1 // SPDX-License-Identifier: GPL-2.0
4 * fs/ext4/fast_commit.c
8 * Ext4 fast commits routines.
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
84 * - Create a new file A and remove existing file B
86 * - Append contents to file A
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
94 * Replay code should thus check for all the valid tails in the FC area.
96 * Fast Commit Replay Idempotence
97 * ------------------------------
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
109 * - Link dirent b to inode 10
111 * - Inode <10> with valid refcount
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
119 * rm A; mv B A; read A
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
165 * 2) Handle more ineligible cases.
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
173 BUFFER_TRACE(bh, "");
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
187 static inline void ext4_fc_reset_inode(struct inode *inode)
189 struct ext4_inode_info *ei = EXT4_I(inode);
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
195 void ext4_fc_init_inode(struct inode *inode)
197 struct ext4_inode_info *ei = EXT4_I(inode);
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
229 finish_wait(wq, &wait.wq_entry);
232 static bool ext4_fc_disabled(struct super_block *sb)
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
239 * Inform Ext4's fast about start of an inode update
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
245 void ext4_fc_start_update(struct inode *inode)
247 struct ext4_inode_info *ei = EXT4_I(inode);
249 if (ext4_fc_disabled(inode->i_sb))
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
267 * Stop inode update and wake up waiting fast commits if any.
269 void ext4_fc_stop_update(struct inode *inode)
271 struct ext4_inode_info *ei = EXT4_I(inode);
273 if (ext4_fc_disabled(inode->i_sb))
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
284 void ext4_fc_del(struct inode *inode)
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
290 if (ext4_fc_disabled(inode->i_sb))
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
343 if (ext4_fc_disabled(sb))
346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(handle))
348 tid = handle->h_transaction->t_tid;
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
355 spin_lock(&sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(&sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
371 * If enqueue is set, this function enqueues the inode in fast commit list.
373 static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(&ei->i_fc_lock);
398 spin_lock(&sbi->s_fc_lock);
399 if (list_empty(&EXT4_I(inode)->i_fc_list))
400 list_add_tail(&EXT4_I(inode)->i_fc_list,
401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(&sbi->s_fc_lock);
410 struct __track_dentry_update_args {
411 struct dentry *dentry;
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
425 mutex_unlock(&ei->i_fc_lock);
426 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
428 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
429 mutex_lock(&ei->i_fc_lock);
433 node->fcd_op = dentry_update->op;
434 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
435 node->fcd_ino = inode->i_ino;
436 if (dentry->d_name.len > DNAME_INLINE_LEN) {
437 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
438 if (!node->fcd_name.name) {
439 kmem_cache_free(ext4_fc_dentry_cachep, node);
440 ext4_fc_mark_ineligible(inode->i_sb,
441 EXT4_FC_REASON_NOMEM, NULL);
442 mutex_lock(&ei->i_fc_lock);
445 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
448 memcpy(node->fcd_iname, dentry->d_name.name,
450 node->fcd_name.name = node->fcd_iname;
452 node->fcd_name.len = dentry->d_name.len;
453 INIT_LIST_HEAD(&node->fcd_dilist);
454 spin_lock(&sbi->s_fc_lock);
455 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
456 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
457 list_add_tail(&node->fcd_list,
458 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
460 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
463 * This helps us keep a track of all fc_dentry updates which is part of
464 * this ext4 inode. So in case the inode is getting unlinked, before
465 * even we get a chance to fsync, we could remove all fc_dentry
466 * references while evicting the inode in ext4_fc_del().
467 * Also with this, we don't need to loop over all the inodes in
468 * sbi->s_fc_q to get the corresponding inode in
469 * ext4_fc_commit_dentry_updates().
471 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
472 WARN_ON(!list_empty(&ei->i_fc_dilist));
473 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
475 spin_unlock(&sbi->s_fc_lock);
476 mutex_lock(&ei->i_fc_lock);
481 void __ext4_fc_track_unlink(handle_t *handle,
482 struct inode *inode, struct dentry *dentry)
484 struct __track_dentry_update_args args;
487 args.dentry = dentry;
488 args.op = EXT4_FC_TAG_UNLINK;
490 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
492 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
495 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
497 struct inode *inode = d_inode(dentry);
499 if (ext4_fc_disabled(inode->i_sb))
502 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
505 __ext4_fc_track_unlink(handle, inode, dentry);
508 void __ext4_fc_track_link(handle_t *handle,
509 struct inode *inode, struct dentry *dentry)
511 struct __track_dentry_update_args args;
514 args.dentry = dentry;
515 args.op = EXT4_FC_TAG_LINK;
517 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
519 trace_ext4_fc_track_link(handle, inode, dentry, ret);
522 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
524 struct inode *inode = d_inode(dentry);
526 if (ext4_fc_disabled(inode->i_sb))
529 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
532 __ext4_fc_track_link(handle, inode, dentry);
535 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
536 struct dentry *dentry)
538 struct __track_dentry_update_args args;
541 args.dentry = dentry;
542 args.op = EXT4_FC_TAG_CREAT;
544 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
546 trace_ext4_fc_track_create(handle, inode, dentry, ret);
549 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
551 struct inode *inode = d_inode(dentry);
553 if (ext4_fc_disabled(inode->i_sb))
556 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
559 __ext4_fc_track_create(handle, inode, dentry);
562 /* __track_fn for inode tracking */
563 static int __track_inode(struct inode *inode, void *arg, bool update)
568 EXT4_I(inode)->i_fc_lblk_len = 0;
573 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
577 if (S_ISDIR(inode->i_mode))
580 if (ext4_fc_disabled(inode->i_sb))
583 if (ext4_should_journal_data(inode)) {
584 ext4_fc_mark_ineligible(inode->i_sb,
585 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
589 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
592 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
593 trace_ext4_fc_track_inode(handle, inode, ret);
596 struct __track_range_args {
597 ext4_lblk_t start, end;
600 /* __track_fn for tracking data updates */
601 static int __track_range(struct inode *inode, void *arg, bool update)
603 struct ext4_inode_info *ei = EXT4_I(inode);
604 ext4_lblk_t oldstart;
605 struct __track_range_args *__arg =
606 (struct __track_range_args *)arg;
608 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
609 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
613 oldstart = ei->i_fc_lblk_start;
615 if (update && ei->i_fc_lblk_len > 0) {
616 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
618 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
619 ei->i_fc_lblk_start + 1;
621 ei->i_fc_lblk_start = __arg->start;
622 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
628 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
631 struct __track_range_args args;
634 if (S_ISDIR(inode->i_mode))
637 if (ext4_fc_disabled(inode->i_sb))
640 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
646 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
648 trace_ext4_fc_track_range(handle, inode, start, end, ret);
651 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
653 blk_opf_t write_flags = REQ_SYNC;
654 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
656 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
657 if (test_opt(sb, BARRIER) && is_tail)
658 write_flags |= REQ_FUA | REQ_PREFLUSH;
660 set_buffer_dirty(bh);
661 set_buffer_uptodate(bh);
662 bh->b_end_io = ext4_end_buffer_io_sync;
663 submit_bh(REQ_OP_WRITE | write_flags, bh);
664 EXT4_SB(sb)->s_fc_bh = NULL;
667 /* Ext4 commit path routines */
669 /* memzero and update CRC */
670 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
675 ret = memset(dst, 0, len);
677 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
682 * Allocate len bytes on a fast commit buffer.
