1 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
46 * fault_pending_wqh.lock
50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52 * also taken in IRQ context.
54 struct userfaultfd_ctx {
55 /* waitqueue head for the pending (i.e. not read) userfaults */
56 wait_queue_head_t fault_pending_wqh;
57 /* waitqueue head for the userfaults */
58 wait_queue_head_t fault_wqh;
59 /* waitqueue head for the pseudo fd to wakeup poll/read */
60 wait_queue_head_t fd_wqh;
61 /* waitqueue head for events */
62 wait_queue_head_t event_wqh;
63 /* a refile sequence protected by fault_pending_wqh lock */
64 seqcount_spinlock_t refile_seq;
65 /* pseudo fd refcounting */
67 /* userfaultfd syscall flags */
69 /* features requested from the userspace */
70 unsigned int features;
72 enum userfaultfd_state state;
75 /* memory mappings are changing because of non-cooperative event */
77 /* mm with one ore more vmas attached to this userfaultfd_ctx */
81 struct userfaultfd_fork_ctx {
82 struct userfaultfd_ctx *orig;
83 struct userfaultfd_ctx *new;
84 struct list_head list;
87 struct userfaultfd_unmap_ctx {
88 struct userfaultfd_ctx *ctx;
91 struct list_head list;
94 struct userfaultfd_wait_queue {
96 wait_queue_entry_t wq;
97 struct userfaultfd_ctx *ctx;
101 struct userfaultfd_wake_range {
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 int wake_flags, void *key)
109 struct userfaultfd_wake_range *range = key;
111 struct userfaultfd_wait_queue *uwq;
112 unsigned long start, len;
114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 /* len == 0 means wake all */
117 start = range->start;
119 if (len && (start > uwq->msg.arg.pagefault.address ||
120 start + len <= uwq->msg.arg.pagefault.address))
122 WRITE_ONCE(uwq->waken, true);
124 * The Program-Order guarantees provided by the scheduler
125 * ensure uwq->waken is visible before the task is woken.
127 ret = wake_up_state(wq->private, mode);
130 * Wake only once, autoremove behavior.
132 * After the effect of list_del_init is visible to the other
133 * CPUs, the waitqueue may disappear from under us, see the
134 * !list_empty_careful() in handle_userfault().
136 * try_to_wake_up() has an implicit smp_mb(), and the
137 * wq->private is read before calling the extern function
138 * "wake_up_state" (which in turns calls try_to_wake_up).
140 list_del_init(&wq->entry);
147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * @ctx: [in] Pointer to the userfaultfd context.
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 refcount_inc(&ctx->refcount);
157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * @ctx: [in] Pointer to userfaultfd context.
161 * The userfaultfd context reference must have been previously acquired either
162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 if (refcount_dec_and_test(&ctx->refcount)) {
167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180 static inline void msg_init(struct uffd_msg *msg)
182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 * Must use memset to zero out the paddings or kernel data is
185 * leaked to userland.
187 memset(msg, 0, sizeof(struct uffd_msg));
190 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned long reason,
193 unsigned int features)
197 msg.event = UFFD_EVENT_PAGEFAULT;
198 msg.arg.pagefault.address = address;
199 if (flags & FAULT_FLAG_WRITE)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 * was a read fault, otherwise if set it means it's
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 if (reason & VM_UFFD_WP)
210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 * a missing fault, otherwise if set it means it's a
214 * write protect fault.
216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 if (features & UFFD_FEATURE_THREAD_ID)
218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 #ifdef CONFIG_HUGETLB_PAGE
224 * Same functionality as userfaultfd_must_wait below with modifications for
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 struct vm_area_struct *vma,
229 unsigned long address,
231 unsigned long reason)
233 struct mm_struct *mm = ctx->mm;
237 mmap_assert_locked(mm);
239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
245 pte = huge_ptep_get(ptep);
248 * Lockless access: we're in a wait_event so it's ok if it
251 if (huge_pte_none(pte))
253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 struct vm_area_struct *vma,
261 unsigned long address,
263 unsigned long reason)
265 return false; /* should never get here */
267 #endif /* CONFIG_HUGETLB_PAGE */
270 * Verify the pagetables are still not ok after having reigstered into
271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272 * userfault that has already been resolved, if userfaultfd_read and
273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 unsigned long address,
279 unsigned long reason)
281 struct mm_struct *mm = ctx->mm;
289 mmap_assert_locked(mm);
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
300 pmd = pmd_offset(pud, address);
302 * READ_ONCE must function as a barrier with narrower scope
303 * and it must be equivalent to:
304 * _pmd = *pmd; barrier();
306 * This is to deal with the instability (as in
307 * pmd_trans_unstable) of the pmd.
309 _pmd = READ_ONCE(*pmd);
314 if (!pmd_present(_pmd))
317 if (pmd_trans_huge(_pmd)) {
318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 * and use the standard pte_offset_map() instead of parsing _pmd.
