2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
55 #define SRPT_ID_STRING "Linux SRP target"
58 #define pr_fmt(fmt) DRV_NAME " " fmt
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 MODULE_PARM_DESC(srpt_service_guid,
89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
111 enum rdma_ch_state prev;
112 bool changed = false;
114 spin_lock_irqsave(&ch->spinlock, flags);
120 spin_unlock_irqrestore(&ch->spinlock, flags);
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
135 static void srpt_event_handler(struct ib_event_handler *handler,
136 struct ib_event *event)
138 struct srpt_device *sdev =
139 container_of(handler, struct srpt_device, event_handler);
140 struct srpt_port *sport;
143 pr_debug("ASYNC event= %d on device= %s\n", event->event,
144 dev_name(&sdev->device->dev));
146 switch (event->event) {
147 case IB_EVENT_PORT_ERR:
148 port_num = event->element.port_num - 1;
149 if (port_num < sdev->device->phys_port_cnt) {
150 sport = &sdev->port[port_num];
154 WARN(true, "event %d: port_num %d out of range 1..%d\n",
155 event->event, port_num + 1,
156 sdev->device->phys_port_cnt);
159 case IB_EVENT_PORT_ACTIVE:
160 case IB_EVENT_LID_CHANGE:
161 case IB_EVENT_PKEY_CHANGE:
162 case IB_EVENT_SM_CHANGE:
163 case IB_EVENT_CLIENT_REREGISTER:
164 case IB_EVENT_GID_CHANGE:
165 /* Refresh port data asynchronously. */
166 port_num = event->element.port_num - 1;
167 if (port_num < sdev->device->phys_port_cnt) {
168 sport = &sdev->port[port_num];
169 if (!sport->lid && !sport->sm_lid)
170 schedule_work(&sport->work);
172 WARN(true, "event %d: port_num %d out of range 1..%d\n",
173 event->event, port_num + 1,
174 sdev->device->phys_port_cnt);
178 pr_err("received unrecognized IB event %d\n", event->event);
184 * srpt_srq_event - SRQ event callback function
185 * @event: Description of the event that occurred.
186 * @ctx: Context pointer specified at SRQ creation time.
188 static void srpt_srq_event(struct ib_event *event, void *ctx)
190 pr_debug("SRQ event %d\n", event->event);
193 static const char *get_ch_state_name(enum rdma_ch_state s)
200 case CH_DISCONNECTING:
201 return "disconnecting";
204 case CH_DISCONNECTED:
205 return "disconnected";
211 * srpt_qp_event - QP event callback function
212 * @event: Description of the event that occurred.
213 * @ch: SRPT RDMA channel.
215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
218 event->event, ch, ch->sess_name, ch->qp->qp_num,
219 get_ch_state_name(ch->state));
221 switch (event->event) {
222 case IB_EVENT_COMM_EST:
223 if (ch->using_rdma_cm)
224 rdma_notify(ch->rdma_cm.cm_id, event->event);
226 ib_cm_notify(ch->ib_cm.cm_id, event->event);
228 case IB_EVENT_QP_LAST_WQE_REACHED:
229 pr_debug("%s-%d, state %s: received Last WQE event.\n",
230 ch->sess_name, ch->qp->qp_num,
231 get_ch_state_name(ch->state));
234 pr_err("received unrecognized IB QP event %d\n", event->event);
240 * srpt_set_ioc - initialize a IOUnitInfo structure
241 * @c_list: controller list.
242 * @slot: one-based slot number.
243 * @value: four-bit value.
245 * Copies the lowest four bits of value in element slot of the array of four
246 * bit elements called c_list (controller list). The index slot is one-based.
248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
255 tmp = c_list[id] & 0xf;
256 c_list[id] = (value << 4) | tmp;
258 tmp = c_list[id] & 0xf0;
259 c_list[id] = (value & 0xf) | tmp;
264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
270 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
272 struct ib_class_port_info *cif;
274 cif = (struct ib_class_port_info *)mad->data;
275 memset(cif, 0, sizeof(*cif));
276 cif->base_version = 1;
277 cif->class_version = 1;
279 ib_set_cpi_resp_time(cif, 20);
280 mad->mad_hdr.status = 0;
284 * srpt_get_iou - write IOUnitInfo to a management datagram
285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
288 * Specification. See also section B.7, table B.6 in the SRP r16a document.
290 static void srpt_get_iou(struct ib_dm_mad *mad)
292 struct ib_dm_iou_info *ioui;
296 ioui = (struct ib_dm_iou_info *)mad->data;
297 ioui->change_id = cpu_to_be16(1);
298 ioui->max_controllers = 16;
300 /* set present for slot 1 and empty for the rest */
301 srpt_set_ioc(ioui->controller_list, 1, 1);
302 for (i = 1, slot = 2; i < 16; i++, slot++)
303 srpt_set_ioc(ioui->controller_list, slot, 0);
305 mad->mad_hdr.status = 0;
309 * srpt_get_ioc - write IOControllerprofile to a management datagram
310 * @sport: HCA port through which the MAD has been received.
311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
315 * Architecture Specification. See also section B.7, table B.7 in the SRP
318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
319 struct ib_dm_mad *mad)
321 struct srpt_device *sdev = sport->sdev;
322 struct ib_dm_ioc_profile *iocp;
323 int send_queue_depth;
325 iocp = (struct ib_dm_ioc_profile *)mad->data;
327 if (!slot || slot > 16) {
329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
340 send_queue_depth = sdev->srq_size;
342 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
343 sdev->device->attrs.max_qp_wr);
345 memset(iocp, 0, sizeof(*iocp));
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
366 mad->mad_hdr.status = 0;
370 * srpt_get_svc_entries - write ServiceEntries to a management datagram
371 * @ioc_guid: I/O controller GUID to use in reply.
372 * @slot: I/O controller number.
373 * @hi: End of the range of service entries to be specified in the reply.
374 * @lo: Start of the range of service entries to be specified in the reply..
375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
378 * Specification. See also section B.7, table B.8 in the SRP r16a document.
380 static void srpt_get_svc_entries(u64 ioc_guid,
381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
383 struct ib_dm_svc_entries *svc_entries;
387 if (!slot || slot > 16) {
389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
393 if (slot > 2 || lo > hi || hi > 1) {
395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
399 svc_entries = (struct ib_dm_svc_entries *)mad->data;
400 memset(svc_entries, 0, sizeof(*svc_entries));
401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
402 snprintf(svc_entries->service_entries[0].name,
403 sizeof(svc_entries->service_entries[0].name),
405 SRP_SERVICE_NAME_PREFIX,
408 mad->mad_hdr.status = 0;
412 * srpt_mgmt_method_get - process a received management datagram
413 * @sp: HCA port through which the MAD has been received.
414 * @rq_mad: received MAD.
415 * @rsp_mad: response MAD.
417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
418 struct ib_dm_mad *rsp_mad)
424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
426 case DM_ATTR_CLASS_PORT_INFO:
427 srpt_get_class_port_info(rsp_mad);
429 case DM_ATTR_IOU_INFO:
430 srpt_get_iou(rsp_mad);
432 case DM_ATTR_IOC_PROFILE:
433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
434 srpt_get_ioc(sp, slot, rsp_mad);
436 case DM_ATTR_SVC_ENTRIES:
437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
438 hi = (u8) ((slot >> 8) & 0xff);
439 lo = (u8) (slot & 0xff);
440 slot = (u16) ((slot >> 16) & 0xffff);
441 srpt_get_svc_entries(srpt_service_guid,
442 slot, hi, lo, rsp_mad);
445 rsp_mad->mad_hdr.status =
446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
452 * srpt_mad_send_handler - MAD send completion callback
453 * @mad_agent: Return value of ib_register_mad_agent().
454 * @mad_wc: Work completion reporting that the MAD has been sent.
456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
457 struct ib_mad_send_wc *mad_wc)
459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
460 ib_free_send_mad(mad_wc->send_buf);
464 * srpt_mad_recv_handler - MAD reception callback function
465 * @mad_agent: Return value of ib_register_mad_agent().
466 * @send_buf: Not used.
467 * @mad_wc: Work completion reporting that a MAD has been received.
469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
470 struct ib_mad_send_buf *send_buf,
471 struct ib_mad_recv_wc *mad_wc)
473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
475 struct ib_mad_send_buf *rsp;
476 struct ib_dm_mad *dm_mad;
478 if (!mad_wc || !mad_wc->recv_buf.mad)
481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
482 mad_wc->recv_buf.grh, mad_agent->port_num);
486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
489 mad_wc->wc->pkey_index, 0,
490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
492 IB_MGMT_BASE_VERSION);
499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
501 dm_mad->mad_hdr.status = 0;
503 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
504 case IB_MGMT_METHOD_GET:
505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
507 case IB_MGMT_METHOD_SET:
508 dm_mad->mad_hdr.status =
509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
512 dm_mad->mad_hdr.status =
513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
517 if (!ib_post_send_mad(rsp, NULL)) {
518 ib_free_recv_mad(mad_wc);
519 /* will destroy_ah & free_send_mad in send completion */
523 ib_free_send_mad(rsp);
526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
528 ib_free_recv_mad(mad_wc);
531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
533 const __be16 *g = (const __be16 *)guid;
535 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
536 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
537 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
541 * srpt_refresh_port - configure a HCA port
542 * @sport: SRPT HCA port.
544 * Enable InfiniBand management datagram processing, update the cached sm_lid,
545 * lid and gid values, and register a callback function for processing MADs
546 * on the specified port.
548 * Note: It is safe to call this function more than once for the same port.
