1 // SPDX-License-Identifier: GPL-2.0-only
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
11 * Notes on the allocation strategy:
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
54 * - d_parent and d_chilren
55 * - childrens' d_sib and d_parent
56 * - d_u.d_alias, d_inode
59 * dentry->d_inode->i_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
68 * dentry->d_parent->d_lock
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
79 EXPORT_SYMBOL(rename_lock);
81 static struct kmem_cache *dentry_cache __ro_after_init;
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
99 static unsigned int d_hash_shift __ro_after_init;
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
105 return dentry_hashtable + (hash >> d_hash_shift);
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
118 struct dentry_stat_t {
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
149 static long get_nr_dentry(void)
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
158 static long get_nr_dentry_unused(void)
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
167 static long get_nr_dentry_negative(void)
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
180 dentry_stat.nr_dentry = get_nr_dentry();
181 dentry_stat.nr_unused = get_nr_dentry_unused();
182 dentry_stat.nr_negative = get_nr_dentry_negative();
183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
186 static struct ctl_table fs_dcache_sysctls[] = {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
192 .proc_handler = proc_nr_dentry,
197 static int __init init_fs_dcache_sysctls(void)
199 register_sysctl_init("fs", fs_dcache_sysctls);
202 fs_initcall(init_fs_dcache_sysctls);
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
211 #include <asm/word-at-a-time.h>
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
223 unsigned long a,b,mask;
226 a = read_word_at_a_time(cs);
227 b = load_unaligned_zeropad(ct);
228 if (tcount < sizeof(unsigned long))
230 if (unlikely(a != b))
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
238 mask = bytemask_from_count(tcount);
239 return unlikely(!!((a ^ b) & mask));
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
261 * Be careful about RCU walk racing with rename:
262 * use 'READ_ONCE' to fetch the name pointer.
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
278 return dentry_string_cmp(cs, ct, tcount);
281 struct external_name {
284 struct rcu_head head;
286 unsigned char name[];
289 static inline struct external_name *external_name(struct dentry *dentry)
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
294 static void __d_free(struct rcu_head *head)
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
298 kmem_cache_free(dentry_cache, dentry);
301 static void __d_free_external(struct rcu_head *head)
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 kfree(external_name(dentry));
305 kmem_cache_free(dentry_cache, dentry);
308 static inline int dname_external(const struct dentry *dentry)
310 return dentry->d_name.name != dentry->d_iname;
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
315 spin_lock(&dentry->d_lock);
316 name->name = dentry->d_name;
317 if (unlikely(dname_external(dentry))) {
318 atomic_inc(&external_name(dentry)->u.count);
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
322 name->name.name = name->inline_name;
324 spin_unlock(&dentry->d_lock);
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
328 void release_dentry_name_snapshot(struct name_snapshot *name)
330 if (unlikely(name->name.name != name->inline_name)) {
331 struct external_name *p;
332 p = container_of(name->name.name, struct external_name, name[0]);
333 if (unlikely(atomic_dec_and_test(&p->u.count)))
334 kfree_rcu(p, u.head);
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
345 dentry->d_inode = inode;
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~DCACHE_ENTRY_TYPE;
349 smp_store_release(&dentry->d_flags, flags);
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
354 unsigned flags = READ_ONCE(dentry->d_flags);
356 flags &= ~DCACHE_ENTRY_TYPE;
357 WRITE_ONCE(dentry->d_flags, flags);
358 dentry->d_inode = NULL;
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
363 static void dentry_free(struct dentry *dentry)
365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
373 /* if dentry was never visible to RCU, immediate free is OK */
374 if (dentry->d_flags & DCACHE_NORCU)
375 __d_free(&dentry->d_u.d_rcu);
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
381 * Release the dentry's inode, using the filesystem
382 * d_iput() operation if defined.
384 static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
386 __releases(dentry->d_inode->i_lock)
388 struct inode *inode = dentry->d_inode;
390 raw_write_seqcount_begin(&dentry->d_seq);
391 __d_clear_type_and_inode(dentry);
392 hlist_del_init(&dentry->d_u.d_alias);
393 raw_write_seqcount_end(&dentry->d_seq);
394 spin_unlock(&dentry->d_lock);
395 spin_unlock(&inode->i_lock);
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
434 static void d_lru_del(struct dentry *dentry)
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 static void d_shrink_del(struct dentry *dentry)
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(&dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(&dentry->d_lru, list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
473 list_lru_isolate(lru, &dentry->d_lru);
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
483 list_lru_isolate_move(lru, &dentry->d_lru, list);
486 static void ___d_drop(struct dentry *dentry)
488 struct hlist_bl_head *b;
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
497 b = d_hash(dentry->d_name.hash);
500 __hlist_bl_del(&dentry->d_hash);
504 void __d_drop(struct dentry *dentry)
506 if (!d_unhashed(dentry)) {
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
512 EXPORT_SYMBOL(__d_drop);
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
527 * __d_drop requires dentry->d_lock
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532 void d_drop(struct dentry *dentry)
534 spin_lock(&dentry->d_lock);
536 spin_unlock(&dentry->d_lock);
538 EXPORT_SYMBOL(d_drop);
540 static inline void dentry_unlist(struct dentry *dentry)
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 if (unlikely(hlist_unhashed(&dentry->d_sib)))
550 __hlist_del(&dentry->d_sib);
552 * Cursors can move around the list of children. While we'd been
553 * a normal list member, it didn't matter - ->d_sib.next would've
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
561 * using the value left in its ->d_sib.next. And if _that_
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
566 * Solution: make sure that the pointer left behind in ->d_sib.next
567 * points to something that won't be moving around. I.e. skip the
570 while (dentry->d_sib.next) {
571 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574 dentry->d_sib.next = next->d_sib.next;
578 static struct dentry *__dentry_kill(struct dentry *dentry)
580 struct dentry *parent = NULL;
581 bool can_free = true;
584 * The dentry is now unrecoverably dead to the world.
586 lockref_mark_dead(&dentry->d_lockref);
589 * inform the fs via d_prune that this dentry is about to be
590 * unhashed and destroyed.
592 if (dentry->d_flags & DCACHE_OP_PRUNE)
593 dentry->d_op->d_prune(dentry);
595 if (dentry->d_flags & DCACHE_LRU_LIST) {
596 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 /* if it was on the hash then remove it */
602 dentry_unlink_inode(dentry);
604 spin_unlock(&dentry->d_lock);
605 this_cpu_dec(nr_dentry);
606 if (dentry->d_op && dentry->d_op->d_release)
607 dentry->d_op->d_release(dentry);
610 /* now that it's negative, ->d_parent is stable */
611 if (!IS_ROOT(dentry)) {
612 parent = dentry->d_parent;
613 spin_lock(&parent->d_lock);
615 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616 dentry_unlist(dentry);
617 if (dentry->d_flags & DCACHE_SHRINK_LIST)
619 spin_unlock(&dentry->d_lock);
620 if (likely(can_free))
622 if (parent && --parent->d_lockref.count) {
623 spin_unlock(&parent->d_lock);
630 * Lock a dentry for feeding it to __dentry_kill().
631 * Called under rcu_read_lock() and dentry->d_lock; the former
632 * guarantees that nothing we access will be freed under us.
633 * Note that dentry is *not* protected from concurrent dentry_kill(),
636 * Return false if dentry is busy. Otherwise, return true and have
637 * that dentry's inode locked.
640 static bool lock_for_kill(struct dentry *dentry)
642 struct inode *inode = dentry->d_inode;
644 if (unlikely(dentry->d_lockref.count))
647 if (!inode || likely(spin_trylock(&inode->i_lock)))
651 spin_unlock(&dentry->d_lock);
652 spin_lock(&inode->i_lock);
653 spin_lock(&dentry->d_lock);
654 if (likely(inode == dentry->d_inode))
656 spin_unlock(&inode->i_lock);
657 inode = dentry->d_inode;
659 if (likely(!dentry->d_lockref.count))
662 spin_unlock(&inode->i_lock);
667 * Decide if dentry is worth retaining. Usually this is called with dentry
668 * locked; if not locked, we are more limited and might not be able to tell
669 * without a lock. False in this case means "punt to locked path and recheck".
671 * In case we aren't locked, these predicates are not "stable". However, it is
672 * sufficient that at some point after we dropped the reference the dentry was
673 * hashed and the flags had the proper value. Other dentry users may have
674 * re-gotten a reference to the dentry and change that, but our work is done -
675 * we can leave the dentry around with a zero refcount.