327 pte = pte_offset_map(pmd, address);
329 * Lockless access: we're in a wait_event so it's ok if it
334 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
344 if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 return TASK_INTERRUPTIBLE;
347 if (flags & FAULT_FLAG_KILLABLE)
348 return TASK_KILLABLE;
350 return TASK_UNINTERRUPTIBLE;
354 * The locking rules involved in returning VM_FAULT_RETRY depending on
355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357 * recommendation in __lock_page_or_retry is not an understatement.
359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364 * set, VM_FAULT_RETRY can still be returned if and only if there are
365 * fatal_signal_pending()s, and the mmap_lock must be released before
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
370 struct mm_struct *mm = vmf->vma->vm_mm;
371 struct userfaultfd_ctx *ctx;
372 struct userfaultfd_wait_queue uwq;
373 vm_fault_t ret = VM_FAULT_SIGBUS;
378 * We don't do userfault handling for the final child pid update.
380 * We also don't do userfault handling during
381 * coredumping. hugetlbfs has the special
382 * follow_hugetlb_page() to skip missing pages in the
383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 * the no_page_table() helper in follow_page_mask(), but the
385 * shmem_vm_ops->fault method is invoked even during
386 * coredumping without mmap_lock and it ends up here.
388 if (current->flags & (PF_EXITING|PF_DUMPCORE))
392 * Coredumping runs without mmap_lock so we can only check that
393 * the mmap_lock is held, if PF_DUMPCORE was not set.
395 mmap_assert_locked(mm);
397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
401 BUG_ON(ctx->mm != mm);
403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
406 if (ctx->features & UFFD_FEATURE_SIGBUS)
410 * If it's already released don't get it. This avoids to loop
411 * in __get_user_pages if userfaultfd_release waits on the
412 * caller of handle_userfault to release the mmap_lock.
414 if (unlikely(READ_ONCE(ctx->released))) {
416 * Don't return VM_FAULT_SIGBUS in this case, so a non
417 * cooperative manager can close the uffd after the
418 * last UFFDIO_COPY, without risking to trigger an
419 * involuntary SIGBUS if the process was starting the
420 * userfaultfd while the userfaultfd was still armed
421 * (but after the last UFFDIO_COPY). If the uffd
422 * wasn't already closed when the userfault reached
423 * this point, that would normally be solved by
424 * userfaultfd_must_wait returning 'false'.
426 * If we were to return VM_FAULT_SIGBUS here, the non
427 * cooperative manager would be instead forced to
428 * always call UFFDIO_UNREGISTER before it can safely
431 ret = VM_FAULT_NOPAGE;
436 * Check that we can return VM_FAULT_RETRY.
438 * NOTE: it should become possible to return VM_FAULT_RETRY
439 * even if FAULT_FLAG_TRIED is set without leading to gup()
440 * -EBUSY failures, if the userfaultfd is to be extended for
441 * VM_UFFD_WP tracking and we intend to arm the userfault
442 * without first stopping userland access to the memory. For
443 * VM_UFFD_MISSING userfaults this is enough for now.
445 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
447 * Validate the invariant that nowait must allow retry
448 * to be sure not to return SIGBUS erroneously on
449 * nowait invocations.
451 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
452 #ifdef CONFIG_DEBUG_VM
453 if (printk_ratelimit()) {
455 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 * Handle nowait, not much to do other than tell it to retry
467 ret = VM_FAULT_RETRY;
468 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
471 /* take the reference before dropping the mmap_lock */
472 userfaultfd_ctx_get(ctx);
474 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
475 uwq.wq.private = current;
476 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
481 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
483 spin_lock_irq(&ctx->fault_pending_wqh.lock);
485 * After the __add_wait_queue the uwq is visible to userland
486 * through poll/read().
488 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
490 * The smp_mb() after __set_current_state prevents the reads
491 * following the spin_unlock to happen before the list_add in
494 set_current_state(blocking_state);
495 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
497 if (!is_vm_hugetlb_page(vmf->vma))
498 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
501 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
504 mmap_read_unlock(mm);
506 if (likely(must_wait && !READ_ONCE(ctx->released))) {
507 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
511 __set_current_state(TASK_RUNNING);
514 * Here we race with the list_del; list_add in
515 * userfaultfd_ctx_read(), however because we don't ever run
516 * list_del_init() to refile across the two lists, the prev
517 * and next pointers will never point to self. list_add also
518 * would never let any of the two pointers to point to
519 * self. So list_empty_careful won't risk to see both pointers
520 * pointing to self at any time during the list refile. The
521 * only case where list_del_init() is called is the full
522 * removal in the wake function and there we don't re-list_add
523 * and it's fine not to block on the spinlock. The uwq on this
524 * kernel stack can be released after the list_del_init.
526 if (!list_empty_careful(&uwq.wq.entry)) {
527 spin_lock_irq(&ctx->fault_pending_wqh.lock);
529 * No need of list_del_init(), the uwq on the stack
530 * will be freed shortly anyway.
532 list_del(&uwq.wq.entry);
533 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
537 * ctx may go away after this if the userfault pseudo fd is
540 userfaultfd_ctx_put(ctx);
546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
547 struct userfaultfd_wait_queue *ewq)
549 struct userfaultfd_ctx *release_new_ctx;
551 if (WARN_ON_ONCE(current->flags & PF_EXITING))
555 init_waitqueue_entry(&ewq->wq, current);
556 release_new_ctx = NULL;
558 spin_lock_irq(&ctx->event_wqh.lock);
560 * After the __add_wait_queue the uwq is visible to userland
561 * through poll/read().