684 * During the commit time this function is used to manage fast commit
685 * block space. We don't split a fast commit log onto different
686 * blocks. So this function makes sure that if there's not enough space
687 * on the current block, the remaining space in the current block is
688 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
689 * new block is from jbd2 and CRC is updated to reflect the padding
692 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
694 struct ext4_fc_tl *tl;
695 struct ext4_sb_info *sbi = EXT4_SB(sb);
696 struct buffer_head *bh;
697 int bsize = sbi->s_journal->j_blocksize;
698 int ret, off = sbi->s_fc_bytes % bsize;
702 * After allocating len, we should have space at least for a 0 byte
705 if (len + EXT4_FC_TAG_BASE_LEN > bsize)
708 if (bsize - off - 1 > len + EXT4_FC_TAG_BASE_LEN) {
710 * Only allocate from current buffer if we have enough space for
711 * this request AND we have space to add a zero byte padding.
714 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
719 sbi->s_fc_bytes += len;
720 return sbi->s_fc_bh->b_data + off;
722 /* Need to add PAD tag */
723 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
724 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
725 pad_len = bsize - off - 1 - EXT4_FC_TAG_BASE_LEN;
726 tl->fc_len = cpu_to_le16(pad_len);
728 *crc = ext4_chksum(sbi, *crc, tl, EXT4_FC_TAG_BASE_LEN);
730 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
731 ext4_fc_submit_bh(sb, false);
733 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
737 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
738 return sbi->s_fc_bh->b_data;
741 /* memcpy to fc reserved space and update CRC */
742 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
746 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
747 return memcpy(dst, src, len);
751 * Complete a fast commit by writing tail tag.
753 * Writing tail tag marks the end of a fast commit. In order to guarantee
754 * atomicity, after writing tail tag, even if there's space remaining
755 * in the block, next commit shouldn't use it. That's why tail tag
756 * has the length as that of the remaining space on the block.
758 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
760 struct ext4_sb_info *sbi = EXT4_SB(sb);
761 struct ext4_fc_tl tl;
762 struct ext4_fc_tail tail;
763 int off, bsize = sbi->s_journal->j_blocksize;
767 * ext4_fc_reserve_space takes care of allocating an extra block if
768 * there's no enough space on this block for accommodating this tail.
770 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
774 off = sbi->s_fc_bytes % bsize;
776 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
777 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
778 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
780 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
781 dst += EXT4_FC_TAG_BASE_LEN;
782 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
783 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
784 dst += sizeof(tail.fc_tid);
785 tail.fc_crc = cpu_to_le32(crc);
786 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
788 ext4_fc_submit_bh(sb, true);
794 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
795 * Returns false if there's not enough space.
797 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
800 struct ext4_fc_tl tl;
803 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
807 tl.fc_tag = cpu_to_le16(tag);
808 tl.fc_len = cpu_to_le16(len);
810 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
811 ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
816 /* Same as above, but adds dentry tlv. */
817 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
818 struct ext4_fc_dentry_update *fc_dentry)
820 struct ext4_fc_dentry_info fcd;
821 struct ext4_fc_tl tl;
822 int dlen = fc_dentry->fcd_name.len;
823 u8 *dst = ext4_fc_reserve_space(sb,
824 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
829 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
830 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
831 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
832 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
833 ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
834 dst += EXT4_FC_TAG_BASE_LEN;
835 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
837 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
843 * Writes inode in the fast commit space under TLV with tag @tag.
844 * Returns 0 on success, error on failure.
846 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
848 struct ext4_inode_info *ei = EXT4_I(inode);
849 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
851 struct ext4_iloc iloc;
852 struct ext4_fc_inode fc_inode;
853 struct ext4_fc_tl tl;
856 ret = ext4_get_inode_loc(inode, &iloc);
860 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
861 inode_len = EXT4_INODE_SIZE(inode->i_sb);
862 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
863 inode_len += ei->i_extra_isize;
865 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
866 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
867 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
870 dst = ext4_fc_reserve_space(inode->i_sb,
871 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
875 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
877 dst += EXT4_FC_TAG_BASE_LEN;
878 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
880 dst += sizeof(fc_inode);
881 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
891 * Writes updated data ranges for the inode in question. Updates CRC.