677 static inline bool retain_dentry(struct dentry *dentry, bool locked)
679 unsigned int d_flags;
682 d_flags = READ_ONCE(dentry->d_flags);
684 // Unreachable? Nobody would be able to look it up, no point retaining
685 if (unlikely(d_unhashed(dentry)))
688 // Same if it's disconnected
689 if (unlikely(d_flags & DCACHE_DISCONNECTED))
692 // ->d_delete() might tell us not to bother, but that requires
693 // ->d_lock; can't decide without it
694 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
695 if (!locked || dentry->d_op->d_delete(dentry))
699 // Explicitly told not to bother
700 if (unlikely(d_flags & DCACHE_DONTCACHE))
703 // At this point it looks like we ought to keep it. We also might
704 // need to do something - put it on LRU if it wasn't there already
705 // and mark it referenced if it was on LRU, but not marked yet.
706 // Unfortunately, both actions require ->d_lock, so in lockless
707 // case we'd have to punt rather than doing those.
708 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
712 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
715 dentry->d_flags |= DCACHE_REFERENCED;
720 void d_mark_dontcache(struct inode *inode)
724 spin_lock(&inode->i_lock);
725 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
726 spin_lock(&de->d_lock);
727 de->d_flags |= DCACHE_DONTCACHE;
728 spin_unlock(&de->d_lock);
730 inode->i_state |= I_DONTCACHE;
731 spin_unlock(&inode->i_lock);
733 EXPORT_SYMBOL(d_mark_dontcache);
736 * Try to do a lockless dput(), and return whether that was successful.
738 * If unsuccessful, we return false, having already taken the dentry lock.
739 * In that case refcount is guaranteed to be zero and we have already
740 * decided that it's not worth keeping around.
742 * The caller needs to hold the RCU read lock, so that the dentry is
743 * guaranteed to stay around even if the refcount goes down to zero!
745 static inline bool fast_dput(struct dentry *dentry)
750 * try to decrement the lockref optimistically.
752 ret = lockref_put_return(&dentry->d_lockref);
755 * If the lockref_put_return() failed due to the lock being held
756 * by somebody else, the fast path has failed. We will need to
757 * get the lock, and then check the count again.
759 if (unlikely(ret < 0)) {
760 spin_lock(&dentry->d_lock);
761 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
762 spin_unlock(&dentry->d_lock);
765 dentry->d_lockref.count--;
770 * If we weren't the last ref, we're done.
776 * Can we decide that decrement of refcount is all we needed without
777 * taking the lock? There's a very common case when it's all we need -
778 * dentry looks like it ought to be retained and there's nothing else
781 if (retain_dentry(dentry, false))
785 * Either not worth retaining or we can't tell without the lock.
786 * Get the lock, then. We've already decremented the refcount to 0,
787 * but we'll need to re-check the situation after getting the lock.
789 spin_lock(&dentry->d_lock);
792 * Did somebody else grab a reference to it in the meantime, and
793 * we're no longer the last user after all? Alternatively, somebody
794 * else could have killed it and marked it dead. Either way, we
795 * don't need to do anything else.
798 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
799 spin_unlock(&dentry->d_lock);
809 * This is complicated by the fact that we do not want to put
810 * dentries that are no longer on any hash chain on the unused
811 * list: we'd much rather just get rid of them immediately.
813 * However, that implies that we have to traverse the dentry
814 * tree upwards to the parents which might _also_ now be
815 * scheduled for deletion (it may have been only waiting for
816 * its last child to go away).
818 * This tail recursion is done by hand as we don't want to depend
819 * on the compiler to always get this right (gcc generally doesn't).
820 * Real recursion would eat up our stack space.
824 * dput - release a dentry
825 * @dentry: dentry to release
827 * Release a dentry. This will drop the usage count and if appropriate
828 * call the dentry unlink method as well as removing it from the queues and
829 * releasing its resources. If the parent dentries were scheduled for release
830 * they too may now get deleted.
832 void dput(struct dentry *dentry)
838 if (likely(fast_dput(dentry))) {
842 while (lock_for_kill(dentry)) {
844 dentry = __dentry_kill(dentry);
847 if (retain_dentry(dentry, true)) {
848 spin_unlock(&dentry->d_lock);
854 spin_unlock(&dentry->d_lock);
858 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
859 __must_hold(&dentry->d_lock)
861 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
862 if (dentry->d_flags & DCACHE_LRU_LIST)
864 d_shrink_add(dentry, list);
868 void dput_to_list(struct dentry *dentry, struct list_head *list)
871 if (likely(fast_dput(dentry))) {
876 to_shrink_list(dentry, list);
877 spin_unlock(&dentry->d_lock);
880 struct dentry *dget_parent(struct dentry *dentry)
887 * Do optimistic parent lookup without any
891 seq = raw_seqcount_begin(&dentry->d_seq);
892 ret = READ_ONCE(dentry->d_parent);
893 gotref = lockref_get_not_zero(&ret->d_lockref);
895 if (likely(gotref)) {
896 if (!read_seqcount_retry(&dentry->d_seq, seq))
903 * Don't need rcu_dereference because we re-check it was correct under
907 ret = dentry->d_parent;
908 spin_lock(&ret->d_lock);
909 if (unlikely(ret != dentry->d_parent)) {
910 spin_unlock(&ret->d_lock);
915 BUG_ON(!ret->d_lockref.count);
916 ret->d_lockref.count++;
917 spin_unlock(&ret->d_lock);
920 EXPORT_SYMBOL(dget_parent);
922 static struct dentry * __d_find_any_alias(struct inode *inode)
924 struct dentry *alias;
926 if (hlist_empty(&inode->i_dentry))
928 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
929 lockref_get(&alias->d_lockref);
934 * d_find_any_alias - find any alias for a given inode
935 * @inode: inode to find an alias for
937 * If any aliases exist for the given inode, take and return a
938 * reference for one of them. If no aliases exist, return %NULL.
940 struct dentry *d_find_any_alias(struct inode *inode)
944 spin_lock(&inode->i_lock);
945 de = __d_find_any_alias(inode);
946 spin_unlock(&inode->i_lock);
949 EXPORT_SYMBOL(d_find_any_alias);
951 static struct dentry *__d_find_alias(struct inode *inode)
953 struct dentry *alias;
955 if (S_ISDIR(inode->i_mode))
956 return __d_find_any_alias(inode);
958 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
959 spin_lock(&alias->d_lock);
960 if (!d_unhashed(alias)) {
962 spin_unlock(&alias->d_lock);
965 spin_unlock(&alias->d_lock);
971 * d_find_alias - grab a hashed alias of inode
972 * @inode: inode in question
974 * If inode has a hashed alias, or is a directory and has any alias,
975 * acquire the reference to alias and return it. Otherwise return NULL.
976 * Notice that if inode is a directory there can be only one alias and
977 * it can be unhashed only if it has no children, or if it is the root
978 * of a filesystem, or if the directory was renamed and d_revalidate
979 * was the first vfs operation to notice.
981 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
982 * any other hashed alias over that one.
984 struct dentry *d_find_alias(struct inode *inode)
986 struct dentry *de = NULL;
988 if (!hlist_empty(&inode->i_dentry)) {
989 spin_lock(&inode->i_lock);
990 de = __d_find_alias(inode);
991 spin_unlock(&inode->i_lock);
995 EXPORT_SYMBOL(d_find_alias);
998 * Caller MUST be holding rcu_read_lock() and be guaranteed
999 * that inode won't get freed until rcu_read_unlock().
1001 struct dentry *d_find_alias_rcu(struct inode *inode)
1003 struct hlist_head *l = &inode->i_dentry;
1004 struct dentry *de = NULL;
1006 spin_lock(&inode->i_lock);
1007 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1008 // used without having I_FREEING set, which means no aliases left
1009 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1010 if (S_ISDIR(inode->i_mode)) {
1011 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1013 hlist_for_each_entry(de, l, d_u.d_alias)
1014 if (!d_unhashed(de))
1018 spin_unlock(&inode->i_lock);
1023 * Try to kill dentries associated with this inode.
1024 * WARNING: you must own a reference to inode.
