]> Git Repo - linux.git/blob - drivers/cpufreq/cpufreq.c
thermal: core: Do not fail cdev registration because of invalid initial state
[linux.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <[email protected]>
7  *            (C) 2013 Viresh Kumar <[email protected]>
8  *
9  *  Oct 2005 - Ashok Raj <[email protected]>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <[email protected]>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)                     \
38         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39                 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy)                \
42         for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)              \
44         for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)                           \
49         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65         return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 bool has_target_index(void)
77 {
78         return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87                               struct cpufreq_governor *new_gov,
88                               unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104         return off;
105 }
106 void disable_cpufreq(void)
107 {
108         off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112 bool have_governor_per_policy(void)
113 {
114         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         struct kernel_cpustat kcpustat;
132         u64 cur_wall_time;
133         u64 idle_time;
134         u64 busy_time;
135
136         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138         kcpustat_cpu_fetch(&kcpustat, cpu);
139
140         busy_time = kcpustat.cpustat[CPUTIME_USER];
141         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145         busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147         idle_time = cur_wall_time - busy_time;
148         if (wall)
149                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151         return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158         if (idle_time == -1ULL)
159                 return get_cpu_idle_time_jiffy(cpu, wall);
160         else if (!io_busy)
161                 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163         return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175                 struct cpufreq_frequency_table *table,
176                 unsigned int transition_latency)
177 {
178         policy->freq_table = table;
179         policy->cpuinfo.transition_latency = transition_latency;
180
181         /*
182          * The driver only supports the SMP configuration where all processors
183          * share the clock and voltage and clock.
184          */
185         cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201         if (!policy || IS_ERR(policy->clk)) {
202                 pr_err("%s: No %s associated to cpu: %d\n",
203                        __func__, policy ? "clk" : "policy", cpu);
204                 return 0;
205         }
206
207         return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224         struct cpufreq_policy *policy = NULL;
225         unsigned long flags;
226
227         if (WARN_ON(cpu >= nr_cpu_ids))
228                 return NULL;
229
230         /* get the cpufreq driver */
231         read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233         if (cpufreq_driver) {
234                 /* get the CPU */
235                 policy = cpufreq_cpu_get_raw(cpu);
236                 if (policy)
237                         kobject_get(&policy->kobj);
238         }
239
240         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242         return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252         kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262         if (WARN_ON(!policy))
263                 return;
264
265         lockdep_assert_held(&policy->rwsem);
266
267         up_write(&policy->rwsem);
268
269         cpufreq_cpu_put(policy);
270 }
271
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288         if (!policy)
289                 return NULL;
290
291         down_write(&policy->rwsem);
292
293         if (policy_is_inactive(policy)) {
294                 cpufreq_cpu_release(policy);
295                 return NULL;
296         }
297
298         return policy;
299 }
300
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318         static unsigned long l_p_j_ref;
319         static unsigned int l_p_j_ref_freq;
320
321         if (ci->flags & CPUFREQ_CONST_LOOPS)
322                 return;
323
324         if (!l_p_j_ref_freq) {
325                 l_p_j_ref = loops_per_jiffy;
326                 l_p_j_ref_freq = ci->old;
327                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328                          l_p_j_ref, l_p_j_ref_freq);
329         }
330         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332                                                                 ci->new);
333                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334                          loops_per_jiffy, ci->new);
335         }
336 #endif
337 }
338
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350                                       struct cpufreq_freqs *freqs,
351                                       unsigned int state)
352 {
353         int cpu;
354
355         BUG_ON(irqs_disabled());
356
357         if (cpufreq_disabled())
358                 return;
359
360         freqs->policy = policy;
361         freqs->flags = cpufreq_driver->flags;
362         pr_debug("notification %u of frequency transition to %u kHz\n",
363                  state, freqs->new);
364
365         switch (state) {
366         case CPUFREQ_PRECHANGE:
367                 /*
368                  * Detect if the driver reported a value as "old frequency"
369                  * which is not equal to what the cpufreq core thinks is
370                  * "old frequency".
371                  */
372                 if (policy->cur && policy->cur != freqs->old) {
373                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374                                  freqs->old, policy->cur);
375                         freqs->old = policy->cur;
376                 }
377
378                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379                                          CPUFREQ_PRECHANGE, freqs);
380
381                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382                 break;
383
384         case CPUFREQ_POSTCHANGE:
385                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387                          cpumask_pr_args(policy->cpus));
388
389                 for_each_cpu(cpu, policy->cpus)
390                         trace_cpu_frequency(freqs->new, cpu);
391
392                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393                                          CPUFREQ_POSTCHANGE, freqs);
394
395                 cpufreq_stats_record_transition(policy, freqs->new);
396                 policy->cur = freqs->new;
397         }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402                 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405         if (!transition_failed)
406                 return;
407
408         swap(freqs->old, freqs->new);
409         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414                 struct cpufreq_freqs *freqs)
415 {
416
417         /*
418          * Catch double invocations of _begin() which lead to self-deadlock.
419          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420          * doesn't invoke _begin() on their behalf, and hence the chances of
421          * double invocations are very low. Moreover, there are scenarios
422          * where these checks can emit false-positive warnings in these
423          * drivers; so we avoid that by skipping them altogether.
424          */
425         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426                                 && current == policy->transition_task);
427
428 wait:
429         wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431         spin_lock(&policy->transition_lock);
432
433         if (unlikely(policy->transition_ongoing)) {
434                 spin_unlock(&policy->transition_lock);
435                 goto wait;
436         }
437
438         policy->transition_ongoing = true;
439         policy->transition_task = current;
440
441         spin_unlock(&policy->transition_lock);
442
443         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448                 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450         if (WARN_ON(!policy->transition_ongoing))
451                 return;
452
453         cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455         arch_set_freq_scale(policy->related_cpus,
456                             policy->cur,
457                             arch_scale_freq_ref(policy->cpu));
458
459         spin_lock(&policy->transition_lock);
460         policy->transition_ongoing = false;
461         policy->transition_task = NULL;
462         spin_unlock(&policy->transition_lock);
463
464         wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475 static void cpufreq_list_transition_notifiers(void)
476 {
477         struct notifier_block *nb;
478
479         pr_info("Registered transition notifiers:\n");
480
481         mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484                 pr_info("%pS\n", nb->notifier_call);
485
486         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502         lockdep_assert_held(&policy->rwsem);
503
504         if (!policy->fast_switch_possible)
505                 return;
506
507         mutex_lock(&cpufreq_fast_switch_lock);
508         if (cpufreq_fast_switch_count >= 0) {
509                 cpufreq_fast_switch_count++;
510                 policy->fast_switch_enabled = true;
511         } else {
512                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513                         policy->cpu);
514                 cpufreq_list_transition_notifiers();
515         }
516         mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526         mutex_lock(&cpufreq_fast_switch_lock);
527         if (policy->fast_switch_enabled) {
528                 policy->fast_switch_enabled = false;
529                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530                         cpufreq_fast_switch_count--;
531         }
532         mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537                 unsigned int target_freq, unsigned int relation)
538 {
539         unsigned int idx;
540
541         target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543         if (!policy->freq_table)
544                 return target_freq;
545
546         idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547         policy->cached_resolved_idx = idx;
548         policy->cached_target_freq = target_freq;
549         return policy->freq_table[idx].frequency;
550 }
551
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564                                          unsigned int target_freq)
565 {
566         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572         unsigned int latency;
573
574         if (policy->transition_delay_us)
575                 return policy->transition_delay_us;
576
577         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578         if (latency) {
579                 unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580
581                 /*
582                  * If the platform already has high transition_latency, use it
583                  * as-is.
584                  */
585                 if (latency > max_delay_us)
586                         return latency;
587
588                 /*
589                  * For platforms that can change the frequency very fast (< 2
590                  * us), the above formula gives a decent transition delay. But
591                  * for platforms where transition_latency is in milliseconds, it
592                  * ends up giving unrealistic values.
593                  *
594                  * Cap the default transition delay to 2 ms, which seems to be
595                  * a reasonable amount of time after which we should reevaluate
596                  * the frequency.
597                  */
598                 return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599         }
600
601         return LATENCY_MULTIPLIER;
602 }
603 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604
605 /*********************************************************************
606  *                          SYSFS INTERFACE                          *
607  *********************************************************************/
608 static ssize_t show_boost(struct kobject *kobj,
609                           struct kobj_attribute *attr, char *buf)
610 {
611         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
612 }
613
614 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615                            const char *buf, size_t count)
616 {
617         int ret, enable;
618
619         ret = sscanf(buf, "%d", &enable);
620         if (ret != 1 || enable < 0 || enable > 1)
621                 return -EINVAL;
622
623         if (cpufreq_boost_trigger_state(enable)) {
624                 pr_err("%s: Cannot %s BOOST!\n",
625                        __func__, enable ? "enable" : "disable");
626                 return -EINVAL;
627         }
628
629         pr_debug("%s: cpufreq BOOST %s\n",
630                  __func__, enable ? "enabled" : "disabled");
631
632         return count;
633 }
634 define_one_global_rw(boost);
635
636 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
637 {
638         return sysfs_emit(buf, "%d\n", policy->boost_enabled);
639 }
640
641 static ssize_t store_local_boost(struct cpufreq_policy *policy,
642                                  const char *buf, size_t count)
643 {
644         int ret, enable;
645
646         ret = kstrtoint(buf, 10, &enable);
647         if (ret || enable < 0 || enable > 1)
648                 return -EINVAL;
649
650         if (!cpufreq_driver->boost_enabled)
651                 return -EINVAL;
652
653         if (policy->boost_enabled == enable)
654                 return count;
655
656         policy->boost_enabled = enable;
657
658         cpus_read_lock();
659         ret = cpufreq_driver->set_boost(policy, enable);
660         cpus_read_unlock();
661
662         if (ret) {
663                 policy->boost_enabled = !policy->boost_enabled;
664                 return ret;
665         }
666
667         return count;
668 }
669
670 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
671
672 static struct cpufreq_governor *find_governor(const char *str_governor)
673 {
674         struct cpufreq_governor *t;
675
676         for_each_governor(t)
677                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
678                         return t;
679
680         return NULL;
681 }
682
683 static struct cpufreq_governor *get_governor(const char *str_governor)
684 {
685         struct cpufreq_governor *t;
686
687         mutex_lock(&cpufreq_governor_mutex);
688         t = find_governor(str_governor);
689         if (!t)
690                 goto unlock;
691
692         if (!try_module_get(t->owner))
693                 t = NULL;
694
695 unlock:
696         mutex_unlock(&cpufreq_governor_mutex);
697
698         return t;
699 }
700
701 static unsigned int cpufreq_parse_policy(char *str_governor)
702 {
703         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
704                 return CPUFREQ_POLICY_PERFORMANCE;
705
706         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
707                 return CPUFREQ_POLICY_POWERSAVE;
708
709         return CPUFREQ_POLICY_UNKNOWN;
710 }
711
712 /**
713  * cpufreq_parse_governor - parse a governor string only for has_target()
714  * @str_governor: Governor name.