563 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
565 set_current_state(TASK_KILLABLE);
566 if (ewq->msg.event == 0)
568 if (READ_ONCE(ctx->released) ||
569 fatal_signal_pending(current)) {
571 * &ewq->wq may be queued in fork_event, but
572 * __remove_wait_queue ignores the head
573 * parameter. It would be a problem if it
576 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
577 if (ewq->msg.event == UFFD_EVENT_FORK) {
578 struct userfaultfd_ctx *new;
580 new = (struct userfaultfd_ctx *)
582 ewq->msg.arg.reserved.reserved1;
583 release_new_ctx = new;
588 spin_unlock_irq(&ctx->event_wqh.lock);
590 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
593 spin_lock_irq(&ctx->event_wqh.lock);
595 __set_current_state(TASK_RUNNING);
596 spin_unlock_irq(&ctx->event_wqh.lock);
598 if (release_new_ctx) {
599 struct vm_area_struct *vma;
600 struct mm_struct *mm = release_new_ctx->mm;
602 /* the various vma->vm_userfaultfd_ctx still points to it */
604 for (vma = mm->mmap; vma; vma = vma->vm_next)
605 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
606 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
607 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
609 mmap_write_unlock(mm);
611 userfaultfd_ctx_put(release_new_ctx);
615 * ctx may go away after this if the userfault pseudo fd is
619 WRITE_ONCE(ctx->mmap_changing, false);
620 userfaultfd_ctx_put(ctx);
623 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
624 struct userfaultfd_wait_queue *ewq)
627 wake_up_locked(&ctx->event_wqh);
628 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
631 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
633 struct userfaultfd_ctx *ctx = NULL, *octx;
634 struct userfaultfd_fork_ctx *fctx;
636 octx = vma->vm_userfaultfd_ctx.ctx;
637 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
639 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
643 list_for_each_entry(fctx, fcs, list)
644 if (fctx->orig == octx) {
650 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
654 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
660 refcount_set(&ctx->refcount, 1);
661 ctx->flags = octx->flags;
662 ctx->state = UFFD_STATE_RUNNING;
663 ctx->features = octx->features;
664 ctx->released = false;
665 ctx->mmap_changing = false;
666 ctx->mm = vma->vm_mm;
669 userfaultfd_ctx_get(octx);
670 WRITE_ONCE(octx->mmap_changing, true);
673 list_add_tail(&fctx->list, fcs);
676 vma->vm_userfaultfd_ctx.ctx = ctx;
680 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
682 struct userfaultfd_ctx *ctx = fctx->orig;
683 struct userfaultfd_wait_queue ewq;
687 ewq.msg.event = UFFD_EVENT_FORK;
688 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
690 userfaultfd_event_wait_completion(ctx, &ewq);
693 void dup_userfaultfd_complete(struct list_head *fcs)
695 struct userfaultfd_fork_ctx *fctx, *n;
697 list_for_each_entry_safe(fctx, n, fcs, list) {
699 list_del(&fctx->list);
704 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
705 struct vm_userfaultfd_ctx *vm_ctx)
707 struct userfaultfd_ctx *ctx;
709 ctx = vma->vm_userfaultfd_ctx.ctx;
714 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
716 userfaultfd_ctx_get(ctx);
717 WRITE_ONCE(ctx->mmap_changing, true);
719 /* Drop uffd context if remap feature not enabled */
720 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
721 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
725 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
726 unsigned long from, unsigned long to,
729 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
730 struct userfaultfd_wait_queue ewq;
735 if (to & ~PAGE_MASK) {
736 userfaultfd_ctx_put(ctx);
742 ewq.msg.event = UFFD_EVENT_REMAP;
743 ewq.msg.arg.remap.from = from;
744 ewq.msg.arg.remap.to = to;
745 ewq.msg.arg.remap.len = len;
747 userfaultfd_event_wait_completion(ctx, &ewq);
750 bool userfaultfd_remove(struct vm_area_struct *vma,
751 unsigned long start, unsigned long end)
753 struct mm_struct *mm = vma->vm_mm;
754 struct userfaultfd_ctx *ctx;
755 struct userfaultfd_wait_queue ewq;
757 ctx = vma->vm_userfaultfd_ctx.ctx;
758 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
761 userfaultfd_ctx_get(ctx);
762 WRITE_ONCE(ctx->mmap_changing, true);
763 mmap_read_unlock(mm);
767 ewq.msg.event = UFFD_EVENT_REMOVE;
768 ewq.msg.arg.remove.start = start;
769 ewq.msg.arg.remove.end = end;
771 userfaultfd_event_wait_completion(ctx, &ewq);
776 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
777 unsigned long start, unsigned long end)
779 struct userfaultfd_unmap_ctx *unmap_ctx;
781 list_for_each_entry(unmap_ctx, unmaps, list)
782 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
783 unmap_ctx->end == end)
789 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
790 unsigned long start, unsigned long end,
791 struct list_head *unmaps)
793 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
794 struct userfaultfd_unmap_ctx *unmap_ctx;
795 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
797 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
798 has_unmap_ctx(ctx, unmaps, start, end))
801 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
805 userfaultfd_ctx_get(ctx);
806 WRITE_ONCE(ctx->mmap_changing, true);
807 unmap_ctx->ctx = ctx;
808 unmap_ctx->start = start;
809 unmap_ctx->end = end;
