2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
51 #include <drm/amdgpu_drm.h>
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
64 MODULE_IMPORT_NS(DMA_BUF);
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 uint64_t size_in_page)
78 return ttm_range_man_init(&adev->mman.bdev, type,
83 * amdgpu_evict_flags - Compute placement flags
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
88 * Fill in placement data when ttm_bo_evict() is called
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
98 .mem_type = TTM_PL_SYSTEM,
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
121 switch (bo->resource->mem_type) {
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
156 case AMDGPU_PL_PREEMPT:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
161 *placement = abo->placement;
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
211 offset = mm_cur->start & ~PAGE_MASK;
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
246 flags |= AMDGPU_PTE_TMZ;
248 cpu_addr = &job->ibs[0].ptr[num_dw];
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
256 dma_addr_t dma_address;
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
264 dma_address += PAGE_SIZE;
268 dma_fence_put(amdgpu_job_submit(job));
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
304 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 0, ring, tmz, &cur_size, &from);
321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 1, ring, tmz, &cur_size, &to);
326 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 resv, &next, false, true, tmz);
331 dma_fence_put(fence);
334 amdgpu_res_next(&src_mm, cur_size);
335 amdgpu_res_next(&dst_mm, cur_size);
338 mutex_unlock(&adev->mman.gtt_window_lock);
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
371 amdgpu_bo_encrypted(abo),
372 bo->base.resv, &fence);
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 dma_fence_put(fence);
401 dma_fence_wait(fence, false);
402 dma_fence_put(fence);
407 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408 * @adev: amdgpu device
409 * @res: the resource to check
411 * Returns: true if the full resource is CPU visible, false otherwise.
413 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414 struct ttm_resource *res)
416 struct amdgpu_res_cursor cursor;
421 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
425 if (res->mem_type != TTM_PL_VRAM)
428 amdgpu_res_first(res, 0, res->size, &cursor);
429 while (cursor.remaining) {
430 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
432 amdgpu_res_next(&cursor, cursor.size);
439 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
441 * Called by amdgpu_bo_move()
443 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444 struct ttm_resource *mem)
446 if (!amdgpu_res_cpu_visible(adev, mem))
449 /* ttm_resource_ioremap only supports contiguous memory */
450 if (mem->mem_type == TTM_PL_VRAM &&
451 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
458 * amdgpu_bo_move - Move a buffer object to a new memory location
460 * Called by ttm_bo_handle_move_mem()
462 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463 struct ttm_operation_ctx *ctx,
464 struct ttm_resource *new_mem,
465 struct ttm_place *hop)
467 struct amdgpu_device *adev;
468 struct amdgpu_bo *abo;
469 struct ttm_resource *old_mem = bo->resource;
472 if (new_mem->mem_type == TTM_PL_TT ||
473 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
479 abo = ttm_to_amdgpu_bo(bo);
480 adev = amdgpu_ttm_adev(bo->bdev);
482 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
484 amdgpu_bo_move_notify(bo, evict, new_mem);
485 ttm_bo_move_null(bo, new_mem);
488 if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 (new_mem->mem_type == TTM_PL_TT ||
490 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 amdgpu_bo_move_notify(bo, evict, new_mem);
492 ttm_bo_move_null(bo, new_mem);
495 if ((old_mem->mem_type == TTM_PL_TT ||
496 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 new_mem->mem_type == TTM_PL_SYSTEM) {
498 r = ttm_bo_wait_ctx(bo, ctx);
502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 amdgpu_bo_move_notify(bo, evict, new_mem);
504 ttm_resource_free(bo, &bo->resource);
505 ttm_bo_assign_mem(bo, new_mem);
509 if (old_mem->mem_type == AMDGPU_PL_GDS ||
510 old_mem->mem_type == AMDGPU_PL_GWS ||
511 old_mem->mem_type == AMDGPU_PL_OA ||
512 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
513 new_mem->mem_type == AMDGPU_PL_GDS ||
514 new_mem->mem_type == AMDGPU_PL_GWS ||
515 new_mem->mem_type == AMDGPU_PL_OA ||
516 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
517 /* Nothing to save here */
518 amdgpu_bo_move_notify(bo, evict, new_mem);
519 ttm_bo_move_null(bo, new_mem);
523 if (bo->type == ttm_bo_type_device &&
524 new_mem->mem_type == TTM_PL_VRAM &&
525 old_mem->mem_type != TTM_PL_VRAM) {
526 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
527 * accesses the BO after it's moved.
