le32_to_cpu(ep->basic.des0),
3781 le32_to_cpu(ep->basic.des1),
3782 le32_to_cpu(ep->basic.des2),
3783 le32_to_cpu(ep->basic.des3));
3786 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3787 i, (unsigned int)virt_to_phys(p),
3788 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3789 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3792 seq_printf(seq, "\n");
3796 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3798 struct net_device *dev = seq->private;
3799 struct stmmac_priv *priv = netdev_priv(dev);
3800 u32 rx_count = priv->plat->rx_queues_to_use;
3801 u32 tx_count = priv->plat->tx_queues_to_use;
3804 for (queue = 0; queue < rx_count; queue++) {
3805 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3807 seq_printf(seq, "RX Queue %d:\n", queue);
3809 if (priv->extend_desc) {
3810 seq_printf(seq, "Extended descriptor ring:\n");
3811 sysfs_display_ring((void *)rx_q->dma_erx,
3812 DMA_RX_SIZE, 1, seq);
3814 seq_printf(seq, "Descriptor ring:\n");
3815 sysfs_display_ring((void *)rx_q->dma_rx,
3816 DMA_RX_SIZE, 0, seq);
3820 for (queue = 0; queue < tx_count; queue++) {
3821 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3823 seq_printf(seq, "TX Queue %d:\n", queue);
3825 if (priv->extend_desc) {
3826 seq_printf(seq, "Extended descriptor ring:\n");
3827 sysfs_display_ring((void *)tx_q->dma_etx,
3828 DMA_TX_SIZE, 1, seq);
3830 seq_printf(seq, "Descriptor ring:\n");
3831 sysfs_display_ring((void *)tx_q->dma_tx,
3832 DMA_TX_SIZE, 0, seq);
3839 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3841 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3844 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3846 static const struct file_operations stmmac_rings_status_fops = {
3847 .owner = THIS_MODULE,
3848 .open = stmmac_sysfs_ring_open,
3850 .llseek = seq_lseek,
3851 .release = single_release,
3854 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3856 struct net_device *dev = seq->private;
3857 struct stmmac_priv *priv = netdev_priv(dev);
3859 if (!priv->hw_cap_support) {
3860 seq_printf(seq, "DMA HW features not supported\n");
3864 seq_printf(seq, "==============================\n");
3865 seq_printf(seq, "\tDMA HW features\n");
3866 seq_printf(seq, "==============================\n");
3868 seq_printf(seq, "\t10/100 Mbps: %s\n",
3869 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3870 seq_printf(seq, "\t1000 Mbps: %s\n",
3871 (priv->dma_cap.mbps_1000) ? "Y" : "N");
3872 seq_printf(seq, "\tHalf duplex: %s\n",
3873 (priv->dma_cap.half_duplex) ? "Y" : "N");
3874 seq_printf(seq, "\tHash Filter: %s\n",
3875 (priv->dma_cap.hash_filter) ? "Y" : "N");
3876 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3877 (priv->dma_cap.multi_addr) ? "Y" : "N");
3878 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3879 (priv->dma_cap.pcs) ? "Y" : "N");
3880 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3881 (priv->dma_cap.sma_mdio) ? "Y" : "N");
3882 seq_printf(seq, "\tPMT Remote wake up: %s\n",
3883 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3884 seq_printf(seq, "\tPMT Magic Frame: %s\n",
3885 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3886 seq_printf(seq, "\tRMON module: %s\n",
3887 (priv->dma_cap.rmon) ? "Y" : "N");
3888 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3889 (priv->dma_cap.time_stamp) ? "Y" : "N");
3890 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3891 (priv->dma_cap.atime_stamp) ? "Y" : "N");
3892 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3893 (priv->dma_cap.eee) ? "Y" : "N");
3894 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3895 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3896 (priv->dma_cap.tx_coe) ? "Y" : "N");
3897 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3898 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3899 (priv->dma_cap.rx_coe) ? "Y" : "N");
3901 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3902 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3903 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3904 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3906 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3907 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3908 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3909 priv->dma_cap.number_rx_channel);