810 list_add_tail(&unmap_ctx->list, unmaps);
816 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
818 struct userfaultfd_unmap_ctx *ctx, *n;
819 struct userfaultfd_wait_queue ewq;
821 list_for_each_entry_safe(ctx, n, uf, list) {
824 ewq.msg.event = UFFD_EVENT_UNMAP;
825 ewq.msg.arg.remove.start = ctx->start;
826 ewq.msg.arg.remove.end = ctx->end;
828 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
830 list_del(&ctx->list);
835 static int userfaultfd_release(struct inode *inode, struct file *file)
837 struct userfaultfd_ctx *ctx = file->private_data;
838 struct mm_struct *mm = ctx->mm;
839 struct vm_area_struct *vma, *prev;
840 /* len == 0 means wake all */
841 struct userfaultfd_wake_range range = { .len = 0, };
842 unsigned long new_flags;
844 WRITE_ONCE(ctx->released, true);
846 if (!mmget_not_zero(mm))
850 * Flush page faults out of all CPUs. NOTE: all page faults
851 * must be retried without returning VM_FAULT_SIGBUS if
852 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
853 * changes while handle_userfault released the mmap_lock. So
854 * it's critical that released is set to true (above), before
855 * taking the mmap_lock for writing.
859 for (vma = mm->mmap; vma; vma = vma->vm_next) {
861 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
862 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
863 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
867 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
868 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
869 new_flags, vma->anon_vma,
870 vma->vm_file, vma->vm_pgoff,
877 vma->vm_flags = new_flags;
878 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
880 mmap_write_unlock(mm);
884 * After no new page faults can wait on this fault_*wqh, flush
885 * the last page faults that may have been already waiting on
888 spin_lock_irq(&ctx->fault_pending_wqh.lock);
889 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
890 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
891 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
893 /* Flush pending events that may still wait on event_wqh */
894 wake_up_all(&ctx->event_wqh);
896 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
897 userfaultfd_ctx_put(ctx);
901 /* fault_pending_wqh.lock must be hold by the caller */
902 static inline struct userfaultfd_wait_queue *find_userfault_in(
903 wait_queue_head_t *wqh)
905 wait_queue_entry_t *wq;
906 struct userfaultfd_wait_queue *uwq;
908 lockdep_assert_held(&wqh->lock);
911 if (!waitqueue_active(wqh))
913 /* walk in reverse to provide FIFO behavior to read userfaults */
914 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
915 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
920 static inline struct userfaultfd_wait_queue *find_userfault(
921 struct userfaultfd_ctx *ctx)
923 return find_userfault_in(&ctx->fault_pending_wqh);
926 static inline struct userfaultfd_wait_queue *find_userfault_evt(
927 struct userfaultfd_ctx *ctx)
929 return find_userfault_in(&ctx->event_wqh);
932 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
934 struct userfaultfd_ctx *ctx = file->private_data;
937 poll_wait(file, &ctx->fd_wqh, wait);
939 switch (ctx->state) {
940 case UFFD_STATE_WAIT_API:
942 case UFFD_STATE_RUNNING:
944 * poll() never guarantees that read won't block.
945 * userfaults can be waken before they're read().
947 if (unlikely(!(file->f_flags & O_NONBLOCK)))
950 * lockless access to see if there are pending faults
951 * __pollwait last action is the add_wait_queue but
952 * the spin_unlock would allow the waitqueue_active to
953 * pass above the actual list_add inside
954 * add_wait_queue critical section. So use a full
955 * memory barrier to serialize the list_add write of
956 * add_wait_queue() with the waitqueue_active read
961 if (waitqueue_active(&ctx->fault_pending_wqh))
963 else if (waitqueue_active(&ctx->event_wqh))
973 static const struct file_operations userfaultfd_fops;
975 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
976 struct userfaultfd_ctx *new,
977 struct uffd_msg *msg)
981 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
982 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
986 msg->arg.reserved.reserved1 = 0;
987 msg->arg.fork.ufd = fd;
991 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
992 struct uffd_msg *msg)
995 DECLARE_WAITQUEUE(wait, current);
996 struct userfaultfd_wait_queue *uwq;
998 * Handling fork event requires sleeping operations, so
999 * we drop the event_wqh lock, then do these ops, then
1000 * lock it back and wake up the waiter. While the lock is
1001 * dropped the ewq may go away so we keep track of it
1004 LIST_HEAD(fork_event);
1005 struct userfaultfd_ctx *fork_nctx = NULL;
1007 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1008 spin_lock_irq(&ctx->fd_wqh.lock);
1009 __add_wait_queue(&ctx->fd_wqh, &wait);
1011 set_current_state(TASK_INTERRUPTIBLE);
1012 spin_lock(&ctx->fault_pending_wqh.lock);
1013 uwq = find_userfault(ctx);
1016 * Use a seqcount to repeat the lockless check
1017 * in wake_userfault() to avoid missing
1018 * wakeups because during the refile both
1019 * waitqueue could become empty if this is the
1022 write_seqcount_begin(&ctx->refile_seq);
1025 * The fault_pending_wqh.lock prevents the uwq
1026 * to disappear from under us.