715  */
716 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
717 {
718         struct cpufreq_governor *t;
719
720         t = get_governor(str_governor);
721         if (t)
722                 return t;
723
724         if (request_module("cpufreq_%s", str_governor))
725                 return NULL;
726
727         return get_governor(str_governor);
728 }
729
730 /*
731  * cpufreq_per_cpu_attr_read() / show_##file_name() -
732  * print out cpufreq information
733  *
734  * Write out information from cpufreq_driver->policy[cpu]; object must be
735  * "unsigned int".
736  */
737
738 #define show_one(file_name, object)                     \
739 static ssize_t show_##file_name                         \
740 (struct cpufreq_policy *policy, char *buf)              \
741 {                                                       \
742         return sprintf(buf, "%u\n", policy->object);    \
743 }
744
745 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
746 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
747 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
748 show_one(scaling_min_freq, min);
749 show_one(scaling_max_freq, max);
750
751 __weak unsigned int arch_freq_get_on_cpu(int cpu)
752 {
753         return 0;
754 }
755
756 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
757 {
758         ssize_t ret;
759         unsigned int freq;
760
761         freq = arch_freq_get_on_cpu(policy->cpu);
762         if (freq)
763                 ret = sprintf(buf, "%u\n", freq);
764         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
765                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
766         else
767                 ret = sprintf(buf, "%u\n", policy->cur);
768         return ret;
769 }
770
771 /*
772  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
773  */
774 #define store_one(file_name, object)                    \
775 static ssize_t store_##file_name                                        \
776 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
777 {                                                                       \
778         unsigned long val;                                              \
779         int ret;                                                        \
780                                                                         \
781         ret = kstrtoul(buf, 0, &val);                                   \
782         if (ret)                                                        \
783                 return ret;                                             \
784                                                                         \
785         ret = freq_qos_update_request(policy->object##_freq_req, val);\
786         return ret >= 0 ? count : ret;                                  \
787 }
788
789 store_one(scaling_min_freq, min);
790 store_one(scaling_max_freq, max);
791
792 /*
793  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
794  */
795 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
796                                         char *buf)
797 {
798         unsigned int cur_freq = __cpufreq_get(policy);
799
800         if (cur_freq)
801                 return sprintf(buf, "%u\n", cur_freq);
802
803         return sprintf(buf, "<unknown>\n");
804 }
805
806 /*
807  * show_scaling_governor - show the current policy for the specified CPU
808  */
809 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
810 {
811         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
812                 return sprintf(buf, "powersave\n");
813         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
814                 return sprintf(buf, "performance\n");
815         else if (policy->governor)
816                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
817                                 policy->governor->name);
818         return -EINVAL;
819 }
820
821 /*
822  * store_scaling_governor - store policy for the specified CPU
823  */
824 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
825                                         const char *buf, size_t count)
826 {
827         char str_governor[16];
828         int ret;
829
830         ret = sscanf(buf, "%15s", str_governor);
831         if (ret != 1)
832                 return -EINVAL;
833
834         if (cpufreq_driver->setpolicy) {
835                 unsigned int new_pol;
836
837                 new_pol = cpufreq_parse_policy(str_governor);
838                 if (!new_pol)
839                         return -EINVAL;
840
841                 ret = cpufreq_set_policy(policy, NULL, new_pol);
842         } else {
843                 struct cpufreq_governor *new_gov;
844
845                 new_gov = cpufreq_parse_governor(str_governor);
846                 if (!new_gov)
847                         return -EINVAL;
848
849                 ret = cpufreq_set_policy(policy, new_gov,
850                                          CPUFREQ_POLICY_UNKNOWN);
851
852                 module_put(new_gov->owner);
853         }
854
855         return ret ? ret : count;
856 }
857
858 /*
859  * show_scaling_driver - show the cpufreq driver currently loaded
860  */
861 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
862 {
863         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
864 }
865
866 /*
867  * show_scaling_available_governors - show the available CPUfreq governors
868  */
869 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
870                                                 char *buf)
871 {
872         ssize_t i = 0;
873         struct cpufreq_governor *t;
874
875         if (!has_target()) {
876                 i += sprintf(buf, "performance powersave");
877                 goto out;
878         }
879
880         mutex_lock(&cpufreq_governor_mutex);
881         for_each_governor(t) {
882                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
883                     - (CPUFREQ_NAME_LEN + 2)))
884                         break;
885                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
886         }
887         mutex_unlock(&cpufreq_governor_mutex);
888 out:
889         i += sprintf(&buf[i], "\n");
890         return i;
891 }
892
893 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
894 {
895         ssize_t i = 0;
896         unsigned int cpu;
897
898         for_each_cpu(cpu, mask) {
899                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
900                 if (i >= (PAGE_SIZE - 5))
901                         break;
902         }
903
904         /* Remove the extra space at the end */
905         i--;
906
907         i += sprintf(&buf[i], "\n");
908         return i;
909 }
910 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
911
912 /*
913  * show_related_cpus - show the CPUs affected by each transition even if
914  * hw coordination is in use
915  */
916 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
917 {
918         return cpufreq_show_cpus(policy->related_cpus, buf);
919 }
920
921 /*
922  * show_affected_cpus - show the CPUs affected by each transition
923  */
924 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
925 {
926         return cpufreq_show_cpus(policy->cpus, buf);
927 }
928
929 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
930                                         const char *buf, size_t count)
931 {
932         unsigned int freq = 0;
933         unsigned int ret;
934
935         if (!policy->governor || !policy->governor->store_setspeed)
936                 return -EINVAL;
937
938         ret = sscanf(buf, "%u", &freq);
939         if (ret != 1)
940                 return -EINVAL;
941
942         policy->governor->store_setspeed(policy, freq);
943
944         return count;
945 }
946
947 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
948 {
949         if (!policy->governor || !policy->governor->show_setspeed)
950                 return sprintf(buf, "<unsupported>\n");
951
952         return policy->governor->show_setspeed(policy, buf);
953 }
954
955 /*
956  * show_bios_limit - show the current cpufreq HW/BIOS limitation
957  */
958 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
959 {
960         unsigned int limit;
961         int ret;
962         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
963         if (!ret)
964                 return sprintf(buf, "%u\n", limit);
965         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
966 }
967
968 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
969 cpufreq_freq_attr_ro(cpuinfo_min_freq);
970 cpufreq_freq_attr_ro(cpuinfo_max_freq);
971 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
972 cpufreq_freq_attr_ro(scaling_available_governors);
973 cpufreq_freq_attr_ro(scaling_driver);
974 cpufreq_freq_attr_ro(scaling_cur_freq);
975 cpufreq_freq_attr_ro(bios_limit);
976 cpufreq_freq_attr_ro(related_cpus);
977 cpufreq_freq_attr_ro(affected_cpus);
978 cpufreq_freq_attr_rw(scaling_min_freq);
979 cpufreq_freq_attr_rw(scaling_max_freq);
980 cpufreq_freq_attr_rw(scaling_governor);
981 cpufreq_freq_attr_rw(scaling_setspeed);
982
983 static struct attribute *cpufreq_attrs[] = {
984         &cpuinfo_min_freq.attr,
985         &cpuinfo_max_freq.attr,
986         &cpuinfo_transition_latency.attr,
987         &scaling_min_freq.attr,
988         &scaling_max_freq.attr,
989         &affected_cpus.attr,
990         &related_cpus.attr,
991         &scaling_governor.attr,
992         &scaling_driver.attr,
993         &scaling_available_governors.attr,
994         &scaling_setspeed.attr,
995         NULL
996 };
997 ATTRIBUTE_GROUPS(cpufreq);
998
999 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000 #define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003 {
1004         struct cpufreq_policy *policy = to_policy(kobj);
1005         struct freq_attr *fattr = to_attr(attr);
1006         ssize_t ret = -EBUSY;
1007
1008         if (!fattr->show)
1009                 return -EIO;
1010
1011         down_read(&policy->rwsem);
1012         if (likely(!policy_is_inactive(policy)))
1013                 ret = fattr->show(policy, buf);
1014         up_read(&policy->rwsem);
1015
1016         return ret;
1017 }
1018
1019 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020                      const char *buf, size_t count)
1021 {
1022         struct cpufreq_policy *policy = to_policy(kobj);
1023         struct freq_attr *fattr = to_attr(attr);
1024         ssize_t ret = -EBUSY;
1025
1026         if (!fattr->store)
1027                 return -EIO;
1028
1029         down_write(&policy->rwsem);
1030         if (likely(!policy_is_inactive(policy)))
1031                 ret = fattr->store(policy, buf, count);
1032         up_write(&policy->rwsem);
1033
1034         return ret;
1035 }
1036
1037 static void cpufreq_sysfs_release(struct kobject *kobj)
1038 {
1039         struct cpufreq_policy *policy = to_policy(kobj);
1040         pr_debug("last reference is dropped\n");
1041         complete(&policy->kobj_unregister);
1042 }
1043
1044 static const struct sysfs_ops sysfs_ops = {
1045         .show   = show,
1046         .store  = store,
1047 };
1048
1049 static const struct kobj_type ktype_cpufreq = {
1050         .sysfs_ops      = &sysfs_ops,
1051         .default_groups = cpufreq_groups,
1052         .release        = cpufreq_sysfs_release,
1053 };
1054
1055 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056                                 struct device *dev)
1057 {
1058         if (unlikely(!dev))
1059                 return;
1060
1061         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1062                 return;
1063
1064         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1066                 dev_err(dev, "cpufreq symlink creation failed\n");
1067 }
1068
1069 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070                                    struct device *dev)
1071 {
1072         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073         sysfs_remove_link(&dev->kobj, "cpufreq");
1074         cpumask_clear_cpu(cpu, policy->real_cpus);
1075 }
1076
1077 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1078 {
1079         struct freq_attr **drv_attr;
1080         int ret = 0;
1081
1082         /* set up files for this cpu device */
1083         drv_attr = cpufreq_driver->attr;
1084         while (drv_attr && *drv_attr) {
1085                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1086                 if (ret)
1087                         return ret;
1088                 drv_attr++;
1089         }
1090         if (cpufreq_driver->get) {
1091                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1092                 if (ret)
1093                         return ret;
1094         }
1095
1096         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1097         if (ret)
1098                 return ret;
1099
1100         if (cpufreq_driver->bios_limit) {
1101                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1102                 if (ret)
1103                         return ret;
1104         }
1105
1106         if (cpufreq_boost_supported()) {
1107                 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1108                 if (ret)
1109                         return ret;
1110         }
1111
1112         return 0;
1113 }
1114
1115 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116 {
1117         struct cpufreq_governor *gov = NULL;
1118         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119         int ret;
1120
1121         if (has_target()) {
1122                 /* Update policy governor to the one used before hotplug. */
1123                 gov = get_governor(policy->last_governor);
1124                 if (gov) {
1125                         pr_debug("Restoring governor %s for cpu %d\n",
1126                                  gov->name, policy->cpu);
1127                 } else {
1128                         gov = get_governor(default_governor);
1129                 }
1130
1131                 if (!gov) {
1132                         gov = cpufreq_default_governor();
1133                         __module_get(gov->owner);
1134                 }
1135
1136         } else {
1137
1138                 /* Use the default policy if there is no last_policy. */
1139                 if (policy->last_policy) {
1140                         pol = policy->last_policy;
1141                 } else {
1142                         pol = cpufreq_parse_policy(default_governor);
1143                         /*
1144                          * In case the default governor is neither "performance"
1145                          * nor "powersave", fall back to the initial policy
1146                          * value set by the driver.