550 static int srpt_refresh_port(struct srpt_port *sport)
552 struct ib_mad_agent *mad_agent;
553 struct ib_mad_reg_req reg_req;
554 struct ib_port_modify port_modify;
555 struct ib_port_attr port_attr;
558 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
562 sport->sm_lid = port_attr.sm_lid;
563 sport->lid = port_attr.lid;
565 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
569 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
570 &sport->gid.global.interface_id);
571 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
573 be64_to_cpu(sport->gid.global.subnet_prefix),
574 be64_to_cpu(sport->gid.global.interface_id));
576 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
579 memset(&port_modify, 0, sizeof(port_modify));
580 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 port_modify.clr_port_cap_mask = 0;
583 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
585 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
586 dev_name(&sport->sdev->device->dev), sport->port, ret);
590 if (!sport->mad_agent) {
591 memset(®_req, 0, sizeof(reg_req));
592 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
593 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
594 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
595 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
597 mad_agent = ib_register_mad_agent(sport->sdev->device,
601 srpt_mad_send_handler,
602 srpt_mad_recv_handler,
604 if (IS_ERR(mad_agent)) {
605 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
606 dev_name(&sport->sdev->device->dev), sport->port,
608 sport->mad_agent = NULL;
609 memset(&port_modify, 0, sizeof(port_modify));
610 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
611 ib_modify_port(sport->sdev->device, sport->port, 0,
616 sport->mad_agent = mad_agent;
623 * srpt_unregister_mad_agent - unregister MAD callback functions
624 * @sdev: SRPT HCA pointer.
625 * @port_cnt: number of ports with registered MAD
627 * Note: It is safe to call this function more than once for the same device.
629 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
631 struct ib_port_modify port_modify = {
632 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
634 struct srpt_port *sport;
637 for (i = 1; i <= port_cnt; i++) {
638 sport = &sdev->port[i - 1];
639 WARN_ON(sport->port != i);
640 if (sport->mad_agent) {
641 ib_modify_port(sdev->device, i, 0, &port_modify);
642 ib_unregister_mad_agent(sport->mad_agent);
643 sport->mad_agent = NULL;
649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
650 * @sdev: SRPT HCA pointer.
651 * @ioctx_size: I/O context size.
652 * @buf_cache: I/O buffer cache.
653 * @dir: DMA data direction.
655 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
657 struct kmem_cache *buf_cache,
658 enum dma_data_direction dir)
660 struct srpt_ioctx *ioctx;
662 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
666 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
670 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
671 kmem_cache_size(buf_cache), dir);
672 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
678 kmem_cache_free(buf_cache, ioctx->buf);
686 * srpt_free_ioctx - free a SRPT I/O context structure
687 * @sdev: SRPT HCA pointer.
688 * @ioctx: I/O context pointer.
689 * @buf_cache: I/O buffer cache.
690 * @dir: DMA data direction.
692 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
693 struct kmem_cache *buf_cache,
694 enum dma_data_direction dir)
699 ib_dma_unmap_single(sdev->device, ioctx->dma,
700 kmem_cache_size(buf_cache), dir);
701 kmem_cache_free(buf_cache, ioctx->buf);
706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707 * @sdev: Device to allocate the I/O context ring for.
708 * @ring_size: Number of elements in the I/O context ring.
709 * @ioctx_size: I/O context size.
710 * @buf_cache: I/O buffer cache.
711 * @alignment_offset: Offset in each ring buffer at which the SRP information
713 * @dir: DMA data direction.
715 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
716 int ring_size, int ioctx_size,
717 struct kmem_cache *buf_cache,
718 int alignment_offset,
719 enum dma_data_direction dir)
721 struct srpt_ioctx **ring;
724 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
725 ioctx_size != sizeof(struct srpt_send_ioctx));
727 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
730 for (i = 0; i < ring_size; ++i) {
731 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
735 ring[i]->offset = alignment_offset;
741 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
750 * @ioctx_ring: I/O context ring to be freed.
751 * @sdev: SRPT HCA pointer.
752 * @ring_size: Number of ring elements.
753 * @buf_cache: I/O buffer cache.
754 * @dir: DMA data direction.
756 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
757 struct srpt_device *sdev, int ring_size,
758 struct kmem_cache *buf_cache,
759 enum dma_data_direction dir)
766 for (i = 0; i < ring_size; ++i)
767 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
772 * srpt_set_cmd_state - set the state of a SCSI command
773 * @ioctx: Send I/O context.
774 * @new: New I/O context state.
776 * Does not modify the state of aborted commands. Returns the previous command
779 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
780 enum srpt_command_state new)
782 enum srpt_command_state previous;
784 previous = ioctx->state;
785 if (previous != SRPT_STATE_DONE)
792 * srpt_test_and_set_cmd_state - test and set the state of a command
793 * @ioctx: Send I/O context.
794 * @old: Current I/O context state.
795 * @new: New I/O context state.
797 * Returns true if and only if the previous command state was equal to 'old'.
799 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
800 enum srpt_command_state old,
801 enum srpt_command_state new)
803 enum srpt_command_state previous;
806 WARN_ON(old == SRPT_STATE_DONE);
807 WARN_ON(new == SRPT_STATE_NEW);
809 previous = ioctx->state;
813 return previous == old;
817 * srpt_post_recv - post an IB receive request
818 * @sdev: SRPT HCA pointer.
819 * @ch: SRPT RDMA channel.
820 * @ioctx: Receive I/O context pointer.
822 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
823 struct srpt_recv_ioctx *ioctx)
826 struct ib_recv_wr wr;
829 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
830 list.length = srp_max_req_size;
831 list.lkey = sdev->lkey;
833 ioctx->ioctx.cqe.done = srpt_recv_done;
834 wr.wr_cqe = &ioctx->ioctx.cqe;
840 return ib_post_srq_recv(sdev->srq, &wr, NULL);
842 return ib_post_recv(ch->qp, &wr, NULL);
846 * srpt_zerolength_write - perform a zero-length RDMA write
847 * @ch: SRPT RDMA channel.
849 * A quote from the InfiniBand specification: C9-88: For an HCA responder
850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
851 * request, the R_Key shall not be validated, even if the request includes
854 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
856 struct ib_rdma_wr wr = {
859 { .wr_cqe = &ch->zw_cqe, },
860 .opcode = IB_WR_RDMA_WRITE,
861 .send_flags = IB_SEND_SIGNALED,
865 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
868 return ib_post_send(ch->qp, &wr.wr, NULL);
871 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
873 struct srpt_rdma_ch *ch = wc->qp->qp_context;
875 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
878 if (wc->status == IB_WC_SUCCESS) {
879 srpt_process_wait_list(ch);
881 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
882 schedule_work(&ch->release_work);
884 pr_debug("%s-%d: already disconnected.\n",
885 ch->sess_name, ch->qp->qp_num);
889 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
890 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
893 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
894 struct srpt_rdma_ch *ch = ioctx->ch;
895 struct scatterlist *prev = NULL;
900 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
902 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
908 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
909 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
910 u64 remote_addr = be64_to_cpu(db->va);
911 u32 size = be32_to_cpu(db->len);
912 u32 rkey = be32_to_cpu(db->key);
914 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
919 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
920 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
922 target_free_sgl(ctx->sg, ctx->nents);
926 ioctx->n_rdma += ret;
930 sg_unmark_end(&prev[prev_nents - 1]);
931 sg_chain(prev, prev_nents + 1, ctx->sg);
937 prev_nents = ctx->nents;
939 *sg_cnt += ctx->nents;
946 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
948 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
949 ctx->sg, ctx->nents, dir);
950 target_free_sgl(ctx->sg, ctx->nents);
952 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
953 kfree(ioctx->rw_ctxs);
957 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
958 struct srpt_send_ioctx *ioctx)
960 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
963 for (i = 0; i < ioctx->n_rw_ctx; i++) {
964 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
966 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
967 ctx->sg, ctx->nents, dir);
968 target_free_sgl(ctx->sg, ctx->nents);
971 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
972 kfree(ioctx->rw_ctxs);
975 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
978 * The pointer computations below will only be compiled correctly
979 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
980 * whether srp_cmd::add_data has been declared as a byte pointer.
982 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
983 !__same_type(srp_cmd->add_data[0], (u8)0));
986 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
987 * CDB LENGTH' field are reserved and the size in bytes of this field
988 * is four times the value specified in bits 3..7. Hence the "& ~3".
990 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
995 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
996 * @ioctx: I/O context that will be used for responding to the initiator.
997 * @srp_cmd: Pointer to the SRP_CMD request data.
998 * @dir: Pointer to the variable to which the transfer direction will be
1000 * @sg: [out] scatterlist for the parsed SRP_CMD.
1001 * @sg_cnt: [out] length of @sg.
1002 * @data_len: Pointer to the variable to which the total data length of all
1003 * descriptors in the SRP_CMD request will be written.
1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1010 * -ENOMEM when memory allocation fails and zero upon success.
1012 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1013 struct srpt_send_ioctx *ioctx,
1014 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1015 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1016 u16 imm_data_offset)
1022 * The lower four bits of the buffer format field contain the DATA-IN
1023 * buffer descriptor format, and the highest four bits contain the
1024 * DATA-OUT buffer descriptor format.
1026 if (srp_cmd->buf_fmt & 0xf)
1027 /* DATA-IN: transfer data from target to initiator (read). */
1028 *dir = DMA_FROM_DEVICE;
1029 else if (srp_cmd->buf_fmt >> 4)
1030 /* DATA-OUT: transfer data from initiator to target (write). */
1031 *dir = DMA_TO_DEVICE;
1035 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1036 ioctx->cmd.data_direction = *dir;
1038 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1039 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1040 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1042 *data_len = be32_to_cpu(db->len);
1043 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1044 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1046 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1047 int nbufs = be32_to_cpu(idb->table_desc.len) /
1048 sizeof(struct srp_direct_buf);
1051 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1052 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1053 srp_cmd->data_out_desc_cnt,
1054 srp_cmd->data_in_desc_cnt,
1055 be32_to_cpu(idb->table_desc.len),
1056 sizeof(struct srp_direct_buf));
1060 *data_len = be32_to_cpu(idb->len);
1061 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1063 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1064 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1065 void *data = (void *)srp_cmd + imm_data_offset;
1066 uint32_t len = be32_to_cpu(imm_buf->len);
1067 uint32_t req_size = imm_data_offset + len;
1069 if (req_size > srp_max_req_size) {
1070 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1071 imm_data_offset, len, srp_max_req_size);
1074 if (recv_ioctx->byte_len < req_size) {
1075 pr_err("Received too few data - %d < %d\n",
1076 recv_ioctx->byte_len, req_size);
1080 * The immediate data buffer descriptor must occur before the
1081 * immediate data itself.