1026 void d_prune_aliases(struct inode *inode)
1029 struct dentry *dentry;
1031 spin_lock(&inode->i_lock);
1032 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1033 spin_lock(&dentry->d_lock);
1034 if (!dentry->d_lockref.count)
1035 to_shrink_list(dentry, &dispose);
1036 spin_unlock(&dentry->d_lock);
1038 spin_unlock(&inode->i_lock);
1039 shrink_dentry_list(&dispose);
1041 EXPORT_SYMBOL(d_prune_aliases);
1043 static inline void shrink_kill(struct dentry *victim)
1047 victim = __dentry_kill(victim);
1049 } while (victim && lock_for_kill(victim));
1052 spin_unlock(&victim->d_lock);
1055 void shrink_dentry_list(struct list_head *list)
1057 while (!list_empty(list)) {
1058 struct dentry *dentry;
1060 dentry = list_entry(list->prev, struct dentry, d_lru);
1061 spin_lock(&dentry->d_lock);
1063 if (!lock_for_kill(dentry)) {
1066 d_shrink_del(dentry);
1067 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1068 spin_unlock(&dentry->d_lock);
1070 dentry_free(dentry);
1073 d_shrink_del(dentry);
1074 shrink_kill(dentry);
1078 static enum lru_status dentry_lru_isolate(struct list_head *item,
1079 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1081 struct list_head *freeable = arg;
1082 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1086 * we are inverting the lru lock/dentry->d_lock here,
1087 * so use a trylock. If we fail to get the lock, just skip
1090 if (!spin_trylock(&dentry->d_lock))
1094 * Referenced dentries are still in use. If they have active
1095 * counts, just remove them from the LRU. Otherwise give them
1096 * another pass through the LRU.
1098 if (dentry->d_lockref.count) {
1099 d_lru_isolate(lru, dentry);
1100 spin_unlock(&dentry->d_lock);
1104 if (dentry->d_flags & DCACHE_REFERENCED) {
1105 dentry->d_flags &= ~DCACHE_REFERENCED;
1106 spin_unlock(&dentry->d_lock);
1109 * The list move itself will be made by the common LRU code. At
1110 * this point, we've dropped the dentry->d_lock but keep the
1111 * lru lock. This is safe to do, since every list movement is
1112 * protected by the lru lock even if both locks are held.
1114 * This is guaranteed by the fact that all LRU management
1115 * functions are intermediated by the LRU API calls like
1116 * list_lru_add and list_lru_del. List movement in this file
1117 * only ever occur through this functions or through callbacks
1118 * like this one, that are called from the LRU API.
1120 * The only exceptions to this are functions like
1121 * shrink_dentry_list, and code that first checks for the
1122 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1123 * operating only with stack provided lists after they are
1124 * properly isolated from the main list. It is thus, always a
1130 d_lru_shrink_move(lru, dentry, freeable);
1131 spin_unlock(&dentry->d_lock);
1137 * prune_dcache_sb - shrink the dcache
1139 * @sc: shrink control, passed to list_lru_shrink_walk()
1141 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1142 * is done when we need more memory and called from the superblock shrinker
1145 * This function may fail to free any resources if all the dentries are in
1148 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1153 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1154 dentry_lru_isolate, &dispose);
1155 shrink_dentry_list(&dispose);
1159 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1160 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1162 struct list_head *freeable = arg;
1163 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1166 * we are inverting the lru lock/dentry->d_lock here,
1167 * so use a trylock. If we fail to get the lock, just skip
1170 if (!spin_trylock(&dentry->d_lock))
1173 d_lru_shrink_move(lru, dentry, freeable);
1174 spin_unlock(&dentry->d_lock);
1181 * shrink_dcache_sb - shrink dcache for a superblock
1184 * Shrink the dcache for the specified super block. This is used to free
1185 * the dcache before unmounting a file system.
1187 void shrink_dcache_sb(struct super_block *sb)
1192 list_lru_walk(&sb->s_dentry_lru,
1193 dentry_lru_isolate_shrink, &dispose, 1024);
1194 shrink_dentry_list(&dispose);
1195 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1197 EXPORT_SYMBOL(shrink_dcache_sb);
1200 * enum d_walk_ret - action to talke during tree walk
1201 * @D_WALK_CONTINUE: contrinue walk
1202 * @D_WALK_QUIT: quit walk
1203 * @D_WALK_NORETRY: quit when retry is needed
1204 * @D_WALK_SKIP: skip this dentry and its children
1214 * d_walk - walk the dentry tree
1215 * @parent: start of walk
1216 * @data: data passed to @enter() and @finish()
1217 * @enter: callback when first entering the dentry
1219 * The @enter() callbacks are called with d_lock held.
1221 static void d_walk(struct dentry *parent, void *data,
1222 enum d_walk_ret (*enter)(void *, struct dentry *))
1224 struct dentry *this_parent, *dentry;
1226 enum d_walk_ret ret;
1230 read_seqbegin_or_lock(&rename_lock, &seq);
1231 this_parent = parent;
1232 spin_lock(&this_parent->d_lock);
1234 ret = enter(data, this_parent);
1236 case D_WALK_CONTINUE:
1241 case D_WALK_NORETRY:
1246 dentry = d_first_child(this_parent);
1248 hlist_for_each_entry_from(dentry, d_sib) {
1249 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1252 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1254 ret = enter(data, dentry);
1256 case D_WALK_CONTINUE:
1259 spin_unlock(&dentry->d_lock);
1261 case D_WALK_NORETRY:
1265 spin_unlock(&dentry->d_lock);
1269 if (!hlist_empty(&dentry->d_children)) {
1270 spin_unlock(&this_parent->d_lock);
1271 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1272 this_parent = dentry;
1273 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1276 spin_unlock(&dentry->d_lock);
1279 * All done at this level ... ascend and resume the search.
1283 if (this_parent != parent) {
1284 dentry = this_parent;
1285 this_parent = dentry->d_parent;
1287 spin_unlock(&dentry->d_lock);
1288 spin_lock(&this_parent->d_lock);
1290 /* might go back up the wrong parent if we have had a rename. */
1291 if (need_seqretry(&rename_lock, seq))
1293 /* go into the first sibling still alive */
1294 hlist_for_each_entry_continue(dentry, d_sib) {
1295 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1302 if (need_seqretry(&rename_lock, seq))
1307 spin_unlock(&this_parent->d_lock);
1308 done_seqretry(&rename_lock, seq);
1312 spin_unlock(&this_parent->d_lock);
1321 struct check_mount {
1322 struct vfsmount *mnt;
1323 unsigned int mounted;
1326 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328 struct check_mount *info = data;
1329 struct path path = { .mnt = info->mnt, .dentry = dentry };
1331 if (likely(!d_mountpoint(dentry)))
1332 return D_WALK_CONTINUE;
1333 if (__path_is_mountpoint(&path)) {
1337 return D_WALK_CONTINUE;
1341 * path_has_submounts - check for mounts over a dentry in the
1342 * current namespace.
1343 * @parent: path to check.
1345 * Return true if the parent or its subdirectories contain
1346 * a mount point in the current namespace.
1348 int path_has_submounts(const struct path *parent)
1350 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352 read_seqlock_excl(&mount_lock);
1353 d_walk(parent->dentry, &data, path_check_mount);
1354 read_sequnlock_excl(&mount_lock);
1356 return data.mounted;
1358 EXPORT_SYMBOL(path_has_submounts);
1361 * Called by mount code to set a mountpoint and check if the mountpoint is
1362 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1363 * subtree can become unreachable).
1365 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1366 * this reason take rename_lock and d_lock on dentry and ancestors.
1368 int d_set_mounted(struct dentry *dentry)
1372 write_seqlock(&rename_lock);
1373 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1374 /* Need exclusion wrt. d_invalidate() */
1375 spin_lock(&p->d_lock);
1376 if (unlikely(d_unhashed(p))) {
1377 spin_unlock(&p->d_lock);
1380 spin_unlock(&p->d_lock);
1382 spin_lock(&dentry->d_lock);
1383 if (!d_unlinked(dentry)) {
1385 if (!d_mountpoint(dentry)) {
1386 dentry->d_flags |= DCACHE_MOUNTED;
1390 spin_unlock(&dentry->d_lock);
1392 write_sequnlock(&rename_lock);
1397 * Search the dentry child list of the specified parent,
1398 * and move any unused dentries to the end of the unused
1399 * list for prune_dcache(). We descend to the next level
1400 * whenever the d_children list is non-empty and continue
1403 * It returns zero iff there are no unused children,
1404 * otherwise it returns the number of children moved to
1405 * the end of the unused list. This may not be the total
1406 * number of unused children, because select_parent can
1407 * drop the lock and return early due to latency
1411 struct select_data {
1412 struct dentry *start;
1415 struct dentry *victim;
1417 struct list_head dispose;
1420 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1422 struct select_data *data = _data;
1423 enum d_walk_ret ret = D_WALK_CONTINUE;
1425 if (data->start == dentry)
1428 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1430 } else if (!dentry->d_lockref.count) {
1431 to_shrink_list(dentry, &data->dispose);
1433 } else if (dentry->d_lockref.count < 0) {
1437 * We can return to the caller if we have found some (this
1438 * ensures forward progress). We'll be coming back to find
1441 if (!list_empty(&data->dispose))
1442 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1447 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1449 struct select_data *data = _data;
1450 enum d_walk_ret ret = D_WALK_CONTINUE;
1452 if (data->start == dentry)
1455 if (!dentry->d_lockref.count) {
1456 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1458 data->victim = dentry;
1461 to_shrink_list(dentry, &data->dispose);
1464 * We can return to the caller if we have found some (this
1465 * ensures forward progress). We'll be coming back to find
1468 if (!list_empty(&data->dispose))
1469 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1475 * shrink_dcache_parent - prune dcache
1476 * @parent: parent of entries to prune
1478 * Prune the dcache to remove unused children of the parent dentry.