892 * Returns 0 on success, error otherwise.
894 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
896 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
897 struct ext4_inode_info *ei = EXT4_I(inode);
898 struct ext4_map_blocks map;
899 struct ext4_fc_add_range fc_ext;
900 struct ext4_fc_del_range lrange;
901 struct ext4_extent *ex;
904 mutex_lock(&ei->i_fc_lock);
905 if (ei->i_fc_lblk_len == 0) {
906 mutex_unlock(&ei->i_fc_lock);
909 old_blk_size = ei->i_fc_lblk_start;
910 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
911 ei->i_fc_lblk_len = 0;
912 mutex_unlock(&ei->i_fc_lock);
914 cur_lblk_off = old_blk_size;
915 ext4_debug("will try writing %d to %d for inode %ld\n",
916 cur_lblk_off, new_blk_size, inode->i_ino);
918 while (cur_lblk_off <= new_blk_size) {
919 map.m_lblk = cur_lblk_off;
920 map.m_len = new_blk_size - cur_lblk_off + 1;
921 ret = ext4_map_blocks(NULL, inode, &map, 0);
925 if (map.m_len == 0) {
931 lrange.fc_ino = cpu_to_le32(inode->i_ino);
932 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
933 lrange.fc_len = cpu_to_le32(map.m_len);
934 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
935 sizeof(lrange), (u8 *)&lrange, crc))
938 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
939 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
941 /* Limit the number of blocks in one extent */
942 map.m_len = min(max, map.m_len);
944 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
945 ex = (struct ext4_extent *)&fc_ext.fc_ex;
946 ex->ee_block = cpu_to_le32(map.m_lblk);
947 ex->ee_len = cpu_to_le16(map.m_len);
948 ext4_ext_store_pblock(ex, map.m_pblk);
949 if (map.m_flags & EXT4_MAP_UNWRITTEN)
950 ext4_ext_mark_unwritten(ex);
952 ext4_ext_mark_initialized(ex);
953 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
954 sizeof(fc_ext), (u8 *)&fc_ext, crc))
958 cur_lblk_off += map.m_len;
965 /* Submit data for all the fast commit inodes */
966 static int ext4_fc_submit_inode_data_all(journal_t *journal)
968 struct super_block *sb = journal->j_private;
969 struct ext4_sb_info *sbi = EXT4_SB(sb);
970 struct ext4_inode_info *ei;
973 spin_lock(&sbi->s_fc_lock);
974 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
975 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
976 while (atomic_read(&ei->i_fc_updates)) {
979 prepare_to_wait(&ei->i_fc_wait, &wait,
980 TASK_UNINTERRUPTIBLE);
981 if (atomic_read(&ei->i_fc_updates)) {
982 spin_unlock(&sbi->s_fc_lock);
984 spin_lock(&sbi->s_fc_lock);
986 finish_wait(&ei->i_fc_wait, &wait);
988 spin_unlock(&sbi->s_fc_lock);
989 ret = jbd2_submit_inode_data(ei->jinode);
992 spin_lock(&sbi->s_fc_lock);
994 spin_unlock(&sbi->s_fc_lock);
999 /* Wait for completion of data for all the fast commit inodes */
1000 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1002 struct super_block *sb = journal->j_private;
1003 struct ext4_sb_info *sbi = EXT4_SB(sb);
1004 struct ext4_inode_info *pos, *n;
1007 spin_lock(&sbi->s_fc_lock);
1008 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1009 if (!ext4_test_inode_state(&pos->vfs_inode,
1010 EXT4_STATE_FC_COMMITTING))
1012 spin_unlock(&sbi->s_fc_lock);
1014 ret = jbd2_wait_inode_data(journal, pos->jinode);
1017 spin_lock(&sbi->s_fc_lock);
1019 spin_unlock(&sbi->s_fc_lock);
1024 /* Commit all the directory entry updates */
1025 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1026 __acquires(&sbi->s_fc_lock)
1027 __releases(&sbi->s_fc_lock)
1029 struct super_block *sb = journal->j_private;
1030 struct ext4_sb_info *sbi = EXT4_SB(sb);
1031 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1032 struct inode *inode;
1033 struct ext4_inode_info *ei;
1036 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1038 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1039 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1040 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1041 spin_unlock(&sbi->s_fc_lock);
1042 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1046 spin_lock(&sbi->s_fc_lock);
1050 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1051 * corresponding inode pointer
1053 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1054 ei = list_first_entry(&fc_dentry->fcd_dilist,
1055 struct ext4_inode_info, i_fc_dilist);
1056 inode = &ei->vfs_inode;
1057 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1059 spin_unlock(&sbi->s_fc_lock);
1062 * We first write the inode and then the create dirent. This
1063 * allows the recovery code to create an unnamed inode first
1064 * and then link it to a directory entry. This allows us
1065 * to use namei.c routines almost as is and simplifies
1066 * the recovery code.
1068 ret = ext4_fc_write_inode(inode, crc);
1072 ret = ext4_fc_write_inode_data(inode, crc);
1076 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1081 spin_lock(&sbi->s_fc_lock);
1085 spin_lock(&sbi->s_fc_lock);
1089 static int ext4_fc_perform_commit(journal_t *journal)
1091 struct super_block *sb = journal->j_private;
1092 struct ext4_sb_info *sbi = EXT4_SB(sb);
1093 struct ext4_inode_info *iter;
1094 struct ext4_fc_head head;
1095 struct inode *inode;
1096 struct blk_plug plug;
1100 ret = ext4_fc_submit_inode_data_all(journal);
1104 ret = ext4_fc_wait_inode_data_all(journal);
1109 * If file system device is different from journal device, issue a cache
1110 * flush before we start writing fast commit blocks.
