]> Git Repo - linux.git/blob - fs/dcache.c
dcache: remove unnecessary NULL check in dget_dlock()
[linux.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_chilren
55  *   - childrens' d_sib and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __ro_after_init;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98
99 static unsigned int d_hash_shift __ro_after_init;
100
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105         return dentry_hashtable + (hash >> d_hash_shift);
106 }
107
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112                                         unsigned int hash)
113 {
114         hash += (unsigned long) parent / L1_CACHE_BYTES;
115         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117
118 struct dentry_stat_t {
119         long nr_dentry;
120         long nr_unused;
121         long age_limit;         /* age in seconds */
122         long want_pages;        /* pages requested by system */
123         long nr_negative;       /* # of unused negative dentries */
124         long dummy;             /* Reserved for future use */
125 };
126
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134         .age_limit = 45,
135 };
136
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_unused(void)
159 {
160         int i;
161         long sum = 0;
162         for_each_possible_cpu(i)
163                 sum += per_cpu(nr_dentry_unused, i);
164         return sum < 0 ? 0 : sum;
165 }
166
167 static long get_nr_dentry_negative(void)
168 {
169         int i;
170         long sum = 0;
171
172         for_each_possible_cpu(i)
173                 sum += per_cpu(nr_dentry_negative, i);
174         return sum < 0 ? 0 : sum;
175 }
176
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178                           size_t *lenp, loff_t *ppos)
179 {
180         dentry_stat.nr_dentry = get_nr_dentry();
181         dentry_stat.nr_unused = get_nr_dentry_unused();
182         dentry_stat.nr_negative = get_nr_dentry_negative();
183         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185
186 static struct ctl_table fs_dcache_sysctls[] = {
187         {
188                 .procname       = "dentry-state",
189                 .data           = &dentry_stat,
190                 .maxlen         = 6*sizeof(long),
191                 .mode           = 0444,
192                 .proc_handler   = proc_nr_dentry,
193         },
194         { }
195 };
196
197 static int __init init_fs_dcache_sysctls(void)
198 {
199         register_sysctl_init("fs", fs_dcache_sysctls);
200         return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223         unsigned long a,b,mask;
224
225         for (;;) {
226                 a = read_word_at_a_time(cs);
227                 b = load_unaligned_zeropad(ct);
228                 if (tcount < sizeof(unsigned long))
229                         break;
230                 if (unlikely(a != b))
231                         return 1;
232                 cs += sizeof(unsigned long);
233                 ct += sizeof(unsigned long);
234                 tcount -= sizeof(unsigned long);
235                 if (!tcount)
236                         return 0;
237         }
238         mask = bytemask_from_count(tcount);
239         return unlikely(!!((a ^ b) & mask));
240 }
241
242 #else
243
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246         do {
247                 if (*cs != *ct)
248                         return 1;
249                 cs++;
250                 ct++;
251                 tcount--;
252         } while (tcount);
253         return 0;
254 }
255
256 #endif
257
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260         /*
261          * Be careful about RCU walk racing with rename:
262          * use 'READ_ONCE' to fetch the name pointer.
263          *
264          * NOTE! Even if a rename will mean that the length
265          * was not loaded atomically, we don't care. The
266          * RCU walk will check the sequence count eventually,
267          * and catch it. And we won't overrun the buffer,
268          * because we're reading the name pointer atomically,
269          * and a dentry name is guaranteed to be properly
270          * terminated with a NUL byte.
271          *
272          * End result: even if 'len' is wrong, we'll exit
273          * early because the data cannot match (there can
274          * be no NUL in the ct/tcount data)
275          */
276         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277
278         return dentry_string_cmp(cs, ct, tcount);
279 }
280
281 struct external_name {
282         union {
283                 atomic_t count;
284                 struct rcu_head head;
285         } u;
286         unsigned char name[];
287 };
288
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291         return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293
294 static void __d_free(struct rcu_head *head)
295 {
296         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
298         kmem_cache_free(dentry_cache, dentry); 
299 }
300
301 static void __d_free_external(struct rcu_head *head)
302 {
303         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304         kfree(external_name(dentry));
305         kmem_cache_free(dentry_cache, dentry);
306 }
307
308 static inline int dname_external(const struct dentry *dentry)
309 {
310         return dentry->d_name.name != dentry->d_iname;
311 }
312
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315         spin_lock(&dentry->d_lock);
316         name->name = dentry->d_name;
317         if (unlikely(dname_external(dentry))) {
318                 atomic_inc(&external_name(dentry)->u.count);
319         } else {
320                 memcpy(name->inline_name, dentry->d_iname,
321                        dentry->d_name.len + 1);
322                 name->name.name = name->inline_name;
323         }
324         spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330         if (unlikely(name->name.name != name->inline_name)) {
331                 struct external_name *p;
332                 p = container_of(name->name.name, struct external_name, name[0]);
333                 if (unlikely(atomic_dec_and_test(&p->u.count)))
334                         kfree_rcu(p, u.head);
335         }
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340                                           struct inode *inode,
341                                           unsigned type_flags)
342 {
343         unsigned flags;
344
345         dentry->d_inode = inode;
346         flags = READ_ONCE(dentry->d_flags);
347         flags &= ~DCACHE_ENTRY_TYPE;
348         flags |= type_flags;
349         smp_store_release(&dentry->d_flags, flags);
350 }
351
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354         unsigned flags = READ_ONCE(dentry->d_flags);
355
356         flags &= ~DCACHE_ENTRY_TYPE;
357         WRITE_ONCE(dentry->d_flags, flags);
358         dentry->d_inode = NULL;
359         if (dentry->d_flags & DCACHE_LRU_LIST)
360                 this_cpu_inc(nr_dentry_negative);
361 }
362
363 static void dentry_free(struct dentry *dentry)
364 {
365         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366         if (unlikely(dname_external(dentry))) {
367                 struct external_name *p = external_name(dentry);
368                 if (likely(atomic_dec_and_test(&p->u.count))) {
369                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370                         return;
371                 }
372         }
373         /* if dentry was never visible to RCU, immediate free is OK */
374         if (dentry->d_flags & DCACHE_NORCU)
375                 __d_free(&dentry->d_u.d_rcu);
376         else
377                 call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
384 static void dentry_unlink_inode(struct dentry * dentry)
385         __releases(dentry->d_lock)
386         __releases(dentry->d_inode->i_lock)
387 {
388         struct inode *inode = dentry->d_inode;
389
390         raw_write_seqcount_begin(&dentry->d_seq);
391         __d_clear_type_and_inode(dentry);
392         hlist_del_init(&dentry->d_u.d_alias);
393         raw_write_seqcount_end(&dentry->d_seq);
394         spin_unlock(&dentry->d_lock);
395         spin_unlock(&inode->i_lock);
396         if (!inode->i_nlink)
397                 fsnotify_inoderemove(inode);
398         if (dentry->d_op && dentry->d_op->d_iput)
399                 dentry->d_op->d_iput(dentry, inode);
400         else
401                 iput(inode);
402 }
403
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426         D_FLAG_VERIFY(dentry, 0);
427         dentry->d_flags |= DCACHE_LRU_LIST;
428         this_cpu_inc(nr_dentry_unused);
429         if (d_is_negative(dentry))
430                 this_cpu_inc(nr_dentry_negative);
431         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433
434 static void d_lru_del(struct dentry *dentry)
435 {
436         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437         dentry->d_flags &= ~DCACHE_LRU_LIST;
438         this_cpu_dec(nr_dentry_unused);
439         if (d_is_negative(dentry))
440                 this_cpu_dec(nr_dentry_negative);
441         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442 }
443
444 static void d_shrink_del(struct dentry *dentry)
445 {
446         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447         list_del_init(&dentry->d_lru);
448         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449         this_cpu_dec(nr_dentry_unused);
450 }
451
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453 {
454         D_FLAG_VERIFY(dentry, 0);
455         list_add(&dentry->d_lru, list);
456         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457         this_cpu_inc(nr_dentry_unused);
458 }
459
460 /*
461  * These can only be called under the global LRU lock, ie during the
462  * callback for freeing the LRU list. "isolate" removes it from the
463  * LRU lists entirely, while shrink_move moves it to the indicated
464  * private list.
465  */
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467 {
468         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469         dentry->d_flags &= ~DCACHE_LRU_LIST;
470         this_cpu_dec(nr_dentry_unused);
471         if (d_is_negative(dentry))
472                 this_cpu_dec(nr_dentry_negative);
473         list_lru_isolate(lru, &dentry->d_lru);
474 }
475
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477                               struct list_head *list)
478 {
479         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480         dentry->d_flags |= DCACHE_SHRINK_LIST;
481         if (d_is_negative(dentry))
482                 this_cpu_dec(nr_dentry_negative);
483         list_lru_isolate_move(lru, &dentry->d_lru, list);
484 }
485
486 static void ___d_drop(struct dentry *dentry)
487 {
488         struct hlist_bl_head *b;
489         /*
490          * Hashed dentries are normally on the dentry hashtable,
491          * with the exception of those newly allocated by
492          * d_obtain_root, which are always IS_ROOT:
493          */
494         if (unlikely(IS_ROOT(dentry)))
495                 b = &dentry->d_sb->s_roots;
496         else
497                 b = d_hash(dentry->d_name.hash);
498
499         hlist_bl_lock(b);
500         __hlist_bl_del(&dentry->d_hash);
501         hlist_bl_unlock(b);
502 }
503
504 void __d_drop(struct dentry *dentry)
505 {
506         if (!d_unhashed(dentry)) {
507                 ___d_drop(dentry);
508                 dentry->d_hash.pprev = NULL;
509                 write_seqcount_invalidate(&dentry->d_seq);
510         }
511 }
512 EXPORT_SYMBOL(__d_drop);
513
514 /**
515  * d_drop - drop a dentry
516  * @dentry: dentry to drop
517  *
518  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519  * be found through a VFS lookup any more. Note that this is different from
520  * deleting the dentry - d_delete will try to mark the dentry negative if
521  * possible, giving a successful _negative_ lookup, while d_drop will
522  * just make the cache lookup fail.
523  *
524  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525  * reason (NFS timeouts or autofs deletes).
526  *
527  * __d_drop requires dentry->d_lock
528  *
529  * ___d_drop doesn't mark dentry as "unhashed"
530  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531  */
532 void d_drop(struct dentry *dentry)
533 {
534         spin_lock(&dentry->d_lock);
535         __d_drop(dentry);
536         spin_unlock(&dentry->d_lock);
537 }
538 EXPORT_SYMBOL(d_drop);
539
540 static inline void dentry_unlist(struct dentry *dentry)
541 {
542         struct dentry *next;
543         /*
544          * Inform d_walk() and shrink_dentry_list() that we are no longer
545          * attached to the dentry tree
546          */
547         dentry->d_flags |= DCACHE_DENTRY_KILLED;
548         if (unlikely(hlist_unhashed(&dentry->d_sib)))
549                 return;
550         __hlist_del(&dentry->d_sib);
551         /*
552          * Cursors can move around the list of children.  While we'd been
553          * a normal list member, it didn't matter - ->d_sib.next would've
554          * been updated.  However, from now on it won't be and for the
555          * things like d_walk() it might end up with a nasty surprise.
556          * Normally d_walk() doesn't care about cursors moving around -
557          * ->d_lock on parent prevents that and since a cursor has no children
558          * of its own, we get through it without ever unlocking the parent.
559          * There is one exception, though - if we ascend from a child that
560          * gets killed as soon as we unlock it, the next sibling is found
561          * using the value left in its ->d_sib.next.  And if _that_
562          * pointed to a cursor, and cursor got moved (e.g. by lseek())
563          * before d_walk() regains parent->d_lock, we'll end up skipping
564          * everything the cursor had been moved past.
565          *
566          * Solution: make sure that the pointer left behind in ->d_sib.next
567          * points to something that won't be moving around.  I.e. skip the
568          * cursors.
569          */
570         while (dentry->d_sib.next) {
571                 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
572                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573                         break;
574                 dentry->d_sib.next = next->d_sib.next;
575         }
576 }
577
578 static struct dentry *__dentry_kill(struct dentry *dentry)
579 {
580         struct dentry *parent = NULL;
581         bool can_free = true;
582
583         /*
584          * The dentry is now unrecoverably dead to the world.