1480 void shrink_dcache_parent(struct dentry *parent)
1483 struct select_data data = {.start = parent};
1485 INIT_LIST_HEAD(&data.dispose);
1486 d_walk(parent, &data, select_collect);
1488 if (!list_empty(&data.dispose)) {
1489 shrink_dentry_list(&data.dispose);
1497 d_walk(parent, &data, select_collect2);
1499 spin_lock(&data.victim->d_lock);
1500 if (!lock_for_kill(data.victim)) {
1501 spin_unlock(&data.victim->d_lock);
1504 shrink_kill(data.victim);
1507 if (!list_empty(&data.dispose))
1508 shrink_dentry_list(&data.dispose);
1511 EXPORT_SYMBOL(shrink_dcache_parent);
1513 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1515 /* it has busy descendents; complain about those instead */
1516 if (!hlist_empty(&dentry->d_children))
1517 return D_WALK_CONTINUE;
1519 /* root with refcount 1 is fine */
1520 if (dentry == _data && dentry->d_lockref.count == 1)
1521 return D_WALK_CONTINUE;
1523 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1524 " still in use (%d) [unmount of %s %s]\n",
1527 dentry->d_inode->i_ino : 0UL,
1529 dentry->d_lockref.count,
1530 dentry->d_sb->s_type->name,
1531 dentry->d_sb->s_id);
1532 return D_WALK_CONTINUE;
1535 static void do_one_tree(struct dentry *dentry)
1537 shrink_dcache_parent(dentry);
1538 d_walk(dentry, dentry, umount_check);
1544 * destroy the dentries attached to a superblock on unmounting
1546 void shrink_dcache_for_umount(struct super_block *sb)
1548 struct dentry *dentry;
1550 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1552 dentry = sb->s_root;
1554 do_one_tree(dentry);
1556 while (!hlist_bl_empty(&sb->s_roots)) {
1557 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1558 do_one_tree(dentry);
1562 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1564 struct dentry **victim = _data;
1565 if (d_mountpoint(dentry)) {
1566 *victim = dget_dlock(dentry);
1569 return D_WALK_CONTINUE;
1573 * d_invalidate - detach submounts, prune dcache, and drop
1574 * @dentry: dentry to invalidate (aka detach, prune and drop)
1576 void d_invalidate(struct dentry *dentry)
1578 bool had_submounts = false;
1579 spin_lock(&dentry->d_lock);
1580 if (d_unhashed(dentry)) {
1581 spin_unlock(&dentry->d_lock);
1585 spin_unlock(&dentry->d_lock);
1587 /* Negative dentries can be dropped without further checks */
1588 if (!dentry->d_inode)
1591 shrink_dcache_parent(dentry);
1593 struct dentry *victim = NULL;
1594 d_walk(dentry, &victim, find_submount);
1597 shrink_dcache_parent(dentry);
1600 had_submounts = true;
1601 detach_mounts(victim);
1605 EXPORT_SYMBOL(d_invalidate);
1608 * __d_alloc - allocate a dcache entry
1609 * @sb: filesystem it will belong to
1610 * @name: qstr of the name
1612 * Allocates a dentry. It returns %NULL if there is insufficient memory
1613 * available. On a success the dentry is returned. The name passed in is
1614 * copied and the copy passed in may be reused after this call.
1617 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1619 struct dentry *dentry;
1623 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1629 * We guarantee that the inline name is always NUL-terminated.
1630 * This way the memcpy() done by the name switching in rename
1631 * will still always have a NUL at the end, even if we might
1632 * be overwriting an internal NUL character
1634 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1635 if (unlikely(!name)) {
1637 dname = dentry->d_iname;
1638 } else if (name->len > DNAME_INLINE_LEN-1) {
1639 size_t size = offsetof(struct external_name, name[1]);
1640 struct external_name *p = kmalloc(size + name->len,
1641 GFP_KERNEL_ACCOUNT |
1644 kmem_cache_free(dentry_cache, dentry);
1647 atomic_set(&p->u.count, 1);
1650 dname = dentry->d_iname;
1653 dentry->d_name.len = name->len;
1654 dentry->d_name.hash = name->hash;
1655 memcpy(dname, name->name, name->len);
1656 dname[name->len] = 0;
1658 /* Make sure we always see the terminating NUL character */
1659 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1661 dentry->d_lockref.count = 1;
1662 dentry->d_flags = 0;
1663 spin_lock_init(&dentry->d_lock);
1664 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1665 dentry->d_inode = NULL;
1666 dentry->d_parent = dentry;
1668 dentry->d_op = NULL;
1669 dentry->d_fsdata = NULL;
1670 INIT_HLIST_BL_NODE(&dentry->d_hash);
1671 INIT_LIST_HEAD(&dentry->d_lru);
1672 INIT_HLIST_HEAD(&dentry->d_children);
1673 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1674 INIT_HLIST_NODE(&dentry->d_sib);
1675 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1677 if (dentry->d_op && dentry->d_op->d_init) {
1678 err = dentry->d_op->d_init(dentry);
1680 if (dname_external(dentry))
1681 kfree(external_name(dentry));
1682 kmem_cache_free(dentry_cache, dentry);
1687 this_cpu_inc(nr_dentry);
1693 * d_alloc - allocate a dcache entry
1694 * @parent: parent of entry to allocate
1695 * @name: qstr of the name
1697 * Allocates a dentry. It returns %NULL if there is insufficient memory
1698 * available. On a success the dentry is returned. The name passed in is
1699 * copied and the copy passed in may be reused after this call.
1701 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1706 spin_lock(&parent->d_lock);
1708 * don't need child lock because it is not subject
1709 * to concurrency here
1711 dentry->d_parent = dget_dlock(parent);
1712 hlist_add_head(&dentry->d_sib, &parent->d_children);
1713 spin_unlock(&parent->d_lock);
1717 EXPORT_SYMBOL(d_alloc);
1719 struct dentry *d_alloc_anon(struct super_block *sb)
1721 return __d_alloc(sb, NULL);
1723 EXPORT_SYMBOL(d_alloc_anon);
1725 struct dentry *d_alloc_cursor(struct dentry * parent)
1727 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1729 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1730 dentry->d_parent = dget(parent);
1736 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1737 * @sb: the superblock
1738 * @name: qstr of the name
1740 * For a filesystem that just pins its dentries in memory and never
1741 * performs lookups at all, return an unhashed IS_ROOT dentry.
1742 * This is used for pipes, sockets et.al. - the stuff that should
1743 * never be anyone's children or parents. Unlike all other
1744 * dentries, these will not have RCU delay between dropping the
1745 * last reference and freeing them.
1747 * The only user is alloc_file_pseudo() and that's what should
1748 * be considered a public interface. Don't use directly.