3910 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3911 priv->dma_cap.number_tx_channel);
3912 seq_printf(seq, "\tEnhanced descriptors: %s\n",
3913 (priv->dma_cap.enh_desc) ? "Y" : "N");
3918 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3920 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3923 static const struct file_operations stmmac_dma_cap_fops = {
3924 .owner = THIS_MODULE,
3925 .open = stmmac_sysfs_dma_cap_open,
3927 .llseek = seq_lseek,
3928 .release = single_release,
3931 static int stmmac_init_fs(struct net_device *dev)
3933 struct stmmac_priv *priv = netdev_priv(dev);
3935 /* Create per netdev entries */
3936 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3938 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3939 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3944 /* Entry to report DMA RX/TX rings */
3945 priv->dbgfs_rings_status =
3946 debugfs_create_file("descriptors_status", S_IRUGO,
3947 priv->dbgfs_dir, dev,
3948 &stmmac_rings_status_fops);
3950 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3951 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3952 debugfs_remove_recursive(priv->dbgfs_dir);
3957 /* Entry to report the DMA HW features */
3958 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3960 dev, &stmmac_dma_cap_fops);
3962 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3963 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3964 debugfs_remove_recursive(priv->dbgfs_dir);
3972 static void stmmac_exit_fs(struct net_device *dev)
3974 struct stmmac_priv *priv = netdev_priv(dev);
3976 debugfs_remove_recursive(priv->dbgfs_dir);
3978 #endif /* CONFIG_DEBUG_FS */
3980 static const struct net_device_ops stmmac_netdev_ops = {
3981 .ndo_open = stmmac_open,
3982 .ndo_start_xmit = stmmac_xmit,
3983 .ndo_stop = stmmac_release,
3984 .ndo_change_mtu = stmmac_change_mtu,
3985 .ndo_fix_features = stmmac_fix_features,
3986 .ndo_set_features = stmmac_set_features,
3987 .ndo_set_rx_mode = stmmac_set_rx_mode,
3988 .ndo_tx_timeout = stmmac_tx_timeout,
3989 .ndo_do_ioctl = stmmac_ioctl,
3990 #ifdef CONFIG_NET_POLL_CONTROLLER
3991 .ndo_poll_controller = stmmac_poll_controller,
3993 .ndo_set_mac_address = stmmac_set_mac_address,
3997 * stmmac_hw_init - Init the MAC device
3998 * @priv: driver private structure
3999 * Description: this function is to configure the MAC device according to
4000 * some platform parameters or the HW capability register. It prepares the
4001 * driver to use either ring or chain modes and to setup either enhanced or
4002 * normal descriptors.
4004 static int stmmac_hw_init(struct stmmac_priv *priv)
4006 struct mac_device_info *mac;
4008 /* Identify the MAC HW device */
4009 if (priv->plat->setup) {
4010 mac = priv->plat->setup(priv);
4011 } else if (priv->plat->has_gmac) {
4012 priv->dev->priv_flags |= IFF_UNICAST_FLT;
4013 mac = dwmac1000_setup(priv->ioaddr,
4014 priv->plat->multicast_filter_bins,
4015 priv->plat->unicast_filter_entries,
4016 &priv->synopsys_id);
4017 } else if (priv->plat->has_gmac4) {
4018 priv->dev->priv_flags |= IFF_UNICAST_FLT;
4019 mac = dwmac4_setup(priv->ioaddr,
4020 priv->plat->multicast_filter_bins,
4021 priv->plat->unicast_filter_entries,
4022 &priv->synopsys_id);
4024 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
4031 /* dwmac-sun8i only work in chain mode */
4032 if (priv->plat->has_sun8i)
4035 /* To use the chained or ring mode */
4036 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4037 priv->hw->mode = &dwmac4_ring_mode_ops;
4040 priv->hw->mode = &chain_mode_ops;
4041 dev_info(priv->device, "Chain mode enabled\n");
4042 priv->mode = STMMAC_CHAIN_MODE;
4044 priv->hw->mode = &ring_mode_ops;
4045 dev_info(priv->device, "Ring mode enabled\n");
4046 priv->mode = STMMAC_RING_MODE;
4050 /* Get the HW capability (new GMAC newer than 3.50a) */
4051 priv->hw_cap_support = stmmac_get_hw_features(priv);
4052 if (priv->hw_cap_support) {
4053 dev_info(priv->device, "DMA HW capability register supported\n");
4055 /* We can override some gmac/dma configuration fields: e.g.
4056 * enh_desc, tx_coe (e.g. that are passed through the
4057 * platform) with the values from the HW capability
4058 * register (if supported).