585          */
586         lockref_mark_dead(&dentry->d_lockref);
587
588         /*
589          * inform the fs via d_prune that this dentry is about to be
590          * unhashed and destroyed.
591          */
592         if (dentry->d_flags & DCACHE_OP_PRUNE)
593                 dentry->d_op->d_prune(dentry);
594
595         if (dentry->d_flags & DCACHE_LRU_LIST) {
596                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
597                         d_lru_del(dentry);
598         }
599         /* if it was on the hash then remove it */
600         __d_drop(dentry);
601         if (dentry->d_inode)
602                 dentry_unlink_inode(dentry);
603         else
604                 spin_unlock(&dentry->d_lock);
605         this_cpu_dec(nr_dentry);
606         if (dentry->d_op && dentry->d_op->d_release)
607                 dentry->d_op->d_release(dentry);
608
609         cond_resched();
610         /* now that it's negative, ->d_parent is stable */
611         if (!IS_ROOT(dentry)) {
612                 parent = dentry->d_parent;
613                 spin_lock(&parent->d_lock);
614         }
615         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616         dentry_unlist(dentry);
617         if (dentry->d_flags & DCACHE_SHRINK_LIST)
618                 can_free = false;
619         spin_unlock(&dentry->d_lock);
620         if (likely(can_free))
621                 dentry_free(dentry);
622         if (parent && --parent->d_lockref.count) {
623                 spin_unlock(&parent->d_lock);
624                 return NULL;
625         }
626         return parent;
627 }
628
629 /*
630  * Lock a dentry for feeding it to __dentry_kill().
631  * Called under rcu_read_lock() and dentry->d_lock; the former
632  * guarantees that nothing we access will be freed under us.
633  * Note that dentry is *not* protected from concurrent dentry_kill(),
634  * d_delete(), etc.
635  *
636  * Return false if dentry is busy.  Otherwise, return true and have
637  * that dentry's inode locked.
638  */
639
640 static bool lock_for_kill(struct dentry *dentry)
641 {
642         struct inode *inode = dentry->d_inode;
643
644         if (unlikely(dentry->d_lockref.count))
645                 return false;
646
647         if (!inode || likely(spin_trylock(&inode->i_lock)))
648                 return true;
649
650         do {
651                 spin_unlock(&dentry->d_lock);
652                 spin_lock(&inode->i_lock);
653                 spin_lock(&dentry->d_lock);
654                 if (likely(inode == dentry->d_inode))
655                         break;
656                 spin_unlock(&inode->i_lock);
657                 inode = dentry->d_inode;
658         } while (inode);
659         if (likely(!dentry->d_lockref.count))
660                 return true;
661         if (inode)
662                 spin_unlock(&inode->i_lock);
663         return false;
664 }
665
666 /*
667  * Decide if dentry is worth retaining.  Usually this is called with dentry
668  * locked; if not locked, we are more limited and might not be able to tell
669  * without a lock.  False in this case means "punt to locked path and recheck".
670  *
671  * In case we aren't locked, these predicates are not "stable". However, it is
672  * sufficient that at some point after we dropped the reference the dentry was
673  * hashed and the flags had the proper value. Other dentry users may have
674  * re-gotten a reference to the dentry and change that, but our work is done -
675  * we can leave the dentry around with a zero refcount.
676  */
677 static inline bool retain_dentry(struct dentry *dentry, bool locked)
678 {
679         unsigned int d_flags;
680
681         smp_rmb();
682         d_flags = READ_ONCE(dentry->d_flags);
683
684         // Unreachable? Nobody would be able to look it up, no point retaining
685         if (unlikely(d_unhashed(dentry)))
686                 return false;
687
688         // Same if it's disconnected
689         if (unlikely(d_flags & DCACHE_DISCONNECTED))
690                 return false;
691
692         // ->d_delete() might tell us not to bother, but that requires
693         // ->d_lock; can't decide without it
694         if (unlikely(d_flags & DCACHE_OP_DELETE)) {
695                 if (!locked || dentry->d_op->d_delete(dentry))
696                         return false;
697         }
698
699         // Explicitly told not to bother
700         if (unlikely(d_flags & DCACHE_DONTCACHE))
701                 return false;
702
703         // At this point it looks like we ought to keep it.  We also might
704         // need to do something - put it on LRU if it wasn't there already
705         // and mark it referenced if it was on LRU, but not marked yet.
706         // Unfortunately, both actions require ->d_lock, so in lockless
707         // case we'd have to punt rather than doing those.
708         if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
709                 if (!locked)
710                         return false;
711                 d_lru_add(dentry);
712         } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
713                 if (!locked)
714                         return false;
715                 dentry->d_flags |= DCACHE_REFERENCED;
716         }
717         return true;
718 }
719
720 void d_mark_dontcache(struct inode *inode)
721 {
722         struct dentry *de;
723
724         spin_lock(&inode->i_lock);
725         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
726                 spin_lock(&de->d_lock);
727                 de->d_flags |= DCACHE_DONTCACHE;
728                 spin_unlock(&de->d_lock);
729         }
730         inode->i_state |= I_DONTCACHE;
731         spin_unlock(&inode->i_lock);
732 }
733 EXPORT_SYMBOL(d_mark_dontcache);
734
735 /*
736  * Try to do a lockless dput(), and return whether that was successful.
737  *
738  * If unsuccessful, we return false, having already taken the dentry lock.
739  * In that case refcount is guaranteed to be zero and we have already
740  * decided that it's not worth keeping around.
741  *
742  * The caller needs to hold the RCU read lock, so that the dentry is
743  * guaranteed to stay around even if the refcount goes down to zero!
744  */
745 static inline bool fast_dput(struct dentry *dentry)
746 {
747         int ret;
748
749         /*
750          * try to decrement the lockref optimistically.
751          */
752         ret = lockref_put_return(&dentry->d_lockref);
753
754         /*
755          * If the lockref_put_return() failed due to the lock being held
756          * by somebody else, the fast path has failed. We will need to
757          * get the lock, and then check the count again.
758          */
759         if (unlikely(ret < 0)) {
760                 spin_lock(&dentry->d_lock);
761                 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
762                         spin_unlock(&dentry->d_lock);
763                         return true;
764                 }
765                 dentry->d_lockref.count--;
766                 goto locked;
767         }
768
769         /*
770          * If we weren't the last ref, we're done.
771          */
772         if (ret)
773                 return true;
774
775         /*
776          * Can we decide that decrement of refcount is all we needed without
777          * taking the lock?  There's a very common case when it's all we need -
778          * dentry looks like it ought to be retained and there's nothing else
779          * to do.
780          */
781         if (retain_dentry(dentry, false))
782                 return true;
783
784         /*
785          * Either not worth retaining or we can't tell without the lock.
786          * Get the lock, then.  We've already decremented the refcount to 0,
787          * but we'll need to re-check the situation after getting the lock.
788          */
789         spin_lock(&dentry->d_lock);
790
791         /*
792          * Did somebody else grab a reference to it in the meantime, and
793          * we're no longer the last user after all? Alternatively, somebody
794          * else could have killed it and marked it dead. Either way, we
795          * don't need to do anything else.
796          */
797 locked:
798         if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
799                 spin_unlock(&dentry->d_lock);
800                 return true;
801         }
802         return false;
803 }
804
805
806 /* 
807  * This is dput
808  *
809  * This is complicated by the fact that we do not want to put
810  * dentries that are no longer on any hash chain on the unused
811  * list: we'd much rather just get rid of them immediately.
812  *
813  * However, that implies that we have to traverse the dentry
814  * tree upwards to the parents which might _also_ now be
815  * scheduled for deletion (it may have been only waiting for
816  * its last child to go away).
817  *
818  * This tail recursion is done by hand as we don't want to depend
819  * on the compiler to always get this right (gcc generally doesn't).
820  * Real recursion would eat up our stack space.
821  */
822
823 /*
824  * dput - release a dentry
825  * @dentry: dentry to release 
826  *
827  * Release a dentry. This will drop the usage count and if appropriate
828  * call the dentry unlink method as well as removing it from the queues and
829  * releasing its resources. If the parent dentries were scheduled for release
830  * they too may now get deleted.
831  */
832 void dput(struct dentry *dentry)
833 {
834         if (!dentry)
835                 return;
836         might_sleep();
837         rcu_read_lock();
838         if (likely(fast_dput(dentry))) {
839                 rcu_read_unlock();
840                 return;
841         }
842         while (lock_for_kill(dentry)) {
843                 rcu_read_unlock();
844                 dentry = __dentry_kill(dentry);
845                 if (!dentry)
846                         return;
847                 if (retain_dentry(dentry, true)) {
848                         spin_unlock(&dentry->d_lock);
849                         return;
850                 }
851                 rcu_read_lock();
852         }
853         rcu_read_unlock();
854         spin_unlock(&dentry->d_lock);
855 }
856 EXPORT_SYMBOL(dput);
857
858 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
859 __must_hold(&dentry->d_lock)
860 {
861         if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
862                 if (dentry->d_flags & DCACHE_LRU_LIST)
863                         d_lru_del(dentry);
864                 d_shrink_add(dentry, list);
865         }
866 }
867
868 void dput_to_list(struct dentry *dentry, struct list_head *list)
869 {
870         rcu_read_lock();
871         if (likely(fast_dput(dentry))) {
872                 rcu_read_unlock();
873                 return;
874         }
875         rcu_read_unlock();
876         to_shrink_list(dentry, list);
877         spin_unlock(&dentry->d_lock);
878 }
879
880 struct dentry *dget_parent(struct dentry *dentry)
881 {
882         int gotref;
883         struct dentry *ret;
884         unsigned seq;
885
886         /*
887          * Do optimistic parent lookup without any
888          * locking.
889          */
890         rcu_read_lock();
891         seq = raw_seqcount_begin(&dentry->d_seq);
892         ret = READ_ONCE(dentry->d_parent);
893         gotref = lockref_get_not_zero(&ret->d_lockref);
894         rcu_read_unlock();
895         if (likely(gotref)) {
896                 if (!read_seqcount_retry(&dentry->d_seq, seq))
897                         return ret;
898                 dput(ret);
899         }
900
901 repeat:
902         /*
903          * Don't need rcu_dereference because we re-check it was correct under
904          * the lock.
905          */
906         rcu_read_lock();
907         ret = dentry->d_parent;
908         spin_lock(&ret->d_lock);
909         if (unlikely(ret != dentry->d_parent)) {
910                 spin_unlock(&ret->d_lock);
911                 rcu_read_unlock();
912                 goto repeat;
913         }
914         rcu_read_unlock();
915         BUG_ON(!ret->d_lockref.count);
916         ret->d_lockref.count++;
917         spin_unlock(&ret->d_lock);
918         return ret;
919 }
920 EXPORT_SYMBOL(dget_parent);
921
922 static struct dentry * __d_find_any_alias(struct inode *inode)
923 {
924         struct dentry *alias;
925
926         if (hlist_empty(&inode->i_dentry))
927                 return NULL;
928         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
929         lockref_get(&alias->d_lockref);
930         return alias;
931 }
932
933 /**
934  * d_find_any_alias - find any alias for a given inode
935  * @inode: inode to find an alias for
936  *
937  * If any aliases exist for the given inode, take and return a
938  * reference for one of them.  If no aliases exist, return %NULL.
939  */
940 struct dentry *d_find_any_alias(struct inode *inode)
941 {
942         struct dentry *de;
943
944         spin_lock(&inode->i_lock);
945         de = __d_find_any_alias(inode);
946         spin_unlock(&inode->i_lock);
947         return de;
948 }
949 EXPORT_SYMBOL(d_find_any_alias);
950
951 static struct dentry *__d_find_alias(struct inode *inode)
952 {
953         struct dentry *alias;
954
955         if (S_ISDIR(inode->i_mode))
956                 return __d_find_any_alias(inode);
957
958         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
959                 spin_lock(&alias->d_lock);
960                 if (!d_unhashed(alias)) {
961                         dget_dlock(alias);
962                         spin_unlock(&alias->d_lock);
963                         return alias;
964                 }
965                 spin_unlock(&alias->d_lock);
966         }
967         return NULL;
968 }
969
970 /**
971  * d_find_alias - grab a hashed alias of inode
972  * @inode: inode in question
973  *
974  * If inode has a hashed alias, or is a directory and has any alias,
975  * acquire the reference to alias and return it. Otherwise return NULL.