1083 if ((void *)(imm_buf + 1) > (void *)data) {
1084 pr_err("Received invalid write request\n");
1088 ioctx->recv_ioctx = recv_ioctx;
1089 if ((uintptr_t)data & 511) {
1090 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1093 sg_init_one(&ioctx->imm_sg, data, len);
1094 *sg = &ioctx->imm_sg;
1104 * srpt_init_ch_qp - initialize queue pair attributes
1105 * @ch: SRPT RDMA channel.
1106 * @qp: Queue pair pointer.
1108 * Initialized the attributes of queue pair 'qp' by allowing local write,
1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1111 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1113 struct ib_qp_attr *attr;
1116 WARN_ON_ONCE(ch->using_rdma_cm);
1118 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1122 attr->qp_state = IB_QPS_INIT;
1123 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1124 attr->port_num = ch->sport->port;
1126 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1127 ch->pkey, &attr->pkey_index);
1129 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1132 ret = ib_modify_qp(qp, attr,
1133 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1142 * @ch: channel of the queue pair.
1143 * @qp: queue pair to change the state of.
1145 * Returns zero upon success and a negative value upon failure.
1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1148 * If this structure ever becomes larger, it might be necessary to allocate
1149 * it dynamically instead of on the stack.
1151 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1153 struct ib_qp_attr qp_attr;
1157 WARN_ON_ONCE(ch->using_rdma_cm);
1159 qp_attr.qp_state = IB_QPS_RTR;
1160 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1164 qp_attr.max_dest_rd_atomic = 4;
1166 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1174 * @ch: channel of the queue pair.
1175 * @qp: queue pair to change the state of.
1177 * Returns zero upon success and a negative value upon failure.
1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1180 * If this structure ever becomes larger, it might be necessary to allocate
1181 * it dynamically instead of on the stack.
1183 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1185 struct ib_qp_attr qp_attr;
1189 qp_attr.qp_state = IB_QPS_RTS;
1190 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1194 qp_attr.max_rd_atomic = 4;
1196 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1203 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1204 * @ch: SRPT RDMA channel.
1206 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1208 struct ib_qp_attr qp_attr;
1210 qp_attr.qp_state = IB_QPS_ERR;
1211 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1216 * @ch: SRPT RDMA channel.
1218 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1220 struct srpt_send_ioctx *ioctx;
1225 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1229 ioctx = ch->ioctx_ring[tag];
1230 BUG_ON(ioctx->ch != ch);
1231 ioctx->state = SRPT_STATE_NEW;
1232 WARN_ON_ONCE(ioctx->recv_ioctx);
1234 ioctx->n_rw_ctx = 0;
1235 ioctx->queue_status_only = false;
1237 * transport_init_se_cmd() does not initialize all fields, so do it
1240 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1241 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1242 ioctx->cmd.map_tag = tag;
1243 ioctx->cmd.map_cpu = cpu;
1249 * srpt_abort_cmd - abort a SCSI command
1250 * @ioctx: I/O context associated with the SCSI command.
1252 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1254 enum srpt_command_state state;
1259 * If the command is in a state where the target core is waiting for
1260 * the ib_srpt driver, change the state to the next state.
1263 state = ioctx->state;
1265 case SRPT_STATE_NEED_DATA:
1266 ioctx->state = SRPT_STATE_DATA_IN;
1268 case SRPT_STATE_CMD_RSP_SENT:
1269 case SRPT_STATE_MGMT_RSP_SENT:
1270 ioctx->state = SRPT_STATE_DONE;
1273 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1278 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1279 ioctx->state, ioctx->cmd.tag);
1282 case SRPT_STATE_NEW:
1283 case SRPT_STATE_DATA_IN:
1284 case SRPT_STATE_MGMT:
1285 case SRPT_STATE_DONE:
1287 * Do nothing - defer abort processing until
1288 * srpt_queue_response() is invoked.
1291 case SRPT_STATE_NEED_DATA:
1292 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1293 transport_generic_request_failure(&ioctx->cmd,
1294 TCM_CHECK_CONDITION_ABORT_CMD);
1296 case SRPT_STATE_CMD_RSP_SENT:
1298 * SRP_RSP sending failed or the SRP_RSP send completion has
1299 * not been received in time.
1301 transport_generic_free_cmd(&ioctx->cmd, 0);
1303 case SRPT_STATE_MGMT_RSP_SENT:
1304 transport_generic_free_cmd(&ioctx->cmd, 0);
1307 WARN(1, "Unexpected command state (%d)", state);
1315 * srpt_rdma_read_done - RDMA read completion callback
1316 * @cq: Completion queue.
1317 * @wc: Work completion.
1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1320 * the data that has been transferred via IB RDMA had to be postponed until the
1321 * check_stop_free() callback. None of this is necessary anymore and needs to
1324 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1326 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1327 struct srpt_send_ioctx *ioctx =
1328 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1330 WARN_ON(ioctx->n_rdma <= 0);
1331 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1334 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1335 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1337 srpt_abort_cmd(ioctx);
1341 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1342 SRPT_STATE_DATA_IN))
1343 target_execute_cmd(&ioctx->cmd);
1345 pr_err("%s[%d]: wrong state = %d\n", __func__,
1346 __LINE__, ioctx->state);
1350 * srpt_build_cmd_rsp - build a SRP_RSP response
1351 * @ch: RDMA channel through which the request has been received.
1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1353 * be built in the buffer ioctx->buf points at and hence this function will
1354 * overwrite the request data.
1355 * @tag: tag of the request for which this response is being generated.
1356 * @status: value for the STATUS field of the SRP_RSP information unit.
1358 * Returns the size in bytes of the SRP_RSP response.
1360 * An SRP_RSP response contains a SCSI status or service response. See also
1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1362 * response. See also SPC-2 for more information about sense data.
1364 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1365 struct srpt_send_ioctx *ioctx, u64 tag,
1368 struct se_cmd *cmd = &ioctx->cmd;
1369 struct srp_rsp *srp_rsp;
1370 const u8 *sense_data;
1371 int sense_data_len, max_sense_len;
1372 u32 resid = cmd->residual_count;
1375 * The lowest bit of all SAM-3 status codes is zero (see also
1376 * paragraph 5.3 in SAM-3).
1378 WARN_ON(status & 1);
1380 srp_rsp = ioctx->ioctx.buf;
1383 sense_data = ioctx->sense_data;
1384 sense_data_len = ioctx->cmd.scsi_sense_length;
1385 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1387 memset(srp_rsp, 0, sizeof(*srp_rsp));
1388 srp_rsp->opcode = SRP_RSP;
1389 srp_rsp->req_lim_delta =
1390 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1392 srp_rsp->status = status;
1394 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1395 if (cmd->data_direction == DMA_TO_DEVICE) {
1396 /* residual data from an underflow write */
1397 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1398 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1399 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1400 /* residual data from an underflow read */
1401 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1402 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1404 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1405 if (cmd->data_direction == DMA_TO_DEVICE) {
1406 /* residual data from an overflow write */
1407 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1408 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1409 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1410 /* residual data from an overflow read */
1411 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1412 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1416 if (sense_data_len) {
1417 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1418 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1419 if (sense_data_len > max_sense_len) {
1420 pr_warn("truncated sense data from %d to %d bytes\n",
1421 sense_data_len, max_sense_len);
1422 sense_data_len = max_sense_len;
1425 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1426 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1427 memcpy(srp_rsp->data, sense_data, sense_data_len);
1430 return sizeof(*srp_rsp) + sense_data_len;
1434 * srpt_build_tskmgmt_rsp - build a task management response
1435 * @ch: RDMA channel through which the request has been received.
1436 * @ioctx: I/O context in which the SRP_RSP response will be built.
1437 * @rsp_code: RSP_CODE that will be stored in the response.
1438 * @tag: Tag of the request for which this response is being generated.
1440 * Returns the size in bytes of the SRP_RSP response.
1442 * An SRP_RSP response contains a SCSI status or service response. See also
1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1446 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1447 struct srpt_send_ioctx *ioctx,
1448 u8 rsp_code, u64 tag)
1450 struct srp_rsp *srp_rsp;
1455 resp_len = sizeof(*srp_rsp) + resp_data_len;
1457 srp_rsp = ioctx->ioctx.buf;
1459 memset(srp_rsp, 0, sizeof(*srp_rsp));
1461 srp_rsp->opcode = SRP_RSP;
1462 srp_rsp->req_lim_delta =
1463 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1466 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1467 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1468 srp_rsp->data[3] = rsp_code;
1473 static int srpt_check_stop_free(struct se_cmd *cmd)
1475 struct srpt_send_ioctx *ioctx = container_of(cmd,
1476 struct srpt_send_ioctx, cmd);
1478 return target_put_sess_cmd(&ioctx->cmd);
1482 * srpt_handle_cmd - process a SRP_CMD information unit
1483 * @ch: SRPT RDMA channel.
1484 * @recv_ioctx: Receive I/O context.
1485 * @send_ioctx: Send I/O context.
1487 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1488 struct srpt_recv_ioctx *recv_ioctx,
1489 struct srpt_send_ioctx *send_ioctx)
1492 struct srp_cmd *srp_cmd;
1493 struct scatterlist *sg = NULL;
1494 unsigned sg_cnt = 0;
1496 enum dma_data_direction dir;
1499 BUG_ON(!send_ioctx);
1501 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1502 cmd = &send_ioctx->cmd;
1503 cmd->tag = srp_cmd->tag;
1505 switch (srp_cmd->task_attr) {
1506 case SRP_CMD_SIMPLE_Q:
1507 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1509 case SRP_CMD_ORDERED_Q:
1511 cmd->sam_task_attr = TCM_ORDERED_TAG;
1513 case SRP_CMD_HEAD_OF_Q:
1514 cmd->sam_task_attr = TCM_HEAD_TAG;
1517 cmd->sam_task_attr = TCM_ACA_TAG;
1521 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1522 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1524 if (rc != -EAGAIN) {
1525 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1531 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1532 scsilun_to_int(&srp_cmd->lun), data_len,
1533 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1535 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1540 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1548 target_send_busy(cmd);
1551 static int srp_tmr_to_tcm(int fn)
1554 case SRP_TSK_ABORT_TASK:
1555 return TMR_ABORT_TASK;
1556 case SRP_TSK_ABORT_TASK_SET:
1557 return TMR_ABORT_TASK_SET;
1558 case SRP_TSK_CLEAR_TASK_SET:
1559 return TMR_CLEAR_TASK_SET;
1560 case SRP_TSK_LUN_RESET:
1561 return TMR_LUN_RESET;
1562 case SRP_TSK_CLEAR_ACA:
1563 return TMR_CLEAR_ACA;
1570 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1571 * @ch: SRPT RDMA channel.