4060 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4061 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4062 priv->hw->pmt = priv->plat->pmt;
4064 /* TXCOE doesn't work in thresh DMA mode */
4065 if (priv->plat->force_thresh_dma_mode)
4066 priv->plat->tx_coe = 0;
4068 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4070 /* In case of GMAC4 rx_coe is from HW cap register. */
4071 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4073 if (priv->dma_cap.rx_coe_type2)
4074 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4075 else if (priv->dma_cap.rx_coe_type1)
4076 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4079 dev_info(priv->device, "No HW DMA feature register supported\n");
4082 /* To use alternate (extended), normal or GMAC4 descriptor structures */
4083 if (priv->synopsys_id >= DWMAC_CORE_4_00)
4084 priv->hw->desc = &dwmac4_desc_ops;
4086 stmmac_selec_desc_mode(priv);
4088 if (priv->plat->rx_coe) {
4089 priv->hw->rx_csum = priv->plat->rx_coe;
4090 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4091 if (priv->synopsys_id < DWMAC_CORE_4_00)
4092 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4094 if (priv->plat->tx_coe)
4095 dev_info(priv->device, "TX Checksum insertion supported\n");
4097 if (priv->plat->pmt) {
4098 dev_info(priv->device, "Wake-Up On Lan supported\n");
4099 device_set_wakeup_capable(priv->device, 1);
4102 if (priv->dma_cap.tsoen)
4103 dev_info(priv->device, "TSO supported\n");
4110 * @device: device pointer
4111 * @plat_dat: platform data pointer
4112 * @res: stmmac resource pointer
4113 * Description: this is the main probe function used to
4114 * call the alloc_etherdev, allocate the priv structure.
4116 * returns 0 on success, otherwise errno.
4118 int stmmac_dvr_probe(struct device *device,
4119 struct plat_stmmacenet_data *plat_dat,
4120 struct stmmac_resources *res)
4122 struct net_device *ndev = NULL;
4123 struct stmmac_priv *priv;
4127 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4133 SET_NETDEV_DEV(ndev, device);
4135 priv = netdev_priv(ndev);
4136 priv->device = device;
4139 stmmac_set_ethtool_ops(ndev);
4140 priv->pause = pause;
4141 priv->plat = plat_dat;
4142 priv->ioaddr = res->addr;
4143 priv->dev->base_addr = (unsigned long)res->addr;
4145 priv->dev->irq = res->irq;
4146 priv->wol_irq = res->wol_irq;
4147 priv->lpi_irq = res->lpi_irq;
4150 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4152 dev_set_drvdata(device, priv->dev);
4154 /* Verify driver arguments */
4155 stmmac_verify_args();
4157 /* Override with kernel parameters if supplied XXX CRS XXX
4158 * this needs to have multiple instances
4160 if ((phyaddr >= 0) && (phyaddr <= 31))
4161 priv->plat->phy_addr = phyaddr;
4163 if (priv->plat->stmmac_rst) {
4164 ret = reset_control_assert(priv->plat->stmmac_rst);
4165 reset_control_deassert(priv->plat->stmmac_rst);
4166 /* Some reset controllers have only reset callback instead of
4167 * assert + deassert callbacks pair.
4169 if (ret == -ENOTSUPP)
4170 reset_control_reset(priv->plat->stmmac_rst);
4173 /* Init MAC and get the capabilities */
4174 ret = stmmac_hw_init(priv);
4178 /* Configure real RX and TX queues */
4179 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4180 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4182 ndev->netdev_ops = &stmmac_netdev_ops;
4184 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4187 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4188 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4190 dev_info(priv->device, "TSO feature enabled\n");
4192 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4193 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4194 #ifdef STMMAC_VLAN_TAG_USED
4195 /* Both mac100 and gmac support receive VLAN tag detection */
4196 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4198 priv->msg_enable = netif_msg_init(debug, default_msg_level);
4200 /* MTU range: 46 - hw-specific max */
4201 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4202 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4203 ndev->max_mtu = JUMBO_LEN;
4205 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4206 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4207 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4209 if ((priv->plat->maxmtu < ndev->max_mtu) &&
4210 (priv->plat->maxmtu >= ndev->min_mtu))
4211 ndev->max_mtu = priv->plat->maxmtu;
4212 else if (priv->plat->maxmtu < ndev->min_mtu)
4213 dev_warn(priv->device,
4214 "%s: warning: maxmtu having invalid value (%d)\n",
4215 __func__, priv->plat->maxmtu);
4218 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
4220 /* Rx Watchdog is available in the COREs newer than the 3.40.
4221 * In some case, for example on bugged HW this feature
4222 * has to be disable and this can be done by passing the
4223 * riwt_off field from the platform.