976  * Notice that if inode is a directory there can be only one alias and
977  * it can be unhashed only if it has no children, or if it is the root
978  * of a filesystem, or if the directory was renamed and d_revalidate
979  * was the first vfs operation to notice.
980  *
981  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
982  * any other hashed alias over that one.
983  */
984 struct dentry *d_find_alias(struct inode *inode)
985 {
986         struct dentry *de = NULL;
987
988         if (!hlist_empty(&inode->i_dentry)) {
989                 spin_lock(&inode->i_lock);
990                 de = __d_find_alias(inode);
991                 spin_unlock(&inode->i_lock);
992         }
993         return de;
994 }
995 EXPORT_SYMBOL(d_find_alias);
996
997 /*
998  *  Caller MUST be holding rcu_read_lock() and be guaranteed
999  *  that inode won't get freed until rcu_read_unlock().
1000  */
1001 struct dentry *d_find_alias_rcu(struct inode *inode)
1002 {
1003         struct hlist_head *l = &inode->i_dentry;
1004         struct dentry *de = NULL;
1005
1006         spin_lock(&inode->i_lock);
1007         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1008         // used without having I_FREEING set, which means no aliases left
1009         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1010                 if (S_ISDIR(inode->i_mode)) {
1011                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1012                 } else {
1013                         hlist_for_each_entry(de, l, d_u.d_alias)
1014                                 if (!d_unhashed(de))
1015                                         break;
1016                 }
1017         }
1018         spin_unlock(&inode->i_lock);
1019         return de;
1020 }
1021
1022 /*
1023  *      Try to kill dentries associated with this inode.
1024  * WARNING: you must own a reference to inode.
1025  */
1026 void d_prune_aliases(struct inode *inode)
1027 {
1028         LIST_HEAD(dispose);
1029         struct dentry *dentry;
1030
1031         spin_lock(&inode->i_lock);
1032         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1033                 spin_lock(&dentry->d_lock);
1034                 if (!dentry->d_lockref.count)
1035                         to_shrink_list(dentry, &dispose);
1036                 spin_unlock(&dentry->d_lock);
1037         }
1038         spin_unlock(&inode->i_lock);
1039         shrink_dentry_list(&dispose);
1040 }
1041 EXPORT_SYMBOL(d_prune_aliases);
1042
1043 static inline void shrink_kill(struct dentry *victim)
1044 {
1045         do {
1046                 rcu_read_unlock();
1047                 victim = __dentry_kill(victim);
1048                 rcu_read_lock();
1049         } while (victim && lock_for_kill(victim));
1050         rcu_read_unlock();
1051         if (victim)
1052                 spin_unlock(&victim->d_lock);
1053 }
1054
1055 void shrink_dentry_list(struct list_head *list)
1056 {
1057         while (!list_empty(list)) {
1058                 struct dentry *dentry;
1059
1060                 dentry = list_entry(list->prev, struct dentry, d_lru);
1061                 spin_lock(&dentry->d_lock);
1062                 rcu_read_lock();
1063                 if (!lock_for_kill(dentry)) {
1064                         bool can_free;
1065                         rcu_read_unlock();
1066                         d_shrink_del(dentry);
1067                         can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1068                         spin_unlock(&dentry->d_lock);
1069                         if (can_free)
1070                                 dentry_free(dentry);
1071                         continue;
1072                 }
1073                 d_shrink_del(dentry);
1074                 shrink_kill(dentry);
1075         }
1076 }
1077
1078 static enum lru_status dentry_lru_isolate(struct list_head *item,
1079                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1080 {
1081         struct list_head *freeable = arg;
1082         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1083
1084
1085         /*
1086          * we are inverting the lru lock/dentry->d_lock here,
1087          * so use a trylock. If we fail to get the lock, just skip
1088          * it
1089          */
1090         if (!spin_trylock(&dentry->d_lock))
1091                 return LRU_SKIP;
1092
1093         /*
1094          * Referenced dentries are still in use. If they have active
1095          * counts, just remove them from the LRU. Otherwise give them
1096          * another pass through the LRU.
1097          */
1098         if (dentry->d_lockref.count) {
1099                 d_lru_isolate(lru, dentry);
1100                 spin_unlock(&dentry->d_lock);
1101                 return LRU_REMOVED;
1102         }
1103
1104         if (dentry->d_flags & DCACHE_REFERENCED) {
1105                 dentry->d_flags &= ~DCACHE_REFERENCED;
1106                 spin_unlock(&dentry->d_lock);
1107
1108                 /*
1109                  * The list move itself will be made by the common LRU code. At
1110                  * this point, we've dropped the dentry->d_lock but keep the
1111                  * lru lock. This is safe to do, since every list movement is
1112                  * protected by the lru lock even if both locks are held.
1113                  *
1114                  * This is guaranteed by the fact that all LRU management
1115                  * functions are intermediated by the LRU API calls like
1116                  * list_lru_add and list_lru_del. List movement in this file
1117                  * only ever occur through this functions or through callbacks
1118                  * like this one, that are called from the LRU API.
1119                  *
1120                  * The only exceptions to this are functions like
1121                  * shrink_dentry_list, and code that first checks for the
1122                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1123                  * operating only with stack provided lists after they are
1124                  * properly isolated from the main list.  It is thus, always a
1125                  * local access.
1126                  */
1127                 return LRU_ROTATE;
1128         }
1129
1130         d_lru_shrink_move(lru, dentry, freeable);
1131         spin_unlock(&dentry->d_lock);
1132
1133         return LRU_REMOVED;
1134 }
1135
1136 /**
1137  * prune_dcache_sb - shrink the dcache
1138  * @sb: superblock
1139  * @sc: shrink control, passed to list_lru_shrink_walk()
1140  *
1141  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1142  * is done when we need more memory and called from the superblock shrinker
1143  * function.
1144  *
1145  * This function may fail to free any resources if all the dentries are in
1146  * use.
1147  */
1148 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1149 {
1150         LIST_HEAD(dispose);
1151         long freed;
1152
1153         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1154                                      dentry_lru_isolate, &dispose);
1155         shrink_dentry_list(&dispose);
1156         return freed;
1157 }
1158
1159 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1160                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1161 {
1162         struct list_head *freeable = arg;
1163         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1164
1165         /*
1166          * we are inverting the lru lock/dentry->d_lock here,
1167          * so use a trylock. If we fail to get the lock, just skip
1168          * it
1169          */
1170         if (!spin_trylock(&dentry->d_lock))
1171                 return LRU_SKIP;
1172
1173         d_lru_shrink_move(lru, dentry, freeable);
1174         spin_unlock(&dentry->d_lock);
1175
1176         return LRU_REMOVED;
1177 }
1178
1179
1180 /**
1181  * shrink_dcache_sb - shrink dcache for a superblock
1182  * @sb: superblock
1183  *
1184  * Shrink the dcache for the specified super block. This is used to free
1185  * the dcache before unmounting a file system.
1186  */
1187 void shrink_dcache_sb(struct super_block *sb)
1188 {
1189         do {
1190                 LIST_HEAD(dispose);
1191
1192                 list_lru_walk(&sb->s_dentry_lru,
1193                         dentry_lru_isolate_shrink, &dispose, 1024);
1194                 shrink_dentry_list(&dispose);
1195         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1196 }
1197 EXPORT_SYMBOL(shrink_dcache_sb);
1198
1199 /**
1200  * enum d_walk_ret - action to talke during tree walk
1201  * @D_WALK_CONTINUE:    contrinue walk
1202  * @D_WALK_QUIT:        quit walk
1203  * @D_WALK_NORETRY:     quit when retry is needed
1204  * @D_WALK_SKIP:        skip this dentry and its children
1205  */
1206 enum d_walk_ret {
1207         D_WALK_CONTINUE,
1208         D_WALK_QUIT,
1209         D_WALK_NORETRY,
1210         D_WALK_SKIP,
1211 };
1212
1213 /**
1214  * d_walk - walk the dentry tree
1215  * @parent:     start of walk
1216  * @data:       data passed to @enter() and @finish()
1217  * @enter:      callback when first entering the dentry
1218  *
1219  * The @enter() callbacks are called with d_lock held.
1220  */
1221 static void d_walk(struct dentry *parent, void *data,
1222                    enum d_walk_ret (*enter)(void *, struct dentry *))
1223 {
1224         struct dentry *this_parent, *dentry;
1225         unsigned seq = 0;
1226         enum d_walk_ret ret;
1227         bool retry = true;
1228
1229 again:
1230         read_seqbegin_or_lock(&rename_lock, &seq);
1231         this_parent = parent;
1232         spin_lock(&this_parent->d_lock);
1233
1234         ret = enter(data, this_parent);
1235         switch (ret) {
1236         case D_WALK_CONTINUE:
1237                 break;
1238         case D_WALK_QUIT:
1239         case D_WALK_SKIP:
1240                 goto out_unlock;
1241         case D_WALK_NORETRY:
1242                 retry = false;
1243                 break;
1244         }
1245 repeat:
1246         dentry = d_first_child(this_parent);
1247 resume:
1248         hlist_for_each_entry_from(dentry, d_sib) {
1249                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1250                         continue;
1251
1252                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1253
1254                 ret = enter(data, dentry);
1255                 switch (ret) {
1256                 case D_WALK_CONTINUE:
1257                         break;
1258                 case D_WALK_QUIT:
1259                         spin_unlock(&dentry->d_lock);
1260                         goto out_unlock;
1261                 case D_WALK_NORETRY:
1262                         retry = false;
1263                         break;
1264                 case D_WALK_SKIP:
1265                         spin_unlock(&dentry->d_lock);
1266                         continue;
1267                 }
1268
1269                 if (!hlist_empty(&dentry->d_children)) {
1270                         spin_unlock(&this_parent->d_lock);
1271                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1272                         this_parent = dentry;
1273                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1274                         goto repeat;
1275                 }
1276                 spin_unlock(&dentry->d_lock);
1277         }
1278         /*
1279          * All done at this level ... ascend and resume the search.
1280          */
1281         rcu_read_lock();
1282 ascend:
1283         if (this_parent != parent) {
1284                 dentry = this_parent;
1285                 this_parent = dentry->d_parent;
1286
1287                 spin_unlock(&dentry->d_lock);
1288                 spin_lock(&this_parent->d_lock);
1289
1290                 /* might go back up the wrong parent if we have had a rename. */
1291                 if (need_seqretry(&rename_lock, seq))
1292                         goto rename_retry;
1293                 /* go into the first sibling still alive */
1294                 hlist_for_each_entry_continue(dentry, d_sib) {
1295                         if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1296                                 rcu_read_unlock();
1297                                 goto resume;
1298                         }
1299                 }
1300                 goto ascend;
1301         }
1302         if (need_seqretry(&rename_lock, seq))
1303                 goto rename_retry;
1304         rcu_read_unlock();
1305
1306 out_unlock:
1307         spin_unlock(&this_parent->d_lock);
1308         done_seqretry(&rename_lock, seq);
1309         return;
1310
1311 rename_retry:
1312         spin_unlock(&this_parent->d_lock);
1313         rcu_read_unlock();
1314         BUG_ON(seq & 1);
1315         if (!retry)
1316                 return;
1317         seq = 1;
1318         goto again;
1319 }
1320
1321 struct check_mount {
1322         struct vfsmount *mnt;
1323         unsigned int mounted;
1324 };
1325
1326 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1327 {
1328         struct check_mount *info = data;
1329         struct path path = { .mnt = info->mnt, .dentry = dentry };
1330
1331         if (likely(!d_mountpoint(dentry)))
1332                 return D_WALK_CONTINUE;
1333         if (__path_is_mountpoint(&path)) {
1334                 info->mounted = 1;
1335                 return D_WALK_QUIT;
1336         }
1337         return D_WALK_CONTINUE;
1338 }
1339
1340 /**
1341  * path_has_submounts - check for mounts over a dentry in the
1342  *                      current namespace.