529 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
532 if (adev->mman.buffer_funcs_enabled &&
533 ((old_mem->mem_type == TTM_PL_SYSTEM &&
534 new_mem->mem_type == TTM_PL_VRAM) ||
535 (old_mem->mem_type == TTM_PL_VRAM &&
536 new_mem->mem_type == TTM_PL_SYSTEM))) {
539 hop->mem_type = TTM_PL_TT;
540 hop->flags = TTM_PL_FLAG_TEMPORARY;
544 amdgpu_bo_move_notify(bo, evict, new_mem);
545 if (adev->mman.buffer_funcs_enabled)
546 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
551 /* Check that all memory is CPU accessible */
552 if (!amdgpu_res_copyable(adev, old_mem) ||
553 !amdgpu_res_copyable(adev, new_mem)) {
554 pr_err("Move buffer fallback to memcpy unavailable\n");
558 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
563 /* update statistics after the move */
565 atomic64_inc(&adev->num_evictions);
566 atomic64_add(bo->base.size, &adev->num_bytes_moved);
571 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
573 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
575 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
576 struct ttm_resource *mem)
578 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
580 switch (mem->mem_type) {
585 case AMDGPU_PL_PREEMPT:
588 mem->bus.offset = mem->start << PAGE_SHIFT;
590 if (adev->mman.aper_base_kaddr &&
591 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
592 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
595 mem->bus.offset += adev->gmc.aper_base;
596 mem->bus.is_iomem = true;
598 case AMDGPU_PL_DOORBELL:
599 mem->bus.offset = mem->start << PAGE_SHIFT;
600 mem->bus.offset += adev->doorbell.base;
601 mem->bus.is_iomem = true;
602 mem->bus.caching = ttm_uncached;
610 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
611 unsigned long page_offset)
613 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
614 struct amdgpu_res_cursor cursor;
616 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
619 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
620 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
622 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
626 * amdgpu_ttm_domain_start - Returns GPU start address
627 * @adev: amdgpu device object
628 * @type: type of the memory
631 * GPU start address of a memory domain
634 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
638 return adev->gmc.gart_start;
640 return adev->gmc.vram_start;
647 * TTM backend functions.
649 struct amdgpu_ttm_tt {
651 struct drm_gem_object *gobj;
654 struct task_struct *usertask;
660 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
662 #ifdef CONFIG_DRM_AMDGPU_USERPTR
664 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
665 * memory and start HMM tracking CPU page table update
667 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
668 * once afterwards to stop HMM tracking
670 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
671 struct hmm_range **range)
673 struct ttm_tt *ttm = bo->tbo.ttm;
674 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
675 unsigned long start = gtt->userptr;
676 struct vm_area_struct *vma;
677 struct mm_struct *mm;
681 /* Make sure get_user_pages_done() can cleanup gracefully */
684 mm = bo->notifier.mm;
686 DRM_DEBUG_DRIVER("BO is not registered?\n");
690 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
694 vma = vma_lookup(mm, start);
695 if (unlikely(!vma)) {
699 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 readonly = amdgpu_ttm_tt_is_readonly(ttm);
706 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
707 readonly, NULL, pages, range);
709 mmap_read_unlock(mm);
711 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
718 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
720 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
721 struct hmm_range *range)
723 struct amdgpu_ttm_tt *gtt = (void *)ttm;
725 if (gtt && gtt->userptr && range)
726 amdgpu_hmm_range_get_pages_done(range);
730 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
731 * Check if the pages backing this ttm range have been invalidated
733 * Returns: true if pages are still valid
735 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
736 struct hmm_range *range)
738 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
740 if (!gtt || !gtt->userptr || !range)
743 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
744 gtt->userptr, ttm->num_pages);
746 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
748 return !amdgpu_hmm_range_get_pages_done(range);
753 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
755 * Called by amdgpu_cs_list_validate(). This creates the page list
756 * that backs user memory and will ultimately be mapped into the device
759 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
763 for (i = 0; i < ttm->num_pages; ++i)
764 ttm->pages[i] = pages ? pages[i] : NULL;
768 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
770 * Called by amdgpu_ttm_backend_bind()
772 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
775 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
776 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
777 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
778 enum dma_data_direction direction = write ?
779 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
782 /* Allocate an SG array and squash pages into it */
783 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
784 (u64)ttm->num_pages << PAGE_SHIFT,
789 /* Map SG to device */
790 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
794 /* convert SG to linear array of pages and dma addresses */
795 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
807 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
809 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
812 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
813 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
815 enum dma_data_direction direction = write ?
816 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
818 /* double check that we don't free the table twice */
819 if (!ttm->sg || !ttm->sg->sgl)
822 /* unmap the pages mapped to the device */
823 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
824 sg_free_table(ttm->sg);
828 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
829 * MQDn+CtrlStackn where n is the number of XCCs per partition.
830 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
831 * and uses memory type default, UC. The rest of pages_per_xcc are
832 * Ctrl stack and modify their memory type to NC.
834 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
835 struct ttm_tt *ttm, uint64_t flags)
837 struct amdgpu_ttm_tt *gtt = (void *)ttm;
838 uint64_t total_pages = ttm->num_pages;
839 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
840 uint64_t page_idx, pages_per_xcc;
842 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
843 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
845 pages_per_xcc = total_pages;
846 do_div(pages_per_xcc, num_xcc);
848 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
849 /* MQD page: use default flags */
850 amdgpu_gart_bind(adev,
851 gtt->offset + (page_idx << PAGE_SHIFT),
852 1, >t->ttm.dma_address[page_idx], flags);
854 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
855 * the second page of the BO onward.