1112 if (journal->j_fs_dev != journal->j_dev)
1113 blkdev_issue_flush(journal->j_fs_dev);
1115 blk_start_plug(&plug);
1116 if (sbi->s_fc_bytes == 0) {
1118 * Add a head tag only if this is the first fast commit
1121 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1122 head.fc_tid = cpu_to_le32(
1123 sbi->s_journal->j_running_transaction->t_tid);
1124 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1125 (u8 *)&head, &crc)) {
1131 spin_lock(&sbi->s_fc_lock);
1132 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1134 spin_unlock(&sbi->s_fc_lock);
1138 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1139 inode = &iter->vfs_inode;
1140 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1143 spin_unlock(&sbi->s_fc_lock);
1144 ret = ext4_fc_write_inode_data(inode, &crc);
1147 ret = ext4_fc_write_inode(inode, &crc);
1150 spin_lock(&sbi->s_fc_lock);
1152 spin_unlock(&sbi->s_fc_lock);
1154 ret = ext4_fc_write_tail(sb, crc);
1157 blk_finish_plug(&plug);
1161 static void ext4_fc_update_stats(struct super_block *sb, int status,
1162 u64 commit_time, int nblks, tid_t commit_tid)
1164 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1166 ext4_debug("Fast commit ended with status = %d for tid %u",
1167 status, commit_tid);
1168 if (status == EXT4_FC_STATUS_OK) {
1169 stats->fc_num_commits++;
1170 stats->fc_numblks += nblks;
1171 if (likely(stats->s_fc_avg_commit_time))
1172 stats->s_fc_avg_commit_time =
1174 stats->s_fc_avg_commit_time * 3) / 4;
1176 stats->s_fc_avg_commit_time = commit_time;
1177 } else if (status == EXT4_FC_STATUS_FAILED ||
1178 status == EXT4_FC_STATUS_INELIGIBLE) {
1179 if (status == EXT4_FC_STATUS_FAILED)
1180 stats->fc_failed_commits++;
1181 stats->fc_ineligible_commits++;
1183 stats->fc_skipped_commits++;
1185 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1189 * The main commit entry point. Performs a fast commit for transaction
1190 * commit_tid if needed. If it's not possible to perform a fast commit
1191 * due to various reasons, we fall back to full commit. Returns 0
1192 * on success, error otherwise.
1194 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1196 struct super_block *sb = journal->j_private;
1197 struct ext4_sb_info *sbi = EXT4_SB(sb);
1198 int nblks = 0, ret, bsize = journal->j_blocksize;
1199 int subtid = atomic_read(&sbi->s_fc_subtid);
1200 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1201 ktime_t start_time, commit_time;
1203 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1204 return jbd2_complete_transaction(journal, commit_tid);
1206 trace_ext4_fc_commit_start(sb, commit_tid);
1208 start_time = ktime_get();
1211 ret = jbd2_fc_begin_commit(journal, commit_tid);
1212 if (ret == -EALREADY) {
1213 /* There was an ongoing commit, check if we need to restart */
1214 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1215 commit_tid > journal->j_commit_sequence)
1217 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1222 * Commit couldn't start. Just update stats and perform a
1225 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1227 return jbd2_complete_transaction(journal, commit_tid);
1231 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1232 * if we are fast commit ineligible.
1234 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1235 status = EXT4_FC_STATUS_INELIGIBLE;
1239 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1240 ret = ext4_fc_perform_commit(journal);
1242 status = EXT4_FC_STATUS_FAILED;
1245 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1246 ret = jbd2_fc_wait_bufs(journal, nblks);
1248 status = EXT4_FC_STATUS_FAILED;
1251 atomic_inc(&sbi->s_fc_subtid);
1252 ret = jbd2_fc_end_commit(journal);
1254 * weight the commit time higher than the average time so we
1255 * don't react too strongly to vast changes in the commit time
1257 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1258 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1262 ret = jbd2_fc_end_commit_fallback(journal);
1263 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1268 * Fast commit cleanup routine. This is called after every fast commit and
1269 * full commit. full is true if we are called after a full commit.
1271 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1273 struct super_block *sb = journal->j_private;
1274 struct ext4_sb_info *sbi = EXT4_SB(sb);
1275 struct ext4_inode_info *iter, *iter_n;
1276 struct ext4_fc_dentry_update *fc_dentry;
1278 if (full && sbi->s_fc_bh)
1279 sbi->s_fc_bh = NULL;
1281 trace_ext4_fc_cleanup(journal, full, tid);
1282 jbd2_fc_release_bufs(journal);
1284 spin_lock(&sbi->s_fc_lock);
1285 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1287 list_del_init(&iter->i_fc_list);
1288 ext4_clear_inode_state(&iter->vfs_inode,
1289 EXT4_STATE_FC_COMMITTING);
1290 if (iter->i_sync_tid <= tid)
1291 ext4_fc_reset_inode(&iter->vfs_inode);
1292 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1294 #if (BITS_PER_LONG < 64)
1295 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1297 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1301 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1302 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1303 struct ext4_fc_dentry_update,
1305 list_del_init(&fc_dentry->fcd_list);
1306 list_del_init(&fc_dentry->fcd_dilist);
1307 spin_unlock(&sbi->s_fc_lock);
1309 if (fc_dentry->fcd_name.name &&
1310 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1311 kfree(fc_dentry->fcd_name.name);
1312 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1313 spin_lock(&sbi->s_fc_lock);
1316 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1317 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1318 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1319 &sbi->s_fc_q[FC_Q_MAIN]);
1321 if (tid >= sbi->s_fc_ineligible_tid) {
1322 sbi->s_fc_ineligible_tid = 0;
1323 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1327 sbi->s_fc_bytes = 0;
1328 spin_unlock(&sbi->s_fc_lock);
1329 trace_ext4_fc_stats(sb);
1332 /* Ext4 Replay Path Routines */
1334 /* Helper struct for dentry replay routines */
1335 struct dentry_info_args {
1336 int parent_ino, dname_len, ino, inode_len;
1340 static inline void tl_to_darg(struct dentry_info_args *darg,
1341 struct ext4_fc_tl *tl, u8 *val)
1343 struct ext4_fc_dentry_info fcd;