1572 * @recv_ioctx: Receive I/O context.
1573 * @send_ioctx: Send I/O context.
1575 * Returns 0 if and only if the request will be processed by the target core.
1577 * For more information about SRP_TSK_MGMT information units, see also section
1578 * 6.7 in the SRP r16a document.
1580 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1581 struct srpt_recv_ioctx *recv_ioctx,
1582 struct srpt_send_ioctx *send_ioctx)
1584 struct srp_tsk_mgmt *srp_tsk;
1586 struct se_session *sess = ch->sess;
1590 BUG_ON(!send_ioctx);
1592 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1593 cmd = &send_ioctx->cmd;
1595 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1596 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1599 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1600 send_ioctx->cmd.tag = srp_tsk->tag;
1601 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1602 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1603 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1604 GFP_KERNEL, srp_tsk->task_tag,
1605 TARGET_SCF_ACK_KREF);
1607 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1608 cmd->se_tfo->queue_tm_rsp(cmd);
1614 * srpt_handle_new_iu - process a newly received information unit
1615 * @ch: RDMA channel through which the information unit has been received.
1616 * @recv_ioctx: Receive I/O context associated with the information unit.
1619 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1621 struct srpt_send_ioctx *send_ioctx = NULL;
1622 struct srp_cmd *srp_cmd;
1627 BUG_ON(!recv_ioctx);
1629 if (unlikely(ch->state == CH_CONNECTING))
1632 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1633 recv_ioctx->ioctx.dma,
1634 recv_ioctx->ioctx.offset + srp_max_req_size,
1637 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1638 opcode = srp_cmd->opcode;
1639 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1640 send_ioctx = srpt_get_send_ioctx(ch);
1641 if (unlikely(!send_ioctx))
1645 if (!list_empty(&recv_ioctx->wait_list)) {
1646 WARN_ON_ONCE(!ch->processing_wait_list);
1647 list_del_init(&recv_ioctx->wait_list);
1652 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1655 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1658 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1661 pr_debug("received SRP_CRED_RSP\n");
1664 pr_debug("received SRP_AER_RSP\n");
1667 pr_err("Received SRP_RSP\n");
1670 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1674 if (!send_ioctx || !send_ioctx->recv_ioctx)
1675 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1682 if (list_empty(&recv_ioctx->wait_list)) {
1683 WARN_ON_ONCE(ch->processing_wait_list);
1684 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1689 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1691 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1692 struct srpt_recv_ioctx *ioctx =
1693 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1695 if (wc->status == IB_WC_SUCCESS) {
1698 req_lim = atomic_dec_return(&ch->req_lim);
1699 if (unlikely(req_lim < 0))
1700 pr_err("req_lim = %d < 0\n", req_lim);
1701 ioctx->byte_len = wc->byte_len;
1702 srpt_handle_new_iu(ch, ioctx);
1704 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1710 * This function must be called from the context in which RDMA completions are
1711 * processed because it accesses the wait list without protection against
1712 * access from other threads.
1714 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1716 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1718 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1720 if (list_empty(&ch->cmd_wait_list))
1723 WARN_ON_ONCE(ch->processing_wait_list);
1724 ch->processing_wait_list = true;
1725 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1727 if (!srpt_handle_new_iu(ch, recv_ioctx))
1730 ch->processing_wait_list = false;
1734 * srpt_send_done - send completion callback
1735 * @cq: Completion queue.
1736 * @wc: Work completion.
1738 * Note: Although this has not yet been observed during tests, at least in
1739 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1740 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1741 * value in each response is set to one, and it is possible that this response
1742 * makes the initiator send a new request before the send completion for that
1743 * response has been processed. This could e.g. happen if the call to
1744 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1745 * if IB retransmission causes generation of the send completion to be
1746 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1747 * are queued on cmd_wait_list. The code below processes these delayed
1748 * requests one at a time.
1750 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1752 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1753 struct srpt_send_ioctx *ioctx =
1754 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1755 enum srpt_command_state state;
1757 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1759 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1760 state != SRPT_STATE_MGMT_RSP_SENT);
1762 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1764 if (wc->status != IB_WC_SUCCESS)
1765 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1768 if (state != SRPT_STATE_DONE) {
1769 transport_generic_free_cmd(&ioctx->cmd, 0);
1771 pr_err("IB completion has been received too late for wr_id = %u.\n",
1772 ioctx->ioctx.index);
1775 srpt_process_wait_list(ch);
1779 * srpt_create_ch_ib - create receive and send completion queues
1780 * @ch: SRPT RDMA channel.
1782 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1784 struct ib_qp_init_attr *qp_init;
1785 struct srpt_port *sport = ch->sport;
1786 struct srpt_device *sdev = sport->sdev;
1787 const struct ib_device_attr *attrs = &sdev->device->attrs;
1788 int sq_size = sport->port_attrib.srp_sq_size;
1791 WARN_ON(ch->rq_size < 1);
1794 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1799 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1801 if (IS_ERR(ch->cq)) {
1802 ret = PTR_ERR(ch->cq);
1803 pr_err("failed to create CQ cqe= %d ret= %d\n",
1804 ch->rq_size + sq_size, ret);
1807 ch->cq_size = ch->rq_size + sq_size;
1809 qp_init->qp_context = (void *)ch;
1810 qp_init->event_handler
1811 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1812 qp_init->send_cq = ch->cq;
1813 qp_init->recv_cq = ch->cq;
1814 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1815 qp_init->qp_type = IB_QPT_RC;
1817 * We divide up our send queue size into half SEND WRs to send the
1818 * completions, and half R/W contexts to actually do the RDMA
1819 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1820 * both both, as RDMA contexts will also post completions for the
1823 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1824 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1825 qp_init->cap.max_send_sge = attrs->max_send_sge;
1826 qp_init->cap.max_recv_sge = 1;
1827 qp_init->port_num = ch->sport->port;
1829 qp_init->srq = sdev->srq;
1831 qp_init->cap.max_recv_wr = ch->rq_size;
1833 if (ch->using_rdma_cm) {
1834 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1835 ch->qp = ch->rdma_cm.cm_id->qp;
1837 ch->qp = ib_create_qp(sdev->pd, qp_init);
1838 if (!IS_ERR(ch->qp)) {
1839 ret = srpt_init_ch_qp(ch, ch->qp);
1841 ib_destroy_qp(ch->qp);
1843 ret = PTR_ERR(ch->qp);
1847 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1850 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1852 ib_cq_pool_put(ch->cq, ch->cq_size);
1853 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1856 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1858 goto err_destroy_cq;
1862 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1864 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1865 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1866 qp_init->cap.max_send_wr, ch);
1869 for (i = 0; i < ch->rq_size; i++)
1870 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1878 ib_cq_pool_put(ch->cq, ch->cq_size);
1882 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1884 ib_destroy_qp(ch->qp);
1885 ib_cq_pool_put(ch->cq, ch->cq_size);
1889 * srpt_close_ch - close a RDMA channel
1890 * @ch: SRPT RDMA channel.
1892 * Make sure all resources associated with the channel will be deallocated at
1893 * an appropriate time.
1895 * Returns true if and only if the channel state has been modified into
1898 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1902 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1903 pr_debug("%s: already closed\n", ch->sess_name);
1907 kref_get(&ch->kref);
1909 ret = srpt_ch_qp_err(ch);
1911 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1912 ch->sess_name, ch->qp->qp_num, ret);
1914 ret = srpt_zerolength_write(ch);
1916 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1917 ch->sess_name, ch->qp->qp_num, ret);
1918 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1919 schedule_work(&ch->release_work);
1924 kref_put(&ch->kref, srpt_free_ch);
1930 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1931 * reached the connected state, close it. If a channel is in the connected
1932 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1933 * the responsibility of the caller to ensure that this function is not
1934 * invoked concurrently with the code that accepts a connection. This means
1935 * that this function must either be invoked from inside a CM callback
1936 * function or that it must be invoked with the srpt_port.mutex held.
1938 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1942 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1945 if (ch->using_rdma_cm) {
1946 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1948 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1950 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1953 if (ret < 0 && srpt_close_ch(ch))
1959 /* Send DREQ and wait for DREP. */
1960 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1962 DECLARE_COMPLETION_ONSTACK(closed);
1963 struct srpt_port *sport = ch->sport;
1965 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1968 ch->closed = &closed;
1970 mutex_lock(&sport->mutex);
1971 srpt_disconnect_ch(ch);
1972 mutex_unlock(&sport->mutex);
1974 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1975 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1976 ch->sess_name, ch->qp->qp_num, ch->state);
1980 static void __srpt_close_all_ch(struct srpt_port *sport)
1982 struct srpt_nexus *nexus;
1983 struct srpt_rdma_ch *ch;
1985 lockdep_assert_held(&sport->mutex);
1987 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1988 list_for_each_entry(ch, &nexus->ch_list, list) {
1989 if (srpt_disconnect_ch(ch) >= 0)
1990 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1991 ch->sess_name, ch->qp->qp_num,
1992 dev_name(&sport->sdev->device->dev),
2000 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2001 * it does not yet exist.
2003 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2004 const u8 i_port_id[16],
2005 const u8 t_port_id[16])
2007 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2010 mutex_lock(&sport->mutex);
2011 list_for_each_entry(n, &sport->nexus_list, entry) {
2012 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2013 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2018 if (!nexus && tmp_nexus) {
2019 list_add_tail_rcu(&tmp_nexus->entry,
2020 &sport->nexus_list);
2021 swap(nexus, tmp_nexus);
2023 mutex_unlock(&sport->mutex);
2027 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2029 nexus = ERR_PTR(-ENOMEM);
2032 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2033 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2034 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2042 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2043 __must_hold(&sport->mutex)
2045 lockdep_assert_held(&sport->mutex);
2047 if (sport->enabled == enabled)
2049 sport->enabled = enabled;
2051 __srpt_close_all_ch(sport);
2054 static void srpt_drop_sport_ref(struct srpt_port *sport)
2056 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2057 complete(sport->freed_channels);
2060 static void srpt_free_ch(struct kref *kref)
2062 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2064 srpt_drop_sport_ref(ch->sport);
2069 * Shut down the SCSI target session, tell the connection manager to
2070 * disconnect the associated RDMA channel, transition the QP to the error
2071 * state and remove the channel from the channel list. This function is
2072 * typically called from inside srpt_zerolength_write_done(). Concurrent
2073 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2074 * as long as the channel is on sport->nexus_list.