857 amdgpu_gart_bind(adev,
858 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
860 >t->ttm.dma_address[page_idx + 1],
865 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
866 struct ttm_buffer_object *tbo,
869 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
870 struct ttm_tt *ttm = tbo->ttm;
871 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
873 if (amdgpu_bo_encrypted(abo))
874 flags |= AMDGPU_PTE_TMZ;
876 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
877 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
879 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
880 gtt->ttm.dma_address, flags);
886 * amdgpu_ttm_backend_bind - Bind GTT memory
888 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
889 * This handles binding GTT memory to the device address space.
891 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
893 struct ttm_resource *bo_mem)
895 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
896 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
907 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
909 DRM_ERROR("failed to pin userptr\n");
912 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
914 struct dma_buf_attachment *attach;
915 struct sg_table *sgt;
917 attach = gtt->gobj->import_attach;
918 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
925 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
929 if (!ttm->num_pages) {
930 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
931 ttm->num_pages, bo_mem, ttm);
934 if (bo_mem->mem_type != TTM_PL_TT ||
935 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
936 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
940 /* compute PTE flags relevant to this BO memory */
941 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
943 /* bind pages into GART page tables */
944 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
945 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
946 gtt->ttm.dma_address, flags);
952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
953 * through AGP or GART aperture.
955 * If bo is accessible through AGP aperture, then use AGP aperture
956 * to access bo; otherwise allocate logical space in GART aperture
957 * and map bo to GART aperture.
959 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
962 struct ttm_operation_ctx ctx = { false, false };
963 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
964 struct ttm_placement placement;
965 struct ttm_place placements;
966 struct ttm_resource *tmp;
967 uint64_t addr, flags;
970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
973 addr = amdgpu_gmc_agp_addr(bo);
974 if (addr != AMDGPU_BO_INVALID_OFFSET)
977 /* allocate GART space */
978 placement.num_placement = 1;
979 placement.placement = &placements;
981 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
982 placements.mem_type = TTM_PL_TT;
983 placements.flags = bo->resource->placement;
985 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
989 /* compute PTE flags for this buffer object */
990 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
993 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
994 amdgpu_ttm_gart_bind(adev, bo, flags);
995 amdgpu_gart_invalidate_tlb(adev);
996 ttm_resource_free(bo, &bo->resource);
997 ttm_bo_assign_mem(bo, tmp);
1003 * amdgpu_ttm_recover_gart - Rebind GTT pages
1005 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006 * rebind GTT pages during a GPU reset.
1008 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1010 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1016 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1017 amdgpu_ttm_gart_bind(adev, tbo, flags);
1021 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1023 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1026 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1029 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1032 /* if the pages have userptr pinning then clear that first */
1034 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035 } else if (ttm->sg && gtt->gobj->import_attach) {
1036 struct dma_buf_attachment *attach;
1038 attach = gtt->gobj->import_attach;
1039 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1046 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1049 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1054 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1057 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1060 put_task_struct(gtt->usertask);
1062 ttm_tt_fini(>t->ttm);
1067 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1069 * @bo: The buffer object to create a GTT ttm_tt object around
1070 * @page_flags: Page flags to be added to the ttm_tt object
1072 * Called by ttm_tt_create().
1074 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1075 uint32_t page_flags)
1077 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1078 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1079 struct amdgpu_ttm_tt *gtt;
1080 enum ttm_caching caching;
1082 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1086 gtt->gobj = &bo->base;
1087 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1088 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1090 gtt->pool_id = abo->xcp_id;
1092 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1093 caching = ttm_write_combined;
1095 caching = ttm_cached;
1097 /* allocate space for the uninitialized page entries */
1098 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1106 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1108 * Map the pages of a ttm_tt object to an address space visible
1109 * to the underlying device.
1111 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1113 struct ttm_operation_ctx *ctx)
1115 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1116 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1117 struct ttm_pool *pool;
1121 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1123 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1129 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1132 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1133 pool = &adev->mman.ttm_pools[gtt->pool_id];
1135 pool = &adev->mman.bdev.pool;
1136 ret = ttm_pool_alloc(pool, ttm, ctx);
1140 for (i = 0; i < ttm->num_pages; ++i)
1141 ttm->pages[i]->mapping = bdev->dev_mapping;
1147 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1149 * Unmaps pages of a ttm_tt object from the device address space and
1150 * unpopulates the page array backing it.
1152 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1155 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1156 struct amdgpu_device *adev;
1157 struct ttm_pool *pool;
1160 amdgpu_ttm_backend_unbind(bdev, ttm);
1163 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1169 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1172 for (i = 0; i < ttm->num_pages; ++i)
1173 ttm->pages[i]->mapping = NULL;
1175 adev = amdgpu_ttm_adev(bdev);
1177 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1178 pool = &adev->mman.ttm_pools[gtt->pool_id];
1180 pool = &adev->mman.bdev.pool;
1182 return ttm_pool_free(pool, ttm);
1186 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1189 * @tbo: The ttm_buffer_object that contains the userptr
1190 * @user_addr: The returned value
1192 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1193 uint64_t *user_addr)
1195 struct amdgpu_ttm_tt *gtt;
1200 gtt = (void *)tbo->ttm;
1201 *user_addr = gtt->userptr;
1206 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1209 * @bo: The ttm_buffer_object to bind this userptr to
1210 * @addr: The address in the current tasks VM space to use
1211 * @flags: Requirements of userptr object.