1750 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752 static const struct dentry_operations anon_ops = {
1753 .d_dname = simple_dname
1755 struct dentry *dentry = __d_alloc(sb, name);
1756 if (likely(dentry)) {
1757 dentry->d_flags |= DCACHE_NORCU;
1759 d_set_d_op(dentry, &anon_ops);
1764 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1769 q.hash_len = hashlen_string(parent, name);
1770 return d_alloc(parent, &q);
1772 EXPORT_SYMBOL(d_alloc_name);
1774 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1776 WARN_ON_ONCE(dentry->d_op);
1777 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1779 DCACHE_OP_REVALIDATE |
1780 DCACHE_OP_WEAK_REVALIDATE |
1787 dentry->d_flags |= DCACHE_OP_HASH;
1789 dentry->d_flags |= DCACHE_OP_COMPARE;
1790 if (op->d_revalidate)
1791 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1792 if (op->d_weak_revalidate)
1793 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1795 dentry->d_flags |= DCACHE_OP_DELETE;
1797 dentry->d_flags |= DCACHE_OP_PRUNE;
1799 dentry->d_flags |= DCACHE_OP_REAL;
1802 EXPORT_SYMBOL(d_set_d_op);
1804 static unsigned d_flags_for_inode(struct inode *inode)
1806 unsigned add_flags = DCACHE_REGULAR_TYPE;
1809 return DCACHE_MISS_TYPE;
1811 if (S_ISDIR(inode->i_mode)) {
1812 add_flags = DCACHE_DIRECTORY_TYPE;
1813 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1814 if (unlikely(!inode->i_op->lookup))
1815 add_flags = DCACHE_AUTODIR_TYPE;
1817 inode->i_opflags |= IOP_LOOKUP;
1819 goto type_determined;
1822 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1823 if (unlikely(inode->i_op->get_link)) {
1824 add_flags = DCACHE_SYMLINK_TYPE;
1825 goto type_determined;
1827 inode->i_opflags |= IOP_NOFOLLOW;
1830 if (unlikely(!S_ISREG(inode->i_mode)))
1831 add_flags = DCACHE_SPECIAL_TYPE;
1834 if (unlikely(IS_AUTOMOUNT(inode)))
1835 add_flags |= DCACHE_NEED_AUTOMOUNT;
1839 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841 unsigned add_flags = d_flags_for_inode(inode);
1842 WARN_ON(d_in_lookup(dentry));
1844 spin_lock(&dentry->d_lock);
1846 * Decrement negative dentry count if it was in the LRU list.
1848 if (dentry->d_flags & DCACHE_LRU_LIST)
1849 this_cpu_dec(nr_dentry_negative);
1850 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1851 raw_write_seqcount_begin(&dentry->d_seq);
1852 __d_set_inode_and_type(dentry, inode, add_flags);
1853 raw_write_seqcount_end(&dentry->d_seq);
1854 fsnotify_update_flags(dentry);
1855 spin_unlock(&dentry->d_lock);
1859 * d_instantiate - fill in inode information for a dentry
1860 * @entry: dentry to complete
1861 * @inode: inode to attach to this dentry
1863 * Fill in inode information in the entry.
1865 * This turns negative dentries into productive full members
1868 * NOTE! This assumes that the inode count has been incremented
1869 * (or otherwise set) by the caller to indicate that it is now
1870 * in use by the dcache.
1873 void d_instantiate(struct dentry *entry, struct inode * inode)
1875 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877 security_d_instantiate(entry, inode);
1878 spin_lock(&inode->i_lock);
1879 __d_instantiate(entry, inode);
1880 spin_unlock(&inode->i_lock);
1883 EXPORT_SYMBOL(d_instantiate);
1886 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1887 * with lockdep-related part of unlock_new_inode() done before
1888 * anything else. Use that instead of open-coding d_instantiate()/
1889 * unlock_new_inode() combinations.
1891 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895 lockdep_annotate_inode_mutex_key(inode);
1896 security_d_instantiate(entry, inode);
1897 spin_lock(&inode->i_lock);
1898 __d_instantiate(entry, inode);
1899 WARN_ON(!(inode->i_state & I_NEW));
1900 inode->i_state &= ~I_NEW & ~I_CREATING;
1902 wake_up_bit(&inode->i_state, __I_NEW);
1903 spin_unlock(&inode->i_lock);
1905 EXPORT_SYMBOL(d_instantiate_new);
1907 struct dentry *d_make_root(struct inode *root_inode)
1909 struct dentry *res = NULL;
1912 res = d_alloc_anon(root_inode->i_sb);
1914 d_instantiate(res, root_inode);
1920 EXPORT_SYMBOL(d_make_root);
1922 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1924 struct super_block *sb;
1925 struct dentry *new, *res;
1928 return ERR_PTR(-ESTALE);
1930 return ERR_CAST(inode);
1934 res = d_find_any_alias(inode); /* existing alias? */
1938 new = d_alloc_anon(sb);
1940 res = ERR_PTR(-ENOMEM);
1944 security_d_instantiate(new, inode);
1945 spin_lock(&inode->i_lock);
1946 res = __d_find_any_alias(inode); /* recheck under lock */
1947 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1948 unsigned add_flags = d_flags_for_inode(inode);
1951 add_flags |= DCACHE_DISCONNECTED;
1953 spin_lock(&new->d_lock);
1954 __d_set_inode_and_type(new, inode, add_flags);
1955 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1956 if (!disconnected) {
1957 hlist_bl_lock(&sb->s_roots);
1958 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1959 hlist_bl_unlock(&sb->s_roots);
1961 spin_unlock(&new->d_lock);
1962 spin_unlock(&inode->i_lock);
1963 inode = NULL; /* consumed by new->d_inode */
1966 spin_unlock(&inode->i_lock);
1976 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1977 * @inode: inode to allocate the dentry for
1979 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1980 * similar open by handle operations. The returned dentry may be anonymous,
1981 * or may have a full name (if the inode was already in the cache).
1983 * When called on a directory inode, we must ensure that the inode only ever
1984 * has one dentry. If a dentry is found, that is returned instead of
1985 * allocating a new one.
1987 * On successful return, the reference to the inode has been transferred
1988 * to the dentry. In case of an error the reference on the inode is released.
1989 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1990 * be passed in and the error will be propagated to the return value,
1991 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993 struct dentry *d_obtain_alias(struct inode *inode)
1995 return __d_obtain_alias(inode, true);
1997 EXPORT_SYMBOL(d_obtain_alias);
2000 * d_obtain_root - find or allocate a dentry for a given inode
2001 * @inode: inode to allocate the dentry for
2003 * Obtain an IS_ROOT dentry for the root of a filesystem.
2005 * We must ensure that directory inodes only ever have one dentry. If a
2006 * dentry is found, that is returned instead of allocating a new one.
2008 * On successful return, the reference to the inode has been transferred
2009 * to the dentry. In case of an error the reference on the inode is
2010 * released. A %NULL or IS_ERR inode may be passed in and will be the
2011 * error will be propagate to the return value, with a %NULL @inode
2012 * replaced by ERR_PTR(-ESTALE).
2014 struct dentry *d_obtain_root(struct inode *inode)
2016 return __d_obtain_alias(inode, false);
2018 EXPORT_SYMBOL(d_obtain_root);
2021 * d_add_ci - lookup or allocate new dentry with case-exact name
2022 * @inode: the inode case-insensitive lookup has found
2023 * @dentry: the negative dentry that was passed to the parent's lookup func
2024 * @name: the case-exact name to be associated with the returned dentry
2026 * This is to avoid filling the dcache with case-insensitive names to the
2027 * same inode, only the actual correct case is stored in the dcache for
2028 * case-insensitive filesystems.
2030 * For a case-insensitive lookup match and if the case-exact dentry
2031 * already exists in the dcache, use it and return it.
2033 * If no entry exists with the exact case name, allocate new dentry with
2034 * the exact case, and return the spliced entry.
2036 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2039 struct dentry *found, *res;
2042 * First check if a dentry matching the name already exists,
2043 * if not go ahead and create it now.
2045 found = d_hash_and_lookup(dentry->d_parent, name);
2050 if (d_in_lookup(dentry)) {
2051 found = d_alloc_parallel(dentry->d_parent, name,
2053 if (IS_ERR(found) || !d_in_lookup(found)) {
2058 found = d_alloc(dentry->d_parent, name);
2061 return ERR_PTR(-ENOMEM);
2064 res = d_splice_alias(inode, found);
2066 d_lookup_done(found);
2072 EXPORT_SYMBOL(d_add_ci);
2075 * d_same_name - compare dentry name with case-exact name
2076 * @parent: parent dentry
2077 * @dentry: the negative dentry that was passed to the parent's lookup func
2078 * @name: the case-exact name to be associated with the returned dentry
2080 * Return: true if names are same, or false
2082 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2083 const struct qstr *name)
2085 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2086 if (dentry->d_name.len != name->len)
2088 return dentry_cmp(dentry, name->name, name->len) == 0;
2090 return parent->d_op->d_compare(dentry,
2091 dentry->d_name.len, dentry->d_name.name,
2094 EXPORT_SYMBOL_GPL(d_same_name);
2097 * This is __d_lookup_rcu() when the parent dentry has
2098 * DCACHE_OP_COMPARE, which makes things much nastier.
2100 static noinline struct dentry *__d_lookup_rcu_op_compare(
2101 const struct dentry *parent,
2102 const struct qstr *name,
2105 u64 hashlen = name->hash_len;
2106 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2107 struct hlist_bl_node *node;
2108 struct dentry *dentry;
2110 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2116 seq = raw_seqcount_begin(&dentry->d_seq);
2117 if (dentry->d_parent != parent)
2119 if (d_unhashed(dentry))
2121 if (dentry->d_name.hash != hashlen_hash(hashlen))
2123 tlen = dentry->d_name.len;
2124 tname = dentry->d_name.name;
2125 /* we want a consistent (name,len) pair */
2126 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2130 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2139 * __d_lookup_rcu - search for a dentry (racy, store-free)
2140 * @parent: parent dentry
2141 * @name: qstr of name we wish to find
2142 * @seqp: returns d_seq value at the point where the dentry was found
2143 * Returns: dentry, or NULL
2145 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2146 * resolution (store-free path walking) design described in
2147 * Documentation/filesystems/path-lookup.txt.