1147                          */
1148                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1149                                 pol = policy->policy;
1150                 }
1151                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152                     pol != CPUFREQ_POLICY_POWERSAVE)
1153                         return -ENODATA;
1154         }
1155
1156         ret = cpufreq_set_policy(policy, gov, pol);
1157         if (gov)
1158                 module_put(gov->owner);
1159
1160         return ret;
1161 }
1162
1163 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1164 {
1165         int ret = 0;
1166
1167         /* Has this CPU been taken care of already? */
1168         if (cpumask_test_cpu(cpu, policy->cpus))
1169                 return 0;
1170
1171         down_write(&policy->rwsem);
1172         if (has_target())
1173                 cpufreq_stop_governor(policy);
1174
1175         cpumask_set_cpu(cpu, policy->cpus);
1176
1177         if (has_target()) {
1178                 ret = cpufreq_start_governor(policy);
1179                 if (ret)
1180                         pr_err("%s: Failed to start governor\n", __func__);
1181         }
1182         up_write(&policy->rwsem);
1183         return ret;
1184 }
1185
1186 void refresh_frequency_limits(struct cpufreq_policy *policy)
1187 {
1188         if (!policy_is_inactive(policy)) {
1189                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1192         }
1193 }
1194 EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196 static void handle_update(struct work_struct *work)
1197 {
1198         struct cpufreq_policy *policy =
1199                 container_of(work, struct cpufreq_policy, update);
1200
1201         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202         down_write(&policy->rwsem);
1203         refresh_frequency_limits(policy);
1204         up_write(&policy->rwsem);
1205 }
1206
1207 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208                                 void *data)
1209 {
1210         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1211
1212         schedule_work(&policy->update);
1213         return 0;
1214 }
1215
1216 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217                                 void *data)
1218 {
1219         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221         schedule_work(&policy->update);
1222         return 0;
1223 }
1224
1225 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226 {
1227         struct kobject *kobj;
1228         struct completion *cmp;
1229
1230         down_write(&policy->rwsem);
1231         cpufreq_stats_free_table(policy);
1232         kobj = &policy->kobj;
1233         cmp = &policy->kobj_unregister;
1234         up_write(&policy->rwsem);
1235         kobject_put(kobj);
1236
1237         /*
1238          * We need to make sure that the underlying kobj is
1239          * actually not referenced anymore by anybody before we
1240          * proceed with unloading.
1241          */
1242         pr_debug("waiting for dropping of refcount\n");
1243         wait_for_completion(cmp);
1244         pr_debug("wait complete\n");
1245 }
1246
1247 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248 {
1249         struct cpufreq_policy *policy;
1250         struct device *dev = get_cpu_device(cpu);
1251         int ret;
1252
1253         if (!dev)
1254                 return NULL;
1255
1256         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1257         if (!policy)
1258                 return NULL;
1259
1260         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1261                 goto err_free_policy;
1262
1263         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1264                 goto err_free_cpumask;
1265
1266         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1267                 goto err_free_rcpumask;
1268
1269         init_completion(&policy->kobj_unregister);
1270         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1271                                    cpufreq_global_kobject, "policy%u", cpu);
1272         if (ret) {
1273                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274                 /*
1275                  * The entire policy object will be freed below, but the extra
1276                  * memory allocated for the kobject name needs to be freed by
1277                  * releasing the kobject.
1278                  */
1279                 kobject_put(&policy->kobj);
1280                 goto err_free_real_cpus;
1281         }
1282
1283         freq_constraints_init(&policy->constraints);
1284
1285         policy->nb_min.notifier_call = cpufreq_notifier_min;
1286         policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1289                                     &policy->nb_min);
1290         if (ret) {
1291                 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292                         ret, cpu);
1293                 goto err_kobj_remove;
1294         }
1295
1296         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1297                                     &policy->nb_max);
1298         if (ret) {
1299                 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300                         ret, cpu);
1301                 goto err_min_qos_notifier;
1302         }
1303
1304         INIT_LIST_HEAD(&policy->policy_list);
1305         init_rwsem(&policy->rwsem);
1306         spin_lock_init(&policy->transition_lock);
1307         init_waitqueue_head(&policy->transition_wait);
1308         INIT_WORK(&policy->update, handle_update);
1309
1310         policy->cpu = cpu;
1311         return policy;
1312
1313 err_min_qos_notifier:
1314         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1315                                  &policy->nb_min);
1316 err_kobj_remove:
1317         cpufreq_policy_put_kobj(policy);
1318 err_free_real_cpus:
1319         free_cpumask_var(policy->real_cpus);
1320 err_free_rcpumask:
1321         free_cpumask_var(policy->related_cpus);
1322 err_free_cpumask:
1323         free_cpumask_var(policy->cpus);
1324 err_free_policy:
1325         kfree(policy);
1326
1327         return NULL;
1328 }
1329
1330 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331 {
1332         unsigned long flags;
1333         int cpu;
1334
1335         /*
1336          * The callers must ensure the policy is inactive by now, to avoid any
1337          * races with show()/store() callbacks.
1338          */
1339         if (unlikely(!policy_is_inactive(policy)))
1340                 pr_warn("%s: Freeing active policy\n", __func__);
1341
1342         /* Remove policy from list */
1343         write_lock_irqsave(&cpufreq_driver_lock, flags);
1344         list_del(&policy->policy_list);
1345
1346         for_each_cpu(cpu, policy->related_cpus)
1347                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1349
1350         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1351                                  &policy->nb_max);
1352         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1353                                  &policy->nb_min);
1354
1355         /* Cancel any pending policy->update work before freeing the policy. */
1356         cancel_work_sync(&policy->update);
1357
1358         if (policy->max_freq_req) {
1359                 /*
1360                  * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361                  * notification, since CPUFREQ_CREATE_POLICY notification was
1362                  * sent after adding max_freq_req earlier.