1213 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1214 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1215 * initialize GPU VM for a KFD process.
1217 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1218 uint64_t addr, uint32_t flags)
1220 struct amdgpu_ttm_tt *gtt;
1223 /* TODO: We want a separate TTM object type for userptrs */
1224 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1225 if (bo->ttm == NULL)
1229 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1230 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1232 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1233 gtt->userptr = addr;
1234 gtt->userflags = flags;
1237 put_task_struct(gtt->usertask);
1238 gtt->usertask = current->group_leader;
1239 get_task_struct(gtt->usertask);
1245 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1247 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1249 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1254 if (gtt->usertask == NULL)
1257 return gtt->usertask->mm;
1261 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1262 * address range for the current task.
1265 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1266 unsigned long end, unsigned long *userptr)
1268 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1271 if (gtt == NULL || !gtt->userptr)
1274 /* Return false if no part of the ttm_tt object lies within
1277 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1278 if (gtt->userptr > end || gtt->userptr + size <= start)
1282 *userptr = gtt->userptr;
1287 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1289 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1291 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1293 if (gtt == NULL || !gtt->userptr)
1300 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1302 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1304 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1309 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1313 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1315 * @ttm: The ttm_tt object to compute the flags for
1316 * @mem: The memory registry backing this ttm_tt object
1318 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1320 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1324 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1325 flags |= AMDGPU_PTE_VALID;
1327 if (mem && (mem->mem_type == TTM_PL_TT ||
1328 mem->mem_type == AMDGPU_PL_DOORBELL ||
1329 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1330 flags |= AMDGPU_PTE_SYSTEM;
1332 if (ttm->caching == ttm_cached)
1333 flags |= AMDGPU_PTE_SNOOPED;
1336 if (mem && mem->mem_type == TTM_PL_VRAM &&
1337 mem->bus.caching == ttm_cached)
1338 flags |= AMDGPU_PTE_SNOOPED;
1344 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1346 * @adev: amdgpu_device pointer
1347 * @ttm: The ttm_tt object to compute the flags for
1348 * @mem: The memory registry backing this ttm_tt object
1350 * Figure out the flags to use for a VM PTE (Page Table Entry).
1352 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1353 struct ttm_resource *mem)
1355 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1357 flags |= adev->gart.gart_pte_flags;
1358 flags |= AMDGPU_PTE_READABLE;
1360 if (!amdgpu_ttm_tt_is_readonly(ttm))
1361 flags |= AMDGPU_PTE_WRITEABLE;
1367 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1370 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1371 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1372 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1373 * used to clean out a memory space.
1375 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1376 const struct ttm_place *place)
1378 struct dma_resv_iter resv_cursor;
1379 struct dma_fence *f;
1381 if (!amdgpu_bo_is_amdgpu_bo(bo))
1382 return ttm_bo_eviction_valuable(bo, place);
1385 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1388 if (bo->type == ttm_bo_type_kernel &&
1389 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1392 /* If bo is a KFD BO, check if the bo belongs to the current process.
1393 * If true, then return false as any KFD process needs all its BOs to
1394 * be resident to run successfully
1396 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1397 DMA_RESV_USAGE_BOOKKEEP, f) {
1398 if (amdkfd_fence_check_mm(f, current->mm))
1402 /* Preemptible BOs don't own system resources managed by the
1403 * driver (pages, VRAM, GART space). They point to resources
1404 * owned by someone else (e.g. pageable memory in user mode
1405 * or a DMABuf). They are used in a preemptible context so we
1406 * can guarantee no deadlocks and good QoS in case of MMU
1407 * notifiers or DMABuf move notifiers from the resource owner.
1409 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1412 if (bo->resource->mem_type == TTM_PL_TT &&
1413 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1416 return ttm_bo_eviction_valuable(bo, place);
1419 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1420 void *buf, size_t size, bool write)
1423 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1424 uint64_t bytes = 4 - (pos & 0x3);
1425 uint32_t shift = (pos & 0x3) * 8;
1426 uint32_t mask = 0xffffffff << shift;
1430 mask &= 0xffffffff >> (bytes - size) * 8;
1434 if (mask != 0xffffffff) {
1435 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1438 value |= (*(uint32_t *)buf << shift) & mask;
1439 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1441 value = (value & mask) >> shift;
1442 memcpy(buf, &value, bytes);
1445 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1454 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1455 unsigned long offset, void *buf,
1458 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1459 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1460 struct amdgpu_res_cursor src_mm;
1461 struct amdgpu_job *job;
1462 struct dma_fence *fence;
1463 uint64_t src_addr, dst_addr;
1464 unsigned int num_dw;
1467 if (len != PAGE_SIZE)
1470 if (!adev->mman.sdma_access_ptr)
1473 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1477 memcpy(adev->mman.sdma_access_ptr, buf, len);
1479 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1480 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1481 AMDGPU_FENCE_OWNER_UNDEFINED,
1482 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1487 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1488 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1490 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1492 swap(src_addr, dst_addr);
1494 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1497 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1498 WARN_ON(job->ibs[0].length_dw > num_dw);
1500 fence = amdgpu_job_submit(job);
1502 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1504 dma_fence_put(fence);
1507 memcpy(buf, adev->mman.sdma_access_ptr, len);
1514 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1516 * @bo: The buffer object to read/write
1517 * @offset: Offset into buffer object
1518 * @buf: Secondary buffer to write/read from
1519 * @len: Length in bytes of access
1520 * @write: true if writing
1522 * This is used to access VRAM that backs a buffer object via MMIO
1523 * access for debugging purposes.