4225 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
4227 dev_info(priv->device,
4228 "Enable RX Mitigation via HW Watchdog Timer\n");
4231 for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4232 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4234 netif_napi_add(ndev, &rx_q->napi, stmmac_poll,
4235 (8 * priv->plat->rx_queues_to_use));
4238 spin_lock_init(&priv->lock);
4240 /* If a specific clk_csr value is passed from the platform
4241 * this means that the CSR Clock Range selection cannot be
4242 * changed at run-time and it is fixed. Viceversa the driver'll try to
4243 * set the MDC clock dynamically according to the csr actual
4246 if (!priv->plat->clk_csr)
4247 stmmac_clk_csr_set(priv);
4249 priv->clk_csr = priv->plat->clk_csr;
4251 stmmac_check_pcs_mode(priv);
4253 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4254 priv->hw->pcs != STMMAC_PCS_TBI &&
4255 priv->hw->pcs != STMMAC_PCS_RTBI) {
4256 /* MDIO bus Registration */
4257 ret = stmmac_mdio_register(ndev);
4259 dev_err(priv->device,
4260 "%s: MDIO bus (id: %d) registration failed",
4261 __func__, priv->plat->bus_id);
4262 goto error_mdio_register;
4266 ret = register_netdev(ndev);
4268 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4270 goto error_netdev_register;
4275 error_netdev_register:
4276 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4277 priv->hw->pcs != STMMAC_PCS_TBI &&
4278 priv->hw->pcs != STMMAC_PCS_RTBI)
4279 stmmac_mdio_unregister(ndev);
4280 error_mdio_register:
4281 for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
4282 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4284 netif_napi_del(&rx_q->napi);
4291 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4295 * @dev: device pointer
4296 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4297 * changes the link status, releases the DMA descriptor rings.
4299 int stmmac_dvr_remove(struct device *dev)
4301 struct net_device *ndev = dev_get_drvdata(dev);
4302 struct stmmac_priv *priv = netdev_priv(ndev);
4304 netdev_info(priv->dev, "%s: removing driver", __func__);
4306 stmmac_stop_all_dma(priv);
4308 priv->hw->mac->set_mac(priv->ioaddr, false);
4309 netif_carrier_off(ndev);
4310 unregister_netdev(ndev);
4311 if (priv->plat->stmmac_rst)
4312 reset_control_assert(priv->plat->stmmac_rst);
4313 clk_disable_unprepare(priv->plat->pclk);
4314 clk_disable_unprepare(priv->plat->stmmac_clk);
4315 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4316 priv->hw->pcs != STMMAC_PCS_TBI &&
4317 priv->hw->pcs != STMMAC_PCS_RTBI)
4318 stmmac_mdio_unregister(ndev);
4323 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4326 * stmmac_suspend - suspend callback
4327 * @dev: device pointer
4328 * Description: this is the function to suspend the device and it is called
4329 * by the platform driver to stop the network queue, release the resources,
4330 * program the PMT register (for WoL), clean and release driver resources.
4332 int stmmac_suspend(struct device *dev)
4334 struct net_device *ndev = dev_get_drvdata(dev);
4335 struct stmmac_priv *priv = netdev_priv(ndev);
4336 unsigned long flags;
4338 if (!ndev || !netif_running(ndev))
4342 phy_stop(ndev->phydev);
4344 spin_lock_irqsave(&priv->lock, flags);
4346 netif_device_detach(ndev);
4347 stmmac_stop_all_queues(priv);
4349 stmmac_disable_all_queues(priv);
4351 /* Stop TX/RX DMA */
4352 stmmac_stop_all_dma(priv);
4354 /* Enable Power down mode by programming the PMT regs */
4355 if (device_may_wakeup(priv->device)) {
4356 priv->hw->mac->pmt(priv->hw, priv->wolopts);
4359 priv->hw->mac->set_mac(priv->ioaddr, false);
4360 pinctrl_pm_select_sleep_state(priv->device);
4361 /* Disable clock in case of PWM is off */
4362 clk_disable(priv->plat->pclk);
4363 clk_disable(priv->plat->stmmac_clk);
4365 spin_unlock_irqrestore(&priv->lock, flags);
4367 priv->oldlink = false;
4368 priv->speed = SPEED_UNKNOWN;
4369 priv->oldduplex = DUPLEX_UNKNOWN;
4372 EXPORT_SYMBOL_GPL(stmmac_suspend);
4375 * stmmac_reset_queues_param - reset queue parameters
4376 * @dev: device pointer
4378 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4380 u32 rx_cnt = priv->plat->rx_queues_to_use;
4381 u32 tx_cnt = priv->plat->tx_queues_to_use;
4384 for (queue = 0; queue < rx_cnt; queue++) {
4385 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4391 for (queue = 0; queue < tx_cnt; queue++) {
4392 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4400 * stmmac_resume - resume callback
4401 * @dev: device pointer
4402 * Description: when resume this function is invoked to setup the DMA and CORE
4403 * in a usable state.