1028 * Refile this userfault from
1029 * fault_pending_wqh to fault_wqh, it's not
1030 * pending anymore after we read it.
1032 * Use list_del() by hand (as
1033 * userfaultfd_wake_function also uses
1034 * list_del_init() by hand) to be sure nobody
1035 * changes __remove_wait_queue() to use
1036 * list_del_init() in turn breaking the
1037 * !list_empty_careful() check in
1038 * handle_userfault(). The uwq->wq.head list
1039 * must never be empty at any time during the
1040 * refile, or the waitqueue could disappear
1041 * from under us. The "wait_queue_head_t"
1042 * parameter of __remove_wait_queue() is unused
1045 list_del(&uwq->wq.entry);
1046 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1048 write_seqcount_end(&ctx->refile_seq);
1050 /* careful to always initialize msg if ret == 0 */
1052 spin_unlock(&ctx->fault_pending_wqh.lock);
1056 spin_unlock(&ctx->fault_pending_wqh.lock);
1058 spin_lock(&ctx->event_wqh.lock);
1059 uwq = find_userfault_evt(ctx);
1063 if (uwq->msg.event == UFFD_EVENT_FORK) {
1064 fork_nctx = (struct userfaultfd_ctx *)
1066 uwq->msg.arg.reserved.reserved1;
1067 list_move(&uwq->wq.entry, &fork_event);
1069 * fork_nctx can be freed as soon as
1070 * we drop the lock, unless we take a
1073 userfaultfd_ctx_get(fork_nctx);
1074 spin_unlock(&ctx->event_wqh.lock);
1079 userfaultfd_event_complete(ctx, uwq);
1080 spin_unlock(&ctx->event_wqh.lock);
1084 spin_unlock(&ctx->event_wqh.lock);
1086 if (signal_pending(current)) {
1094 spin_unlock_irq(&ctx->fd_wqh.lock);
1096 spin_lock_irq(&ctx->fd_wqh.lock);
1098 __remove_wait_queue(&ctx->fd_wqh, &wait);
1099 __set_current_state(TASK_RUNNING);
1100 spin_unlock_irq(&ctx->fd_wqh.lock);
1102 if (!ret && msg->event == UFFD_EVENT_FORK) {
1103 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1104 spin_lock_irq(&ctx->event_wqh.lock);
1105 if (!list_empty(&fork_event)) {
1107 * The fork thread didn't abort, so we can
1108 * drop the temporary refcount.
1110 userfaultfd_ctx_put(fork_nctx);
1112 uwq = list_first_entry(&fork_event,
1116 * If fork_event list wasn't empty and in turn
1117 * the event wasn't already released by fork
1118 * (the event is allocated on fork kernel
1119 * stack), put the event back to its place in
1120 * the event_wq. fork_event head will be freed
1121 * as soon as we return so the event cannot
1122 * stay queued there no matter the current
1125 list_del(&uwq->wq.entry);
1126 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1129 * Leave the event in the waitqueue and report
1130 * error to userland if we failed to resolve
1131 * the userfault fork.
1134 userfaultfd_event_complete(ctx, uwq);
1137 * Here the fork thread aborted and the
1138 * refcount from the fork thread on fork_nctx
1139 * has already been released. We still hold
1140 * the reference we took before releasing the
1141 * lock above. If resolve_userfault_fork
1142 * failed we've to drop it because the
1143 * fork_nctx has to be freed in such case. If
1144 * it succeeded we'll hold it because the new
1145 * uffd references it.
1148 userfaultfd_ctx_put(fork_nctx);
1150 spin_unlock_irq(&ctx->event_wqh.lock);
1156 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1157 size_t count, loff_t *ppos)
1159 struct userfaultfd_ctx *ctx = file->private_data;
1160 ssize_t _ret, ret = 0;
1161 struct uffd_msg msg;
1162 int no_wait = file->f_flags & O_NONBLOCK;
1164 if (ctx->state == UFFD_STATE_WAIT_API)
1168 if (count < sizeof(msg))
1169 return ret ? ret : -EINVAL;
1170 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1172 return ret ? ret : _ret;
1173 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1174 return ret ? ret : -EFAULT;
1177 count -= sizeof(msg);
1179 * Allow to read more than one fault at time but only
1180 * block if waiting for the very first one.