1525 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1526 unsigned long offset, void *buf, int len,
1529 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1530 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1531 struct amdgpu_res_cursor cursor;
1534 if (bo->resource->mem_type != TTM_PL_VRAM)
1537 if (amdgpu_device_has_timeouts_enabled(adev) &&
1538 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1541 amdgpu_res_first(bo->resource, offset, len, &cursor);
1542 while (cursor.remaining) {
1543 size_t count, size = cursor.size;
1544 loff_t pos = cursor.start;
1546 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1549 /* using MM to access rest vram and handle un-aligned address */
1552 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1557 amdgpu_res_next(&cursor, cursor.size);
1564 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1566 amdgpu_bo_move_notify(bo, false, NULL);
1569 static struct ttm_device_funcs amdgpu_bo_driver = {
1570 .ttm_tt_create = &amdgpu_ttm_tt_create,
1571 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1572 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1573 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1574 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1575 .evict_flags = &amdgpu_evict_flags,
1576 .move = &amdgpu_bo_move,
1577 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1578 .release_notify = &amdgpu_bo_release_notify,
1579 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1580 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1581 .access_memory = &amdgpu_ttm_access_memory,
1585 * Firmware Reservation functions
1588 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1590 * @adev: amdgpu_device pointer
1592 * free fw reserved vram if it has been reserved.
1594 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1596 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1597 NULL, &adev->mman.fw_vram_usage_va);
1601 * Driver Reservation functions
1604 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1606 * @adev: amdgpu_device pointer
1608 * free drv reserved vram if it has been reserved.
1610 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1612 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1614 &adev->mman.drv_vram_usage_va);
1618 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1620 * @adev: amdgpu_device pointer
1622 * create bo vram reservation from fw.
1624 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1626 uint64_t vram_size = adev->gmc.visible_vram_size;
1628 adev->mman.fw_vram_usage_va = NULL;
1629 adev->mman.fw_vram_usage_reserved_bo = NULL;
1631 if (adev->mman.fw_vram_usage_size == 0 ||
1632 adev->mman.fw_vram_usage_size > vram_size)
1635 return amdgpu_bo_create_kernel_at(adev,
1636 adev->mman.fw_vram_usage_start_offset,
1637 adev->mman.fw_vram_usage_size,
1638 &adev->mman.fw_vram_usage_reserved_bo,
1639 &adev->mman.fw_vram_usage_va);
1643 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1645 * @adev: amdgpu_device pointer
1647 * create bo vram reservation from drv.
1649 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1651 u64 vram_size = adev->gmc.visible_vram_size;
1653 adev->mman.drv_vram_usage_va = NULL;
1654 adev->mman.drv_vram_usage_reserved_bo = NULL;
1656 if (adev->mman.drv_vram_usage_size == 0 ||
1657 adev->mman.drv_vram_usage_size > vram_size)
1660 return amdgpu_bo_create_kernel_at(adev,
1661 adev->mman.drv_vram_usage_start_offset,
1662 adev->mman.drv_vram_usage_size,
1663 &adev->mman.drv_vram_usage_reserved_bo,
1664 &adev->mman.drv_vram_usage_va);
1668 * Memoy training reservation functions
1672 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1674 * @adev: amdgpu_device pointer
1676 * free memory training reserved vram if it has been reserved.
1678 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1680 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1682 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1683 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1689 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1690 uint32_t reserve_size)
1692 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1694 memset(ctx, 0, sizeof(*ctx));
1696 ctx->c2p_train_data_offset =
1697 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1698 ctx->p2c_train_data_offset =
1699 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1700 ctx->train_data_size =
1701 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1703 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1704 ctx->train_data_size,
1705 ctx->p2c_train_data_offset,
1706 ctx->c2p_train_data_offset);
1710 * reserve TMR memory at the top of VRAM which holds
1711 * IP Discovery data and is protected by PSP.