1343  * @parent: path to check.
1344  *
1345  * Return true if the parent or its subdirectories contain
1346  * a mount point in the current namespace.
1347  */
1348 int path_has_submounts(const struct path *parent)
1349 {
1350         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1351
1352         read_seqlock_excl(&mount_lock);
1353         d_walk(parent->dentry, &data, path_check_mount);
1354         read_sequnlock_excl(&mount_lock);
1355
1356         return data.mounted;
1357 }
1358 EXPORT_SYMBOL(path_has_submounts);
1359
1360 /*
1361  * Called by mount code to set a mountpoint and check if the mountpoint is
1362  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1363  * subtree can become unreachable).
1364  *
1365  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1366  * this reason take rename_lock and d_lock on dentry and ancestors.
1367  */
1368 int d_set_mounted(struct dentry *dentry)
1369 {
1370         struct dentry *p;
1371         int ret = -ENOENT;
1372         write_seqlock(&rename_lock);
1373         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1374                 /* Need exclusion wrt. d_invalidate() */
1375                 spin_lock(&p->d_lock);
1376                 if (unlikely(d_unhashed(p))) {
1377                         spin_unlock(&p->d_lock);
1378                         goto out;
1379                 }
1380                 spin_unlock(&p->d_lock);
1381         }
1382         spin_lock(&dentry->d_lock);
1383         if (!d_unlinked(dentry)) {
1384                 ret = -EBUSY;
1385                 if (!d_mountpoint(dentry)) {
1386                         dentry->d_flags |= DCACHE_MOUNTED;
1387                         ret = 0;
1388                 }
1389         }
1390         spin_unlock(&dentry->d_lock);
1391 out:
1392         write_sequnlock(&rename_lock);
1393         return ret;
1394 }
1395
1396 /*
1397  * Search the dentry child list of the specified parent,
1398  * and move any unused dentries to the end of the unused
1399  * list for prune_dcache(). We descend to the next level
1400  * whenever the d_children list is non-empty and continue
1401  * searching.
1402  *
1403  * It returns zero iff there are no unused children,
1404  * otherwise  it returns the number of children moved to
1405  * the end of the unused list. This may not be the total
1406  * number of unused children, because select_parent can
1407  * drop the lock and return early due to latency
1408  * constraints.
1409  */
1410
1411 struct select_data {
1412         struct dentry *start;
1413         union {
1414                 long found;
1415                 struct dentry *victim;
1416         };
1417         struct list_head dispose;
1418 };
1419
1420 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1421 {
1422         struct select_data *data = _data;
1423         enum d_walk_ret ret = D_WALK_CONTINUE;
1424
1425         if (data->start == dentry)
1426                 goto out;
1427
1428         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1429                 data->found++;
1430         } else if (!dentry->d_lockref.count) {
1431                 to_shrink_list(dentry, &data->dispose);
1432                 data->found++;
1433         } else if (dentry->d_lockref.count < 0) {
1434                 data->found++;
1435         }
1436         /*
1437          * We can return to the caller if we have found some (this
1438          * ensures forward progress). We'll be coming back to find
1439          * the rest.
1440          */
1441         if (!list_empty(&data->dispose))
1442                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1443 out:
1444         return ret;
1445 }
1446
1447 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1448 {
1449         struct select_data *data = _data;
1450         enum d_walk_ret ret = D_WALK_CONTINUE;
1451
1452         if (data->start == dentry)
1453                 goto out;
1454
1455         if (!dentry->d_lockref.count) {
1456                 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1457                         rcu_read_lock();
1458                         data->victim = dentry;
1459                         return D_WALK_QUIT;
1460                 }
1461                 to_shrink_list(dentry, &data->dispose);
1462         }
1463         /*
1464          * We can return to the caller if we have found some (this
1465          * ensures forward progress). We'll be coming back to find
1466          * the rest.
1467          */
1468         if (!list_empty(&data->dispose))
1469                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1470 out:
1471         return ret;
1472 }
1473
1474 /**
1475  * shrink_dcache_parent - prune dcache
1476  * @parent: parent of entries to prune
1477  *
1478  * Prune the dcache to remove unused children of the parent dentry.
1479  */
1480 void shrink_dcache_parent(struct dentry *parent)
1481 {
1482         for (;;) {
1483                 struct select_data data = {.start = parent};
1484
1485                 INIT_LIST_HEAD(&data.dispose);
1486                 d_walk(parent, &data, select_collect);
1487
1488                 if (!list_empty(&data.dispose)) {
1489                         shrink_dentry_list(&data.dispose);
1490                         continue;
1491                 }
1492
1493                 cond_resched();
1494                 if (!data.found)
1495                         break;
1496                 data.victim = NULL;
1497                 d_walk(parent, &data, select_collect2);
1498                 if (data.victim) {
1499                         spin_lock(&data.victim->d_lock);
1500                         if (!lock_for_kill(data.victim)) {
1501                                 spin_unlock(&data.victim->d_lock);
1502                                 rcu_read_unlock();
1503                         } else {
1504                                 shrink_kill(data.victim);
1505                         }
1506                 }
1507                 if (!list_empty(&data.dispose))
1508                         shrink_dentry_list(&data.dispose);
1509         }
1510 }
1511 EXPORT_SYMBOL(shrink_dcache_parent);
1512
1513 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1514 {
1515         /* it has busy descendents; complain about those instead */
1516         if (!hlist_empty(&dentry->d_children))
1517                 return D_WALK_CONTINUE;
1518
1519         /* root with refcount 1 is fine */
1520         if (dentry == _data && dentry->d_lockref.count == 1)
1521                 return D_WALK_CONTINUE;
1522
1523         WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1524                         " still in use (%d) [unmount of %s %s]\n",
1525                        dentry,
1526                        dentry->d_inode ?
1527                        dentry->d_inode->i_ino : 0UL,
1528                        dentry,
1529                        dentry->d_lockref.count,
1530                        dentry->d_sb->s_type->name,
1531                        dentry->d_sb->s_id);
1532         return D_WALK_CONTINUE;
1533 }
1534
1535 static void do_one_tree(struct dentry *dentry)
1536 {
1537         shrink_dcache_parent(dentry);
1538         d_walk(dentry, dentry, umount_check);
1539         d_drop(dentry);
1540         dput(dentry);
1541 }
1542
1543 /*
1544  * destroy the dentries attached to a superblock on unmounting
1545  */
1546 void shrink_dcache_for_umount(struct super_block *sb)
1547 {
1548         struct dentry *dentry;
1549
1550         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1551
1552         dentry = sb->s_root;
1553         sb->s_root = NULL;
1554         do_one_tree(dentry);
1555
1556         while (!hlist_bl_empty(&sb->s_roots)) {
1557                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1558                 do_one_tree(dentry);
1559         }
1560 }
1561
1562 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1563 {
1564         struct dentry **victim = _data;
1565         if (d_mountpoint(dentry)) {
1566                 *victim = dget_dlock(dentry);
1567                 return D_WALK_QUIT;
1568         }
1569         return D_WALK_CONTINUE;
1570 }
1571
1572 /**
1573  * d_invalidate - detach submounts, prune dcache, and drop
1574  * @dentry: dentry to invalidate (aka detach, prune and drop)
1575  */
1576 void d_invalidate(struct dentry *dentry)
1577 {
1578         bool had_submounts = false;
1579         spin_lock(&dentry->d_lock);
1580         if (d_unhashed(dentry)) {
1581                 spin_unlock(&dentry->d_lock);
1582                 return;
1583         }
1584         __d_drop(dentry);
1585         spin_unlock(&dentry->d_lock);
1586
1587         /* Negative dentries can be dropped without further checks */
1588         if (!dentry->d_inode)
1589                 return;
1590
1591         shrink_dcache_parent(dentry);
1592         for (;;) {
1593                 struct dentry *victim = NULL;
1594                 d_walk(dentry, &victim, find_submount);
1595                 if (!victim) {
1596                         if (had_submounts)
1597                                 shrink_dcache_parent(dentry);
1598                         return;
1599                 }
1600                 had_submounts = true;
1601                 detach_mounts(victim);
1602                 dput(victim);
1603         }
1604 }
1605 EXPORT_SYMBOL(d_invalidate);
1606
1607 /**
1608  * __d_alloc    -       allocate a dcache entry
1609  * @sb: filesystem it will belong to
1610  * @name: qstr of the name
1611  *
1612  * Allocates a dentry. It returns %NULL if there is insufficient memory
1613  * available. On a success the dentry is returned. The name passed in is
1614  * copied and the copy passed in may be reused after this call.
1615  */
1616  
1617 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1618 {
1619         struct dentry *dentry;
1620         char *dname;
1621         int err;
1622
1623         dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1624                                       GFP_KERNEL);
1625         if (!dentry)
1626                 return NULL;
1627
1628         /*
1629          * We guarantee that the inline name is always NUL-terminated.
1630          * This way the memcpy() done by the name switching in rename
1631          * will still always have a NUL at the end, even if we might
1632          * be overwriting an internal NUL character
1633          */
1634         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1635         if (unlikely(!name)) {
1636                 name = &slash_name;
1637                 dname = dentry->d_iname;
1638         } else if (name->len > DNAME_INLINE_LEN-1) {
1639                 size_t size = offsetof(struct external_name, name[1]);
1640                 struct external_name *p = kmalloc(size + name->len,
1641                                                   GFP_KERNEL_ACCOUNT |
1642                                                   __GFP_RECLAIMABLE);
1643                 if (!p) {
1644                         kmem_cache_free(dentry_cache, dentry); 
1645                         return NULL;
1646                 }
1647                 atomic_set(&p->u.count, 1);
1648                 dname = p->name;
1649         } else  {
1650                 dname = dentry->d_iname;
1651         }       
1652
1653         dentry->d_name.len = name->len;
1654         dentry->d_name.hash = name->hash;
1655         memcpy(dname, name->name, name->len);
1656         dname[name->len] = 0;
1657
1658         /* Make sure we always see the terminating NUL character */
1659         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1660
1661         dentry->d_lockref.count = 1;
1662         dentry->d_flags = 0;
1663         spin_lock_init(&dentry->d_lock);
1664         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1665         dentry->d_inode = NULL;
1666         dentry->d_parent = dentry;
1667         dentry->d_sb = sb;
1668         dentry->d_op = NULL;
1669         dentry->d_fsdata = NULL;
1670         INIT_HLIST_BL_NODE(&dentry->d_hash);
1671         INIT_LIST_HEAD(&dentry->d_lru);
1672         INIT_HLIST_HEAD(&dentry->d_children);
1673         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1674         INIT_HLIST_NODE(&dentry->d_sib);
1675         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1676
1677         if (dentry->d_op && dentry->d_op->d_init) {
1678                 err = dentry->d_op->d_init(dentry);
1679                 if (err) {
1680                         if (dname_external(dentry))
1681                                 kfree(external_name(dentry));
1682                         kmem_cache_free(dentry_cache, dentry);
1683                         return NULL;
1684                 }
1685         }
1686
1687         this_cpu_inc(nr_dentry);
1688
1689         return dentry;
1690 }
1691
1692 /**
1693  * d_alloc      -       allocate a dcache entry
1694  * @parent: parent of entry to allocate
1695  * @name: qstr of the name
1696  *
1697  * Allocates a dentry. It returns %NULL if there is insufficient memory
1698  * available. On a success the dentry is returned. The name passed in is
1699  * copied and the copy passed in may be reused after this call.
1700  */
1701 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1702 {
1703         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1704         if (!dentry)
1705                 return NULL;
1706         spin_lock(&parent->d_lock);
1707         /*
1708          * don't need child lock because it is not subject
1709          * to concurrency here
1710          */
1711         dentry->d_parent = dget_dlock(parent);
1712         hlist_add_head(&dentry->d_sib, &parent->d_children);
1713         spin_unlock(&parent->d_lock);
1714
1715         return dentry;
1716 }
1717 EXPORT_SYMBOL(d_alloc);
1718
1719 struct dentry *d_alloc_anon(struct super_block *sb)
1720 {
1721         return __d_alloc(sb, NULL);
1722 }
1723 EXPORT_SYMBOL(d_alloc_anon);
1724
1725 struct dentry *d_alloc_cursor(struct dentry * parent)
1726 {
1727         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1728         if (dentry) {
1729                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1730                 dentry->d_parent = dget(parent);
1731         }
1732         return dentry;
1733 }
1734
1735 /**
1736  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1737  * @sb: the superblock
1738  * @name: qstr of the name
1739  *
1740  * For a filesystem that just pins its dentries in memory and never
1741  * performs lookups at all, return an unhashed IS_ROOT dentry.