1363                  */
1364                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1365                                              CPUFREQ_REMOVE_POLICY, policy);
1366                 freq_qos_remove_request(policy->max_freq_req);
1367         }
1368
1369         freq_qos_remove_request(policy->min_freq_req);
1370         kfree(policy->min_freq_req);
1371
1372         cpufreq_policy_put_kobj(policy);
1373         free_cpumask_var(policy->real_cpus);
1374         free_cpumask_var(policy->related_cpus);
1375         free_cpumask_var(policy->cpus);
1376         kfree(policy);
1377 }
1378
1379 static int cpufreq_online(unsigned int cpu)
1380 {
1381         struct cpufreq_policy *policy;
1382         bool new_policy;
1383         unsigned long flags;
1384         unsigned int j;
1385         int ret;
1386
1387         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1388
1389         /* Check if this CPU already has a policy to manage it */
1390         policy = per_cpu(cpufreq_cpu_data, cpu);
1391         if (policy) {
1392                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393                 if (!policy_is_inactive(policy))
1394                         return cpufreq_add_policy_cpu(policy, cpu);
1395
1396                 /* This is the only online CPU for the policy.  Start over. */
1397                 new_policy = false;
1398                 down_write(&policy->rwsem);
1399                 policy->cpu = cpu;
1400                 policy->governor = NULL;
1401         } else {
1402                 new_policy = true;
1403                 policy = cpufreq_policy_alloc(cpu);
1404                 if (!policy)
1405                         return -ENOMEM;
1406                 down_write(&policy->rwsem);
1407         }
1408
1409         if (!new_policy && cpufreq_driver->online) {
1410                 /* Recover policy->cpus using related_cpus */
1411                 cpumask_copy(policy->cpus, policy->related_cpus);
1412
1413                 ret = cpufreq_driver->online(policy);
1414                 if (ret) {
1415                         pr_debug("%s: %d: initialization failed\n", __func__,
1416                                  __LINE__);
1417                         goto out_exit_policy;
1418                 }
1419         } else {
1420                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1421
1422                 /*
1423                  * Call driver. From then on the cpufreq must be able
1424                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1425                  */
1426                 ret = cpufreq_driver->init(policy);
1427                 if (ret) {
1428                         pr_debug("%s: %d: initialization failed\n", __func__,
1429                                  __LINE__);
1430                         goto out_free_policy;
1431                 }
1432
1433                 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434                 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436                 /*
1437                  * The initialization has succeeded and the policy is online.
1438                  * If there is a problem with its frequency table, take it
1439                  * offline and drop it.
1440                  */
1441                 ret = cpufreq_table_validate_and_sort(policy);
1442                 if (ret)
1443                         goto out_offline_policy;
1444
1445                 /* related_cpus should at least include policy->cpus. */
1446                 cpumask_copy(policy->related_cpus, policy->cpus);
1447         }
1448
1449         /*
1450          * affected cpus must always be the one, which are online. We aren't
1451          * managing offline cpus here.
1452          */
1453         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1454
1455         if (new_policy) {
1456                 for_each_cpu(j, policy->related_cpus) {
1457                         per_cpu(cpufreq_cpu_data, j) = policy;
1458                         add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1459                 }
1460
1461                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1462                                                GFP_KERNEL);
1463                 if (!policy->min_freq_req) {
1464                         ret = -ENOMEM;
1465                         goto out_destroy_policy;
1466                 }
1467
1468                 ret = freq_qos_add_request(&policy->constraints,
1469                                            policy->min_freq_req, FREQ_QOS_MIN,
1470                                            FREQ_QOS_MIN_DEFAULT_VALUE);
1471                 if (ret < 0) {
1472                         /*
1473                          * So we don't call freq_qos_remove_request() for an
1474                          * uninitialized request.
1475                          */
1476                         kfree(policy->min_freq_req);
1477                         policy->min_freq_req = NULL;
1478                         goto out_destroy_policy;
1479                 }
1480
1481                 /*
1482                  * This must be initialized right here to avoid calling
1483                  * freq_qos_remove_request() on uninitialized request in case
1484                  * of errors.
1485                  */
1486                 policy->max_freq_req = policy->min_freq_req + 1;
1487
1488                 ret = freq_qos_add_request(&policy->constraints,
1489                                            policy->max_freq_req, FREQ_QOS_MAX,
1490                                            FREQ_QOS_MAX_DEFAULT_VALUE);
1491                 if (ret < 0) {
1492                         policy->max_freq_req = NULL;
1493                         goto out_destroy_policy;
1494                 }
1495
1496                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1497                                 CPUFREQ_CREATE_POLICY, policy);
1498         }
1499
1500         if (cpufreq_driver->get && has_target()) {
1501                 policy->cur = cpufreq_driver->get(policy->cpu);
1502                 if (!policy->cur) {
1503                         ret = -EIO;
1504                         pr_err("%s: ->get() failed\n", __func__);
1505                         goto out_destroy_policy;
1506                 }
1507         }
1508
1509         /*
1510          * Sometimes boot loaders set CPU frequency to a value outside of
1511          * frequency table present with cpufreq core. In such cases CPU might be
1512          * unstable if it has to run on that frequency for long duration of time
1513          * and so its better to set it to a frequency which is specified in
1514          * freq-table. This also makes cpufreq stats inconsistent as
1515          * cpufreq-stats would fail to register because current frequency of CPU
1516          * isn't found in freq-table.
1517          *
1518          * Because we don't want this change to effect boot process badly, we go
1519          * for the next freq which is >= policy->cur ('cur' must be set by now,
1520          * otherwise we will end up setting freq to lowest of the table as 'cur'
1521          * is initialized to zero).
1522          *
1523          * We are passing target-freq as "policy->cur - 1" otherwise
1524          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525          * equal to target-freq.
1526          */
1527         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528             && has_target()) {
1529                 unsigned int old_freq = policy->cur;
1530
1531                 /* Are we running at unknown frequency ? */
1532                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1533                 if (ret == -EINVAL) {
1534                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1535                                                       CPUFREQ_RELATION_L);
1536
1537                         /*
1538                          * Reaching here after boot in a few seconds may not
1539                          * mean that system will remain stable at "unknown"
1540                          * frequency for longer duration. Hence, a BUG_ON().
1541                          */
1542                         BUG_ON(ret);
1543                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544                                 __func__, policy->cpu, old_freq, policy->cur);
1545                 }
1546         }
1547
1548         if (new_policy) {
1549                 ret = cpufreq_add_dev_interface(policy);
1550                 if (ret)
1551                         goto out_destroy_policy;
1552
1553                 cpufreq_stats_create_table(policy);
1554
1555                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1556                 list_add(&policy->policy_list, &cpufreq_policy_list);
1557                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559                 /*
1560                  * Register with the energy model before
1561                  * sugov_eas_rebuild_sd() is called, which will result
1562                  * in rebuilding of the sched domains, which should only be done
1563                  * once the energy model is properly initialized for the policy
1564                  * first.
1565                  *
1566                  * Also, this should be called before the policy is registered
1567                  * with cooling framework.
1568                  */
1569                 if (cpufreq_driver->register_em)
1570                         cpufreq_driver->register_em(policy);
1571         }
1572
1573         ret = cpufreq_init_policy(policy);
1574         if (ret) {
1575                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576                        __func__, cpu, ret);
1577                 goto out_destroy_policy;
1578         }
1579
1580         up_write(&policy->rwsem);
1581
1582         kobject_uevent(&policy->kobj, KOBJ_ADD);
1583
1584         /* Callback for handling stuff after policy is ready */
1585         if (cpufreq_driver->ready)
1586                 cpufreq_driver->ready(policy);
1587
1588         /* Register cpufreq cooling only for a new policy */
1589         if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1590                 policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592         pr_debug("initialization complete\n");
1593
1594         return 0;
1595
1596 out_destroy_policy:
1597         for_each_cpu(j, policy->real_cpus)
1598                 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1599
1600 out_offline_policy:
1601         if (cpufreq_driver->offline)
1602                 cpufreq_driver->offline(policy);
1603
1604 out_exit_policy:
1605         if (cpufreq_driver->exit)
1606                 cpufreq_driver->exit(policy);
1607
1608 out_free_policy:
1609         cpumask_clear(policy->cpus);
1610         up_write(&policy->rwsem);
1611
1612         cpufreq_policy_free(policy);
1613         return ret;
1614 }
1615
1616 /**
1617  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618  * @dev: CPU device.
1619  * @sif: Subsystem interface structure pointer (not used)
1620  */
1621 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622 {
1623         struct cpufreq_policy *policy;
1624         unsigned cpu = dev->id;
1625         int ret;
1626
1627         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1628
1629         if (cpu_online(cpu)) {
1630                 ret = cpufreq_online(cpu);
1631                 if (ret)
1632                         return ret;
1633         }
1634
1635         /* Create sysfs link on CPU registration */
1636         policy = per_cpu(cpufreq_cpu_data, cpu);
1637         if (policy)
1638                 add_cpu_dev_symlink(policy, cpu, dev);
1639
1640         return 0;
1641 }
1642
1643 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1644 {
1645         int ret;
1646
1647         if (has_target())
1648                 cpufreq_stop_governor(policy);
1649
1650         cpumask_clear_cpu(cpu, policy->cpus);
1651
1652         if (!policy_is_inactive(policy)) {
1653                 /* Nominate a new CPU if necessary. */
1654                 if (cpu == policy->cpu)
1655                         policy->cpu = cpumask_any(policy->cpus);
1656
1657                 /* Start the governor again for the active policy. */
1658                 if (has_target()) {
1659                         ret = cpufreq_start_governor(policy);
1660                         if (ret)
1661                                 pr_err("%s: Failed to start governor\n", __func__);
1662                 }
1663
1664                 return;
1665         }
1666
1667         if (has_target())
1668                 strscpy(policy->last_governor, policy->governor->name,
1669                         CPUFREQ_NAME_LEN);
1670         else
1671                 policy->last_policy = policy->policy;
1672
1673         if (has_target())
1674                 cpufreq_exit_governor(policy);
1675
1676         /*
1677          * Perform the ->offline() during light-weight tear-down, as
1678          * that allows fast recovery when the CPU comes back.
1679          */
1680         if (cpufreq_driver->offline) {
1681                 cpufreq_driver->offline(policy);
1682                 return;
1683         }
1684
1685         if (cpufreq_driver->exit)
1686                 cpufreq_driver->exit(policy);
1687
1688         policy->freq_table = NULL;
1689 }
1690
1691 static int cpufreq_offline(unsigned int cpu)
1692 {
1693         struct cpufreq_policy *policy;
1694
1695         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1696
1697         policy = cpufreq_cpu_get_raw(cpu);
1698         if (!policy) {
1699                 pr_debug("%s: No cpu_data found\n", __func__);
1700                 return 0;
1701         }
1702
1703         down_write(&policy->rwsem);
1704
1705         __cpufreq_offline(cpu, policy);
1706
1707         up_write(&policy->rwsem);
1708         return 0;
1709 }
1710
1711 /*
1712  * cpufreq_remove_dev - remove a CPU device
1713  *
1714  * Removes the cpufreq interface for a CPU device.