1713 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716 bool mem_train_support = false;
1717 uint32_t reserve_size = 0;
1720 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1721 if (amdgpu_atomfirmware_mem_training_supported(adev))
1722 mem_train_support = true;
1724 DRM_DEBUG("memory training does not support!\n");
1728 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1729 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1731 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1732 * discovery data and G6 memory training data respectively
1736 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1739 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1740 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1741 else if (!reserve_size)
1742 reserve_size = DISCOVERY_TMR_OFFSET;
1744 if (mem_train_support) {
1745 /* reserve vram for mem train according to TMR location */
1746 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1747 ret = amdgpu_bo_create_kernel_at(adev,
1748 ctx->c2p_train_data_offset,
1749 ctx->train_data_size,
1753 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1754 amdgpu_ttm_training_reserve_vram_fini(adev);
1757 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1760 if (!adev->gmc.is_app_apu) {
1761 ret = amdgpu_bo_create_kernel_at(
1762 adev, adev->gmc.real_vram_size - reserve_size,
1763 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1765 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1766 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1771 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1777 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1781 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1784 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1785 sizeof(*adev->mman.ttm_pools),
1787 if (!adev->mman.ttm_pools)
1790 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1791 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1792 adev->gmc.mem_partitions[i].numa.node,
1798 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1802 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1805 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1806 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1808 kfree(adev->mman.ttm_pools);
1809 adev->mman.ttm_pools = NULL;
1813 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1814 * gtt/vram related fields.
1816 * This initializes all of the memory space pools that the TTM layer
1817 * will need such as the GTT space (system memory mapped to the device),
1818 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1819 * can be mapped per VMID.
1821 int amdgpu_ttm_init(struct amdgpu_device *adev)
1826 mutex_init(&adev->mman.gtt_window_lock);
1828 /* No others user of address space so set it to 0 */
1829 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1830 adev_to_drm(adev)->anon_inode->i_mapping,
1831 adev_to_drm(adev)->vma_offset_manager,
1833 dma_addressing_limited(adev->dev));
1835 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1839 r = amdgpu_ttm_pools_init(adev);
1841 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1844 adev->mman.initialized = true;
1846 /* Initialize VRAM pool with all of VRAM divided into pages */
1847 r = amdgpu_vram_mgr_init(adev);
1849 DRM_ERROR("Failed initializing VRAM heap.\n");
1853 /* Change the size here instead of the init above so only lpfn is affected */
1854 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1857 if (adev->gmc.xgmi.connected_to_cpu)
1858 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1859 adev->gmc.visible_vram_size);
1861 else if (adev->gmc.is_app_apu)
1863 "No need to ioremap when real vram size is 0\n");
1866 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867 adev->gmc.visible_vram_size);
1871 *The reserved vram for firmware must be pinned to the specified
1872 *place on the VRAM, so reserve it early.
1874 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1879 *The reserved vram for driver must be pinned to the specified
1880 *place on the VRAM, so reserve it early.
1882 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1887 * only NAVI10 and onwards ASIC support for IP discovery.
1888 * If IP discovery enabled, a block of memory should be
1889 * reserved for IP discovey.
1891 if (adev->mman.discovery_bin) {
1892 r = amdgpu_ttm_reserve_tmr(adev);
1897 /* allocate memory as required for VGA
1898 * This is used for VGA emulation and pre-OS scanout buffers to
1899 * avoid display artifacts while transitioning between pre-OS
1902 if (!adev->gmc.is_app_apu) {
1903 r = amdgpu_bo_create_kernel_at(adev, 0,
1904 adev->mman.stolen_vga_size,
1905 &adev->mman.stolen_vga_memory,
1910 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1911 adev->mman.stolen_extended_size,
1912 &adev->mman.stolen_extended_memory,
1918 r = amdgpu_bo_create_kernel_at(adev,
1919 adev->mman.stolen_reserved_offset,
1920 adev->mman.stolen_reserved_size,
1921 &adev->mman.stolen_reserved_memory,
1926 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1929 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1930 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1932 /* Compute GTT size, either based on TTM limit
1933 * or whatever the user passed on module init.
1935 if (amdgpu_gtt_size == -1)
1936 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1938 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1940 /* Initialize GTT memory pool */
1941 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1943 DRM_ERROR("Failed initializing GTT heap.\n");
1946 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1947 (unsigned int)(gtt_size / (1024 * 1024)));
1949 /* Initiailize doorbell pool on PCI BAR */
1950 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1952 DRM_ERROR("Failed initializing doorbell heap.\n");
1956 /* Create a boorbell page for kernel usages */
1957 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1959 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1963 /* Initialize preemptible memory pool */
1964 r = amdgpu_preempt_mgr_init(adev);
1966 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1970 /* Initialize various on-chip memory pools */
1971 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1973 DRM_ERROR("Failed initializing GDS heap.\n");
1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1979 DRM_ERROR("Failed initializing gws heap.\n");
1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1985 DRM_ERROR("Failed initializing oa heap.\n");
1988 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1989 AMDGPU_GEM_DOMAIN_GTT,
1990 &adev->mman.sdma_access_bo, NULL,
1991 &adev->mman.sdma_access_ptr))
1992 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1998 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2000 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2004 if (!adev->mman.initialized)
2007 amdgpu_ttm_pools_fini(adev);
2009 amdgpu_ttm_training_reserve_vram_fini(adev);
2010 /* return the stolen vga memory back to VRAM */
2011 if (!adev->gmc.is_app_apu) {
2012 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2013 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2014 /* return the FW reserved memory back to VRAM */
2015 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2017 if (adev->mman.stolen_reserved_size)
2018 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2021 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2022 &adev->mman.sdma_access_ptr);
2023 amdgpu_ttm_fw_reserve_vram_fini(adev);
2024 amdgpu_ttm_drv_reserve_vram_fini(adev);
2026 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2028 if (adev->mman.aper_base_kaddr)
2029 iounmap(adev->mman.aper_base_kaddr);
2030 adev->mman.aper_base_kaddr = NULL;
2035 amdgpu_vram_mgr_fini(adev);
2036 amdgpu_gtt_mgr_fini(adev);
2037 amdgpu_preempt_mgr_fini(adev);
2038 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2039 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2041 ttm_device_fini(&adev->mman.bdev);
2042 adev->mman.initialized = false;
2043 DRM_INFO("amdgpu: ttm finalized\n");
2047 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2049 * @adev: amdgpu_device pointer
2050 * @enable: true when we can use buffer functions.