1742  * This is used for pipes, sockets et.al. - the stuff that should
1743  * never be anyone's children or parents.  Unlike all other
1744  * dentries, these will not have RCU delay between dropping the
1745  * last reference and freeing them.
1746  *
1747  * The only user is alloc_file_pseudo() and that's what should
1748  * be considered a public interface.  Don't use directly.
1749  */
1750 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1751 {
1752         static const struct dentry_operations anon_ops = {
1753                 .d_dname = simple_dname
1754         };
1755         struct dentry *dentry = __d_alloc(sb, name);
1756         if (likely(dentry)) {
1757                 dentry->d_flags |= DCACHE_NORCU;
1758                 if (!sb->s_d_op)
1759                         d_set_d_op(dentry, &anon_ops);
1760         }
1761         return dentry;
1762 }
1763
1764 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1765 {
1766         struct qstr q;
1767
1768         q.name = name;
1769         q.hash_len = hashlen_string(parent, name);
1770         return d_alloc(parent, &q);
1771 }
1772 EXPORT_SYMBOL(d_alloc_name);
1773
1774 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1775 {
1776         WARN_ON_ONCE(dentry->d_op);
1777         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1778                                 DCACHE_OP_COMPARE       |
1779                                 DCACHE_OP_REVALIDATE    |
1780                                 DCACHE_OP_WEAK_REVALIDATE       |
1781                                 DCACHE_OP_DELETE        |
1782                                 DCACHE_OP_REAL));
1783         dentry->d_op = op;
1784         if (!op)
1785                 return;
1786         if (op->d_hash)
1787                 dentry->d_flags |= DCACHE_OP_HASH;
1788         if (op->d_compare)
1789                 dentry->d_flags |= DCACHE_OP_COMPARE;
1790         if (op->d_revalidate)
1791                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1792         if (op->d_weak_revalidate)
1793                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1794         if (op->d_delete)
1795                 dentry->d_flags |= DCACHE_OP_DELETE;
1796         if (op->d_prune)
1797                 dentry->d_flags |= DCACHE_OP_PRUNE;
1798         if (op->d_real)
1799                 dentry->d_flags |= DCACHE_OP_REAL;
1800
1801 }
1802 EXPORT_SYMBOL(d_set_d_op);
1803
1804 static unsigned d_flags_for_inode(struct inode *inode)
1805 {
1806         unsigned add_flags = DCACHE_REGULAR_TYPE;
1807
1808         if (!inode)
1809                 return DCACHE_MISS_TYPE;
1810
1811         if (S_ISDIR(inode->i_mode)) {
1812                 add_flags = DCACHE_DIRECTORY_TYPE;
1813                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1814                         if (unlikely(!inode->i_op->lookup))
1815                                 add_flags = DCACHE_AUTODIR_TYPE;
1816                         else
1817                                 inode->i_opflags |= IOP_LOOKUP;
1818                 }
1819                 goto type_determined;
1820         }
1821
1822         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1823                 if (unlikely(inode->i_op->get_link)) {
1824                         add_flags = DCACHE_SYMLINK_TYPE;
1825                         goto type_determined;
1826                 }
1827                 inode->i_opflags |= IOP_NOFOLLOW;
1828         }
1829
1830         if (unlikely(!S_ISREG(inode->i_mode)))
1831                 add_flags = DCACHE_SPECIAL_TYPE;
1832
1833 type_determined:
1834         if (unlikely(IS_AUTOMOUNT(inode)))
1835                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1836         return add_flags;
1837 }
1838
1839 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1840 {
1841         unsigned add_flags = d_flags_for_inode(inode);
1842         WARN_ON(d_in_lookup(dentry));
1843
1844         spin_lock(&dentry->d_lock);
1845         /*
1846          * Decrement negative dentry count if it was in the LRU list.
1847          */
1848         if (dentry->d_flags & DCACHE_LRU_LIST)
1849                 this_cpu_dec(nr_dentry_negative);
1850         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1851         raw_write_seqcount_begin(&dentry->d_seq);
1852         __d_set_inode_and_type(dentry, inode, add_flags);
1853         raw_write_seqcount_end(&dentry->d_seq);
1854         fsnotify_update_flags(dentry);
1855         spin_unlock(&dentry->d_lock);
1856 }
1857
1858 /**
1859  * d_instantiate - fill in inode information for a dentry
1860  * @entry: dentry to complete
1861  * @inode: inode to attach to this dentry
1862  *
1863  * Fill in inode information in the entry.
1864  *
1865  * This turns negative dentries into productive full members
1866  * of society.
1867  *
1868  * NOTE! This assumes that the inode count has been incremented
1869  * (or otherwise set) by the caller to indicate that it is now
1870  * in use by the dcache.
1871  */
1872  
1873 void d_instantiate(struct dentry *entry, struct inode * inode)
1874 {
1875         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876         if (inode) {
1877                 security_d_instantiate(entry, inode);
1878                 spin_lock(&inode->i_lock);
1879                 __d_instantiate(entry, inode);
1880                 spin_unlock(&inode->i_lock);
1881         }
1882 }
1883 EXPORT_SYMBOL(d_instantiate);
1884
1885 /*
1886  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1887  * with lockdep-related part of unlock_new_inode() done before
1888  * anything else.  Use that instead of open-coding d_instantiate()/
1889  * unlock_new_inode() combinations.
1890  */
1891 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1892 {
1893         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1894         BUG_ON(!inode);
1895         lockdep_annotate_inode_mutex_key(inode);
1896         security_d_instantiate(entry, inode);
1897         spin_lock(&inode->i_lock);
1898         __d_instantiate(entry, inode);
1899         WARN_ON(!(inode->i_state & I_NEW));
1900         inode->i_state &= ~I_NEW & ~I_CREATING;
1901         smp_mb();
1902         wake_up_bit(&inode->i_state, __I_NEW);
1903         spin_unlock(&inode->i_lock);
1904 }
1905 EXPORT_SYMBOL(d_instantiate_new);
1906
1907 struct dentry *d_make_root(struct inode *root_inode)
1908 {
1909         struct dentry *res = NULL;
1910
1911         if (root_inode) {
1912                 res = d_alloc_anon(root_inode->i_sb);
1913                 if (res)
1914                         d_instantiate(res, root_inode);
1915                 else
1916                         iput(root_inode);
1917         }
1918         return res;
1919 }
1920 EXPORT_SYMBOL(d_make_root);
1921
1922 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1923 {
1924         struct super_block *sb;
1925         struct dentry *new, *res;
1926
1927         if (!inode)
1928                 return ERR_PTR(-ESTALE);
1929         if (IS_ERR(inode))
1930                 return ERR_CAST(inode);
1931
1932         sb = inode->i_sb;
1933
1934         res = d_find_any_alias(inode); /* existing alias? */
1935         if (res)
1936                 goto out;
1937
1938         new = d_alloc_anon(sb);
1939         if (!new) {
1940                 res = ERR_PTR(-ENOMEM);
1941                 goto out;
1942         }
1943
1944         security_d_instantiate(new, inode);
1945         spin_lock(&inode->i_lock);
1946         res = __d_find_any_alias(inode); /* recheck under lock */
1947         if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1948                 unsigned add_flags = d_flags_for_inode(inode);
1949
1950                 if (disconnected)
1951                         add_flags |= DCACHE_DISCONNECTED;
1952
1953                 spin_lock(&new->d_lock);
1954                 __d_set_inode_and_type(new, inode, add_flags);
1955                 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1956                 if (!disconnected) {
1957                         hlist_bl_lock(&sb->s_roots);
1958                         hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1959                         hlist_bl_unlock(&sb->s_roots);
1960                 }
1961                 spin_unlock(&new->d_lock);
1962                 spin_unlock(&inode->i_lock);
1963                 inode = NULL; /* consumed by new->d_inode */
1964                 res = new;
1965         } else {
1966                 spin_unlock(&inode->i_lock);
1967                 dput(new);
1968         }
1969
1970  out:
1971         iput(inode);
1972         return res;
1973 }
1974
1975 /**
1976  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1977  * @inode: inode to allocate the dentry for
1978  *
1979  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1980  * similar open by handle operations.  The returned dentry may be anonymous,
1981  * or may have a full name (if the inode was already in the cache).
1982  *
1983  * When called on a directory inode, we must ensure that the inode only ever
1984  * has one dentry.  If a dentry is found, that is returned instead of
1985  * allocating a new one.
1986  *
1987  * On successful return, the reference to the inode has been transferred
1988  * to the dentry.  In case of an error the reference on the inode is released.
1989  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1990  * be passed in and the error will be propagated to the return value,
1991  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1992  */
1993 struct dentry *d_obtain_alias(struct inode *inode)
1994 {
1995         return __d_obtain_alias(inode, true);
1996 }
1997 EXPORT_SYMBOL(d_obtain_alias);
1998
1999 /**
2000  * d_obtain_root - find or allocate a dentry for a given inode
2001  * @inode: inode to allocate the dentry for
2002  *
2003  * Obtain an IS_ROOT dentry for the root of a filesystem.
2004  *
2005  * We must ensure that directory inodes only ever have one dentry.  If a
2006  * dentry is found, that is returned instead of allocating a new one.
2007  *
2008  * On successful return, the reference to the inode has been transferred
2009  * to the dentry.  In case of an error the reference on the inode is
2010  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2011  * error will be propagate to the return value, with a %NULL @inode
2012  * replaced by ERR_PTR(-ESTALE).
2013  */
2014 struct dentry *d_obtain_root(struct inode *inode)
2015 {
2016         return __d_obtain_alias(inode, false);
2017 }
2018 EXPORT_SYMBOL(d_obtain_root);
2019
2020 /**
2021  * d_add_ci - lookup or allocate new dentry with case-exact name
2022  * @inode:  the inode case-insensitive lookup has found
2023  * @dentry: the negative dentry that was passed to the parent's lookup func
2024  * @name:   the case-exact name to be associated with the returned dentry
2025  *
2026  * This is to avoid filling the dcache with case-insensitive names to the
2027  * same inode, only the actual correct case is stored in the dcache for
2028  * case-insensitive filesystems.
2029  *
2030  * For a case-insensitive lookup match and if the case-exact dentry
2031  * already exists in the dcache, use it and return it.
2032  *
2033  * If no entry exists with the exact case name, allocate new dentry with
2034  * the exact case, and return the spliced entry.
2035  */
2036 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2037                         struct qstr *name)
2038 {
2039         struct dentry *found, *res;
2040
2041         /*
2042          * First check if a dentry matching the name already exists,
2043          * if not go ahead and create it now.
2044          */
2045         found = d_hash_and_lookup(dentry->d_parent, name);
2046         if (found) {
2047                 iput(inode);
2048                 return found;
2049         }
2050         if (d_in_lookup(dentry)) {
2051                 found = d_alloc_parallel(dentry->d_parent, name,
2052                                         dentry->d_wait);
2053                 if (IS_ERR(found) || !d_in_lookup(found)) {
2054                         iput(inode);
2055                         return found;
2056                 }
2057         } else {
2058                 found = d_alloc(dentry->d_parent, name);
2059                 if (!found) {
2060                         iput(inode);
2061                         return ERR_PTR(-ENOMEM);
2062                 } 
2063         }
2064         res = d_splice_alias(inode, found);
2065         if (res) {
2066                 d_lookup_done(found);
2067                 dput(found);
2068                 return res;
2069         }
2070         return found;
2071 }
2072 EXPORT_SYMBOL(d_add_ci);
2073
2074 /**
2075  * d_same_name - compare dentry name with case-exact name
2076  * @parent: parent dentry
2077  * @dentry: the negative dentry that was passed to the parent's lookup func
2078  * @name:   the case-exact name to be associated with the returned dentry
2079  *
2080  * Return: true if names are same, or false
2081  */
2082 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2083                  const struct qstr *name)
2084 {
2085         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2086                 if (dentry->d_name.len != name->len)
2087                         return false;
2088                 return dentry_cmp(dentry, name->name, name->len) == 0;
2089         }
2090         return parent->d_op->d_compare(dentry,
2091                                        dentry->d_name.len, dentry->d_name.name,
2092                                        name) == 0;
2093 }
2094 EXPORT_SYMBOL_GPL(d_same_name);
2095
2096 /*
2097  * This is __d_lookup_rcu() when the parent dentry has
2098  * DCACHE_OP_COMPARE, which makes things much nastier.