2076 static void srpt_release_channel_work(struct work_struct *w)
2078 struct srpt_rdma_ch *ch;
2079 struct srpt_device *sdev;
2080 struct srpt_port *sport;
2081 struct se_session *se_sess;
2083 ch = container_of(w, struct srpt_rdma_ch, release_work);
2084 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2086 sdev = ch->sport->sdev;
2092 target_stop_session(se_sess);
2093 target_wait_for_sess_cmds(se_sess);
2095 target_remove_session(se_sess);
2098 if (ch->using_rdma_cm)
2099 rdma_destroy_id(ch->rdma_cm.cm_id);
2101 ib_destroy_cm_id(ch->ib_cm.cm_id);
2104 mutex_lock(&sport->mutex);
2105 list_del_rcu(&ch->list);
2106 mutex_unlock(&sport->mutex);
2109 complete(ch->closed);
2111 srpt_destroy_ch_ib(ch);
2113 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2114 ch->sport->sdev, ch->rq_size,
2115 ch->rsp_buf_cache, DMA_TO_DEVICE);
2117 kmem_cache_destroy(ch->rsp_buf_cache);
2119 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2121 ch->req_buf_cache, DMA_FROM_DEVICE);
2123 kmem_cache_destroy(ch->req_buf_cache);
2125 kref_put(&ch->kref, srpt_free_ch);
2129 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2130 * @sdev: HCA through which the login request was received.
2131 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2132 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2133 * @port_num: Port through which the REQ message was received.
2134 * @pkey: P_Key of the incoming connection.
2135 * @req: SRP login request.
2136 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2137 * the login request.
2139 * Ownership of the cm_id is transferred to the target session if this
2140 * function returns zero. Otherwise the caller remains the owner of cm_id.
2142 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2143 struct ib_cm_id *ib_cm_id,
2144 struct rdma_cm_id *rdma_cm_id,
2145 u8 port_num, __be16 pkey,
2146 const struct srp_login_req *req,
2147 const char *src_addr)
2149 struct srpt_port *sport = &sdev->port[port_num - 1];
2150 struct srpt_nexus *nexus;
2151 struct srp_login_rsp *rsp = NULL;
2152 struct srp_login_rej *rej = NULL;
2154 struct rdma_conn_param rdma_cm;
2155 struct ib_cm_rep_param ib_cm;
2156 } *rep_param = NULL;
2157 struct srpt_rdma_ch *ch = NULL;
2160 int i, tag_num, tag_size, ret;
2161 struct srpt_tpg *stpg;
2163 WARN_ON_ONCE(irqs_disabled());
2165 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2167 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2168 req->initiator_port_id, req->target_port_id, it_iu_len,
2169 port_num, &sport->gid, be16_to_cpu(pkey));
2171 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2172 req->target_port_id);
2173 if (IS_ERR(nexus)) {
2174 ret = PTR_ERR(nexus);
2179 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2180 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2181 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2182 if (!rsp || !rej || !rep_param)
2186 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2187 rej->reason = cpu_to_be32(
2188 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2189 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2190 it_iu_len, 64, srp_max_req_size);
2194 if (!sport->enabled) {
2195 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2196 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2197 dev_name(&sport->sdev->device->dev), port_num);
2201 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2202 || *(__be64 *)(req->target_port_id + 8) !=
2203 cpu_to_be64(srpt_service_guid)) {
2204 rej->reason = cpu_to_be32(
2205 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2206 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2211 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2213 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2214 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2218 kref_init(&ch->kref);
2219 ch->pkey = be16_to_cpu(pkey);
2221 ch->zw_cqe.done = srpt_zerolength_write_done;
2222 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2225 ch->using_rdma_cm = true;
2226 ch->rdma_cm.cm_id = rdma_cm_id;
2227 rdma_cm_id->context = ch;
2229 ch->ib_cm.cm_id = ib_cm_id;
2230 ib_cm_id->context = ch;
2233 * ch->rq_size should be at least as large as the initiator queue
2234 * depth to avoid that the initiator driver has to report QUEUE_FULL
2235 * to the SCSI mid-layer.
2237 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2238 spin_lock_init(&ch->spinlock);
2239 ch->state = CH_CONNECTING;
2240 INIT_LIST_HEAD(&ch->cmd_wait_list);
2241 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2243 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2245 if (!ch->rsp_buf_cache)
2248 ch->ioctx_ring = (struct srpt_send_ioctx **)
2249 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2250 sizeof(*ch->ioctx_ring[0]),
2251 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2252 if (!ch->ioctx_ring) {
2253 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2254 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2255 goto free_rsp_cache;
2258 for (i = 0; i < ch->rq_size; i++)
2259 ch->ioctx_ring[i]->ch = ch;
2260 if (!sdev->use_srq) {
2261 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2262 be16_to_cpu(req->imm_data_offset) : 0;
2263 u16 alignment_offset;
2266 if (req->req_flags & SRP_IMMED_REQUESTED)
2267 pr_debug("imm_data_offset = %d\n",
2268 be16_to_cpu(req->imm_data_offset));
2269 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2270 ch->imm_data_offset = imm_data_offset;
2271 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2273 ch->imm_data_offset = 0;
2275 alignment_offset = round_up(imm_data_offset, 512) -
2277 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2278 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2280 if (!ch->req_buf_cache)
2283 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2284 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2285 sizeof(*ch->ioctx_recv_ring[0]),
2289 if (!ch->ioctx_recv_ring) {
2290 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2292 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2293 goto free_recv_cache;
2295 for (i = 0; i < ch->rq_size; i++)
2296 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2299 ret = srpt_create_ch_ib(ch);
2301 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2302 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2303 goto free_recv_ring;
2306 strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2307 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2308 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2309 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2311 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2314 tag_num = ch->rq_size;
2315 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2317 if (sport->guid_id) {
2318 mutex_lock(&sport->guid_id->mutex);
2319 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2320 if (!IS_ERR_OR_NULL(ch->sess))
2322 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2323 tag_size, TARGET_PROT_NORMAL,
2324 ch->sess_name, ch, NULL);
2326 mutex_unlock(&sport->guid_id->mutex);
2329 if (sport->gid_id) {
2330 mutex_lock(&sport->gid_id->mutex);
2331 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2332 if (!IS_ERR_OR_NULL(ch->sess))
2334 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2335 tag_size, TARGET_PROT_NORMAL, i_port_id,
2337 if (!IS_ERR_OR_NULL(ch->sess))
2339 /* Retry without leading "0x" */
2340 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2341 tag_size, TARGET_PROT_NORMAL,
2342 i_port_id + 2, ch, NULL);
2344 mutex_unlock(&sport->gid_id->mutex);
2347 if (IS_ERR_OR_NULL(ch->sess)) {
2348 WARN_ON_ONCE(ch->sess == NULL);
2349 ret = PTR_ERR(ch->sess);
2351 pr_info("Rejected login for initiator %s: ret = %d.\n",
2352 ch->sess_name, ret);
2353 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2354 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2355 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2360 * Once a session has been created destruction of srpt_rdma_ch objects
2361 * will decrement sport->refcount. Hence increment sport->refcount now.
2363 atomic_inc(&sport->refcount);
2365 mutex_lock(&sport->mutex);
2367 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2368 struct srpt_rdma_ch *ch2;
2370 list_for_each_entry(ch2, &nexus->ch_list, list) {
2371 if (srpt_disconnect_ch(ch2) < 0)
2373 pr_info("Relogin - closed existing channel %s\n",
2375 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2378 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2381 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2383 if (!sport->enabled) {
2384 rej->reason = cpu_to_be32(
2385 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2386 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2387 dev_name(&sdev->device->dev), port_num);
2388 mutex_unlock(&sport->mutex);
2393 mutex_unlock(&sport->mutex);
2395 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2397 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2398 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2403 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2406 /* create srp_login_response */
2407 rsp->opcode = SRP_LOGIN_RSP;
2408 rsp->tag = req->tag;
2409 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2410 rsp->max_ti_iu_len = req->req_it_iu_len;
2411 ch->max_ti_iu_len = it_iu_len;
2412 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2413 SRP_BUF_FORMAT_INDIRECT);
2414 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2415 atomic_set(&ch->req_lim, ch->rq_size);
2416 atomic_set(&ch->req_lim_delta, 0);
2418 /* create cm reply */
2419 if (ch->using_rdma_cm) {
2420 rep_param->rdma_cm.private_data = (void *)rsp;
2421 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2422 rep_param->rdma_cm.rnr_retry_count = 7;
2423 rep_param->rdma_cm.flow_control = 1;
2424 rep_param->rdma_cm.responder_resources = 4;
2425 rep_param->rdma_cm.initiator_depth = 4;
2427 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2428 rep_param->ib_cm.private_data = (void *)rsp;
2429 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2430 rep_param->ib_cm.rnr_retry_count = 7;
2431 rep_param->ib_cm.flow_control = 1;
2432 rep_param->ib_cm.failover_accepted = 0;
2433 rep_param->ib_cm.srq = 1;
2434 rep_param->ib_cm.responder_resources = 4;
2435 rep_param->ib_cm.initiator_depth = 4;
2439 * Hold the sport mutex while accepting a connection to avoid that
2440 * srpt_disconnect_ch() is invoked concurrently with this code.