4405 int stmmac_resume(struct device *dev)
4407 struct net_device *ndev = dev_get_drvdata(dev);
4408 struct stmmac_priv *priv = netdev_priv(ndev);
4409 unsigned long flags;
4411 if (!netif_running(ndev))
4414 /* Power Down bit, into the PM register, is cleared
4415 * automatically as soon as a magic packet or a Wake-up frame
4416 * is received. Anyway, it's better to manually clear
4417 * this bit because it can generate problems while resuming
4418 * from another devices (e.g. serial console).
4420 if (device_may_wakeup(priv->device)) {
4421 spin_lock_irqsave(&priv->lock, flags);
4422 priv->hw->mac->pmt(priv->hw, 0);
4423 spin_unlock_irqrestore(&priv->lock, flags);
4426 pinctrl_pm_select_default_state(priv->device);
4427 /* enable the clk previously disabled */
4428 clk_enable(priv->plat->stmmac_clk);
4429 clk_enable(priv->plat->pclk);
4430 /* reset the phy so that it's ready */
4432 stmmac_mdio_reset(priv->mii);
4435 netif_device_attach(ndev);
4437 spin_lock_irqsave(&priv->lock, flags);
4439 stmmac_reset_queues_param(priv);
4441 /* reset private mss value to force mss context settings at
4442 * next tso xmit (only used for gmac4).
4446 stmmac_clear_descriptors(priv);
4448 stmmac_hw_setup(ndev, false);
4449 stmmac_init_tx_coalesce(priv);
4450 stmmac_set_rx_mode(ndev);
4452 stmmac_enable_all_queues(priv);
4454 stmmac_start_all_queues(priv);
4456 spin_unlock_irqrestore(&priv->lock, flags);
4459 phy_start(ndev->phydev);
4463 EXPORT_SYMBOL_GPL(stmmac_resume);
4466 static int __init stmmac_cmdline_opt(char *str)
4472 while ((opt = strsep(&str, ",")) != NULL) {
4473 if (!strncmp(opt, "debug:", 6)) {
4474 if (kstrtoint(opt + 6, 0, &debug))
4476 } else if (!strncmp(opt, "phyaddr:", 8)) {
4477 if (kstrtoint(opt + 8, 0, &phyaddr))
4479 } else if (!strncmp(opt, "buf_sz:", 7)) {
4480 if (kstrtoint(opt + 7, 0, &buf_sz))
4482 } else if (!strncmp(opt, "tc:", 3)) {
4483 if (kstrtoint(opt + 3, 0, &tc))
4485 } else if (!strncmp(opt, "watchdog:", 9)) {
4486 if (kstrtoint(opt + 9, 0, &watchdog))
4488 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4489 if (kstrtoint(opt + 10, 0, &flow_ctrl))
4491 } else if (!strncmp(opt, "pause:", 6)) {
4492 if (kstrtoint(opt + 6, 0, &pause))
4494 } else if (!strncmp(opt, "eee_timer:", 10)) {
4495 if (kstrtoint(opt + 10, 0, &eee_timer))
4497 } else if (!strncmp(opt, "chain_mode:", 11)) {
4498 if (kstrtoint(opt + 11, 0, &chain_mode))
4505 pr_err("%s: ERROR broken module parameter conversion", __func__);
4509 __setup("stmmaceth=", stmmac_cmdline_opt);
4512 static int __init stmmac_init(void)
4514 #ifdef CONFIG_DEBUG_FS
4515 /* Create debugfs main directory if it doesn't exist yet */
4516 if (!stmmac_fs_dir) {
4517 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4519 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4520 pr_err("ERROR %s, debugfs create directory failed\n",
4521 STMMAC_RESOURCE_NAME);
4531 static void __exit stmmac_exit(void)
4533 #ifdef CONFIG_DEBUG_FS
4534 debugfs_remove_recursive(stmmac_fs_dir);
4538 module_init(stmmac_init)
4539 module_exit(stmmac_exit)
4541 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4543 MODULE_LICENSE("GPL");