2149 * This is not to be used outside core vfs.
2151 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2152 * held, and rcu_read_lock held. The returned dentry must not be stored into
2153 * without taking d_lock and checking d_seq sequence count against @seq
2156 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2159 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2160 * the returned dentry, so long as its parent's seqlock is checked after the
2161 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2162 * is formed, giving integrity down the path walk.
2164 * NOTE! The caller *has* to check the resulting dentry against the sequence
2165 * number we've returned before using any of the resulting dentry state!
2167 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2168 const struct qstr *name,
2171 u64 hashlen = name->hash_len;
2172 const unsigned char *str = name->name;
2173 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2174 struct hlist_bl_node *node;
2175 struct dentry *dentry;
2178 * Note: There is significant duplication with __d_lookup_rcu which is
2179 * required to prevent single threaded performance regressions
2180 * especially on architectures where smp_rmb (in seqcounts) are costly.
2181 * Keep the two functions in sync.
2184 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2185 return __d_lookup_rcu_op_compare(parent, name, seqp);
2188 * The hash list is protected using RCU.
2190 * Carefully use d_seq when comparing a candidate dentry, to avoid
2191 * races with d_move().
2193 * It is possible that concurrent renames can mess up our list
2194 * walk here and result in missing our dentry, resulting in the
2195 * false-negative result. d_lookup() protects against concurrent
2196 * renames using rename_lock seqlock.
2198 * See Documentation/filesystems/path-lookup.txt for more details.
2200 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2204 * The dentry sequence count protects us from concurrent
2205 * renames, and thus protects parent and name fields.
2207 * The caller must perform a seqcount check in order
2208 * to do anything useful with the returned dentry.
2210 * NOTE! We do a "raw" seqcount_begin here. That means that
2211 * we don't wait for the sequence count to stabilize if it
2212 * is in the middle of a sequence change. If we do the slow
2213 * dentry compare, we will do seqretries until it is stable,
2214 * and if we end up with a successful lookup, we actually
2215 * want to exit RCU lookup anyway.
2217 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2218 * we are still guaranteed NUL-termination of ->d_name.name.
2220 seq = raw_seqcount_begin(&dentry->d_seq);
2221 if (dentry->d_parent != parent)
2223 if (d_unhashed(dentry))
2225 if (dentry->d_name.hash_len != hashlen)
2227 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2236 * d_lookup - search for a dentry
2237 * @parent: parent dentry
2238 * @name: qstr of name we wish to find
2239 * Returns: dentry, or NULL
2241 * d_lookup searches the children of the parent dentry for the name in
2242 * question. If the dentry is found its reference count is incremented and the
2243 * dentry is returned. The caller must use dput to free the entry when it has
2244 * finished using it. %NULL is returned if the dentry does not exist.
2246 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2248 struct dentry *dentry;
2252 seq = read_seqbegin(&rename_lock);
2253 dentry = __d_lookup(parent, name);
2256 } while (read_seqretry(&rename_lock, seq));
2259 EXPORT_SYMBOL(d_lookup);
2262 * __d_lookup - search for a dentry (racy)
2263 * @parent: parent dentry
2264 * @name: qstr of name we wish to find
2265 * Returns: dentry, or NULL
2267 * __d_lookup is like d_lookup, however it may (rarely) return a
2268 * false-negative result due to unrelated rename activity.
2270 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2271 * however it must be used carefully, eg. with a following d_lookup in
2272 * the case of failure.
2274 * __d_lookup callers must be commented.
2276 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2278 unsigned int hash = name->hash;
2279 struct hlist_bl_head *b = d_hash(hash);
2280 struct hlist_bl_node *node;
2281 struct dentry *found = NULL;
2282 struct dentry *dentry;
2285 * Note: There is significant duplication with __d_lookup_rcu which is
2286 * required to prevent single threaded performance regressions
2287 * especially on architectures where smp_rmb (in seqcounts) are costly.
2288 * Keep the two functions in sync.
2292 * The hash list is protected using RCU.
2294 * Take d_lock when comparing a candidate dentry, to avoid races
2297 * It is possible that concurrent renames can mess up our list
2298 * walk here and result in missing our dentry, resulting in the
2299 * false-negative result. d_lookup() protects against concurrent
2300 * renames using rename_lock seqlock.
2302 * See Documentation/filesystems/path-lookup.txt for more details.
2306 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2308 if (dentry->d_name.hash != hash)
2311 spin_lock(&dentry->d_lock);
2312 if (dentry->d_parent != parent)
2314 if (d_unhashed(dentry))
2317 if (!d_same_name(dentry, parent, name))
2320 dentry->d_lockref.count++;
2322 spin_unlock(&dentry->d_lock);
2325 spin_unlock(&dentry->d_lock);
2333 * d_hash_and_lookup - hash the qstr then search for a dentry
2334 * @dir: Directory to search in
2335 * @name: qstr of name we wish to find
2337 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2339 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2342 * Check for a fs-specific hash function. Note that we must
2343 * calculate the standard hash first, as the d_op->d_hash()
2344 * routine may choose to leave the hash value unchanged.
2346 name->hash = full_name_hash(dir, name->name, name->len);
2347 if (dir->d_flags & DCACHE_OP_HASH) {
2348 int err = dir->d_op->d_hash(dir, name);
2349 if (unlikely(err < 0))
2350 return ERR_PTR(err);
2352 return d_lookup(dir, name);
2354 EXPORT_SYMBOL(d_hash_and_lookup);
2357 * When a file is deleted, we have two options:
2358 * - turn this dentry into a negative dentry
2359 * - unhash this dentry and free it.
2361 * Usually, we want to just turn this into
2362 * a negative dentry, but if anybody else is
2363 * currently using the dentry or the inode
2364 * we can't do that and we fall back on removing
2365 * it from the hash queues and waiting for
2366 * it to be deleted later when it has no users
2370 * d_delete - delete a dentry
2371 * @dentry: The dentry to delete
2373 * Turn the dentry into a negative dentry if possible, otherwise
2374 * remove it from the hash queues so it can be deleted later
2377 void d_delete(struct dentry * dentry)
2379 struct inode *inode = dentry->d_inode;
2381 spin_lock(&inode->i_lock);
2382 spin_lock(&dentry->d_lock);
2384 * Are we the only user?
2386 if (dentry->d_lockref.count == 1) {
2387 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2388 dentry_unlink_inode(dentry);
2391 spin_unlock(&dentry->d_lock);
2392 spin_unlock(&inode->i_lock);
2395 EXPORT_SYMBOL(d_delete);
2397 static void __d_rehash(struct dentry *entry)
2399 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2402 hlist_bl_add_head_rcu(&entry->d_hash, b);
2407 * d_rehash - add an entry back to the hash
2408 * @entry: dentry to add to the hash
2410 * Adds a dentry to the hash according to its name.
2413 void d_rehash(struct dentry * entry)
2415 spin_lock(&entry->d_lock);
2417 spin_unlock(&entry->d_lock);
2419 EXPORT_SYMBOL(d_rehash);
2421 static inline unsigned start_dir_add(struct inode *dir)
2423 preempt_disable_nested();
2425 unsigned n = dir->i_dir_seq;
2426 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2432 static inline void end_dir_add(struct inode *dir, unsigned int n,
2433 wait_queue_head_t *d_wait)
2435 smp_store_release(&dir->i_dir_seq, n + 2);
2436 preempt_enable_nested();
2437 wake_up_all(d_wait);
2440 static void d_wait_lookup(struct dentry *dentry)
2442 if (d_in_lookup(dentry)) {
2443 DECLARE_WAITQUEUE(wait, current);
2444 add_wait_queue(dentry->d_wait, &wait);
2446 set_current_state(TASK_UNINTERRUPTIBLE);
2447 spin_unlock(&dentry->d_lock);
2449 spin_lock(&dentry->d_lock);
2450 } while (d_in_lookup(dentry));
2454 struct dentry *d_alloc_parallel(struct dentry *parent,
2455 const struct qstr *name,
2456 wait_queue_head_t *wq)
2458 unsigned int hash = name->hash;
2459 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2460 struct hlist_bl_node *node;
2461 struct dentry *new = d_alloc(parent, name);
2462 struct dentry *dentry;
2463 unsigned seq, r_seq, d_seq;
2466 return ERR_PTR(-ENOMEM);
2470 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2471 r_seq = read_seqbegin(&rename_lock);
2472 dentry = __d_lookup_rcu(parent, name, &d_seq);
2473 if (unlikely(dentry)) {
2474 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2478 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2487 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2492 if (unlikely(seq & 1)) {
2498 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2504 * No changes for the parent since the beginning of d_lookup().