2442 mutex_lock(&sport->mutex);
2443 if (sport->enabled && ch->state == CH_CONNECTING) {
2444 if (ch->using_rdma_cm)
2445 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2447 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2451 mutex_unlock(&sport->mutex);
2459 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2460 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2468 srpt_destroy_ch_ib(ch);
2471 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2472 ch->sport->sdev, ch->rq_size,
2473 ch->req_buf_cache, DMA_FROM_DEVICE);
2476 kmem_cache_destroy(ch->req_buf_cache);
2479 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2480 ch->sport->sdev, ch->rq_size,
2481 ch->rsp_buf_cache, DMA_TO_DEVICE);
2484 kmem_cache_destroy(ch->rsp_buf_cache);
2488 rdma_cm_id->context = NULL;
2490 ib_cm_id->context = NULL;
2494 WARN_ON_ONCE(ret == 0);
2497 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2498 rej->opcode = SRP_LOGIN_REJ;
2499 rej->tag = req->tag;
2500 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2501 SRP_BUF_FORMAT_INDIRECT);
2504 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2505 IB_CM_REJ_CONSUMER_DEFINED);
2507 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2510 if (ch && ch->sess) {
2513 * Tell the caller not to free cm_id since
2514 * srpt_release_channel_work() will do that.
2527 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2528 const struct ib_cm_req_event_param *param,
2533 srpt_format_guid(sguid, sizeof(sguid),
2534 ¶m->primary_path->dgid.global.interface_id);
2536 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2537 param->primary_path->pkey,
2538 private_data, sguid);
2541 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2542 struct rdma_cm_event *event)
2544 struct srpt_device *sdev;
2545 struct srp_login_req req;
2546 const struct srp_login_req_rdma *req_rdma;
2547 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2550 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2552 return -ECONNREFUSED;
2554 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2557 /* Transform srp_login_req_rdma into srp_login_req. */
2558 req_rdma = event->param.conn.private_data;
2559 memset(&req, 0, sizeof(req));
2560 req.opcode = req_rdma->opcode;
2561 req.tag = req_rdma->tag;
2562 req.req_it_iu_len = req_rdma->req_it_iu_len;
2563 req.req_buf_fmt = req_rdma->req_buf_fmt;
2564 req.req_flags = req_rdma->req_flags;
2565 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2566 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2567 req.imm_data_offset = req_rdma->imm_data_offset;
2569 snprintf(src_addr, sizeof(src_addr), "%pIS",
2570 &cm_id->route.addr.src_addr);
2572 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2573 path_rec ? path_rec->pkey : 0, &req, src_addr);
2576 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2577 enum ib_cm_rej_reason reason,
2578 const u8 *private_data,
2579 u8 private_data_len)
2584 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2586 for (i = 0; i < private_data_len; i++)
2587 sprintf(priv + 3 * i, " %02x", private_data[i]);
2589 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2590 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2591 "; private data" : "", priv ? priv : " (?)");
2596 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2597 * @ch: SRPT RDMA channel.
2599 * An RTU (ready to use) message indicates that the connection has been
2600 * established and that the recipient may begin transmitting.
2602 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2606 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2608 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2615 * Note: calling srpt_close_ch() if the transition to the LIVE state
2616 * fails is not necessary since that means that that function has
2617 * already been invoked from another thread.
2619 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2620 pr_err("%s-%d: channel transition to LIVE state failed\n",
2621 ch->sess_name, ch->qp->qp_num);
2625 /* Trigger wait list processing. */
2626 ret = srpt_zerolength_write(ch);
2627 WARN_ONCE(ret < 0, "%d\n", ret);
2631 * srpt_cm_handler - IB connection manager callback function
2632 * @cm_id: IB/CM connection identifier.
2633 * @event: IB/CM event.
2635 * A non-zero return value will cause the caller destroy the CM ID.
2637 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2638 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2639 * a non-zero value in any other case will trigger a race with the
2640 * ib_destroy_cm_id() call in srpt_release_channel().
2642 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2643 const struct ib_cm_event *event)
2645 struct srpt_rdma_ch *ch = cm_id->context;
2649 switch (event->event) {
2650 case IB_CM_REQ_RECEIVED:
2651 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2652 event->private_data);
2654 case IB_CM_REJ_RECEIVED:
2655 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2656 event->private_data,
2657 IB_CM_REJ_PRIVATE_DATA_SIZE);
2659 case IB_CM_RTU_RECEIVED:
2660 case IB_CM_USER_ESTABLISHED:
2661 srpt_cm_rtu_recv(ch);
2663 case IB_CM_DREQ_RECEIVED:
2664 srpt_disconnect_ch(ch);
2666 case IB_CM_DREP_RECEIVED:
2667 pr_info("Received CM DREP message for ch %s-%d.\n",
2668 ch->sess_name, ch->qp->qp_num);
2671 case IB_CM_TIMEWAIT_EXIT:
2672 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2673 ch->sess_name, ch->qp->qp_num);
2676 case IB_CM_REP_ERROR:
2677 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2680 case IB_CM_DREQ_ERROR:
2681 pr_info("Received CM DREQ ERROR event.\n");
2683 case IB_CM_MRA_RECEIVED:
2684 pr_info("Received CM MRA event\n");
2687 pr_err("received unrecognized CM event %d\n", event->event);
2694 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2695 struct rdma_cm_event *event)
2697 struct srpt_rdma_ch *ch = cm_id->context;
2700 switch (event->event) {
2701 case RDMA_CM_EVENT_CONNECT_REQUEST:
2702 ret = srpt_rdma_cm_req_recv(cm_id, event);
2704 case RDMA_CM_EVENT_REJECTED:
2705 srpt_cm_rej_recv(ch, event->status,
2706 event->param.conn.private_data,
2707 event->param.conn.private_data_len);
2709 case RDMA_CM_EVENT_ESTABLISHED:
2710 srpt_cm_rtu_recv(ch);
2712 case RDMA_CM_EVENT_DISCONNECTED:
2713 if (ch->state < CH_DISCONNECTING)
2714 srpt_disconnect_ch(ch);
2718 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2721 case RDMA_CM_EVENT_UNREACHABLE:
2722 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2725 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2726 case RDMA_CM_EVENT_ADDR_CHANGE:
2729 pr_err("received unrecognized RDMA CM event %d\n",
2738 * srpt_write_pending - Start data transfer from initiator to target (write).
2740 static int srpt_write_pending(struct se_cmd *se_cmd)
2742 struct srpt_send_ioctx *ioctx =
2743 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2744 struct srpt_rdma_ch *ch = ioctx->ch;
2745 struct ib_send_wr *first_wr = NULL;
2746 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2747 enum srpt_command_state new_state;
2750 if (ioctx->recv_ioctx) {
2751 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2752 target_execute_cmd(&ioctx->cmd);
2756 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2757 WARN_ON(new_state == SRPT_STATE_DONE);
2759 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2760 pr_warn("%s: IB send queue full (needed %d)\n",
2761 __func__, ioctx->n_rdma);
2766 cqe->done = srpt_rdma_read_done;
2767 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2768 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2770 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2775 ret = ib_post_send(ch->qp, first_wr, NULL);
2777 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2778 __func__, ret, ioctx->n_rdma,
2779 atomic_read(&ch->sq_wr_avail));
2785 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2789 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2791 switch (tcm_mgmt_status) {
2792 case TMR_FUNCTION_COMPLETE:
2793 return SRP_TSK_MGMT_SUCCESS;
2794 case TMR_FUNCTION_REJECTED:
2795 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2797 return SRP_TSK_MGMT_FAILED;
2801 * srpt_queue_response - transmit the response to a SCSI command
2802 * @cmd: SCSI target command.
2804 * Callback function called by the TCM core. Must not block since it can be
2805 * invoked on the context of the IB completion handler.
2807 static void srpt_queue_response(struct se_cmd *cmd)
2809 struct srpt_send_ioctx *ioctx =
2810 container_of(cmd, struct srpt_send_ioctx, cmd);
2811 struct srpt_rdma_ch *ch = ioctx->ch;
2812 struct srpt_device *sdev = ch->sport->sdev;
2813 struct ib_send_wr send_wr, *first_wr = &send_wr;
2815 enum srpt_command_state state;
2816 int resp_len, ret, i;
2819 state = ioctx->state;
2821 case SRPT_STATE_NEW:
2822 case SRPT_STATE_DATA_IN:
2823 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2825 case SRPT_STATE_MGMT:
2826 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2829 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2830 ch, ioctx->ioctx.index, ioctx->state);
2834 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2837 /* For read commands, transfer the data to the initiator. */
2838 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2839 ioctx->cmd.data_length &&
2840 !ioctx->queue_status_only) {
2841 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2842 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2844 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2845 ch->sport->port, NULL, first_wr);
2849 if (state != SRPT_STATE_MGMT)
2850 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2854 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2855 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2859 atomic_inc(&ch->req_lim);
2861 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2862 &ch->sq_wr_avail) < 0)) {
2863 pr_warn("%s: IB send queue full (needed %d)\n",
2864 __func__, ioctx->n_rdma);
2868 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2871 sge.addr = ioctx->ioctx.dma;
2872 sge.length = resp_len;
2873 sge.lkey = sdev->lkey;
2875 ioctx->ioctx.cqe.done = srpt_send_done;
2876 send_wr.next = NULL;
2877 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2878 send_wr.sg_list = &sge;
2879 send_wr.num_sge = 1;
2880 send_wr.opcode = IB_WR_SEND;
2881 send_wr.send_flags = IB_SEND_SIGNALED;
2883 ret = ib_post_send(ch->qp, first_wr, NULL);
2885 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2886 __func__, ioctx->cmd.tag, ret);
2893 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2894 atomic_dec(&ch->req_lim);
2895 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2896 target_put_sess_cmd(&ioctx->cmd);
2899 static int srpt_queue_data_in(struct se_cmd *cmd)
2901 srpt_queue_response(cmd);
2905 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2907 srpt_queue_response(cmd);
2911 * This function is called for aborted commands if no response is sent to the
2912 * initiator. Make sure that the credits freed by aborting a command are
2913 * returned to the initiator the next time a response is sent by incrementing
2914 * ch->req_lim_delta.