1345 memcpy(&fcd, val, sizeof(fcd));
1347 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1348 darg->ino = le32_to_cpu(fcd.fc_ino);
1349 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1350 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1353 static inline void ext4_fc_get_tl(struct ext4_fc_tl *tl, u8 *val)
1355 memcpy(tl, val, EXT4_FC_TAG_BASE_LEN);
1356 tl->fc_len = le16_to_cpu(tl->fc_len);
1357 tl->fc_tag = le16_to_cpu(tl->fc_tag);
1360 /* Unlink replay function */
1361 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1364 struct inode *inode, *old_parent;
1366 struct dentry_info_args darg;
1369 tl_to_darg(&darg, tl, val);
1371 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1372 darg.parent_ino, darg.dname_len);
1374 entry.name = darg.dname;
1375 entry.len = darg.dname_len;
1376 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1378 if (IS_ERR(inode)) {
1379 ext4_debug("Inode %d not found", darg.ino);
1383 old_parent = ext4_iget(sb, darg.parent_ino,
1385 if (IS_ERR(old_parent)) {
1386 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1391 ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1392 /* -ENOENT ok coz it might not exist anymore. */
1400 static int ext4_fc_replay_link_internal(struct super_block *sb,
1401 struct dentry_info_args *darg,
1402 struct inode *inode)
1404 struct inode *dir = NULL;
1405 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1406 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1409 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1411 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1416 dentry_dir = d_obtain_alias(dir);
1417 if (IS_ERR(dentry_dir)) {
1418 ext4_debug("Failed to obtain dentry");
1423 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1424 if (!dentry_inode) {
1425 ext4_debug("Inode dentry not created.");
1430 ret = __ext4_link(dir, inode, dentry_inode);
1432 * It's possible that link already existed since data blocks
1433 * for the dir in question got persisted before we crashed OR
1434 * we replayed this tag and crashed before the entire replay
1437 if (ret && ret != -EEXIST) {
1438 ext4_debug("Failed to link\n");
1451 d_drop(dentry_inode);
1458 /* Link replay function */
1459 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1462 struct inode *inode;
1463 struct dentry_info_args darg;
1466 tl_to_darg(&darg, tl, val);
1467 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1468 darg.parent_ino, darg.dname_len);
1470 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1471 if (IS_ERR(inode)) {
1472 ext4_debug("Inode not found.");
1476 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1482 * Record all the modified inodes during replay. We use this later to setup
1483 * block bitmaps correctly.
1485 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1487 struct ext4_fc_replay_state *state;
1490 state = &EXT4_SB(sb)->s_fc_replay_state;
1491 for (i = 0; i < state->fc_modified_inodes_used; i++)
1492 if (state->fc_modified_inodes[i] == ino)
1494 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1495 int *fc_modified_inodes;
1497 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1498 sizeof(int) * (state->fc_modified_inodes_size +
1499 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1501 if (!fc_modified_inodes)
1503 state->fc_modified_inodes = fc_modified_inodes;
1504 state->fc_modified_inodes_size +=
1505 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1507 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1512 * Inode replay function
1514 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1517 struct ext4_fc_inode fc_inode;
1518 struct ext4_inode *raw_inode;
1519 struct ext4_inode *raw_fc_inode;
1520 struct inode *inode = NULL;
1521 struct ext4_iloc iloc;
1522 int inode_len, ino, ret, tag = tl->fc_tag;
1523 struct ext4_extent_header *eh;
1525 memcpy(&fc_inode, val, sizeof(fc_inode));
1527 ino = le32_to_cpu(fc_inode.fc_ino);
1528 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1530 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1531 if (!IS_ERR(inode)) {
1532 ext4_ext_clear_bb(inode);
1537 ret = ext4_fc_record_modified_inode(sb, ino);
1541 raw_fc_inode = (struct ext4_inode *)
1542 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1543 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1547 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1548 raw_inode = ext4_raw_inode(&iloc);
1550 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1551 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1552 inode_len - offsetof(struct ext4_inode, i_generation));
1553 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1554 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1555 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1556 memset(eh, 0, sizeof(*eh));
1557 eh->eh_magic = EXT4_EXT_MAGIC;
1558 eh->eh_max = cpu_to_le16(
1559 (sizeof(raw_inode->i_block) -
1560 sizeof(struct ext4_extent_header))
1561 / sizeof(struct ext4_extent));
1563 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1564 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1565 sizeof(raw_inode->i_block));
1568 /* Immediately update the inode on disk. */
1569 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1572 ret = sync_dirty_buffer(iloc.bh);
1575 ret = ext4_mark_inode_used(sb, ino);
1579 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1580 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1581 if (IS_ERR(inode)) {
1582 ext4_debug("Inode not found.");
1583 return -EFSCORRUPTED;
1587 * Our allocator could have made different decisions than before
1588 * crashing. This should be fixed but until then, we calculate
1589 * the number of blocks the inode.
1591 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1592 ext4_ext_replay_set_iblocks(inode);
1594 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1595 ext4_reset_inode_seed(inode);
1597 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1598 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1599 sync_dirty_buffer(iloc.bh);
1604 blkdev_issue_flush(sb->s_bdev);
1610 * Dentry create replay function.
1612 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1613 * inode for which we are trying to create a dentry here, should already have
1614 * been replayed before we start here.