1715  */
1716 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1717 {
1718         unsigned int cpu = dev->id;
1719         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1720
1721         if (!policy)
1722                 return;
1723
1724         down_write(&policy->rwsem);
1725
1726         if (cpu_online(cpu))
1727                 __cpufreq_offline(cpu, policy);
1728
1729         remove_cpu_dev_symlink(policy, cpu, dev);
1730
1731         if (!cpumask_empty(policy->real_cpus)) {
1732                 up_write(&policy->rwsem);
1733                 return;
1734         }
1735
1736         /*
1737          * Unregister cpufreq cooling once all the CPUs of the policy are
1738          * removed.
1739          */
1740         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1741                 cpufreq_cooling_unregister(policy->cdev);
1742                 policy->cdev = NULL;
1743         }
1744
1745         /* We did light-weight exit earlier, do full tear down now */
1746         if (cpufreq_driver->offline && cpufreq_driver->exit)
1747                 cpufreq_driver->exit(policy);
1748
1749         up_write(&policy->rwsem);
1750
1751         cpufreq_policy_free(policy);
1752 }
1753
1754 /**
1755  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1756  * @policy: Policy managing CPUs.
1757  * @new_freq: New CPU frequency.
1758  *
1759  * Adjust to the current frequency first and clean up later by either calling
1760  * cpufreq_update_policy(), or scheduling handle_update().
1761  */
1762 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1763                                 unsigned int new_freq)
1764 {
1765         struct cpufreq_freqs freqs;
1766
1767         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1768                  policy->cur, new_freq);
1769
1770         freqs.old = policy->cur;
1771         freqs.new = new_freq;
1772
1773         cpufreq_freq_transition_begin(policy, &freqs);
1774         cpufreq_freq_transition_end(policy, &freqs, 0);
1775 }
1776
1777 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1778 {
1779         unsigned int new_freq;
1780
1781         new_freq = cpufreq_driver->get(policy->cpu);
1782         if (!new_freq)
1783                 return 0;
1784
1785         /*
1786          * If fast frequency switching is used with the given policy, the check
1787          * against policy->cur is pointless, so skip it in that case.
1788          */
1789         if (policy->fast_switch_enabled || !has_target())
1790                 return new_freq;
1791
1792         if (policy->cur != new_freq) {
1793                 /*
1794                  * For some platforms, the frequency returned by hardware may be
1795                  * slightly different from what is provided in the frequency
1796                  * table, for example hardware may return 499 MHz instead of 500
1797                  * MHz. In such cases it is better to avoid getting into
1798                  * unnecessary frequency updates.
1799                  */
1800                 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1801                         return policy->cur;
1802
1803                 cpufreq_out_of_sync(policy, new_freq);
1804                 if (update)
1805                         schedule_work(&policy->update);
1806         }
1807
1808         return new_freq;
1809 }
1810
1811 /**
1812  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1813  * @cpu: CPU number
1814  *
1815  * This is the last known freq, without actually getting it from the driver.
1816  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1817  */
1818 unsigned int cpufreq_quick_get(unsigned int cpu)
1819 {
1820         struct cpufreq_policy *policy;
1821         unsigned int ret_freq = 0;
1822         unsigned long flags;
1823
1824         read_lock_irqsave(&cpufreq_driver_lock, flags);
1825
1826         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1827                 ret_freq = cpufreq_driver->get(cpu);
1828                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829                 return ret_freq;
1830         }
1831
1832         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1833
1834         policy = cpufreq_cpu_get(cpu);
1835         if (policy) {
1836                 ret_freq = policy->cur;
1837                 cpufreq_cpu_put(policy);
1838         }
1839
1840         return ret_freq;
1841 }
1842 EXPORT_SYMBOL(cpufreq_quick_get);
1843
1844 /**
1845  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1846  * @cpu: CPU number
1847  *
1848  * Just return the max possible frequency for a given CPU.
1849  */
1850 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1851 {
1852         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853         unsigned int ret_freq = 0;
1854
1855         if (policy) {
1856                 ret_freq = policy->max;
1857                 cpufreq_cpu_put(policy);
1858         }
1859
1860         return ret_freq;
1861 }
1862 EXPORT_SYMBOL(cpufreq_quick_get_max);
1863
1864 /**
1865  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1866  * @cpu: CPU number
1867  *
1868  * The default return value is the max_freq field of cpuinfo.
1869  */
1870 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1871 {
1872         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1873         unsigned int ret_freq = 0;
1874
1875         if (policy) {
1876                 ret_freq = policy->cpuinfo.max_freq;
1877                 cpufreq_cpu_put(policy);
1878         }
1879
1880         return ret_freq;
1881 }
1882 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1883
1884 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1885 {
1886         if (unlikely(policy_is_inactive(policy)))
1887                 return 0;
1888
1889         return cpufreq_verify_current_freq(policy, true);
1890 }
1891
1892 /**
1893  * cpufreq_get - get the current CPU frequency (in kHz)
1894  * @cpu: CPU number
1895  *
1896  * Get the CPU current (static) CPU frequency
1897  */
1898 unsigned int cpufreq_get(unsigned int cpu)
1899 {
1900         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1901         unsigned int ret_freq = 0;
1902
1903         if (policy) {
1904                 down_read(&policy->rwsem);
1905                 if (cpufreq_driver->get)
1906                         ret_freq = __cpufreq_get(policy);
1907                 up_read(&policy->rwsem);
1908
1909                 cpufreq_cpu_put(policy);
1910         }
1911
1912         return ret_freq;
1913 }
1914 EXPORT_SYMBOL(cpufreq_get);
1915
1916 static struct subsys_interface cpufreq_interface = {
1917         .name           = "cpufreq",
1918         .subsys         = &cpu_subsys,
1919         .add_dev        = cpufreq_add_dev,
1920         .remove_dev     = cpufreq_remove_dev,
1921 };
1922
1923 /*
1924  * In case platform wants some specific frequency to be configured
1925  * during suspend..
1926  */
1927 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1928 {
1929         int ret;
1930
1931         if (!policy->suspend_freq) {
1932                 pr_debug("%s: suspend_freq not defined\n", __func__);
1933                 return 0;
1934         }
1935
1936         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1937                         policy->suspend_freq);
1938
1939         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1940                         CPUFREQ_RELATION_H);
1941         if (ret)
1942                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1943                                 __func__, policy->suspend_freq, ret);
1944
1945         return ret;
1946 }
1947 EXPORT_SYMBOL(cpufreq_generic_suspend);
1948
1949 /**
1950  * cpufreq_suspend() - Suspend CPUFreq governors.
1951  *
1952  * Called during system wide Suspend/Hibernate cycles for suspending governors
1953  * as some platforms can't change frequency after this point in suspend cycle.
1954  * Because some of the devices (like: i2c, regulators, etc) they use for
1955  * changing frequency are suspended quickly after this point.
1956  */
1957 void cpufreq_suspend(void)
1958 {
1959         struct cpufreq_policy *policy;
1960
1961         if (!cpufreq_driver)
1962                 return;
1963
1964         if (!has_target() && !cpufreq_driver->suspend)
1965                 goto suspend;
1966
1967         pr_debug("%s: Suspending Governors\n", __func__);
1968
1969         for_each_active_policy(policy) {
1970                 if (has_target()) {
1971                         down_write(&policy->rwsem);
1972                         cpufreq_stop_governor(policy);
1973                         up_write(&policy->rwsem);
1974                 }
1975
1976                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1977                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1978                                 cpufreq_driver->name);
1979         }
1980
1981 suspend:
1982         cpufreq_suspended = true;
1983 }
1984
1985 /**
1986  * cpufreq_resume() - Resume CPUFreq governors.
1987  *
1988  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1989  * are suspended with cpufreq_suspend().
1990  */
1991 void cpufreq_resume(void)
1992 {
1993         struct cpufreq_policy *policy;
1994         int ret;
1995
1996         if (!cpufreq_driver)
1997                 return;
1998
1999         if (unlikely(!cpufreq_suspended))
2000                 return;
2001
2002         cpufreq_suspended = false;
2003
2004         if (!has_target() && !cpufreq_driver->resume)
2005                 return;
2006
2007         pr_debug("%s: Resuming Governors\n", __func__);
2008
2009         for_each_active_policy(policy) {
2010                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2011                         pr_err("%s: Failed to resume driver: %s\n", __func__,
2012                                 cpufreq_driver->name);
2013                 } else if (has_target()) {
2014                         down_write(&policy->rwsem);
2015                         ret = cpufreq_start_governor(policy);
2016                         up_write(&policy->rwsem);
2017
2018                         if (ret)
2019                                 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2020                                        __func__, policy->cpu);
2021                 }
2022         }
2023 }
2024
2025 /**
2026  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2027  * @flags: Flags to test against the current cpufreq driver's flags.
2028  *
2029  * Assumes that the driver is there, so callers must ensure that this is the
2030  * case.
2031  */
2032 bool cpufreq_driver_test_flags(u16 flags)
2033 {
2034         return !!(cpufreq_driver->flags & flags);
2035 }
2036
2037 /**
2038  * cpufreq_get_current_driver - Return the current driver's name.
2039  *
2040  * Return the name string of the currently registered cpufreq driver or NULL if
2041  * none.
2042  */
2043 const char *cpufreq_get_current_driver(void)
2044 {
2045         if (cpufreq_driver)
2046                 return cpufreq_driver->name;
2047
2048         return NULL;
2049 }
2050 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2051
2052 /**
2053  * cpufreq_get_driver_data - Return current driver data.
2054  *
2055  * Return the private data of the currently registered cpufreq driver, or NULL
2056  * if no cpufreq driver has been registered.