2916 static void srpt_aborted_task(struct se_cmd *cmd)
2918 struct srpt_send_ioctx *ioctx = container_of(cmd,
2919 struct srpt_send_ioctx, cmd);
2920 struct srpt_rdma_ch *ch = ioctx->ch;
2922 atomic_inc(&ch->req_lim_delta);
2925 static int srpt_queue_status(struct se_cmd *cmd)
2927 struct srpt_send_ioctx *ioctx;
2929 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2930 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2931 if (cmd->se_cmd_flags &
2932 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2933 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2934 ioctx->queue_status_only = true;
2935 srpt_queue_response(cmd);
2939 static void srpt_refresh_port_work(struct work_struct *work)
2941 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2943 srpt_refresh_port(sport);
2947 * srpt_release_sport - disable login and wait for associated channels
2948 * @sport: SRPT HCA port.
2950 static int srpt_release_sport(struct srpt_port *sport)
2952 DECLARE_COMPLETION_ONSTACK(c);
2953 struct srpt_nexus *nexus, *next_n;
2954 struct srpt_rdma_ch *ch;
2956 WARN_ON_ONCE(irqs_disabled());
2958 sport->freed_channels = &c;
2960 mutex_lock(&sport->mutex);
2961 srpt_set_enabled(sport, false);
2962 mutex_unlock(&sport->mutex);
2964 while (atomic_read(&sport->refcount) > 0 &&
2965 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2966 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2967 dev_name(&sport->sdev->device->dev), sport->port,
2968 atomic_read(&sport->refcount));
2970 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2971 list_for_each_entry(ch, &nexus->ch_list, list) {
2972 pr_info("%s-%d: state %s\n",
2973 ch->sess_name, ch->qp->qp_num,
2974 get_ch_state_name(ch->state));
2980 mutex_lock(&sport->mutex);
2981 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2982 list_del(&nexus->entry);
2983 kfree_rcu(nexus, rcu);
2985 mutex_unlock(&sport->mutex);
2990 struct port_and_port_id {
2991 struct srpt_port *sport;
2992 struct srpt_port_id **port_id;
2995 static struct port_and_port_id __srpt_lookup_port(const char *name)
2997 struct ib_device *dev;
2998 struct srpt_device *sdev;
2999 struct srpt_port *sport;
3002 list_for_each_entry(sdev, &srpt_dev_list, list) {
3007 for (i = 0; i < dev->phys_port_cnt; i++) {
3008 sport = &sdev->port[i];
3010 if (strcmp(sport->guid_name, name) == 0) {
3011 kref_get(&sdev->refcnt);
3012 return (struct port_and_port_id){
3013 sport, &sport->guid_id};
3015 if (strcmp(sport->gid_name, name) == 0) {
3016 kref_get(&sdev->refcnt);
3017 return (struct port_and_port_id){
3018 sport, &sport->gid_id};
3023 return (struct port_and_port_id){};
3027 * srpt_lookup_port() - Look up an RDMA port by name
3028 * @name: ASCII port name
3030 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3031 * The caller must drop that reference count by calling srpt_port_put_ref().
3033 static struct port_and_port_id srpt_lookup_port(const char *name)
3035 struct port_and_port_id papi;
3037 spin_lock(&srpt_dev_lock);
3038 papi = __srpt_lookup_port(name);
3039 spin_unlock(&srpt_dev_lock);
3044 static void srpt_free_srq(struct srpt_device *sdev)
3049 ib_destroy_srq(sdev->srq);
3050 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3051 sdev->srq_size, sdev->req_buf_cache,
3053 kmem_cache_destroy(sdev->req_buf_cache);
3057 static int srpt_alloc_srq(struct srpt_device *sdev)
3059 struct ib_srq_init_attr srq_attr = {
3060 .event_handler = srpt_srq_event,
3061 .srq_context = (void *)sdev,
3062 .attr.max_wr = sdev->srq_size,
3064 .srq_type = IB_SRQT_BASIC,
3066 struct ib_device *device = sdev->device;
3070 WARN_ON_ONCE(sdev->srq);
3071 srq = ib_create_srq(sdev->pd, &srq_attr);
3073 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3074 return PTR_ERR(srq);
3077 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3078 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3080 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3081 srp_max_req_size, 0, 0, NULL);
3082 if (!sdev->req_buf_cache)
3085 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3086 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3087 sizeof(*sdev->ioctx_ring[0]),
3088 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3089 if (!sdev->ioctx_ring)
3092 sdev->use_srq = true;
3095 for (i = 0; i < sdev->srq_size; ++i) {
3096 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3097 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3103 kmem_cache_destroy(sdev->req_buf_cache);
3106 ib_destroy_srq(srq);
3110 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3112 struct ib_device *device = sdev->device;
3116 srpt_free_srq(sdev);
3117 sdev->use_srq = false;
3118 } else if (use_srq && !sdev->srq) {
3119 ret = srpt_alloc_srq(sdev);
3121 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3122 dev_name(&device->dev), sdev->use_srq, ret);
3126 static void srpt_free_sdev(struct kref *refcnt)
3128 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3133 static void srpt_sdev_put(struct srpt_device *sdev)
3135 kref_put(&sdev->refcnt, srpt_free_sdev);
3139 * srpt_add_one - InfiniBand device addition callback function
3140 * @device: Describes a HCA.
3142 static int srpt_add_one(struct ib_device *device)
3144 struct srpt_device *sdev;
3145 struct srpt_port *sport;
3149 pr_debug("device = %p\n", device);
3151 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3156 kref_init(&sdev->refcnt);
3157 sdev->device = device;
3158 mutex_init(&sdev->sdev_mutex);
3160 sdev->pd = ib_alloc_pd(device, 0);
3161 if (IS_ERR(sdev->pd)) {
3162 ret = PTR_ERR(sdev->pd);
3166 sdev->lkey = sdev->pd->local_dma_lkey;
3168 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3170 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3172 if (!srpt_service_guid)
3173 srpt_service_guid = be64_to_cpu(device->node_guid);
3175 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3176 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3177 if (IS_ERR(sdev->cm_id)) {
3178 pr_info("ib_create_cm_id() failed: %ld\n",
3179 PTR_ERR(sdev->cm_id));
3180 ret = PTR_ERR(sdev->cm_id);
3186 /* print out target login information */
3187 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3188 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3191 * We do not have a consistent service_id (ie. also id_ext of target_id)
3192 * to identify this target. We currently use the guid of the first HCA
3193 * in the system as service_id; therefore, the target_id will change
3194 * if this HCA is gone bad and replaced by different HCA
3197 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) :
3200 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3201 sdev->cm_id->state);
3205 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3206 srpt_event_handler);
3207 ib_register_event_handler(&sdev->event_handler);
3209 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3210 sport = &sdev->port[i - 1];
3211 INIT_LIST_HEAD(&sport->nexus_list);
3212 mutex_init(&sport->mutex);
3215 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3216 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3217 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3218 sport->port_attrib.use_srq = false;
3219 INIT_WORK(&sport->work, srpt_refresh_port_work);
3221 ret = srpt_refresh_port(sport);
3223 pr_err("MAD registration failed for %s-%d.\n",
3224 dev_name(&sdev->device->dev), i);
3230 spin_lock(&srpt_dev_lock);
3231 list_add_tail(&sdev->list, &srpt_dev_list);
3232 spin_unlock(&srpt_dev_lock);
3234 ib_set_client_data(device, &srpt_client, sdev);
3235 pr_debug("added %s.\n", dev_name(&device->dev));
3239 srpt_unregister_mad_agent(sdev, i);
3240 ib_unregister_event_handler(&sdev->event_handler);
3243 ib_destroy_cm_id(sdev->cm_id);
3245 srpt_free_srq(sdev);
3246 ib_dealloc_pd(sdev->pd);
3248 srpt_sdev_put(sdev);
3249 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3254 * srpt_remove_one - InfiniBand device removal callback function
3255 * @device: Describes a HCA.
3256 * @client_data: The value passed as the third argument to ib_set_client_data().
3258 static void srpt_remove_one(struct ib_device *device, void *client_data)
3260 struct srpt_device *sdev = client_data;
3263 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3265 ib_unregister_event_handler(&sdev->event_handler);
3267 /* Cancel any work queued by the just unregistered IB event handler. */
3268 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3269 cancel_work_sync(&sdev->port[i].work);
3272 ib_destroy_cm_id(sdev->cm_id);
3274 ib_set_client_data(device, &srpt_client, NULL);
3277 * Unregistering a target must happen after destroying sdev->cm_id
3278 * such that no new SRP_LOGIN_REQ information units can arrive while
3279 * destroying the target.
3281 spin_lock(&srpt_dev_lock);
3282 list_del(&sdev->list);
3283 spin_unlock(&srpt_dev_lock);
3285 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3286 srpt_release_sport(&sdev->port[i]);
3288 srpt_free_srq(sdev);
3290 ib_dealloc_pd(sdev->pd);
3292 srpt_sdev_put(sdev);
3295 static struct ib_client srpt_client = {
3297 .add = srpt_add_one,
3298 .remove = srpt_remove_one
3301 static int srpt_check_true(struct se_portal_group *se_tpg)
3306 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3308 return tpg->se_tpg_wwn->priv;
3311 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3313 struct srpt_port *sport = wwn->priv;
3315 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3316 return sport->guid_id;
3317 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3318 return sport->gid_id;
3323 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3325 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3327 return stpg->sport_id->name;
3330 static u16 srpt_get_tag(struct se_portal_group *tpg)
3335 static void srpt_release_cmd(struct se_cmd *se_cmd)
3337 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3338 struct srpt_send_ioctx, cmd);
3339 struct srpt_rdma_ch *ch = ioctx->ch;
3340 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3342 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3343 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3346 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3347 ioctx->recv_ioctx = NULL;
3348 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3351 if (ioctx->n_rw_ctx) {
3352 srpt_free_rw_ctxs(ch, ioctx);
3353 ioctx->n_rw_ctx = 0;
3356 target_free_tag(se_cmd->se_sess, se_cmd);
3360 * srpt_close_session - forcibly close a session
3361 * @se_sess: SCSI target session.
3363 * Callback function invoked by the TCM core to clean up sessions associated
3364 * with a node ACL when the user invokes
3365 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3367 static void srpt_close_session(struct se_session *se_sess)
3369 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3371 srpt_disconnect_ch_sync(ch);
3374 /* Note: only used from inside debug printk's by the TCM core. */
3375 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3377 struct srpt_send_ioctx *ioctx;
3379 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3380 return ioctx->state;
3383 static int srpt_parse_guid(u64 *guid, const char *name)
3388 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3390 *guid = get_unaligned_be64(w);
3397 * srpt_parse_i_port_id - parse an initiator port ID
3398 * @name: ASCII representation of a 128-bit initiator port ID.