2505 * Since all removals from the chain happen with hlist_bl_lock(),
2506 * any potential in-lookup matches are going to stay here until
2507 * we unlock the chain. All fields are stable in everything
2510 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2511 if (dentry->d_name.hash != hash)
2513 if (dentry->d_parent != parent)
2515 if (!d_same_name(dentry, parent, name))
2518 /* now we can try to grab a reference */
2519 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2526 * somebody is likely to be still doing lookup for it;
2527 * wait for them to finish
2529 spin_lock(&dentry->d_lock);
2530 d_wait_lookup(dentry);
2532 * it's not in-lookup anymore; in principle we should repeat
2533 * everything from dcache lookup, but it's likely to be what
2534 * d_lookup() would've found anyway. If it is, just return it;
2535 * otherwise we really have to repeat the whole thing.
2537 if (unlikely(dentry->d_name.hash != hash))
2539 if (unlikely(dentry->d_parent != parent))
2541 if (unlikely(d_unhashed(dentry)))
2543 if (unlikely(!d_same_name(dentry, parent, name)))
2545 /* OK, it *is* a hashed match; return it */
2546 spin_unlock(&dentry->d_lock);
2551 /* we can't take ->d_lock here; it's OK, though. */
2552 new->d_flags |= DCACHE_PAR_LOOKUP;
2554 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2558 spin_unlock(&dentry->d_lock);
2562 EXPORT_SYMBOL(d_alloc_parallel);
2565 * - Unhash the dentry
2566 * - Retrieve and clear the waitqueue head in dentry
2567 * - Return the waitqueue head
2569 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2571 wait_queue_head_t *d_wait;
2572 struct hlist_bl_head *b;
2574 lockdep_assert_held(&dentry->d_lock);
2576 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2578 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2579 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2580 d_wait = dentry->d_wait;
2581 dentry->d_wait = NULL;
2583 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2584 INIT_LIST_HEAD(&dentry->d_lru);
2588 void __d_lookup_unhash_wake(struct dentry *dentry)
2590 spin_lock(&dentry->d_lock);
2591 wake_up_all(__d_lookup_unhash(dentry));
2592 spin_unlock(&dentry->d_lock);
2594 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2596 /* inode->i_lock held if inode is non-NULL */
2598 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2600 wait_queue_head_t *d_wait;
2601 struct inode *dir = NULL;
2603 spin_lock(&dentry->d_lock);
2604 if (unlikely(d_in_lookup(dentry))) {
2605 dir = dentry->d_parent->d_inode;
2606 n = start_dir_add(dir);
2607 d_wait = __d_lookup_unhash(dentry);
2610 unsigned add_flags = d_flags_for_inode(inode);
2611 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2612 raw_write_seqcount_begin(&dentry->d_seq);
2613 __d_set_inode_and_type(dentry, inode, add_flags);
2614 raw_write_seqcount_end(&dentry->d_seq);
2615 fsnotify_update_flags(dentry);
2619 end_dir_add(dir, n, d_wait);
2620 spin_unlock(&dentry->d_lock);
2622 spin_unlock(&inode->i_lock);
2626 * d_add - add dentry to hash queues
2627 * @entry: dentry to add
2628 * @inode: The inode to attach to this dentry
2630 * This adds the entry to the hash queues and initializes @inode.
2631 * The entry was actually filled in earlier during d_alloc().
2634 void d_add(struct dentry *entry, struct inode *inode)
2637 security_d_instantiate(entry, inode);
2638 spin_lock(&inode->i_lock);
2640 __d_add(entry, inode);
2642 EXPORT_SYMBOL(d_add);
2645 * d_exact_alias - find and hash an exact unhashed alias
2646 * @entry: dentry to add
2647 * @inode: The inode to go with this dentry
2649 * If an unhashed dentry with the same name/parent and desired
2650 * inode already exists, hash and return it. Otherwise, return
2653 * Parent directory should be locked.
2655 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2657 struct dentry *alias;
2658 unsigned int hash = entry->d_name.hash;
2660 spin_lock(&inode->i_lock);
2661 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2663 * Don't need alias->d_lock here, because aliases with
2664 * d_parent == entry->d_parent are not subject to name or
2665 * parent changes, because the parent inode i_mutex is held.
2667 if (alias->d_name.hash != hash)
2669 if (alias->d_parent != entry->d_parent)
2671 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2673 spin_lock(&alias->d_lock);
2674 if (!d_unhashed(alias)) {
2675 spin_unlock(&alias->d_lock);
2680 spin_unlock(&alias->d_lock);
2682 spin_unlock(&inode->i_lock);
2685 spin_unlock(&inode->i_lock);
2688 EXPORT_SYMBOL(d_exact_alias);
2690 static void swap_names(struct dentry *dentry, struct dentry *target)
2692 if (unlikely(dname_external(target))) {
2693 if (unlikely(dname_external(dentry))) {
2695 * Both external: swap the pointers
2697 swap(target->d_name.name, dentry->d_name.name);
2700 * dentry:internal, target:external. Steal target's
2701 * storage and make target internal.
2703 memcpy(target->d_iname, dentry->d_name.name,
2704 dentry->d_name.len + 1);
2705 dentry->d_name.name = target->d_name.name;
2706 target->d_name.name = target->d_iname;
2709 if (unlikely(dname_external(dentry))) {
2711 * dentry:external, target:internal. Give dentry's
2712 * storage to target and make dentry internal
2714 memcpy(dentry->d_iname, target->d_name.name,
2715 target->d_name.len + 1);
2716 target->d_name.name = dentry->d_name.name;
2717 dentry->d_name.name = dentry->d_iname;
2720 * Both are internal.
2723 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2724 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2725 swap(((long *) &dentry->d_iname)[i],
2726 ((long *) &target->d_iname)[i]);
2730 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2733 static void copy_name(struct dentry *dentry, struct dentry *target)
2735 struct external_name *old_name = NULL;
2736 if (unlikely(dname_external(dentry)))
2737 old_name = external_name(dentry);
2738 if (unlikely(dname_external(target))) {
2739 atomic_inc(&external_name(target)->u.count);
2740 dentry->d_name = target->d_name;
2742 memcpy(dentry->d_iname, target->d_name.name,
2743 target->d_name.len + 1);
2744 dentry->d_name.name = dentry->d_iname;
2745 dentry->d_name.hash_len = target->d_name.hash_len;
2747 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2748 kfree_rcu(old_name, u.head);
2752 * __d_move - move a dentry
2753 * @dentry: entry to move
2754 * @target: new dentry
2755 * @exchange: exchange the two dentries
2757 * Update the dcache to reflect the move of a file name. Negative
2758 * dcache entries should not be moved in this way. Caller must hold
2759 * rename_lock, the i_mutex of the source and target directories,
2760 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2762 static void __d_move(struct dentry *dentry, struct dentry *target,
2765 struct dentry *old_parent, *p;
2766 wait_queue_head_t *d_wait;
2767 struct inode *dir = NULL;
2770 WARN_ON(!dentry->d_inode);
2771 if (WARN_ON(dentry == target))
2774 BUG_ON(d_ancestor(target, dentry));
2775 old_parent = dentry->d_parent;
2776 p = d_ancestor(old_parent, target);
2777 if (IS_ROOT(dentry)) {
2779 spin_lock(&target->d_parent->d_lock);
2781 /* target is not a descendent of dentry->d_parent */
2782 spin_lock(&target->d_parent->d_lock);
2783 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2785 BUG_ON(p == dentry);
2786 spin_lock(&old_parent->d_lock);
2788 spin_lock_nested(&target->d_parent->d_lock,
2789 DENTRY_D_LOCK_NESTED);
2791 spin_lock_nested(&dentry->d_lock, 2);
2792 spin_lock_nested(&target->d_lock, 3);
2794 if (unlikely(d_in_lookup(target))) {
2795 dir = target->d_parent->d_inode;
2796 n = start_dir_add(dir);
2797 d_wait = __d_lookup_unhash(target);
2800 write_seqcount_begin(&dentry->d_seq);
2801 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2804 if (!d_unhashed(dentry))
2806 if (!d_unhashed(target))
2809 /* ... and switch them in the tree */
2810 dentry->d_parent = target->d_parent;
2812 copy_name(dentry, target);
2813 target->d_hash.pprev = NULL;
2814 dentry->d_parent->d_lockref.count++;
2815 if (dentry != old_parent) /* wasn't IS_ROOT */
2816 WARN_ON(!--old_parent->d_lockref.count);
2818 target->d_parent = old_parent;
2819 swap_names(dentry, target);
2820 if (!hlist_unhashed(&target->d_sib))
2821 __hlist_del(&target->d_sib);
2822 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2824 fsnotify_update_flags(target);
2826 if (!hlist_unhashed(&dentry->d_sib))
2827 __hlist_del(&dentry->d_sib);
2828 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2830 fsnotify_update_flags(dentry);
2831 fscrypt_handle_d_move(dentry);
2833 write_seqcount_end(&target->d_seq);
2834 write_seqcount_end(&dentry->d_seq);
2837 end_dir_add(dir, n, d_wait);
2839 if (dentry->d_parent != old_parent)
2840 spin_unlock(&dentry->d_parent->d_lock);
2841 if (dentry != old_parent)
2842 spin_unlock(&old_parent->d_lock);
2843 spin_unlock(&target->d_lock);
2844 spin_unlock(&dentry->d_lock);
2848 * d_move - move a dentry
2849 * @dentry: entry to move
2850 * @target: new dentry
2852 * Update the dcache to reflect the move of a file name. Negative
2853 * dcache entries should not be moved in this way. See the locking
2854 * requirements for __d_move.