2057  */
2058 void *cpufreq_get_driver_data(void)
2059 {
2060         if (cpufreq_driver)
2061                 return cpufreq_driver->driver_data;
2062
2063         return NULL;
2064 }
2065 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2066
2067 /*********************************************************************
2068  *                     NOTIFIER LISTS INTERFACE                      *
2069  *********************************************************************/
2070
2071 /**
2072  * cpufreq_register_notifier - Register a notifier with cpufreq.
2073  * @nb: notifier function to register.
2074  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2075  *
2076  * Add a notifier to one of two lists: either a list of notifiers that run on
2077  * clock rate changes (once before and once after every transition), or a list
2078  * of notifiers that ron on cpufreq policy changes.
2079  *
2080  * This function may sleep and it has the same return values as
2081  * blocking_notifier_chain_register().
2082  */
2083 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2084 {
2085         int ret;
2086
2087         if (cpufreq_disabled())
2088                 return -EINVAL;
2089
2090         switch (list) {
2091         case CPUFREQ_TRANSITION_NOTIFIER:
2092                 mutex_lock(&cpufreq_fast_switch_lock);
2093
2094                 if (cpufreq_fast_switch_count > 0) {
2095                         mutex_unlock(&cpufreq_fast_switch_lock);
2096                         return -EBUSY;
2097                 }
2098                 ret = srcu_notifier_chain_register(
2099                                 &cpufreq_transition_notifier_list, nb);
2100                 if (!ret)
2101                         cpufreq_fast_switch_count--;
2102
2103                 mutex_unlock(&cpufreq_fast_switch_lock);
2104                 break;
2105         case CPUFREQ_POLICY_NOTIFIER:
2106                 ret = blocking_notifier_chain_register(
2107                                 &cpufreq_policy_notifier_list, nb);
2108                 break;
2109         default:
2110                 ret = -EINVAL;
2111         }
2112
2113         return ret;
2114 }
2115 EXPORT_SYMBOL(cpufreq_register_notifier);
2116
2117 /**
2118  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2119  * @nb: notifier block to be unregistered.
2120  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2121  *
2122  * Remove a notifier from one of the cpufreq notifier lists.
2123  *
2124  * This function may sleep and it has the same return values as
2125  * blocking_notifier_chain_unregister().
2126  */
2127 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2128 {
2129         int ret;
2130
2131         if (cpufreq_disabled())
2132                 return -EINVAL;
2133
2134         switch (list) {
2135         case CPUFREQ_TRANSITION_NOTIFIER:
2136                 mutex_lock(&cpufreq_fast_switch_lock);
2137
2138                 ret = srcu_notifier_chain_unregister(
2139                                 &cpufreq_transition_notifier_list, nb);
2140                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2141                         cpufreq_fast_switch_count++;
2142
2143                 mutex_unlock(&cpufreq_fast_switch_lock);
2144                 break;
2145         case CPUFREQ_POLICY_NOTIFIER:
2146                 ret = blocking_notifier_chain_unregister(
2147                                 &cpufreq_policy_notifier_list, nb);
2148                 break;
2149         default:
2150                 ret = -EINVAL;
2151         }
2152
2153         return ret;
2154 }
2155 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2156
2157
2158 /*********************************************************************
2159  *                              GOVERNORS                            *
2160  *********************************************************************/
2161
2162 /**
2163  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2164  * @policy: cpufreq policy to switch the frequency for.
2165  * @target_freq: New frequency to set (may be approximate).
2166  *
2167  * Carry out a fast frequency switch without sleeping.
2168  *
2169  * The driver's ->fast_switch() callback invoked by this function must be
2170  * suitable for being called from within RCU-sched read-side critical sections
2171  * and it is expected to select the minimum available frequency greater than or
2172  * equal to @target_freq (CPUFREQ_RELATION_L).
2173  *
2174  * This function must not be called if policy->fast_switch_enabled is unset.
2175  *
2176  * Governors calling this function must guarantee that it will never be invoked
2177  * twice in parallel for the same policy and that it will never be called in
2178  * parallel with either ->target() or ->target_index() for the same policy.
2179  *
2180  * Returns the actual frequency set for the CPU.
2181  *
2182  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2183  * error condition, the hardware configuration must be preserved.
2184  */
2185 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2186                                         unsigned int target_freq)
2187 {
2188         unsigned int freq;
2189         int cpu;
2190
2191         target_freq = clamp_val(target_freq, policy->min, policy->max);
2192         freq = cpufreq_driver->fast_switch(policy, target_freq);
2193
2194         if (!freq)
2195                 return 0;
2196
2197         policy->cur = freq;
2198         arch_set_freq_scale(policy->related_cpus, freq,
2199                             arch_scale_freq_ref(policy->cpu));
2200         cpufreq_stats_record_transition(policy, freq);
2201
2202         if (trace_cpu_frequency_enabled()) {
2203                 for_each_cpu(cpu, policy->cpus)
2204                         trace_cpu_frequency(freq, cpu);
2205         }
2206
2207         return freq;
2208 }
2209 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2210
2211 /**
2212  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2213  * @cpu: Target CPU.
2214  * @min_perf: Minimum (required) performance level (units of @capacity).
2215  * @target_perf: Target (desired) performance level (units of @capacity).
2216  * @capacity: Capacity of the target CPU.
2217  *
2218  * Carry out a fast performance level switch of @cpu without sleeping.
2219  *
2220  * The driver's ->adjust_perf() callback invoked by this function must be
2221  * suitable for being called from within RCU-sched read-side critical sections
2222  * and it is expected to select a suitable performance level equal to or above
2223  * @min_perf and preferably equal to or below @target_perf.
2224  *
2225  * This function must not be called if policy->fast_switch_enabled is unset.
2226  *
2227  * Governors calling this function must guarantee that it will never be invoked
2228  * twice in parallel for the same CPU and that it will never be called in
2229  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2230  * the same CPU.
2231  */
2232 void cpufreq_driver_adjust_perf(unsigned int cpu,
2233                                  unsigned long min_perf,
2234                                  unsigned long target_perf,
2235                                  unsigned long capacity)
2236 {
2237         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2238 }
2239
2240 /**
2241  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2242  *
2243  * Return 'true' if the ->adjust_perf callback is present for the
2244  * current driver or 'false' otherwise.
2245  */
2246 bool cpufreq_driver_has_adjust_perf(void)
2247 {
2248         return !!cpufreq_driver->adjust_perf;
2249 }
2250
2251 /* Must set freqs->new to intermediate frequency */
2252 static int __target_intermediate(struct cpufreq_policy *policy,
2253                                  struct cpufreq_freqs *freqs, int index)
2254 {
2255         int ret;
2256
2257         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2258
2259         /* We don't need to switch to intermediate freq */
2260         if (!freqs->new)
2261                 return 0;
2262
2263         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2264                  __func__, policy->cpu, freqs->old, freqs->new);
2265
2266         cpufreq_freq_transition_begin(policy, freqs);
2267         ret = cpufreq_driver->target_intermediate(policy, index);
2268         cpufreq_freq_transition_end(policy, freqs, ret);
2269
2270         if (ret)
2271                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2272                        __func__, ret);
2273
2274         return ret;
2275 }
2276
2277 static int __target_index(struct cpufreq_policy *policy, int index)
2278 {
2279         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2280         unsigned int restore_freq, intermediate_freq = 0;
2281         unsigned int newfreq = policy->freq_table[index].frequency;
2282         int retval = -EINVAL;
2283         bool notify;
2284
2285         if (newfreq == policy->cur)
2286                 return 0;
2287
2288         /* Save last value to restore later on errors */
2289         restore_freq = policy->cur;
2290
2291         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2292         if (notify) {
2293                 /* Handle switching to intermediate frequency */
2294                 if (cpufreq_driver->get_intermediate) {
2295                         retval = __target_intermediate(policy, &freqs, index);
2296                         if (retval)
2297                                 return retval;
2298
2299                         intermediate_freq = freqs.new;
2300                         /* Set old freq to intermediate */
2301                         if (intermediate_freq)
2302                                 freqs.old = freqs.new;
2303                 }
2304
2305                 freqs.new = newfreq;
2306                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2307                          __func__, policy->cpu, freqs.old, freqs.new);
2308
2309                 cpufreq_freq_transition_begin(policy, &freqs);
2310         }
2311
2312         retval = cpufreq_driver->target_index(policy, index);
2313         if (retval)
2314                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2315                        retval);
2316
2317         if (notify) {
2318                 cpufreq_freq_transition_end(policy, &freqs, retval);
2319
2320                 /*
2321                  * Failed after setting to intermediate freq? Driver should have
2322                  * reverted back to initial frequency and so should we. Check
2323                  * here for intermediate_freq instead of get_intermediate, in
2324                  * case we haven't switched to intermediate freq at all.
2325                  */
2326                 if (unlikely(retval && intermediate_freq)) {
2327                         freqs.old = intermediate_freq;
2328                         freqs.new = restore_freq;
2329                         cpufreq_freq_transition_begin(policy, &freqs);
2330                         cpufreq_freq_transition_end(policy, &freqs, 0);
2331                 }
2332         }
2333
2334         return retval;
2335 }
2336
2337 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2338                             unsigned int target_freq,
2339                             unsigned int relation)
2340 {
2341         unsigned int old_target_freq = target_freq;
2342
2343         if (cpufreq_disabled())
2344                 return -ENODEV;
2345
2346         target_freq = __resolve_freq(policy, target_freq, relation);
2347
2348         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2349                  policy->cpu, target_freq, relation, old_target_freq);
2350
2351         /*
2352          * This might look like a redundant call as we are checking it again
2353          * after finding index. But it is left intentionally for cases where
2354          * exactly same freq is called again and so we can save on few function
2355          * calls.