2052 * Enable/disable use of buffer functions during suspend/resume. This should
2053 * only be called at bootup or when userspace isn't running.
2055 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2057 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2061 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2062 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2066 struct amdgpu_ring *ring;
2067 struct drm_gpu_scheduler *sched;
2069 ring = adev->mman.buffer_funcs_ring;
2070 sched = &ring->sched;
2071 r = drm_sched_entity_init(&adev->mman.high_pr,
2072 DRM_SCHED_PRIORITY_KERNEL, &sched,
2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2080 r = drm_sched_entity_init(&adev->mman.low_pr,
2081 DRM_SCHED_PRIORITY_NORMAL, &sched,
2084 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2086 goto error_free_entity;
2089 drm_sched_entity_destroy(&adev->mman.high_pr);
2090 drm_sched_entity_destroy(&adev->mman.low_pr);
2091 dma_fence_put(man->move);
2095 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2097 size = adev->gmc.real_vram_size;
2099 size = adev->gmc.visible_vram_size;
2101 adev->mman.buffer_funcs_enabled = enable;
2106 drm_sched_entity_destroy(&adev->mman.high_pr);
2109 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2111 unsigned int num_dw,
2112 struct dma_resv *resv,
2113 bool vm_needs_flush,
2114 struct amdgpu_job **job,
2117 enum amdgpu_ib_pool_type pool = direct_submit ?
2118 AMDGPU_IB_POOL_DIRECT :
2119 AMDGPU_IB_POOL_DELAYED;
2121 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2122 &adev->mman.high_pr;
2123 r = amdgpu_job_alloc_with_ib(adev, entity,
2124 AMDGPU_FENCE_OWNER_UNDEFINED,
2125 num_dw * 4, pool, job);
2129 if (vm_needs_flush) {
2130 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2133 (*job)->vm_needs_flush = true;
2138 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2139 DMA_RESV_USAGE_BOOKKEEP);
2142 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2143 uint64_t dst_offset, uint32_t byte_count,
2144 struct dma_resv *resv,
2145 struct dma_fence **fence, bool direct_submit,
2146 bool vm_needs_flush, bool tmz)
2148 struct amdgpu_device *adev = ring->adev;
2149 unsigned int num_loops, num_dw;
2150 struct amdgpu_job *job;
2155 if (!direct_submit && !ring->sched.ready) {
2156 DRM_ERROR("Trying to move memory with ring turned off.\n");
2160 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2161 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2162 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2163 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2164 resv, vm_needs_flush, &job, false);
2168 for (i = 0; i < num_loops; i++) {
2169 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2171 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2172 dst_offset, cur_size_in_bytes, tmz);
2174 src_offset += cur_size_in_bytes;
2175 dst_offset += cur_size_in_bytes;
2176 byte_count -= cur_size_in_bytes;
2179 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180 WARN_ON(job->ibs[0].length_dw > num_dw);
2182 r = amdgpu_job_submit_direct(job, ring, fence);
2184 *fence = amdgpu_job_submit(job);
2191 amdgpu_job_free(job);
2192 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2196 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197 uint64_t dst_addr, uint32_t byte_count,
2198 struct dma_resv *resv,
2199 struct dma_fence **fence,
2200 bool vm_needs_flush, bool delayed)
2202 struct amdgpu_device *adev = ring->adev;
2203 unsigned int num_loops, num_dw;
2204 struct amdgpu_job *job;
2209 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2217 for (i = 0; i < num_loops; i++) {
2218 uint32_t cur_size = min(byte_count, max_bytes);
2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2223 dst_addr += cur_size;
2224 byte_count -= cur_size;
2227 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228 WARN_ON(job->ibs[0].length_dw > num_dw);
2229 *fence = amdgpu_job_submit(job);
2233 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2235 struct dma_resv *resv,
2236 struct dma_fence **f,
2239 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241 struct dma_fence *fence = NULL;
2242 struct amdgpu_res_cursor dst;
2245 if (!adev->mman.buffer_funcs_enabled) {
2246 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2250 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2252 mutex_lock(&adev->mman.gtt_window_lock);
2253 while (dst.remaining) {
2254 struct dma_fence *next;
2255 uint64_t cur_size, to;
2257 /* Never fill more than 256MiB at once to avoid timeouts */
2258 cur_size = min(dst.size, 256ULL << 20);
2260 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261 1, ring, false, &cur_size, &to);
2265 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266 &next, true, delayed);
2270 dma_fence_put(fence);
2273 amdgpu_res_next(&dst, cur_size);
2276 mutex_unlock(&adev->mman.gtt_window_lock);
2278 *f = dma_fence_get(fence);
2279 dma_fence_put(fence);
2284 * amdgpu_ttm_evict_resources - evict memory buffers
2285 * @adev: amdgpu device object
2286 * @mem_type: evicted BO's memory type
2288 * Evicts all @mem_type buffers on the lru list of the memory type.