1182 no_wait = O_NONBLOCK;
1186 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1187 struct userfaultfd_wake_range *range)
1189 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1190 /* wake all in the range and autoremove */
1191 if (waitqueue_active(&ctx->fault_pending_wqh))
1192 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1194 if (waitqueue_active(&ctx->fault_wqh))
1195 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1196 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1199 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1200 struct userfaultfd_wake_range *range)
1206 * To be sure waitqueue_active() is not reordered by the CPU
1207 * before the pagetable update, use an explicit SMP memory
1208 * barrier here. PT lock release or mmap_read_unlock(mm) still
1209 * have release semantics that can allow the
1210 * waitqueue_active() to be reordered before the pte update.
1215 * Use waitqueue_active because it's very frequent to
1216 * change the address space atomically even if there are no
1217 * userfaults yet. So we take the spinlock only when we're
1218 * sure we've userfaults to wake.
1221 seq = read_seqcount_begin(&ctx->refile_seq);
1222 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1223 waitqueue_active(&ctx->fault_wqh);
1225 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1227 __wake_userfault(ctx, range);
1230 static __always_inline int validate_range(struct mm_struct *mm,
1231 __u64 *start, __u64 len)
1233 __u64 task_size = mm->task_size;
1235 *start = untagged_addr(*start);
1237 if (*start & ~PAGE_MASK)
1239 if (len & ~PAGE_MASK)
1243 if (*start < mmap_min_addr)
1245 if (*start >= task_size)
1247 if (len > task_size - *start)
1252 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1253 unsigned long vm_flags)
1255 /* FIXME: add WP support to hugetlbfs and shmem */
1256 return vma_is_anonymous(vma) ||
1257 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1258 !(vm_flags & VM_UFFD_WP));
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1264 struct mm_struct *mm = ctx->mm;
1265 struct vm_area_struct *vma, *prev, *cur;
1267 struct uffdio_register uffdio_register;
1268 struct uffdio_register __user *user_uffdio_register;
1269 unsigned long vm_flags, new_flags;
1272 unsigned long start, end, vma_end;
1274 user_uffdio_register = (struct uffdio_register __user *) arg;
1277 if (copy_from_user(&uffdio_register, user_uffdio_register,
1278 sizeof(uffdio_register)-sizeof(__u64)))
1282 if (!uffdio_register.mode)
1284 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1285 UFFDIO_REGISTER_MODE_WP))
1288 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1289 vm_flags |= VM_UFFD_MISSING;
1290 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1291 vm_flags |= VM_UFFD_WP;
1293 ret = validate_range(mm, &uffdio_register.range.start,
1294 uffdio_register.range.len);
1298 start = uffdio_register.range.start;
1299 end = start + uffdio_register.range.len;
1302 if (!mmget_not_zero(mm))
1305 mmap_write_lock(mm);
1306 vma = find_vma_prev(mm, start, &prev);
1310 /* check that there's at least one vma in the range */
1312 if (vma->vm_start >= end)
1316 * If the first vma contains huge pages, make sure start address
1317 * is aligned to huge page size.
1319 if (is_vm_hugetlb_page(vma)) {
1320 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1322 if (start & (vma_hpagesize - 1))
1327 * Search for not compatible vmas.
1330 basic_ioctls = false;
1331 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1334 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1335 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1337 /* check not compatible vmas */
1339 if (!vma_can_userfault(cur, vm_flags))
1343 * UFFDIO_COPY will fill file holes even without
1344 * PROT_WRITE. This check enforces that if this is a
1345 * MAP_SHARED, the process has write permission to the backing
1346 * file. If VM_MAYWRITE is set it also enforces that on a
1347 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1348 * F_WRITE_SEAL can be taken until the vma is destroyed.
1351 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1355 * If this vma contains ending address, and huge pages
1358 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359 end > cur->vm_start) {
1360 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1364 if (end & (vma_hpagesize - 1))
1367 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1371 * Check that this vma isn't already owned by a
1372 * different userfaultfd. We can't allow more than one
1373 * userfaultfd to own a single vma simultaneously or we
1374 * wouldn't know which one to deliver the userfaults to.
1377 if (cur->vm_userfaultfd_ctx.ctx &&
1378 cur->vm_userfaultfd_ctx.ctx != ctx)
1382 * Note vmas containing huge pages
1384 if (is_vm_hugetlb_page(cur))
1385 basic_ioctls = true;
1391 if (vma->vm_start < start)
1398 BUG_ON(!vma_can_userfault(vma, vm_flags));
1399 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1400 vma->vm_userfaultfd_ctx.ctx != ctx);
1401 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1404 * Nothing to do: this vma is already registered into this
1405 * userfaultfd and with the right tracking mode too.
1407 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1408 (vma->vm_flags & vm_flags) == vm_flags)
1411 if (vma->vm_start > start)
1412 start = vma->vm_start;
1413 vma_end = min(end, vma->vm_end);
1415 new_flags = (vma->vm_flags &
1416 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1417 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1418 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1420 ((struct vm_userfaultfd_ctx){ ctx }));
1425 if (vma->vm_start < start) {
1426 ret = split_vma(mm, vma, start, 1);
1430 if (vma->vm_end > end) {
1431 ret = split_vma(mm, vma, end, 0);
1437 * In the vma_merge() successful mprotect-like case 8:
1438 * the next vma was merged into the current one and
1439 * the current one has not been updated yet.