1616 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1620 struct inode *inode = NULL;
1621 struct inode *dir = NULL;
1622 struct dentry_info_args darg;
1624 tl_to_darg(&darg, tl, val);
1626 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1627 darg.parent_ino, darg.dname_len);
1629 /* This takes care of update group descriptor and other metadata */
1630 ret = ext4_mark_inode_used(sb, darg.ino);
1634 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1635 if (IS_ERR(inode)) {
1636 ext4_debug("inode %d not found.", darg.ino);
1642 if (S_ISDIR(inode->i_mode)) {
1644 * If we are creating a directory, we need to make sure that the
1645 * dot and dot dot dirents are setup properly.
1647 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1649 ext4_debug("Dir %d not found.", darg.ino);
1652 ret = ext4_init_new_dir(NULL, dir, inode);
1659 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1662 set_nlink(inode, 1);
1663 ext4_mark_inode_dirty(NULL, inode);
1670 * Record physical disk regions which are in use as per fast commit area,
1671 * and used by inodes during replay phase. Our simple replay phase
1672 * allocator excludes these regions from allocation.
1674 int ext4_fc_record_regions(struct super_block *sb, int ino,
1675 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1677 struct ext4_fc_replay_state *state;
1678 struct ext4_fc_alloc_region *region;
1680 state = &EXT4_SB(sb)->s_fc_replay_state;
1682 * during replay phase, the fc_regions_valid may not same as
1683 * fc_regions_used, update it when do new additions.
1685 if (replay && state->fc_regions_used != state->fc_regions_valid)
1686 state->fc_regions_used = state->fc_regions_valid;
1687 if (state->fc_regions_used == state->fc_regions_size) {
1688 struct ext4_fc_alloc_region *fc_regions;
1690 fc_regions = krealloc(state->fc_regions,
1691 sizeof(struct ext4_fc_alloc_region) *
1692 (state->fc_regions_size +
1693 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1697 state->fc_regions_size +=
1698 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1699 state->fc_regions = fc_regions;
1701 region = &state->fc_regions[state->fc_regions_used++];
1703 region->lblk = lblk;
1704 region->pblk = pblk;
1708 state->fc_regions_valid++;
1713 /* Replay add range tag */
1714 static int ext4_fc_replay_add_range(struct super_block *sb,
1715 struct ext4_fc_tl *tl, u8 *val)
1717 struct ext4_fc_add_range fc_add_ex;
1718 struct ext4_extent newex, *ex;
1719 struct inode *inode;
1720 ext4_lblk_t start, cur;
1722 ext4_fsblk_t start_pblk;
1723 struct ext4_map_blocks map;
1724 struct ext4_ext_path *path = NULL;
1727 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1728 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1730 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1731 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1732 ext4_ext_get_actual_len(ex));
1734 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1735 if (IS_ERR(inode)) {
1736 ext4_debug("Inode not found.");
1740 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1744 start = le32_to_cpu(ex->ee_block);
1745 start_pblk = ext4_ext_pblock(ex);
1746 len = ext4_ext_get_actual_len(ex);
1750 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1751 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1754 while (remaining > 0) {
1756 map.m_len = remaining;
1758 ret = ext4_map_blocks(NULL, inode, &map, 0);
1764 /* Range is not mapped */
1765 path = ext4_find_extent(inode, cur, NULL, 0);
1768 memset(&newex, 0, sizeof(newex));
1769 newex.ee_block = cpu_to_le32(cur);
1770 ext4_ext_store_pblock(
1771 &newex, start_pblk + cur - start);
1772 newex.ee_len = cpu_to_le16(map.m_len);
1773 if (ext4_ext_is_unwritten(ex))
1774 ext4_ext_mark_unwritten(&newex);
1775 down_write(&EXT4_I(inode)->i_data_sem);
1776 ret = ext4_ext_insert_extent(
1777 NULL, inode, &path, &newex, 0);
1778 up_write((&EXT4_I(inode)->i_data_sem));
1779 ext4_free_ext_path(path);
1785 if (start_pblk + cur - start != map.m_pblk) {
1787 * Logical to physical mapping changed. This can happen
1788 * if this range was removed and then reallocated to
1789 * map to new physical blocks during a fast commit.
1791 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1792 ext4_ext_is_unwritten(ex),
1793 start_pblk + cur - start);
1797 * Mark the old blocks as free since they aren't used
1798 * anymore. We maintain an array of all the modified
1799 * inodes. In case these blocks are still used at either
1800 * a different logical range in the same inode or in
1801 * some different inode, we will mark them as allocated
1802 * at the end of the FC replay using our array of
1805 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1809 /* Range is mapped and needs a state change */
1810 ext4_debug("Converting from %ld to %d %lld",
1811 map.m_flags & EXT4_MAP_UNWRITTEN,
1812 ext4_ext_is_unwritten(ex), map.m_pblk);
1813 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1814 ext4_ext_is_unwritten(ex), map.m_pblk);
1818 * We may have split the extent tree while toggling the state.
1819 * Try to shrink the extent tree now.