2099  */
2100 static noinline struct dentry *__d_lookup_rcu_op_compare(
2101         const struct dentry *parent,
2102         const struct qstr *name,
2103         unsigned *seqp)
2104 {
2105         u64 hashlen = name->hash_len;
2106         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2107         struct hlist_bl_node *node;
2108         struct dentry *dentry;
2109
2110         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2111                 int tlen;
2112                 const char *tname;
2113                 unsigned seq;
2114
2115 seqretry:
2116                 seq = raw_seqcount_begin(&dentry->d_seq);
2117                 if (dentry->d_parent != parent)
2118                         continue;
2119                 if (d_unhashed(dentry))
2120                         continue;
2121                 if (dentry->d_name.hash != hashlen_hash(hashlen))
2122                         continue;
2123                 tlen = dentry->d_name.len;
2124                 tname = dentry->d_name.name;
2125                 /* we want a consistent (name,len) pair */
2126                 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2127                         cpu_relax();
2128                         goto seqretry;
2129                 }
2130                 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2131                         continue;
2132                 *seqp = seq;
2133                 return dentry;
2134         }
2135         return NULL;
2136 }
2137
2138 /**
2139  * __d_lookup_rcu - search for a dentry (racy, store-free)
2140  * @parent: parent dentry
2141  * @name: qstr of name we wish to find
2142  * @seqp: returns d_seq value at the point where the dentry was found
2143  * Returns: dentry, or NULL
2144  *
2145  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2146  * resolution (store-free path walking) design described in
2147  * Documentation/filesystems/path-lookup.txt.
2148  *
2149  * This is not to be used outside core vfs.
2150  *
2151  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2152  * held, and rcu_read_lock held. The returned dentry must not be stored into
2153  * without taking d_lock and checking d_seq sequence count against @seq
2154  * returned here.
2155  *
2156  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2157  * function.
2158  *
2159  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2160  * the returned dentry, so long as its parent's seqlock is checked after the
2161  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2162  * is formed, giving integrity down the path walk.
2163  *
2164  * NOTE! The caller *has* to check the resulting dentry against the sequence
2165  * number we've returned before using any of the resulting dentry state!
2166  */
2167 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2168                                 const struct qstr *name,
2169                                 unsigned *seqp)
2170 {
2171         u64 hashlen = name->hash_len;
2172         const unsigned char *str = name->name;
2173         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2174         struct hlist_bl_node *node;
2175         struct dentry *dentry;
2176
2177         /*
2178          * Note: There is significant duplication with __d_lookup_rcu which is
2179          * required to prevent single threaded performance regressions
2180          * especially on architectures where smp_rmb (in seqcounts) are costly.
2181          * Keep the two functions in sync.
2182          */
2183
2184         if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2185                 return __d_lookup_rcu_op_compare(parent, name, seqp);
2186
2187         /*
2188          * The hash list is protected using RCU.
2189          *
2190          * Carefully use d_seq when comparing a candidate dentry, to avoid
2191          * races with d_move().
2192          *
2193          * It is possible that concurrent renames can mess up our list
2194          * walk here and result in missing our dentry, resulting in the
2195          * false-negative result. d_lookup() protects against concurrent
2196          * renames using rename_lock seqlock.
2197          *
2198          * See Documentation/filesystems/path-lookup.txt for more details.
2199          */
2200         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2201                 unsigned seq;
2202
2203                 /*
2204                  * The dentry sequence count protects us from concurrent
2205                  * renames, and thus protects parent and name fields.
2206                  *
2207                  * The caller must perform a seqcount check in order
2208                  * to do anything useful with the returned dentry.
2209                  *
2210                  * NOTE! We do a "raw" seqcount_begin here. That means that
2211                  * we don't wait for the sequence count to stabilize if it
2212                  * is in the middle of a sequence change. If we do the slow
2213                  * dentry compare, we will do seqretries until it is stable,
2214                  * and if we end up with a successful lookup, we actually
2215                  * want to exit RCU lookup anyway.
2216                  *
2217                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2218                  * we are still guaranteed NUL-termination of ->d_name.name.
2219                  */
2220                 seq = raw_seqcount_begin(&dentry->d_seq);
2221                 if (dentry->d_parent != parent)
2222                         continue;
2223                 if (d_unhashed(dentry))
2224                         continue;
2225                 if (dentry->d_name.hash_len != hashlen)
2226                         continue;
2227                 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2228                         continue;
2229                 *seqp = seq;
2230                 return dentry;
2231         }
2232         return NULL;
2233 }
2234
2235 /**
2236  * d_lookup - search for a dentry
2237  * @parent: parent dentry
2238  * @name: qstr of name we wish to find
2239  * Returns: dentry, or NULL
2240  *
2241  * d_lookup searches the children of the parent dentry for the name in
2242  * question. If the dentry is found its reference count is incremented and the
2243  * dentry is returned. The caller must use dput to free the entry when it has
2244  * finished using it. %NULL is returned if the dentry does not exist.
2245  */
2246 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2247 {
2248         struct dentry *dentry;
2249         unsigned seq;
2250
2251         do {
2252                 seq = read_seqbegin(&rename_lock);
2253                 dentry = __d_lookup(parent, name);
2254                 if (dentry)
2255                         break;
2256         } while (read_seqretry(&rename_lock, seq));
2257         return dentry;
2258 }
2259 EXPORT_SYMBOL(d_lookup);
2260
2261 /**
2262  * __d_lookup - search for a dentry (racy)
2263  * @parent: parent dentry
2264  * @name: qstr of name we wish to find
2265  * Returns: dentry, or NULL
2266  *
2267  * __d_lookup is like d_lookup, however it may (rarely) return a
2268  * false-negative result due to unrelated rename activity.
2269  *
2270  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2271  * however it must be used carefully, eg. with a following d_lookup in
2272  * the case of failure.
2273  *
2274  * __d_lookup callers must be commented.
2275  */
2276 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2277 {
2278         unsigned int hash = name->hash;
2279         struct hlist_bl_head *b = d_hash(hash);
2280         struct hlist_bl_node *node;
2281         struct dentry *found = NULL;
2282         struct dentry *dentry;
2283
2284         /*
2285          * Note: There is significant duplication with __d_lookup_rcu which is
2286          * required to prevent single threaded performance regressions
2287          * especially on architectures where smp_rmb (in seqcounts) are costly.
2288          * Keep the two functions in sync.
2289          */
2290
2291         /*
2292          * The hash list is protected using RCU.
2293          *
2294          * Take d_lock when comparing a candidate dentry, to avoid races
2295          * with d_move().
2296          *
2297          * It is possible that concurrent renames can mess up our list
2298          * walk here and result in missing our dentry, resulting in the
2299          * false-negative result. d_lookup() protects against concurrent
2300          * renames using rename_lock seqlock.
2301          *
2302          * See Documentation/filesystems/path-lookup.txt for more details.
2303          */
2304         rcu_read_lock();
2305         
2306         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2307
2308                 if (dentry->d_name.hash != hash)
2309                         continue;
2310
2311                 spin_lock(&dentry->d_lock);
2312                 if (dentry->d_parent != parent)
2313                         goto next;
2314                 if (d_unhashed(dentry))
2315                         goto next;
2316
2317                 if (!d_same_name(dentry, parent, name))
2318                         goto next;
2319
2320                 dentry->d_lockref.count++;
2321                 found = dentry;
2322                 spin_unlock(&dentry->d_lock);
2323                 break;
2324 next:
2325                 spin_unlock(&dentry->d_lock);
2326         }
2327         rcu_read_unlock();
2328
2329         return found;
2330 }
2331
2332 /**
2333  * d_hash_and_lookup - hash the qstr then search for a dentry
2334  * @dir: Directory to search in
2335  * @name: qstr of name we wish to find
2336  *
2337  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2338  */
2339 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2340 {
2341         /*
2342          * Check for a fs-specific hash function. Note that we must
2343          * calculate the standard hash first, as the d_op->d_hash()
2344          * routine may choose to leave the hash value unchanged.
2345          */
2346         name->hash = full_name_hash(dir, name->name, name->len);
2347         if (dir->d_flags & DCACHE_OP_HASH) {
2348                 int err = dir->d_op->d_hash(dir, name);
2349                 if (unlikely(err < 0))
2350                         return ERR_PTR(err);
2351         }
2352         return d_lookup(dir, name);
2353 }
2354 EXPORT_SYMBOL(d_hash_and_lookup);
2355
2356 /*
2357  * When a file is deleted, we have two options:
2358  * - turn this dentry into a negative dentry
2359  * - unhash this dentry and free it.
2360  *
2361  * Usually, we want to just turn this into
2362  * a negative dentry, but if anybody else is
2363  * currently using the dentry or the inode
2364  * we can't do that and we fall back on removing
2365  * it from the hash queues and waiting for
2366  * it to be deleted later when it has no users
2367  */
2368  
2369 /**
2370  * d_delete - delete a dentry
2371  * @dentry: The dentry to delete
2372  *
2373  * Turn the dentry into a negative dentry if possible, otherwise
2374  * remove it from the hash queues so it can be deleted later
2375  */
2376  
2377 void d_delete(struct dentry * dentry)
2378 {
2379         struct inode *inode = dentry->d_inode;
2380
2381         spin_lock(&inode->i_lock);
2382         spin_lock(&dentry->d_lock);
2383         /*
2384          * Are we the only user?
2385          */
2386         if (dentry->d_lockref.count == 1) {
2387                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2388                 dentry_unlink_inode(dentry);
2389         } else {
2390                 __d_drop(dentry);
2391                 spin_unlock(&dentry->d_lock);
2392                 spin_unlock(&inode->i_lock);
2393         }
2394 }
2395 EXPORT_SYMBOL(d_delete);
2396
2397 static void __d_rehash(struct dentry *entry)
2398 {
2399         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2400
2401         hlist_bl_lock(b);
2402         hlist_bl_add_head_rcu(&entry->d_hash, b);
2403         hlist_bl_unlock(b);
2404 }
2405
2406 /**
2407  * d_rehash     - add an entry back to the hash
2408  * @entry: dentry to add to the hash
2409  *
2410  * Adds a dentry to the hash according to its name.