3399 * @i_port_id: Binary 128-bit port ID.
3401 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3404 unsigned len, count, leading_zero_bytes;
3408 if (strncasecmp(p, "0x", 2) == 0)
3414 count = min(len / 2, 16U);
3415 leading_zero_bytes = 16 - count;
3416 memset(i_port_id, 0, leading_zero_bytes);
3417 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3424 * configfs callback function invoked for mkdir
3425 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3427 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3428 * target_alloc_session() calls in this driver. Examples of valid initiator
3430 * 0x0000000000000000505400fffe4a0b7b
3431 * 0000000000000000505400fffe4a0b7b
3432 * 5054:00ff:fe4a:0b7b
3435 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3437 struct sockaddr_storage sa;
3442 ret = srpt_parse_guid(&guid, name);
3444 ret = srpt_parse_i_port_id(i_port_id, name);
3446 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3449 pr_err("invalid initiator port ID %s\n", name);
3453 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3456 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3457 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3459 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3462 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3463 const char *page, size_t count)
3465 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3466 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3470 ret = kstrtoul(page, 0, &val);
3472 pr_err("kstrtoul() failed with ret: %d\n", ret);
3475 if (val > MAX_SRPT_RDMA_SIZE) {
3476 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3477 MAX_SRPT_RDMA_SIZE);
3480 if (val < DEFAULT_MAX_RDMA_SIZE) {
3481 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3482 val, DEFAULT_MAX_RDMA_SIZE);
3485 sport->port_attrib.srp_max_rdma_size = val;
3490 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3493 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3496 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3499 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3500 const char *page, size_t count)
3502 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3507 ret = kstrtoul(page, 0, &val);
3509 pr_err("kstrtoul() failed with ret: %d\n", ret);
3512 if (val > MAX_SRPT_RSP_SIZE) {
3513 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3517 if (val < MIN_MAX_RSP_SIZE) {
3518 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3522 sport->port_attrib.srp_max_rsp_size = val;
3527 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3530 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3533 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3536 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3537 const char *page, size_t count)
3539 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3544 ret = kstrtoul(page, 0, &val);
3546 pr_err("kstrtoul() failed with ret: %d\n", ret);
3549 if (val > MAX_SRPT_SRQ_SIZE) {
3550 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3554 if (val < MIN_SRPT_SRQ_SIZE) {
3555 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3559 sport->port_attrib.srp_sq_size = val;
3564 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3567 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3570 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3573 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3574 const char *page, size_t count)
3576 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3578 struct srpt_device *sdev = sport->sdev;
3583 ret = kstrtoul(page, 0, &val);
3589 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3592 ret = mutex_lock_interruptible(&sport->mutex);
3595 enabled = sport->enabled;
3596 /* Log out all initiator systems before changing 'use_srq'. */
3597 srpt_set_enabled(sport, false);
3598 sport->port_attrib.use_srq = val;
3599 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3600 srpt_set_enabled(sport, enabled);
3602 mutex_unlock(&sport->mutex);
3604 mutex_unlock(&sdev->sdev_mutex);
3609 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3610 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3611 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3612 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3614 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3615 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3616 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3617 &srpt_tpg_attrib_attr_srp_sq_size,
3618 &srpt_tpg_attrib_attr_use_srq,
3622 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3624 struct rdma_cm_id *rdma_cm_id;
3627 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3628 NULL, RDMA_PS_TCP, IB_QPT_RC);
3629 if (IS_ERR(rdma_cm_id)) {
3630 pr_err("RDMA/CM ID creation failed: %ld\n",
3631 PTR_ERR(rdma_cm_id));
3635 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3639 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3640 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3642 rdma_destroy_id(rdma_cm_id);
3643 rdma_cm_id = ERR_PTR(ret);
3647 ret = rdma_listen(rdma_cm_id, 128);
3649 pr_err("rdma_listen() failed: %d\n", ret);
3650 rdma_destroy_id(rdma_cm_id);
3651 rdma_cm_id = ERR_PTR(ret);
3658 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3660 return sysfs_emit(page, "%d\n", rdma_cm_port);
3663 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3664 const char *page, size_t count)
3666 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3667 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3668 struct rdma_cm_id *new_id = NULL;
3672 ret = kstrtou16(page, 0, &val);
3676 if (rdma_cm_port == val)
3680 addr6.sin6_port = cpu_to_be16(val);
3681 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3682 if (IS_ERR(new_id)) {
3683 addr4.sin_port = cpu_to_be16(val);
3684 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3685 if (IS_ERR(new_id)) {
3686 ret = PTR_ERR(new_id);
3692 mutex_lock(&rdma_cm_mutex);
3694 swap(rdma_cm_id, new_id);
3695 mutex_unlock(&rdma_cm_mutex);
3698 rdma_destroy_id(new_id);
3704 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3706 static struct configfs_attribute *srpt_da_attrs[] = {
3707 &srpt_attr_rdma_cm_port,
3711 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3713 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3715 mutex_lock(&sport->mutex);
3716 srpt_set_enabled(sport, enable);
3717 mutex_unlock(&sport->mutex);
3723 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3724 * @wwn: Corresponds to $driver/$port.
3727 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3730 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3731 struct srpt_tpg *stpg;
3734 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3736 return ERR_PTR(res);
3737 stpg->sport_id = sport_id;
3738 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3741 return ERR_PTR(res);
3744 mutex_lock(&sport_id->mutex);
3745 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3746 mutex_unlock(&sport_id->mutex);
3752 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3753 * @tpg: Target portal group to deregister.
3755 static void srpt_drop_tpg(struct se_portal_group *tpg)
3757 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3758 struct srpt_port_id *sport_id = stpg->sport_id;
3759 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3761 mutex_lock(&sport_id->mutex);
3762 list_del(&stpg->entry);
3763 mutex_unlock(&sport_id->mutex);
3765 sport->enabled = false;
3766 core_tpg_deregister(tpg);
3771 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3776 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3777 struct config_group *group,
3780 struct port_and_port_id papi = srpt_lookup_port(name);
3781 struct srpt_port *sport = papi.sport;
3782 struct srpt_port_id *port_id;
3785 return ERR_PTR(-EINVAL);
3786 if (*papi.port_id) {
3787 /* Attempt to create a directory that already exists. */
3789 return &(*papi.port_id)->wwn;
3791 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3793 srpt_sdev_put(sport->sdev);
3794 return ERR_PTR(-ENOMEM);
3796 mutex_init(&port_id->mutex);
3797 INIT_LIST_HEAD(&port_id->tpg_list);
3798 port_id->wwn.priv = sport;
3799 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3800 sport->gid_name, ARRAY_SIZE(port_id->name));
3802 *papi.port_id = port_id;
3804 return &port_id->wwn;
3808 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3811 static void srpt_drop_tport(struct se_wwn *wwn)
3813 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3814 struct srpt_port *sport = wwn->priv;
3816 if (sport->guid_id == port_id)
3817 sport->guid_id = NULL;
3818 else if (sport->gid_id == port_id)
3819 sport->gid_id = NULL;
3823 srpt_sdev_put(sport->sdev);
3827 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3829 return sysfs_emit(buf, "\n");
3832 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3834 static struct configfs_attribute *srpt_wwn_attrs[] = {
3835 &srpt_wwn_attr_version,
3839 static const struct target_core_fabric_ops srpt_template = {
3840 .module = THIS_MODULE,
3841 .fabric_name = "srpt",
3842 .tpg_get_wwn = srpt_get_fabric_wwn,
3843 .tpg_get_tag = srpt_get_tag,
3844 .tpg_check_demo_mode_cache = srpt_check_true,
3845 .tpg_check_demo_mode_write_protect = srpt_check_true,
3846 .release_cmd = srpt_release_cmd,
3847 .check_stop_free = srpt_check_stop_free,
3848 .close_session = srpt_close_session,
3849 .sess_get_initiator_sid = NULL,
3850 .write_pending = srpt_write_pending,
3851 .get_cmd_state = srpt_get_tcm_cmd_state,
3852 .queue_data_in = srpt_queue_data_in,
3853 .queue_status = srpt_queue_status,
3854 .queue_tm_rsp = srpt_queue_tm_rsp,
3855 .aborted_task = srpt_aborted_task,
3857 * Setup function pointers for generic logic in
3858 * target_core_fabric_configfs.c
3860 .fabric_make_wwn = srpt_make_tport,
3861 .fabric_drop_wwn = srpt_drop_tport,
3862 .fabric_make_tpg = srpt_make_tpg,
3863 .fabric_enable_tpg = srpt_enable_tpg,
3864 .fabric_drop_tpg = srpt_drop_tpg,
3865 .fabric_init_nodeacl = srpt_init_nodeacl,
3867 .tfc_discovery_attrs = srpt_da_attrs,
3868 .tfc_wwn_attrs = srpt_wwn_attrs,
3869 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3871 .default_submit_type = TARGET_DIRECT_SUBMIT,
3872 .direct_submit_supp = 1,
3876 * srpt_init_module - kernel module initialization
3878 * Note: Since ib_register_client() registers callback functions, and since at
3879 * least one of these callback functions (srpt_add_one()) calls target core
3880 * functions, this driver must be registered with the target core before
3881 * ib_register_client() is called.
3883 static int __init srpt_init_module(void)
3888 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3889 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3890 srp_max_req_size, MIN_MAX_REQ_SIZE);
3894 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3895 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3896 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3897 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3901 ret = target_register_template(&srpt_template);
3905 ret = ib_register_client(&srpt_client);
3907 pr_err("couldn't register IB client\n");
3908 goto out_unregister_target;
3913 out_unregister_target:
3914 target_unregister_template(&srpt_template);
3919 static void __exit srpt_cleanup_module(void)
3922 rdma_destroy_id(rdma_cm_id);
3923 ib_unregister_client(&srpt_client);
3924 target_unregister_template(&srpt_template);
3927 module_init(srpt_init_module);
3928 module_exit(srpt_cleanup_module);