1821 ext4_ext_replay_shrink_inode(inode, start + len);
1824 remaining -= map.m_len;
1826 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1827 sb->s_blocksize_bits);
1833 /* Replay DEL_RANGE tag */
1835 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1838 struct inode *inode;
1839 struct ext4_fc_del_range lrange;
1840 struct ext4_map_blocks map;
1841 ext4_lblk_t cur, remaining;
1844 memcpy(&lrange, val, sizeof(lrange));
1845 cur = le32_to_cpu(lrange.fc_lblk);
1846 remaining = le32_to_cpu(lrange.fc_len);
1848 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1849 le32_to_cpu(lrange.fc_ino), cur, remaining);
1851 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1852 if (IS_ERR(inode)) {
1853 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1857 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1861 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1862 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1863 le32_to_cpu(lrange.fc_len));
1864 while (remaining > 0) {
1866 map.m_len = remaining;
1868 ret = ext4_map_blocks(NULL, inode, &map, 0);
1874 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1876 remaining -= map.m_len;
1881 down_write(&EXT4_I(inode)->i_data_sem);
1882 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1883 le32_to_cpu(lrange.fc_lblk) +
1884 le32_to_cpu(lrange.fc_len) - 1);
1885 up_write(&EXT4_I(inode)->i_data_sem);
1888 ext4_ext_replay_shrink_inode(inode,
1889 i_size_read(inode) >> sb->s_blocksize_bits);
1890 ext4_mark_inode_dirty(NULL, inode);
1896 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1898 struct ext4_fc_replay_state *state;
1899 struct inode *inode;
1900 struct ext4_ext_path *path = NULL;
1901 struct ext4_map_blocks map;
1903 ext4_lblk_t cur, end;
1905 state = &EXT4_SB(sb)->s_fc_replay_state;
1906 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1907 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1909 if (IS_ERR(inode)) {
1910 ext4_debug("Inode %d not found.",
1911 state->fc_modified_inodes[i]);
1915 end = EXT_MAX_BLOCKS;
1916 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1922 map.m_len = end - cur;
1924 ret = ext4_map_blocks(NULL, inode, &map, 0);
1929 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1930 if (!IS_ERR(path)) {
1931 for (j = 0; j < path->p_depth; j++)
1932 ext4_mb_mark_bb(inode->i_sb,
1933 path[j].p_block, 1, 1);
1934 ext4_free_ext_path(path);
1937 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1940 cur = cur + (map.m_len ? map.m_len : 1);
1948 * Check if block is in excluded regions for block allocation. The simple
1949 * allocator that runs during replay phase is calls this function to see
1950 * if it is okay to use a block.
1952 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1955 struct ext4_fc_replay_state *state;
1957 state = &EXT4_SB(sb)->s_fc_replay_state;
1958 for (i = 0; i < state->fc_regions_valid; i++) {
1959 if (state->fc_regions[i].ino == 0 ||
1960 state->fc_regions[i].len == 0)
1962 if (in_range(blk, state->fc_regions[i].pblk,
1963 state->fc_regions[i].len))
1969 /* Cleanup function called after replay */
1970 void ext4_fc_replay_cleanup(struct super_block *sb)
1972 struct ext4_sb_info *sbi = EXT4_SB(sb);
1974 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1975 kfree(sbi->s_fc_replay_state.fc_regions);
1976 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1979 static inline bool ext4_fc_tag_len_isvalid(struct ext4_fc_tl *tl,
1982 if (val + tl->fc_len > end)
1985 /* Here only check ADD_RANGE/TAIL/HEAD which will read data when do
1986 * journal rescan before do CRC check. Other tags length check will
1987 * rely on CRC check.
1989 switch (tl->fc_tag) {
1990 case EXT4_FC_TAG_ADD_RANGE:
1991 return (sizeof(struct ext4_fc_add_range) == tl->fc_len);
1992 case EXT4_FC_TAG_TAIL:
1993 return (sizeof(struct ext4_fc_tail) <= tl->fc_len);
1994 case EXT4_FC_TAG_HEAD:
1995 return (sizeof(struct ext4_fc_head) == tl->fc_len);
1996 case EXT4_FC_TAG_DEL_RANGE:
1997 case EXT4_FC_TAG_LINK:
1998 case EXT4_FC_TAG_UNLINK:
1999 case EXT4_FC_TAG_CREAT:
2000 case EXT4_FC_TAG_INODE:
2001 case EXT4_FC_TAG_PAD:
2008 * Recovery Scan phase handler
2010 * This function is called during the scan phase and is responsible
2011 * for doing following things:
2012 * - Make sure the fast commit area has valid tags for replay
2013 * - Count number of tags that need to be replayed by the replay handler
2015 * - Create a list of excluded blocks for allocation during replay phase
2017 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2018 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2019 * to indicate that scan has finished and JBD2 can now start replay phase.
2020 * It returns a negative error to indicate that there was an error. At the end
2021 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2022 * to indicate the number of tags that need to replayed during the replay phase.
2024 static int ext4_fc_replay_scan(journal_t *journal,
2025 struct buffer_head *bh, int off,
2028 struct super_block *sb = journal->j_private;
2029 struct ext4_sb_info *sbi = EXT4_SB(sb);
2030 struct ext4_fc_replay_state *state;
2031 int ret = JBD2_FC_REPLAY_CONTINUE;
2032 struct ext4_fc_add_range ext;
2033 struct ext4_fc_tl tl;
2034 struct ext4_fc_tail tail;
2035 __u8 *start, *end, *cur, *val;
2036 struct ext4_fc_head head;
2037 struct ext4_extent *ex;
2039 state = &sbi->s_fc_replay_state;
2041 start = (u8 *)bh->b_data;
2042 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2044 if (state->fc_replay_expected_off == 0) {
2045 state->fc_cur_tag = 0;
2046 state->fc_replay_num_tags = 0;
2048 state->fc_regions = NULL;
2049 state->fc_regions_valid = state->fc_regions_used =
2050 state->fc_regions_size = 0;
2051 /* Check if we can stop early */
2052 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2053 != EXT4_FC_TAG_HEAD)
2057 if (off != state->fc_replay_expected_off) {
2058 ret = -EFSCORRUPTED;
2062 state->fc_replay_expected_off++;
2063 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN;
2064 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2065 ext4_fc_get_tl(&tl, cur);
2066 val = cur + EXT4_FC_TAG_BASE_LEN;
2067 if (!ext4_fc_tag_len_isvalid(&tl, val, end)) {
2068 ret = state->fc_replay_num_tags ?