2411  */
2412  
2413 void d_rehash(struct dentry * entry)
2414 {
2415         spin_lock(&entry->d_lock);
2416         __d_rehash(entry);
2417         spin_unlock(&entry->d_lock);
2418 }
2419 EXPORT_SYMBOL(d_rehash);
2420
2421 static inline unsigned start_dir_add(struct inode *dir)
2422 {
2423         preempt_disable_nested();
2424         for (;;) {
2425                 unsigned n = dir->i_dir_seq;
2426                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2427                         return n;
2428                 cpu_relax();
2429         }
2430 }
2431
2432 static inline void end_dir_add(struct inode *dir, unsigned int n,
2433                                wait_queue_head_t *d_wait)
2434 {
2435         smp_store_release(&dir->i_dir_seq, n + 2);
2436         preempt_enable_nested();
2437         wake_up_all(d_wait);
2438 }
2439
2440 static void d_wait_lookup(struct dentry *dentry)
2441 {
2442         if (d_in_lookup(dentry)) {
2443                 DECLARE_WAITQUEUE(wait, current);
2444                 add_wait_queue(dentry->d_wait, &wait);
2445                 do {
2446                         set_current_state(TASK_UNINTERRUPTIBLE);
2447                         spin_unlock(&dentry->d_lock);
2448                         schedule();
2449                         spin_lock(&dentry->d_lock);
2450                 } while (d_in_lookup(dentry));
2451         }
2452 }
2453
2454 struct dentry *d_alloc_parallel(struct dentry *parent,
2455                                 const struct qstr *name,
2456                                 wait_queue_head_t *wq)
2457 {
2458         unsigned int hash = name->hash;
2459         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2460         struct hlist_bl_node *node;
2461         struct dentry *new = d_alloc(parent, name);
2462         struct dentry *dentry;
2463         unsigned seq, r_seq, d_seq;
2464
2465         if (unlikely(!new))
2466                 return ERR_PTR(-ENOMEM);
2467
2468 retry:
2469         rcu_read_lock();
2470         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2471         r_seq = read_seqbegin(&rename_lock);
2472         dentry = __d_lookup_rcu(parent, name, &d_seq);
2473         if (unlikely(dentry)) {
2474                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2475                         rcu_read_unlock();
2476                         goto retry;
2477                 }
2478                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2479                         rcu_read_unlock();
2480                         dput(dentry);
2481                         goto retry;
2482                 }
2483                 rcu_read_unlock();
2484                 dput(new);
2485                 return dentry;
2486         }
2487         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2488                 rcu_read_unlock();
2489                 goto retry;
2490         }
2491
2492         if (unlikely(seq & 1)) {
2493                 rcu_read_unlock();
2494                 goto retry;
2495         }
2496
2497         hlist_bl_lock(b);
2498         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2499                 hlist_bl_unlock(b);
2500                 rcu_read_unlock();
2501                 goto retry;
2502         }
2503         /*
2504          * No changes for the parent since the beginning of d_lookup().
2505          * Since all removals from the chain happen with hlist_bl_lock(),
2506          * any potential in-lookup matches are going to stay here until
2507          * we unlock the chain.  All fields are stable in everything
2508          * we encounter.
2509          */
2510         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2511                 if (dentry->d_name.hash != hash)
2512                         continue;
2513                 if (dentry->d_parent != parent)
2514                         continue;
2515                 if (!d_same_name(dentry, parent, name))
2516                         continue;
2517                 hlist_bl_unlock(b);
2518                 /* now we can try to grab a reference */
2519                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2520                         rcu_read_unlock();
2521                         goto retry;
2522                 }
2523
2524                 rcu_read_unlock();
2525                 /*
2526                  * somebody is likely to be still doing lookup for it;
2527                  * wait for them to finish
2528                  */
2529                 spin_lock(&dentry->d_lock);
2530                 d_wait_lookup(dentry);
2531                 /*
2532                  * it's not in-lookup anymore; in principle we should repeat
2533                  * everything from dcache lookup, but it's likely to be what
2534                  * d_lookup() would've found anyway.  If it is, just return it;
2535                  * otherwise we really have to repeat the whole thing.
2536                  */
2537                 if (unlikely(dentry->d_name.hash != hash))
2538                         goto mismatch;
2539                 if (unlikely(dentry->d_parent != parent))
2540                         goto mismatch;
2541                 if (unlikely(d_unhashed(dentry)))
2542                         goto mismatch;
2543                 if (unlikely(!d_same_name(dentry, parent, name)))
2544                         goto mismatch;
2545                 /* OK, it *is* a hashed match; return it */
2546                 spin_unlock(&dentry->d_lock);
2547                 dput(new);
2548                 return dentry;
2549         }
2550         rcu_read_unlock();
2551         /* we can't take ->d_lock here; it's OK, though. */
2552         new->d_flags |= DCACHE_PAR_LOOKUP;
2553         new->d_wait = wq;
2554         hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2555         hlist_bl_unlock(b);
2556         return new;
2557 mismatch:
2558         spin_unlock(&dentry->d_lock);
2559         dput(dentry);
2560         goto retry;
2561 }
2562 EXPORT_SYMBOL(d_alloc_parallel);
2563
2564 /*
2565  * - Unhash the dentry
2566  * - Retrieve and clear the waitqueue head in dentry
2567  * - Return the waitqueue head
2568  */
2569 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2570 {
2571         wait_queue_head_t *d_wait;
2572         struct hlist_bl_head *b;
2573
2574         lockdep_assert_held(&dentry->d_lock);
2575
2576         b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2577         hlist_bl_lock(b);
2578         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2579         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2580         d_wait = dentry->d_wait;
2581         dentry->d_wait = NULL;
2582         hlist_bl_unlock(b);
2583         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2584         INIT_LIST_HEAD(&dentry->d_lru);
2585         return d_wait;
2586 }
2587
2588 void __d_lookup_unhash_wake(struct dentry *dentry)
2589 {
2590         spin_lock(&dentry->d_lock);
2591         wake_up_all(__d_lookup_unhash(dentry));
2592         spin_unlock(&dentry->d_lock);
2593 }
2594 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2595
2596 /* inode->i_lock held if inode is non-NULL */
2597
2598 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2599 {
2600         wait_queue_head_t *d_wait;
2601         struct inode *dir = NULL;
2602         unsigned n;
2603         spin_lock(&dentry->d_lock);
2604         if (unlikely(d_in_lookup(dentry))) {
2605                 dir = dentry->d_parent->d_inode;
2606                 n = start_dir_add(dir);
2607                 d_wait = __d_lookup_unhash(dentry);
2608         }
2609         if (inode) {
2610                 unsigned add_flags = d_flags_for_inode(inode);
2611                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2612                 raw_write_seqcount_begin(&dentry->d_seq);
2613                 __d_set_inode_and_type(dentry, inode, add_flags);
2614                 raw_write_seqcount_end(&dentry->d_seq);
2615                 fsnotify_update_flags(dentry);
2616         }
2617         __d_rehash(dentry);
2618         if (dir)
2619                 end_dir_add(dir, n, d_wait);
2620         spin_unlock(&dentry->d_lock);
2621         if (inode)
2622                 spin_unlock(&inode->i_lock);
2623 }
2624
2625 /**
2626  * d_add - add dentry to hash queues
2627  * @entry: dentry to add
2628  * @inode: The inode to attach to this dentry
2629  *
2630  * This adds the entry to the hash queues and initializes @inode.
2631  * The entry was actually filled in earlier during d_alloc().
2632  */
2633
2634 void d_add(struct dentry *entry, struct inode *inode)
2635 {
2636         if (inode) {
2637                 security_d_instantiate(entry, inode);
2638                 spin_lock(&inode->i_lock);
2639         }
2640         __d_add(entry, inode);
2641 }
2642 EXPORT_SYMBOL(d_add);
2643
2644 /**
2645  * d_exact_alias - find and hash an exact unhashed alias
2646  * @entry: dentry to add
2647  * @inode: The inode to go with this dentry
2648  *
2649  * If an unhashed dentry with the same name/parent and desired
2650  * inode already exists, hash and return it.  Otherwise, return
2651  * NULL.
2652  *
2653  * Parent directory should be locked.
2654  */
2655 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2656 {
2657         struct dentry *alias;
2658         unsigned int hash = entry->d_name.hash;
2659
2660         spin_lock(&inode->i_lock);
2661         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2662                 /*
2663                  * Don't need alias->d_lock here, because aliases with
2664                  * d_parent == entry->d_parent are not subject to name or
2665                  * parent changes, because the parent inode i_mutex is held.
2666                  */
2667                 if (alias->d_name.hash != hash)
2668                         continue;
2669                 if (alias->d_parent != entry->d_parent)
2670                         continue;
2671                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2672                         continue;
2673                 spin_lock(&alias->d_lock);
2674                 if (!d_unhashed(alias)) {
2675                         spin_unlock(&alias->d_lock);
2676                         alias = NULL;
2677                 } else {
2678                         dget_dlock(alias);
2679                         __d_rehash(alias);
2680                         spin_unlock(&alias->d_lock);
2681                 }
2682                 spin_unlock(&inode->i_lock);
2683                 return alias;
2684         }
2685         spin_unlock(&inode->i_lock);
2686         return NULL;
2687 }
2688 EXPORT_SYMBOL(d_exact_alias);
2689
2690 static void swap_names(struct dentry *dentry, struct dentry *target)
2691 {
2692         if (unlikely(dname_external(target))) {
2693                 if (unlikely(dname_external(dentry))) {
2694                         /*
2695                          * Both external: swap the pointers
2696                          */
2697                         swap(target->d_name.name, dentry->d_name.name);
2698                 } else {
2699                         /*
2700                          * dentry:internal, target:external.  Steal target's
2701                          * storage and make target internal.
2702                          */
2703                         memcpy(target->d_iname, dentry->d_name.name,
2704                                         dentry->d_name.len + 1);
2705                         dentry->d_name.name = target->d_name.name;
2706                         target->d_name.name = target->d_iname;
2707                 }
2708         } else {
2709                 if (unlikely(dname_external(dentry))) {
2710                         /*
2711                          * dentry:external, target:internal.  Give dentry's
2712                          * storage to target and make dentry internal
2713                          */
2714                         memcpy(dentry->d_iname, target->d_name.name,
2715                                         target->d_name.len + 1);
2716                         target->d_name.name = dentry->d_name.name;
2717                         dentry->d_name.name = dentry->d_iname;
2718                 } else {
2719                         /*
2720                          * Both are internal.
2721                          */
2722                         unsigned int i;
2723                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2724                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2725                                 swap(((long *) &dentry->d_iname)[i],
2726                                      ((long *) &target->d_iname)[i]);
2727                         }
2728                 }
2729         }
2730         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2731 }
2732
2733 static void copy_name(struct dentry *dentry, struct dentry *target)
2734 {
2735         struct external_name *old_name = NULL;
2736         if (unlikely(dname_external(dentry)))
2737                 old_name = external_name(dentry);
2738         if (unlikely(dname_external(target))) {
2739                 atomic_inc(&external_name(target)->u.count);
2740                 dentry->d_name = target->d_name;
2741         } else {
2742                 memcpy(dentry->d_iname, target->d_name.name,
2743                                 target->d_name.len + 1);
2744                 dentry->d_name.name = dentry->d_iname;
2745                 dentry->d_name.hash_len = target->d_name.hash_len;
2746         }
2747         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2748                 kfree_rcu(old_name, u.head);
2749 }
2750
2751 /*
2752  * __d_move - move a dentry
2753  * @dentry: entry to move
2754  * @target: new dentry
2755  * @exchange: exchange the two dentries
2756  *
2757  * Update the dcache to reflect the move of a file name. Negative
2758  * dcache entries should not be moved in this way. Caller must hold
2759  * rename_lock, the i_mutex of the source and target directories,
2760  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2761  */
2762 static void __d_move(struct dentry *dentry, struct dentry *target,
2763                      bool exchange)
2764 {
2765         struct dentry *old_parent, *p;
2766         wait_queue_head_t *d_wait;
2767         struct inode *dir = NULL;
2768         unsigned n;
2769
2770         WARN_ON(!dentry->d_inode);
2771         if (WARN_ON(dentry == target))
2772                 return;
2773
2774         BUG_ON(d_ancestor(target, dentry));
2775         old_parent = dentry->d_parent;
2776         p = d_ancestor(old_parent, target);
2777         if (IS_ROOT(dentry)) {
2778                 BUG_ON(p);
2779                 spin_lock(&target->d_parent->d_lock);
2780         } else if (!p) {
2781                 /* target is not a descendent of dentry->d_parent */
2782                 spin_lock(&target->d_parent->d_lock);
2783                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2784         } else {
2785                 BUG_ON(p == dentry);
2786                 spin_lock(&old_parent->d_lock);
2787                 if (p != target)
2788                         spin_lock_nested(&target->d_parent->d_lock,
2789                                         DENTRY_D_LOCK_NESTED);
2790         }
2791         spin_lock_nested(&dentry->d_lock, 2);
2792         spin_lock_nested(&target->d_lock, 3);
2793
2794         if (unlikely(d_in_lookup(target))) {
2795                 dir = target->d_parent->d_inode;
2796                 n = start_dir_add(dir);
2797                 d_wait = __d_lookup_unhash(target);
2798         }
2799
2800         write_seqcount_begin(&dentry->d_seq);
2801         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2802
2803         /* unhash both */
2804         if (!d_unhashed(dentry))
2805                 ___d_drop(dentry);
2806         if (!d_unhashed(target))
2807                 ___d_drop(target);
2808
2809         /* ... and switch them in the tree */
2810         dentry->d_parent = target->d_parent;
2811         if (!exchange) {
2812                 copy_name(dentry, target);
2813                 target->d_hash.pprev = NULL;
2814                 dentry->d_parent->d_lockref.count++;
2815                 if (dentry != old_parent) /* wasn't IS_ROOT */
2816                         WARN_ON(!--old_parent->d_lockref.count);
2817         } else {
2818                 target->d_parent = old_parent;
2819                 swap_names(dentry, target);
2820                 if (!hlist_unhashed(&target->d_sib))
2821                         __hlist_del(&target->d_sib);
2822                 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2823                 __d_rehash(target);
2824                 fsnotify_update_flags(target);
2825         }
2826         if (!hlist_unhashed(&dentry->d_sib))
2827                 __hlist_del(&dentry->d_sib);
2828         hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2829         __d_rehash(dentry);
2830         fsnotify_update_flags(dentry);
2831         fscrypt_handle_d_move(dentry);
2832
2833         write_seqcount_end(&target->d_seq);
2834         write_seqcount_end(&dentry->d_seq);
2835
2836         if (dir)
2837                 end_dir_add(dir, n, d_wait);
2838
2839         if (dentry->d_parent != old_parent)
2840                 spin_unlock(&dentry->d_parent->d_lock);
2841         if (dentry != old_parent)
2842                 spin_unlock(&old_parent->d_lock);
2843         spin_unlock(&target->d_lock);
2844         spin_unlock(&dentry->d_lock);
2845 }
2846
2847 /*
2848  * d_move - move a dentry
2849  * @dentry: entry to move
2850  * @target: new dentry
2851  *
2852  * Update the dcache to reflect the move of a file name. Negative
2853  * dcache entries should not be moved in this way. See the locking
2854  * requirements for __d_move.