2856 void d_move(struct dentry *dentry, struct dentry *target)
2858 write_seqlock(&rename_lock);
2859 __d_move(dentry, target, false);
2860 write_sequnlock(&rename_lock);
2862 EXPORT_SYMBOL(d_move);
2865 * d_exchange - exchange two dentries
2866 * @dentry1: first dentry
2867 * @dentry2: second dentry
2869 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871 write_seqlock(&rename_lock);
2873 WARN_ON(!dentry1->d_inode);
2874 WARN_ON(!dentry2->d_inode);
2875 WARN_ON(IS_ROOT(dentry1));
2876 WARN_ON(IS_ROOT(dentry2));
2878 __d_move(dentry1, dentry2, true);
2880 write_sequnlock(&rename_lock);
2884 * d_ancestor - search for an ancestor
2885 * @p1: ancestor dentry
2888 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2889 * an ancestor of p2, else NULL.
2891 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2895 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2896 if (p->d_parent == p1)
2903 * This helper attempts to cope with remotely renamed directories
2905 * It assumes that the caller is already holding
2906 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2908 * Note: If ever the locking in lock_rename() changes, then please
2909 * remember to update this too...
2911 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2913 struct mutex *m1 = NULL;
2914 struct rw_semaphore *m2 = NULL;
2917 /* If alias and dentry share a parent, then no extra locks required */
2918 if (alias->d_parent == dentry->d_parent)
2921 /* See lock_rename() */
2922 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2924 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2925 if (!inode_trylock_shared(alias->d_parent->d_inode))
2927 m2 = &alias->d_parent->d_inode->i_rwsem;
2929 __d_move(alias, dentry, false);
2940 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2941 * @inode: the inode which may have a disconnected dentry
2942 * @dentry: a negative dentry which we want to point to the inode.
2944 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2945 * place of the given dentry and return it, else simply d_add the inode
2946 * to the dentry and return NULL.
2948 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2949 * we should error out: directories can't have multiple aliases.
2951 * This is needed in the lookup routine of any filesystem that is exportable
2952 * (via knfsd) so that we can build dcache paths to directories effectively.
2954 * If a dentry was found and moved, then it is returned. Otherwise NULL
2955 * is returned. This matches the expected return value of ->lookup.
2957 * Cluster filesystems may call this function with a negative, hashed dentry.
2958 * In that case, we know that the inode will be a regular file, and also this
2959 * will only occur during atomic_open. So we need to check for the dentry
2960 * being already hashed only in the final case.
2962 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2965 return ERR_CAST(inode);
2967 BUG_ON(!d_unhashed(dentry));
2972 security_d_instantiate(dentry, inode);
2973 spin_lock(&inode->i_lock);
2974 if (S_ISDIR(inode->i_mode)) {
2975 struct dentry *new = __d_find_any_alias(inode);
2976 if (unlikely(new)) {
2977 /* The reference to new ensures it remains an alias */
2978 spin_unlock(&inode->i_lock);
2979 write_seqlock(&rename_lock);
2980 if (unlikely(d_ancestor(new, dentry))) {
2981 write_sequnlock(&rename_lock);
2983 new = ERR_PTR(-ELOOP);
2984 pr_warn_ratelimited(
2985 "VFS: Lookup of '%s' in %s %s"
2986 " would have caused loop\n",
2987 dentry->d_name.name,
2988 inode->i_sb->s_type->name,
2990 } else if (!IS_ROOT(new)) {
2991 struct dentry *old_parent = dget(new->d_parent);
2992 int err = __d_unalias(dentry, new);
2993 write_sequnlock(&rename_lock);
3000 __d_move(new, dentry, false);
3001 write_sequnlock(&rename_lock);
3008 __d_add(dentry, inode);
3011 EXPORT_SYMBOL(d_splice_alias);
3014 * Test whether new_dentry is a subdirectory of old_dentry.
3016 * Trivially implemented using the dcache structure
3020 * is_subdir - is new dentry a subdirectory of old_dentry
3021 * @new_dentry: new dentry
3022 * @old_dentry: old dentry
3024 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3025 * Returns false otherwise.
3026 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3029 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3034 if (new_dentry == old_dentry)
3038 /* for restarting inner loop in case of seq retry */
3039 seq = read_seqbegin(&rename_lock);
3041 * Need rcu_readlock to protect against the d_parent trashing
3045 if (d_ancestor(old_dentry, new_dentry))
3050 } while (read_seqretry(&rename_lock, seq));
3054 EXPORT_SYMBOL(is_subdir);
3056 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3058 struct dentry *root = data;
3059 if (dentry != root) {
3060 if (d_unhashed(dentry) || !dentry->d_inode)
3063 dentry->d_lockref.count--;
3065 return D_WALK_CONTINUE;
3068 void d_genocide(struct dentry *parent)
3070 d_walk(parent, parent, d_genocide_kill);
3073 void d_mark_tmpfile(struct file *file, struct inode *inode)
3075 struct dentry *dentry = file->f_path.dentry;
3077 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3078 !hlist_unhashed(&dentry->d_u.d_alias) ||
3079 !d_unlinked(dentry));
3080 spin_lock(&dentry->d_parent->d_lock);
3081 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3082 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3083 (unsigned long long)inode->i_ino);
3084 spin_unlock(&dentry->d_lock);
3085 spin_unlock(&dentry->d_parent->d_lock);
3087 EXPORT_SYMBOL(d_mark_tmpfile);
3089 void d_tmpfile(struct file *file, struct inode *inode)
3091 struct dentry *dentry = file->f_path.dentry;
3093 inode_dec_link_count(inode);
3094 d_mark_tmpfile(file, inode);
3095 d_instantiate(dentry, inode);
3097 EXPORT_SYMBOL(d_tmpfile);
3099 static __initdata unsigned long dhash_entries;
3100 static int __init set_dhash_entries(char *str)
3104 dhash_entries = simple_strtoul(str, &str, 0);
3107 __setup("dhash_entries=", set_dhash_entries);
3109 static void __init dcache_init_early(void)
3111 /* If hashes are distributed across NUMA nodes, defer
3112 * hash allocation until vmalloc space is available.
3118 alloc_large_system_hash("Dentry cache",
3119 sizeof(struct hlist_bl_head),
3122 HASH_EARLY | HASH_ZERO,
3127 d_hash_shift = 32 - d_hash_shift;
3130 static void __init dcache_init(void)
3133 * A constructor could be added for stable state like the lists,
3134 * but it is probably not worth it because of the cache nature
3137 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3138 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3141 /* Hash may have been set up in dcache_init_early */
3146 alloc_large_system_hash("Dentry cache",
3147 sizeof(struct hlist_bl_head),
3155 d_hash_shift = 32 - d_hash_shift;
3158 /* SLAB cache for __getname() consumers */
3159 struct kmem_cache *names_cachep __ro_after_init;
3160 EXPORT_SYMBOL(names_cachep);
3162 void __init vfs_caches_init_early(void)
3166 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3167 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3169 dcache_init_early();
3173 void __init vfs_caches_init(void)
3175 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3176 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3181 files_maxfiles_init();