2356          */
2357         if (target_freq == policy->cur &&
2358             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2359                 return 0;
2360
2361         if (cpufreq_driver->target) {
2362                 /*
2363                  * If the driver hasn't setup a single inefficient frequency,
2364                  * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2365                  */
2366                 if (!policy->efficiencies_available)
2367                         relation &= ~CPUFREQ_RELATION_E;
2368
2369                 return cpufreq_driver->target(policy, target_freq, relation);
2370         }
2371
2372         if (!cpufreq_driver->target_index)
2373                 return -EINVAL;
2374
2375         return __target_index(policy, policy->cached_resolved_idx);
2376 }
2377 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2378
2379 int cpufreq_driver_target(struct cpufreq_policy *policy,
2380                           unsigned int target_freq,
2381                           unsigned int relation)
2382 {
2383         int ret;
2384
2385         down_write(&policy->rwsem);
2386
2387         ret = __cpufreq_driver_target(policy, target_freq, relation);
2388
2389         up_write(&policy->rwsem);
2390
2391         return ret;
2392 }
2393 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2394
2395 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2396 {
2397         return NULL;
2398 }
2399
2400 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2401 {
2402         int ret;
2403
2404         /* Don't start any governor operations if we are entering suspend */
2405         if (cpufreq_suspended)
2406                 return 0;
2407         /*
2408          * Governor might not be initiated here if ACPI _PPC changed
2409          * notification happened, so check it.
2410          */
2411         if (!policy->governor)
2412                 return -EINVAL;
2413
2414         /* Platform doesn't want dynamic frequency switching ? */
2415         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2416             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2417                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2418
2419                 if (gov) {
2420                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2421                                 policy->governor->name, gov->name);
2422                         policy->governor = gov;
2423                 } else {
2424                         return -EINVAL;
2425                 }
2426         }
2427
2428         if (!try_module_get(policy->governor->owner))
2429                 return -EINVAL;
2430
2431         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432
2433         if (policy->governor->init) {
2434                 ret = policy->governor->init(policy);
2435                 if (ret) {
2436                         module_put(policy->governor->owner);
2437                         return ret;
2438                 }
2439         }
2440
2441         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2442
2443         return 0;
2444 }
2445
2446 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2447 {
2448         if (cpufreq_suspended || !policy->governor)
2449                 return;
2450
2451         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2452
2453         if (policy->governor->exit)
2454                 policy->governor->exit(policy);
2455
2456         module_put(policy->governor->owner);
2457 }
2458
2459 int cpufreq_start_governor(struct cpufreq_policy *policy)
2460 {
2461         int ret;
2462
2463         if (cpufreq_suspended)
2464                 return 0;
2465
2466         if (!policy->governor)
2467                 return -EINVAL;
2468
2469         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2470
2471         if (cpufreq_driver->get)
2472                 cpufreq_verify_current_freq(policy, false);
2473
2474         if (policy->governor->start) {
2475                 ret = policy->governor->start(policy);
2476                 if (ret)
2477                         return ret;
2478         }
2479
2480         if (policy->governor->limits)
2481                 policy->governor->limits(policy);
2482
2483         return 0;
2484 }
2485
2486 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2487 {
2488         if (cpufreq_suspended || !policy->governor)
2489                 return;
2490
2491         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2492
2493         if (policy->governor->stop)
2494                 policy->governor->stop(policy);
2495 }
2496
2497 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2498 {
2499         if (cpufreq_suspended || !policy->governor)
2500                 return;
2501
2502         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2503
2504         if (policy->governor->limits)
2505                 policy->governor->limits(policy);
2506 }
2507
2508 int cpufreq_register_governor(struct cpufreq_governor *governor)
2509 {
2510         int err;
2511
2512         if (!governor)
2513                 return -EINVAL;
2514
2515         if (cpufreq_disabled())
2516                 return -ENODEV;
2517
2518         mutex_lock(&cpufreq_governor_mutex);
2519
2520         err = -EBUSY;
2521         if (!find_governor(governor->name)) {
2522                 err = 0;
2523                 list_add(&governor->governor_list, &cpufreq_governor_list);
2524         }
2525
2526         mutex_unlock(&cpufreq_governor_mutex);
2527         return err;
2528 }
2529 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2530
2531 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2532 {
2533         struct cpufreq_policy *policy;
2534         unsigned long flags;
2535
2536         if (!governor)
2537                 return;
2538
2539         if (cpufreq_disabled())
2540                 return;
2541
2542         /* clear last_governor for all inactive policies */
2543         read_lock_irqsave(&cpufreq_driver_lock, flags);
2544         for_each_inactive_policy(policy) {
2545                 if (!strcmp(policy->last_governor, governor->name)) {
2546                         policy->governor = NULL;
2547                         strcpy(policy->last_governor, "\0");
2548                 }
2549         }
2550         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2551
2552         mutex_lock(&cpufreq_governor_mutex);
2553         list_del(&governor->governor_list);
2554         mutex_unlock(&cpufreq_governor_mutex);
2555 }
2556 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2557
2558
2559 /*********************************************************************
2560  *                          POLICY INTERFACE                         *
2561  *********************************************************************/
2562
2563 /**
2564  * cpufreq_get_policy - get the current cpufreq_policy
2565  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2566  *      is written
2567  * @cpu: CPU to find the policy for
2568  *
2569  * Reads the current cpufreq policy.
2570  */
2571 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2572 {
2573         struct cpufreq_policy *cpu_policy;
2574         if (!policy)
2575                 return -EINVAL;
2576
2577         cpu_policy = cpufreq_cpu_get(cpu);
2578         if (!cpu_policy)
2579                 return -EINVAL;
2580
2581         memcpy(policy, cpu_policy, sizeof(*policy));
2582
2583         cpufreq_cpu_put(cpu_policy);
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(cpufreq_get_policy);
2587
2588 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2589
2590 /**
2591  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2592  * @policy: cpufreq policy of the CPUs.
2593  *
2594  * Update the value of cpufreq pressure for all @cpus in the policy.
2595  */
2596 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2597 {
2598         unsigned long max_capacity, capped_freq, pressure;
2599         u32 max_freq;
2600         int cpu;
2601
2602         cpu = cpumask_first(policy->related_cpus);
2603         max_freq = arch_scale_freq_ref(cpu);
2604         capped_freq = policy->max;
2605
2606         /*
2607          * Handle properly the boost frequencies, which should simply clean
2608          * the cpufreq pressure value.
2609          */
2610         if (max_freq <= capped_freq) {
2611                 pressure = 0;
2612         } else {
2613                 max_capacity = arch_scale_cpu_capacity(cpu);
2614                 pressure = max_capacity -
2615                            mult_frac(max_capacity, capped_freq, max_freq);
2616         }
2617
2618         for_each_cpu(cpu, policy->related_cpus)
2619                 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2620 }
2621
2622 /**
2623  * cpufreq_set_policy - Modify cpufreq policy parameters.
2624  * @policy: Policy object to modify.
2625  * @new_gov: Policy governor pointer.
2626  * @new_pol: Policy value (for drivers with built-in governors).
2627  *
2628  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2629  * limits to be set for the policy, update @policy with the verified limits
2630  * values and either invoke the driver's ->setpolicy() callback (if present) or
2631  * carry out a governor update for @policy.  That is, run the current governor's
2632  * ->limits() callback (if @new_gov points to the same object as the one in
2633  * @policy) or replace the governor for @policy with @new_gov.
2634  *
2635  * The cpuinfo part of @policy is not updated by this function.
2636  */
2637 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2638                               struct cpufreq_governor *new_gov,
2639                               unsigned int new_pol)
2640 {
2641         struct cpufreq_policy_data new_data;
2642         struct cpufreq_governor *old_gov;
2643         int ret;
2644
2645         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2646         new_data.freq_table = policy->freq_table;
2647         new_data.cpu = policy->cpu;
2648         /*
2649          * PM QoS framework collects all the requests from users and provide us
2650          * the final aggregated value here.
2651          */
2652         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2653         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2654
2655         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2656                  new_data.cpu, new_data.min, new_data.max);
2657
2658         /*
2659          * Verify that the CPU speed can be set within these limits and make sure
2660          * that min <= max.
2661          */
2662         ret = cpufreq_driver->verify(&new_data);
2663         if (ret)
2664                 return ret;
2665
2666         /*
2667          * Resolve policy min/max to available frequencies. It ensures
2668          * no frequency resolution will neither overshoot the requested maximum
2669          * nor undershoot the requested minimum.
2670          */
2671         policy->min = new_data.min;
2672         policy->max = new_data.max;
2673         policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2674         policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2675         trace_cpu_frequency_limits(policy);
2676
2677         cpufreq_update_pressure(policy);
2678
2679         policy->cached_target_freq = UINT_MAX;
2680
2681         pr_debug("new min and max freqs are %u - %u kHz\n",
2682                  policy->min, policy->max);
2683
2684         if (cpufreq_driver->setpolicy) {
2685                 policy->policy = new_pol;
2686                 pr_debug("setting range\n");
2687                 return cpufreq_driver->setpolicy(policy);
2688         }
2689
2690         if (new_gov == policy->governor) {
2691                 pr_debug("governor limits update\n");
2692                 cpufreq_governor_limits(policy);
2693                 return 0;
2694         }
2695
2696         pr_debug("governor switch\n");
2697
2698         /* save old, working values */
2699         old_gov = policy->governor;
2700         /* end old governor */
2701         if (old_gov) {
2702                 cpufreq_stop_governor(policy);
2703                 cpufreq_exit_governor(policy);
2704         }
2705
2706         /* start new governor */
2707         policy->governor = new_gov;
2708         ret = cpufreq_init_governor(policy);
2709         if (!ret) {
2710                 ret = cpufreq_start_governor(policy);
2711                 if (!ret) {
2712                         pr_debug("governor change\n");
2713                         return 0;
2714                 }
2715                 cpufreq_exit_governor(policy);
2716         }
2717
2718         /* new governor failed, so re-start old one */
2719         pr_debug("starting governor %s failed\n", policy->governor->name);
2720         if (old_gov) {
2721                 policy->governor = old_gov;
2722                 if (cpufreq_init_governor(policy))
2723                         policy->governor = NULL;
2724                 else
2725                         cpufreq_start_governor(policy);
2726         }
2727
2728         return ret;
2729 }
2730
2731 /**
2732  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2733  * @cpu: CPU to re-evaluate the policy for.