1441 vma->vm_flags = new_flags;
1442 vma->vm_userfaultfd_ctx.ctx = ctx;
1446 start = vma->vm_end;
1448 } while (vma && vma->vm_start < end);
1450 mmap_write_unlock(mm);
1455 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1456 UFFD_API_RANGE_IOCTLS;
1459 * Declare the WP ioctl only if the WP mode is
1460 * specified and all checks passed with the range
1462 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1463 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1466 * Now that we scanned all vmas we can already tell
1467 * userland which ioctls methods are guaranteed to
1468 * succeed on this range.
1470 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1477 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1480 struct mm_struct *mm = ctx->mm;
1481 struct vm_area_struct *vma, *prev, *cur;
1483 struct uffdio_range uffdio_unregister;
1484 unsigned long new_flags;
1486 unsigned long start, end, vma_end;
1487 const void __user *buf = (void __user *)arg;
1490 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1493 ret = validate_range(mm, &uffdio_unregister.start,
1494 uffdio_unregister.len);
1498 start = uffdio_unregister.start;
1499 end = start + uffdio_unregister.len;
1502 if (!mmget_not_zero(mm))
1505 mmap_write_lock(mm);
1506 vma = find_vma_prev(mm, start, &prev);
1510 /* check that there's at least one vma in the range */
1512 if (vma->vm_start >= end)
1516 * If the first vma contains huge pages, make sure start address
1517 * is aligned to huge page size.
1519 if (is_vm_hugetlb_page(vma)) {
1520 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1522 if (start & (vma_hpagesize - 1))
1527 * Search for not compatible vmas.
1531 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1534 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1535 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1538 * Check not compatible vmas, not strictly required
1539 * here as not compatible vmas cannot have an
1540 * userfaultfd_ctx registered on them, but this
1541 * provides for more strict behavior to notice
1542 * unregistration errors.
1544 if (!vma_can_userfault(cur, cur->vm_flags))
1551 if (vma->vm_start < start)
1558 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1561 * Nothing to do: this vma is already registered into this
1562 * userfaultfd and with the right tracking mode too.
1564 if (!vma->vm_userfaultfd_ctx.ctx)
1567 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1569 if (vma->vm_start > start)
1570 start = vma->vm_start;
1571 vma_end = min(end, vma->vm_end);
1573 if (userfaultfd_missing(vma)) {
1575 * Wake any concurrent pending userfault while
1576 * we unregister, so they will not hang
1577 * permanently and it avoids userland to call
1578 * UFFDIO_WAKE explicitly.
1580 struct userfaultfd_wake_range range;
1581 range.start = start;
1582 range.len = vma_end - start;
1583 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1586 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1587 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1588 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1595 if (vma->vm_start < start) {
1596 ret = split_vma(mm, vma, start, 1);
1600 if (vma->vm_end > end) {
1601 ret = split_vma(mm, vma, end, 0);
1607 * In the vma_merge() successful mprotect-like case 8:
1608 * the next vma was merged into the current one and
1609 * the current one has not been updated yet.
1611 vma->vm_flags = new_flags;
1612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1616 start = vma->vm_end;
1618 } while (vma && vma->vm_start < end);
1620 mmap_write_unlock(mm);
1627 * userfaultfd_wake may be used in combination with the
1628 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1630 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1634 struct uffdio_range uffdio_wake;
1635 struct userfaultfd_wake_range range;
1636 const void __user *buf = (void __user *)arg;
1639 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1642 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1646 range.start = uffdio_wake.start;
1647 range.len = uffdio_wake.len;
1650 * len == 0 means wake all and we don't want to wake all here,
1651 * so check it again to be sure.
1653 VM_BUG_ON(!range.len);
1655 wake_userfault(ctx, &range);
1662 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1666 struct uffdio_copy uffdio_copy;
1667 struct uffdio_copy __user *user_uffdio_copy;
1668 struct userfaultfd_wake_range range;
1670 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1673 if (READ_ONCE(ctx->mmap_changing))
1677 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1678 /* don't copy "copy" last field */
1679 sizeof(uffdio_copy)-sizeof(__s64)))
1682 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1686 * double check for wraparound just in case. copy_from_user()
1687 * will later check uffdio_copy.src + uffdio_copy.len to fit
1688 * in the userland range.