2291 * 0 for success or a negative error code on failure.
2293 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2295 struct ttm_resource_manager *man;
2303 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2306 DRM_ERROR("Trying to evict invalid memory type\n");
2310 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2313 #if defined(CONFIG_DEBUG_FS)
2315 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2317 struct amdgpu_device *adev = m->private;
2319 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2322 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2325 * amdgpu_ttm_vram_read - Linear read access to VRAM
2327 * Accesses VRAM via MMIO for debugging purposes.
2329 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330 size_t size, loff_t *pos)
2332 struct amdgpu_device *adev = file_inode(f)->i_private;
2335 if (size & 0x3 || *pos & 0x3)
2338 if (*pos >= adev->gmc.mc_vram_size)
2341 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2343 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2346 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347 if (copy_to_user(buf, value, bytes))
2360 * amdgpu_ttm_vram_write - Linear write access to VRAM
2362 * Accesses VRAM via MMIO for debugging purposes.
2364 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365 size_t size, loff_t *pos)
2367 struct amdgpu_device *adev = file_inode(f)->i_private;
2371 if (size & 0x3 || *pos & 0x3)
2374 if (*pos >= adev->gmc.mc_vram_size)
2380 if (*pos >= adev->gmc.mc_vram_size)
2383 r = get_user(value, (uint32_t *)buf);
2387 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2398 static const struct file_operations amdgpu_ttm_vram_fops = {
2399 .owner = THIS_MODULE,
2400 .read = amdgpu_ttm_vram_read,
2401 .write = amdgpu_ttm_vram_write,
2402 .llseek = default_llseek,
2406 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2408 * This function is used to read memory that has been mapped to the
2409 * GPU and the known addresses are not physical addresses but instead
2410 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2412 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413 size_t size, loff_t *pos)
2415 struct amdgpu_device *adev = file_inode(f)->i_private;
2416 struct iommu_domain *dom;
2420 /* retrieve the IOMMU domain if any for this device */
2421 dom = iommu_get_domain_for_dev(adev->dev);
2424 phys_addr_t addr = *pos & PAGE_MASK;
2425 loff_t off = *pos & ~PAGE_MASK;
2426 size_t bytes = PAGE_SIZE - off;
2431 bytes = min(bytes, size);
2433 /* Translate the bus address to a physical address. If
2434 * the domain is NULL it means there is no IOMMU active
2435 * and the address translation is the identity
2437 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2439 pfn = addr >> PAGE_SHIFT;
2440 if (!pfn_valid(pfn))
2443 p = pfn_to_page(pfn);
2444 if (p->mapping != adev->mman.bdev.dev_mapping)
2447 ptr = kmap_local_page(p);
2448 r = copy_to_user(buf, ptr + off, bytes);
2462 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2464 * This function is used to write memory that has been mapped to the
2465 * GPU and the known addresses are not physical addresses but instead
2466 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2468 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469 size_t size, loff_t *pos)
2471 struct amdgpu_device *adev = file_inode(f)->i_private;
2472 struct iommu_domain *dom;
2476 dom = iommu_get_domain_for_dev(adev->dev);
2479 phys_addr_t addr = *pos & PAGE_MASK;
2480 loff_t off = *pos & ~PAGE_MASK;
2481 size_t bytes = PAGE_SIZE - off;
2486 bytes = min(bytes, size);
2488 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2490 pfn = addr >> PAGE_SHIFT;
2491 if (!pfn_valid(pfn))
2494 p = pfn_to_page(pfn);
2495 if (p->mapping != adev->mman.bdev.dev_mapping)
2498 ptr = kmap_local_page(p);
2499 r = copy_from_user(ptr + off, buf, bytes);
2512 static const struct file_operations amdgpu_ttm_iomem_fops = {
2513 .owner = THIS_MODULE,
2514 .read = amdgpu_iomem_read,
2515 .write = amdgpu_iomem_write,
2516 .llseek = default_llseek
2521 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2523 #if defined(CONFIG_DEBUG_FS)
2524 struct drm_minor *minor = adev_to_drm(adev)->primary;
2525 struct dentry *root = minor->debugfs_root;
2527 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530 &amdgpu_ttm_iomem_fops);
2531 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532 &amdgpu_ttm_page_pool_fops);
2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2535 root, "amdgpu_vram_mm");
2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2538 root, "amdgpu_gtt_mm");
2539 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2541 root, "amdgpu_gds_mm");
2542 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2544 root, "amdgpu_gws_mm");
2545 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2547 root, "amdgpu_oa_mm");