2734  *
2735  * Update the current frequency for the cpufreq policy of @cpu and use
2736  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2737  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2738  * for the policy in question, among other things.
2739  */
2740 void cpufreq_update_policy(unsigned int cpu)
2741 {
2742         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2743
2744         if (!policy)
2745                 return;
2746
2747         /*
2748          * BIOS might change freq behind our back
2749          * -> ask driver for current freq and notify governors about a change
2750          */
2751         if (cpufreq_driver->get && has_target() &&
2752             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2753                 goto unlock;
2754
2755         refresh_frequency_limits(policy);
2756
2757 unlock:
2758         cpufreq_cpu_release(policy);
2759 }
2760 EXPORT_SYMBOL(cpufreq_update_policy);
2761
2762 /**
2763  * cpufreq_update_limits - Update policy limits for a given CPU.
2764  * @cpu: CPU to update the policy limits for.
2765  *
2766  * Invoke the driver's ->update_limits callback if present or call
2767  * cpufreq_update_policy() for @cpu.
2768  */
2769 void cpufreq_update_limits(unsigned int cpu)
2770 {
2771         if (cpufreq_driver->update_limits)
2772                 cpufreq_driver->update_limits(cpu);
2773         else
2774                 cpufreq_update_policy(cpu);
2775 }
2776 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2777
2778 /*********************************************************************
2779  *               BOOST                                               *
2780  *********************************************************************/
2781 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2782 {
2783         int ret;
2784
2785         if (!policy->freq_table)
2786                 return -ENXIO;
2787
2788         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2789         if (ret) {
2790                 pr_err("%s: Policy frequency update failed\n", __func__);
2791                 return ret;
2792         }
2793
2794         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2795         if (ret < 0)
2796                 return ret;
2797
2798         return 0;
2799 }
2800
2801 int cpufreq_boost_trigger_state(int state)
2802 {
2803         struct cpufreq_policy *policy;
2804         unsigned long flags;
2805         int ret = 0;
2806
2807         if (cpufreq_driver->boost_enabled == state)
2808                 return 0;
2809
2810         write_lock_irqsave(&cpufreq_driver_lock, flags);
2811         cpufreq_driver->boost_enabled = state;
2812         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814         cpus_read_lock();
2815         for_each_active_policy(policy) {
2816                 policy->boost_enabled = state;
2817                 ret = cpufreq_driver->set_boost(policy, state);
2818                 if (ret) {
2819                         policy->boost_enabled = !policy->boost_enabled;
2820                         goto err_reset_state;
2821                 }
2822         }
2823         cpus_read_unlock();
2824
2825         return 0;
2826
2827 err_reset_state:
2828         cpus_read_unlock();
2829
2830         write_lock_irqsave(&cpufreq_driver_lock, flags);
2831         cpufreq_driver->boost_enabled = !state;
2832         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2833
2834         pr_err("%s: Cannot %s BOOST\n",
2835                __func__, state ? "enable" : "disable");
2836
2837         return ret;
2838 }
2839
2840 static bool cpufreq_boost_supported(void)
2841 {
2842         return cpufreq_driver->set_boost;
2843 }
2844
2845 static int create_boost_sysfs_file(void)
2846 {
2847         int ret;
2848
2849         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2850         if (ret)
2851                 pr_err("%s: cannot register global BOOST sysfs file\n",
2852                        __func__);
2853
2854         return ret;
2855 }
2856
2857 static void remove_boost_sysfs_file(void)
2858 {
2859         if (cpufreq_boost_supported())
2860                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2861 }
2862
2863 int cpufreq_enable_boost_support(void)
2864 {
2865         if (!cpufreq_driver)
2866                 return -EINVAL;
2867
2868         if (cpufreq_boost_supported())
2869                 return 0;
2870
2871         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2872
2873         /* This will get removed on driver unregister */
2874         return create_boost_sysfs_file();
2875 }
2876 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2877
2878 int cpufreq_boost_enabled(void)
2879 {
2880         return cpufreq_driver->boost_enabled;
2881 }
2882 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2883
2884 /*********************************************************************
2885  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2886  *********************************************************************/
2887 static enum cpuhp_state hp_online;
2888
2889 static int cpuhp_cpufreq_online(unsigned int cpu)
2890 {
2891         cpufreq_online(cpu);
2892
2893         return 0;
2894 }
2895
2896 static int cpuhp_cpufreq_offline(unsigned int cpu)
2897 {
2898         cpufreq_offline(cpu);
2899
2900         return 0;
2901 }
2902
2903 /**
2904  * cpufreq_register_driver - register a CPU Frequency driver
2905  * @driver_data: A struct cpufreq_driver containing the values#
2906  * submitted by the CPU Frequency driver.
2907  *
2908  * Registers a CPU Frequency driver to this core code. This code
2909  * returns zero on success, -EEXIST when another driver got here first
2910  * (and isn't unregistered in the meantime).
2911  *
2912  */
2913 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2914 {
2915         unsigned long flags;
2916         int ret;
2917
2918         if (cpufreq_disabled())
2919                 return -ENODEV;
2920
2921         /*
2922          * The cpufreq core depends heavily on the availability of device
2923          * structure, make sure they are available before proceeding further.
2924          */
2925         if (!get_cpu_device(0))
2926                 return -EPROBE_DEFER;
2927
2928         if (!driver_data || !driver_data->verify || !driver_data->init ||
2929             !(driver_data->setpolicy || driver_data->target_index ||
2930                     driver_data->target) ||
2931              (driver_data->setpolicy && (driver_data->target_index ||
2932                     driver_data->target)) ||
2933              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2934              (!driver_data->online != !driver_data->offline) ||
2935                  (driver_data->adjust_perf && !driver_data->fast_switch))
2936                 return -EINVAL;
2937
2938         pr_debug("trying to register driver %s\n", driver_data->name);
2939
2940         /* Protect against concurrent CPU online/offline. */
2941         cpus_read_lock();
2942
2943         write_lock_irqsave(&cpufreq_driver_lock, flags);
2944         if (cpufreq_driver) {
2945                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2946                 ret = -EEXIST;
2947                 goto out;
2948         }
2949         cpufreq_driver = driver_data;
2950         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2951
2952         /*
2953          * Mark support for the scheduler's frequency invariance engine for
2954          * drivers that implement target(), target_index() or fast_switch().
2955          */
2956         if (!cpufreq_driver->setpolicy) {
2957                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2958                 pr_debug("supports frequency invariance");
2959         }
2960
2961         if (driver_data->setpolicy)
2962                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2963
2964         if (cpufreq_boost_supported()) {
2965                 ret = create_boost_sysfs_file();
2966                 if (ret)
2967                         goto err_null_driver;
2968         }
2969
2970         ret = subsys_interface_register(&cpufreq_interface);
2971         if (ret)
2972                 goto err_boost_unreg;
2973
2974         if (unlikely(list_empty(&cpufreq_policy_list))) {
2975                 /* if all ->init() calls failed, unregister */
2976                 ret = -ENODEV;
2977                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2978                          driver_data->name);
2979                 goto err_if_unreg;
2980         }
2981
2982         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2983                                                    "cpufreq:online",
2984                                                    cpuhp_cpufreq_online,
2985                                                    cpuhp_cpufreq_offline);
2986         if (ret < 0)
2987                 goto err_if_unreg;
2988         hp_online = ret;
2989         ret = 0;
2990
2991         pr_debug("driver %s up and running\n", driver_data->name);
2992         goto out;
2993
2994 err_if_unreg:
2995         subsys_interface_unregister(&cpufreq_interface);
2996 err_boost_unreg:
2997         remove_boost_sysfs_file();
2998 err_null_driver:
2999         write_lock_irqsave(&cpufreq_driver_lock, flags);
3000         cpufreq_driver = NULL;
3001         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3002 out:
3003         cpus_read_unlock();
3004         return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3007
3008 /*
3009  * cpufreq_unregister_driver - unregister the current CPUFreq driver
3010  *
3011  * Unregister the current CPUFreq driver. Only call this if you have
3012  * the right to do so, i.e. if you have succeeded in initialising before!
3013  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3014  * currently not initialised.
3015  */
3016 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3017 {
3018         unsigned long flags;
3019
3020         if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3021                 return;
3022
3023         pr_debug("unregistering driver %s\n", driver->name);
3024
3025         /* Protect against concurrent cpu hotplug */
3026         cpus_read_lock();
3027         subsys_interface_unregister(&cpufreq_interface);
3028         remove_boost_sysfs_file();
3029         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3030         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3031
3032         write_lock_irqsave(&cpufreq_driver_lock, flags);
3033
3034         cpufreq_driver = NULL;
3035
3036         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3037         cpus_read_unlock();
3038 }
3039 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3040
3041 static int __init cpufreq_core_init(void)
3042 {
3043         struct cpufreq_governor *gov = cpufreq_default_governor();
3044         struct device *dev_root;
3045
3046         if (cpufreq_disabled())
3047                 return -ENODEV;
3048
3049         dev_root = bus_get_dev_root(&cpu_subsys);
3050         if (dev_root) {
3051                 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3052                 put_device(dev_root);
3053         }
3054         BUG_ON(!cpufreq_global_kobject);
3055
3056         if (!strlen(default_governor))
3057                 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3058
3059         return 0;
3060 }
3061 module_param(off, int, 0444);
3062 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3063 core_initcall(cpufreq_core_init);
This page took 0.205203 seconds and 4 git commands to generate.