1691 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1693 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1695 if (mmget_not_zero(ctx->mm)) {
1696 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1697 uffdio_copy.len, &ctx->mmap_changing,
1703 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1708 /* len == 0 would wake all */
1710 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1711 range.start = uffdio_copy.dst;
1712 wake_userfault(ctx, &range);
1714 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1719 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1723 struct uffdio_zeropage uffdio_zeropage;
1724 struct uffdio_zeropage __user *user_uffdio_zeropage;
1725 struct userfaultfd_wake_range range;
1727 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1730 if (READ_ONCE(ctx->mmap_changing))
1734 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1735 /* don't copy "zeropage" last field */
1736 sizeof(uffdio_zeropage)-sizeof(__s64)))
1739 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1740 uffdio_zeropage.range.len);
1744 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1747 if (mmget_not_zero(ctx->mm)) {
1748 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1749 uffdio_zeropage.range.len,
1750 &ctx->mmap_changing);
1755 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1759 /* len == 0 would wake all */
1762 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1763 range.start = uffdio_zeropage.range.start;
1764 wake_userfault(ctx, &range);
1766 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1771 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1775 struct uffdio_writeprotect uffdio_wp;
1776 struct uffdio_writeprotect __user *user_uffdio_wp;
1777 struct userfaultfd_wake_range range;
1778 bool mode_wp, mode_dontwake;
1780 if (READ_ONCE(ctx->mmap_changing))
1783 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1785 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1786 sizeof(struct uffdio_writeprotect)))
1789 ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1790 uffdio_wp.range.len);
1794 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1795 UFFDIO_WRITEPROTECT_MODE_WP))
1798 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1799 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1801 if (mode_wp && mode_dontwake)
1804 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1805 uffdio_wp.range.len, mode_wp,
1806 &ctx->mmap_changing);
1810 if (!mode_wp && !mode_dontwake) {
1811 range.start = uffdio_wp.range.start;
1812 range.len = uffdio_wp.range.len;
1813 wake_userfault(ctx, &range);
1818 static inline unsigned int uffd_ctx_features(__u64 user_features)
1821 * For the current set of features the bits just coincide
1823 return (unsigned int)user_features;
1827 * userland asks for a certain API version and we return which bits
1828 * and ioctl commands are implemented in this kernel for such API
1829 * version or -EINVAL if unknown.
1831 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1834 struct uffdio_api uffdio_api;
1835 void __user *buf = (void __user *)arg;
1840 if (ctx->state != UFFD_STATE_WAIT_API)
1843 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1845 features = uffdio_api.features;
1847 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1850 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1852 /* report all available features and ioctls to userland */
1853 uffdio_api.features = UFFD_API_FEATURES;
1854 uffdio_api.ioctls = UFFD_API_IOCTLS;
1856 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1858 ctx->state = UFFD_STATE_RUNNING;
1859 /* only enable the requested features for this uffd context */
1860 ctx->features = uffd_ctx_features(features);
1865 memset(&uffdio_api, 0, sizeof(uffdio_api));
1866 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1871 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1875 struct userfaultfd_ctx *ctx = file->private_data;
1877 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1882 ret = userfaultfd_api(ctx, arg);
1884 case UFFDIO_REGISTER:
1885 ret = userfaultfd_register(ctx, arg);
1887 case UFFDIO_UNREGISTER:
1888 ret = userfaultfd_unregister(ctx, arg);
1891 ret = userfaultfd_wake(ctx, arg);
1894 ret = userfaultfd_copy(ctx, arg);
1896 case UFFDIO_ZEROPAGE:
1897 ret = userfaultfd_zeropage(ctx, arg);
1899 case UFFDIO_WRITEPROTECT:
1900 ret = userfaultfd_writeprotect(ctx, arg);
1906 #ifdef CONFIG_PROC_FS
1907 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1909 struct userfaultfd_ctx *ctx = f->private_data;
1910 wait_queue_entry_t *wq;
1911 unsigned long pending = 0, total = 0;
1913 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1914 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1918 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1921 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1924 * If more protocols will be added, there will be all shown
1925 * separated by a space. Like this:
1926 * protocols: aa:... bb:...
1928 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1929 pending, total, UFFD_API, ctx->features,
1930 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1934 static const struct file_operations userfaultfd_fops = {
1935 #ifdef CONFIG_PROC_FS
1936 .show_fdinfo = userfaultfd_show_fdinfo,
1938 .release = userfaultfd_release,
1939 .poll = userfaultfd_poll,
1940 .read = userfaultfd_read,
1941 .unlocked_ioctl = userfaultfd_ioctl,
1942 .compat_ioctl = compat_ptr_ioctl,
1943 .llseek = noop_llseek,
1946 static void init_once_userfaultfd_ctx(void *mem)
1948 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1950 init_waitqueue_head(&ctx->fault_pending_wqh);
1951 init_waitqueue_head(&ctx->fault_wqh);
1952 init_waitqueue_head(&ctx->event_wqh);
1953 init_waitqueue_head(&ctx->fd_wqh);
1954 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1957 SYSCALL_DEFINE1(userfaultfd, int, flags)
1959 struct userfaultfd_ctx *ctx;
1962 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1965 BUG_ON(!current->mm);
1967 /* Check the UFFD_* constants for consistency. */
1968 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1969 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1971 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1974 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1978 refcount_set(&ctx->refcount, 1);
1981 ctx->state = UFFD_STATE_WAIT_API;
1982 ctx->released = false;
1983 ctx->mmap_changing = false;
1984 ctx->mm = current->mm;
1985 /* prevent the mm struct to be freed */
1988 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1989 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1992 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1997 static int __init userfaultfd_init(void)
1999 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2000 sizeof(struct userfaultfd_ctx),
2002 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2003 init_once_userfaultfd_ctx);
2006 __initcall(userfaultfd_init);