2069 JBD2_FC_REPLAY_STOP : -ECANCELED;
2072 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2073 tag2str(tl.fc_tag), bh->b_blocknr);
2074 switch (tl.fc_tag) {
2075 case EXT4_FC_TAG_ADD_RANGE:
2076 memcpy(&ext, val, sizeof(ext));
2077 ex = (struct ext4_extent *)&ext.fc_ex;
2078 ret = ext4_fc_record_regions(sb,
2079 le32_to_cpu(ext.fc_ino),
2080 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2081 ext4_ext_get_actual_len(ex), 0);
2084 ret = JBD2_FC_REPLAY_CONTINUE;
2086 case EXT4_FC_TAG_DEL_RANGE:
2087 case EXT4_FC_TAG_LINK:
2088 case EXT4_FC_TAG_UNLINK:
2089 case EXT4_FC_TAG_CREAT:
2090 case EXT4_FC_TAG_INODE:
2091 case EXT4_FC_TAG_PAD:
2092 state->fc_cur_tag++;
2093 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2094 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2096 case EXT4_FC_TAG_TAIL:
2097 state->fc_cur_tag++;
2098 memcpy(&tail, val, sizeof(tail));
2099 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2100 EXT4_FC_TAG_BASE_LEN +
2101 offsetof(struct ext4_fc_tail,
2103 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2104 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2105 state->fc_replay_num_tags = state->fc_cur_tag;
2106 state->fc_regions_valid =
2107 state->fc_regions_used;
2109 ret = state->fc_replay_num_tags ?
2110 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2114 case EXT4_FC_TAG_HEAD:
2115 memcpy(&head, val, sizeof(head));
2116 if (le32_to_cpu(head.fc_features) &
2117 ~EXT4_FC_SUPPORTED_FEATURES) {
2121 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2122 ret = JBD2_FC_REPLAY_STOP;
2125 state->fc_cur_tag++;
2126 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2127 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2130 ret = state->fc_replay_num_tags ?
2131 JBD2_FC_REPLAY_STOP : -ECANCELED;
2133 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2138 trace_ext4_fc_replay_scan(sb, ret, off);
2143 * Main recovery path entry point.
2144 * The meaning of return codes is similar as above.
2146 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2147 enum passtype pass, int off, tid_t expected_tid)
2149 struct super_block *sb = journal->j_private;
2150 struct ext4_sb_info *sbi = EXT4_SB(sb);
2151 struct ext4_fc_tl tl;
2152 __u8 *start, *end, *cur, *val;
2153 int ret = JBD2_FC_REPLAY_CONTINUE;
2154 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2155 struct ext4_fc_tail tail;
2157 if (pass == PASS_SCAN) {
2158 state->fc_current_pass = PASS_SCAN;
2159 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2162 if (state->fc_current_pass != pass) {
2163 state->fc_current_pass = pass;
2164 sbi->s_mount_state |= EXT4_FC_REPLAY;
2166 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2167 ext4_debug("Replay stops\n");
2168 ext4_fc_set_bitmaps_and_counters(sb);
2172 #ifdef CONFIG_EXT4_DEBUG
2173 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2174 pr_warn("Dropping fc block %d because max_replay set\n", off);
2175 return JBD2_FC_REPLAY_STOP;
2179 start = (u8 *)bh->b_data;
2180 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2182 for (cur = start; cur < end - EXT4_FC_TAG_BASE_LEN;
2183 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2184 ext4_fc_get_tl(&tl, cur);
2185 val = cur + EXT4_FC_TAG_BASE_LEN;
2187 if (state->fc_replay_num_tags == 0) {
2188 ret = JBD2_FC_REPLAY_STOP;
2189 ext4_fc_set_bitmaps_and_counters(sb);
2193 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2194 state->fc_replay_num_tags--;
2195 switch (tl.fc_tag) {
2196 case EXT4_FC_TAG_LINK:
2197 ret = ext4_fc_replay_link(sb, &tl, val);
2199 case EXT4_FC_TAG_UNLINK:
2200 ret = ext4_fc_replay_unlink(sb, &tl, val);
2202 case EXT4_FC_TAG_ADD_RANGE:
2203 ret = ext4_fc_replay_add_range(sb, &tl, val);
2205 case EXT4_FC_TAG_CREAT:
2206 ret = ext4_fc_replay_create(sb, &tl, val);
2208 case EXT4_FC_TAG_DEL_RANGE:
2209 ret = ext4_fc_replay_del_range(sb, &tl, val);
2211 case EXT4_FC_TAG_INODE:
2212 ret = ext4_fc_replay_inode(sb, &tl, val);
2214 case EXT4_FC_TAG_PAD:
2215 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2218 case EXT4_FC_TAG_TAIL:
2219 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2221 memcpy(&tail, val, sizeof(tail));
2222 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2224 case EXT4_FC_TAG_HEAD:
2227 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2233 ret = JBD2_FC_REPLAY_CONTINUE;
2238 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2241 * We set replay callback even if fast commit disabled because we may
2242 * could still have fast commit blocks that need to be replayed even if
2243 * fast commit has now been turned off.
2245 journal->j_fc_replay_callback = ext4_fc_replay;
2246 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2248 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2251 static const char *fc_ineligible_reasons[] = {
2252 "Extended attributes changed",
2254 "Journal flag changed",
2255 "Insufficient memory",
2264 int ext4_fc_info_show(struct seq_file *seq, void *v)
2266 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2267 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2270 if (v != SEQ_START_TOKEN)
2274 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2275 stats->fc_num_commits, stats->fc_ineligible_commits,
2277 div_u64(stats->s_fc_avg_commit_time, 1000));
2278 seq_puts(seq, "Ineligible reasons:\n");
2279 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2280 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2281 stats->fc_ineligible_reason_count[i]);
2286 int __init ext4_fc_init_dentry_cache(void)
2288 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2289 SLAB_RECLAIM_ACCOUNT);
2291 if (ext4_fc_dentry_cachep == NULL)
2297 void ext4_fc_destroy_dentry_cache(void)
2299 kmem_cache_destroy(ext4_fc_dentry_cachep);