2855  */
2856 void d_move(struct dentry *dentry, struct dentry *target)
2857 {
2858         write_seqlock(&rename_lock);
2859         __d_move(dentry, target, false);
2860         write_sequnlock(&rename_lock);
2861 }
2862 EXPORT_SYMBOL(d_move);
2863
2864 /*
2865  * d_exchange - exchange two dentries
2866  * @dentry1: first dentry
2867  * @dentry2: second dentry
2868  */
2869 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2870 {
2871         write_seqlock(&rename_lock);
2872
2873         WARN_ON(!dentry1->d_inode);
2874         WARN_ON(!dentry2->d_inode);
2875         WARN_ON(IS_ROOT(dentry1));
2876         WARN_ON(IS_ROOT(dentry2));
2877
2878         __d_move(dentry1, dentry2, true);
2879
2880         write_sequnlock(&rename_lock);
2881 }
2882
2883 /**
2884  * d_ancestor - search for an ancestor
2885  * @p1: ancestor dentry
2886  * @p2: child dentry
2887  *
2888  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2889  * an ancestor of p2, else NULL.
2890  */
2891 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2892 {
2893         struct dentry *p;
2894
2895         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2896                 if (p->d_parent == p1)
2897                         return p;
2898         }
2899         return NULL;
2900 }
2901
2902 /*
2903  * This helper attempts to cope with remotely renamed directories
2904  *
2905  * It assumes that the caller is already holding
2906  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2907  *
2908  * Note: If ever the locking in lock_rename() changes, then please
2909  * remember to update this too...
2910  */
2911 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2912 {
2913         struct mutex *m1 = NULL;
2914         struct rw_semaphore *m2 = NULL;
2915         int ret = -ESTALE;
2916
2917         /* If alias and dentry share a parent, then no extra locks required */
2918         if (alias->d_parent == dentry->d_parent)
2919                 goto out_unalias;
2920
2921         /* See lock_rename() */
2922         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2923                 goto out_err;
2924         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2925         if (!inode_trylock_shared(alias->d_parent->d_inode))
2926                 goto out_err;
2927         m2 = &alias->d_parent->d_inode->i_rwsem;
2928 out_unalias:
2929         __d_move(alias, dentry, false);
2930         ret = 0;
2931 out_err:
2932         if (m2)
2933                 up_read(m2);
2934         if (m1)
2935                 mutex_unlock(m1);
2936         return ret;
2937 }
2938
2939 /**
2940  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2941  * @inode:  the inode which may have a disconnected dentry
2942  * @dentry: a negative dentry which we want to point to the inode.
2943  *
2944  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2945  * place of the given dentry and return it, else simply d_add the inode
2946  * to the dentry and return NULL.
2947  *
2948  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2949  * we should error out: directories can't have multiple aliases.
2950  *
2951  * This is needed in the lookup routine of any filesystem that is exportable
2952  * (via knfsd) so that we can build dcache paths to directories effectively.
2953  *
2954  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2955  * is returned.  This matches the expected return value of ->lookup.
2956  *
2957  * Cluster filesystems may call this function with a negative, hashed dentry.
2958  * In that case, we know that the inode will be a regular file, and also this
2959  * will only occur during atomic_open. So we need to check for the dentry
2960  * being already hashed only in the final case.
2961  */
2962 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2963 {
2964         if (IS_ERR(inode))
2965                 return ERR_CAST(inode);
2966
2967         BUG_ON(!d_unhashed(dentry));
2968
2969         if (!inode)
2970                 goto out;
2971
2972         security_d_instantiate(dentry, inode);
2973         spin_lock(&inode->i_lock);
2974         if (S_ISDIR(inode->i_mode)) {
2975                 struct dentry *new = __d_find_any_alias(inode);
2976                 if (unlikely(new)) {
2977                         /* The reference to new ensures it remains an alias */
2978                         spin_unlock(&inode->i_lock);
2979                         write_seqlock(&rename_lock);
2980                         if (unlikely(d_ancestor(new, dentry))) {
2981                                 write_sequnlock(&rename_lock);
2982                                 dput(new);
2983                                 new = ERR_PTR(-ELOOP);
2984                                 pr_warn_ratelimited(
2985                                         "VFS: Lookup of '%s' in %s %s"
2986                                         " would have caused loop\n",
2987                                         dentry->d_name.name,
2988                                         inode->i_sb->s_type->name,
2989                                         inode->i_sb->s_id);
2990                         } else if (!IS_ROOT(new)) {
2991                                 struct dentry *old_parent = dget(new->d_parent);
2992                                 int err = __d_unalias(dentry, new);
2993                                 write_sequnlock(&rename_lock);
2994                                 if (err) {
2995                                         dput(new);
2996                                         new = ERR_PTR(err);
2997                                 }
2998                                 dput(old_parent);
2999                         } else {
3000                                 __d_move(new, dentry, false);
3001                                 write_sequnlock(&rename_lock);
3002                         }
3003                         iput(inode);
3004                         return new;
3005                 }
3006         }
3007 out:
3008         __d_add(dentry, inode);
3009         return NULL;
3010 }
3011 EXPORT_SYMBOL(d_splice_alias);
3012
3013 /*
3014  * Test whether new_dentry is a subdirectory of old_dentry.
3015  *
3016  * Trivially implemented using the dcache structure
3017  */
3018
3019 /**
3020  * is_subdir - is new dentry a subdirectory of old_dentry
3021  * @new_dentry: new dentry
3022  * @old_dentry: old dentry
3023  *
3024  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3025  * Returns false otherwise.
3026  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3027  */
3028   
3029 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3030 {
3031         bool result;
3032         unsigned seq;
3033
3034         if (new_dentry == old_dentry)
3035                 return true;
3036
3037         do {
3038                 /* for restarting inner loop in case of seq retry */
3039                 seq = read_seqbegin(&rename_lock);
3040                 /*
3041                  * Need rcu_readlock to protect against the d_parent trashing
3042                  * due to d_move
3043                  */
3044                 rcu_read_lock();
3045                 if (d_ancestor(old_dentry, new_dentry))
3046                         result = true;
3047                 else
3048                         result = false;
3049                 rcu_read_unlock();
3050         } while (read_seqretry(&rename_lock, seq));
3051
3052         return result;
3053 }
3054 EXPORT_SYMBOL(is_subdir);
3055
3056 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3057 {
3058         struct dentry *root = data;
3059         if (dentry != root) {
3060                 if (d_unhashed(dentry) || !dentry->d_inode)
3061                         return D_WALK_SKIP;
3062
3063                 dentry->d_lockref.count--;
3064         }
3065         return D_WALK_CONTINUE;
3066 }
3067
3068 void d_genocide(struct dentry *parent)
3069 {
3070         d_walk(parent, parent, d_genocide_kill);
3071 }
3072
3073 void d_mark_tmpfile(struct file *file, struct inode *inode)
3074 {
3075         struct dentry *dentry = file->f_path.dentry;
3076
3077         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3078                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3079                 !d_unlinked(dentry));
3080         spin_lock(&dentry->d_parent->d_lock);
3081         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3082         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3083                                 (unsigned long long)inode->i_ino);
3084         spin_unlock(&dentry->d_lock);
3085         spin_unlock(&dentry->d_parent->d_lock);
3086 }
3087 EXPORT_SYMBOL(d_mark_tmpfile);
3088
3089 void d_tmpfile(struct file *file, struct inode *inode)
3090 {
3091         struct dentry *dentry = file->f_path.dentry;
3092
3093         inode_dec_link_count(inode);
3094         d_mark_tmpfile(file, inode);
3095         d_instantiate(dentry, inode);
3096 }
3097 EXPORT_SYMBOL(d_tmpfile);
3098
3099 static __initdata unsigned long dhash_entries;
3100 static int __init set_dhash_entries(char *str)
3101 {
3102         if (!str)
3103                 return 0;
3104         dhash_entries = simple_strtoul(str, &str, 0);
3105         return 1;
3106 }
3107 __setup("dhash_entries=", set_dhash_entries);
3108
3109 static void __init dcache_init_early(void)
3110 {
3111         /* If hashes are distributed across NUMA nodes, defer
3112          * hash allocation until vmalloc space is available.
3113          */
3114         if (hashdist)
3115                 return;
3116
3117         dentry_hashtable =
3118                 alloc_large_system_hash("Dentry cache",
3119                                         sizeof(struct hlist_bl_head),
3120                                         dhash_entries,
3121                                         13,
3122                                         HASH_EARLY | HASH_ZERO,
3123                                         &d_hash_shift,
3124                                         NULL,
3125                                         0,
3126                                         0);
3127         d_hash_shift = 32 - d_hash_shift;
3128 }
3129
3130 static void __init dcache_init(void)
3131 {
3132         /*
3133          * A constructor could be added for stable state like the lists,
3134          * but it is probably not worth it because of the cache nature
3135          * of the dcache.
3136          */
3137         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3138                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3139                 d_iname);
3140
3141         /* Hash may have been set up in dcache_init_early */
3142         if (!hashdist)
3143                 return;
3144
3145         dentry_hashtable =
3146                 alloc_large_system_hash("Dentry cache",
3147                                         sizeof(struct hlist_bl_head),
3148                                         dhash_entries,
3149                                         13,
3150                                         HASH_ZERO,
3151                                         &d_hash_shift,
3152                                         NULL,
3153                                         0,
3154                                         0);
3155         d_hash_shift = 32 - d_hash_shift;
3156 }
3157
3158 /* SLAB cache for __getname() consumers */
3159 struct kmem_cache *names_cachep __ro_after_init;
3160 EXPORT_SYMBOL(names_cachep);
3161
3162 void __init vfs_caches_init_early(void)
3163 {
3164         int i;
3165
3166         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3167                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3168
3169         dcache_init_early();
3170         inode_init_early();
3171 }
3172
3173 void __init vfs_caches_init(void)
3174 {
3175         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3176                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3177
3178         dcache_init();
3179         inode_init();
3180         files_init();
3181         files_maxfiles_init();
3182         mnt_init();
3183         bdev_cache_init();
3184         chrdev_init();
3185 }
This page took 0.209572 seconds and 4 git commands to generate.