2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
40 #include <asm/pgalloc.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
72 unsigned long ioremap_bot = IOREMAP_BASE;
74 #ifdef CONFIG_PPC_MMU_NOHASH
75 static __ref void *early_alloc_pgtable(unsigned long size)
79 pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
84 #endif /* CONFIG_PPC_MMU_NOHASH */
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
91 int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
98 if (slab_is_available()) {
99 pgdp = pgd_offset_k(ea);
100 pudp = pud_alloc(&init_mm, pgdp, ea);
103 pmdp = pmd_alloc(&init_mm, pudp, ea);
106 ptep = pte_alloc_kernel(pmdp, ea);
109 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 pgdp = pgd_offset_k(ea);
114 #ifdef PUD_TABLE_SIZE
115 if (pgd_none(*pgdp)) {
116 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
117 BUG_ON(pudp == NULL);
118 pgd_populate(&init_mm, pgdp, pudp);
120 #endif /* PUD_TABLE_SIZE */
121 pudp = pud_offset(pgdp, ea);
122 if (pud_none(*pudp)) {
123 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
124 BUG_ON(pmdp == NULL);
125 pud_populate(&init_mm, pudp, pmdp);
127 pmdp = pmd_offset(pudp, ea);
128 if (!pmd_present(*pmdp)) {
129 ptep = early_alloc_pgtable(PAGE_SIZE);
130 BUG_ON(ptep == NULL);
131 pmd_populate_kernel(&init_mm, pmdp, ptep);
133 ptep = pte_offset_kernel(pmdp, ea);
134 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
136 #else /* CONFIG_PPC_MMU_NOHASH */
138 * If the mm subsystem is not fully up, we cannot create a
139 * linux page table entry for this mapping. Simply bolt an
140 * entry in the hardware page table.
143 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
144 mmu_io_psize, mmu_kernel_ssize)) {
145 printk(KERN_ERR "Failed to do bolted mapping IO "
146 "memory at %016lx !\n", pa);
149 #endif /* !CONFIG_PPC_MMU_NOHASH */
152 #ifdef CONFIG_PPC_BOOK3E_64
154 * With hardware tablewalk, a sync is needed to ensure that
155 * subsequent accesses see the PTE we just wrote. Unlike userspace
156 * mappings, we can't tolerate spurious faults, so make sure
157 * the new PTE will be seen the first time.
168 * __ioremap_at - Low level function to establish the page tables
171 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
176 /* Make sure we have the base flags */
177 if ((flags & _PAGE_PRESENT) == 0)
178 flags |= pgprot_val(PAGE_KERNEL);
180 /* Non-cacheable page cannot be coherent */
181 if (flags & _PAGE_NO_CACHE)
182 flags &= ~_PAGE_COHERENT;
184 /* We don't support the 4K PFN hack with ioremap */
185 if (flags & _PAGE_4K_PFN)
188 WARN_ON(pa & ~PAGE_MASK);
189 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
190 WARN_ON(size & ~PAGE_MASK);
192 for (i = 0; i < size; i += PAGE_SIZE)
193 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
196 return (void __iomem *)ea;
200 * __iounmap_from - Low level function to tear down the page tables
201 * for an IO mapping. This is used for mappings that
202 * are manipulated manually, like partial unmapping of
203 * PCI IOs or ISA space.
205 void __iounmap_at(void *ea, unsigned long size)
207 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
208 WARN_ON(size & ~PAGE_MASK);
210 unmap_kernel_range((unsigned long)ea, size);
213 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
214 unsigned long flags, void *caller)
216 phys_addr_t paligned;
220 * Choose an address to map it to.
221 * Once the imalloc system is running, we use it.
222 * Before that, we map using addresses going
223 * up from ioremap_bot. imalloc will use
224 * the addresses from ioremap_bot through
228 paligned = addr & PAGE_MASK;
229 size = PAGE_ALIGN(addr + size) - paligned;
231 if ((size == 0) || (paligned == 0))
235 struct vm_struct *area;
237 area = __get_vm_area_caller(size, VM_IOREMAP,
238 ioremap_bot, IOREMAP_END,
243 area->phys_addr = paligned;
244 ret = __ioremap_at(paligned, area->addr, size, flags);
248 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
254 ret += addr & ~PAGE_MASK;
258 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
261 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
264 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
266 unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
267 void *caller = __builtin_return_address(0);
270 return ppc_md.ioremap(addr, size, flags, caller);
271 return __ioremap_caller(addr, size, flags, caller);
274 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
276 unsigned long flags = _PAGE_NO_CACHE;
277 void *caller = __builtin_return_address(0);
280 return ppc_md.ioremap(addr, size, flags, caller);
281 return __ioremap_caller(addr, size, flags, caller);
284 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
287 void *caller = __builtin_return_address(0);
289 /* writeable implies dirty for kernel addresses */
290 if (flags & _PAGE_RW)
291 flags |= _PAGE_DIRTY;
293 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
294 flags &= ~(_PAGE_USER | _PAGE_EXEC);
297 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
298 * which means that we just cleared supervisor access... oops ;-) This
301 flags |= _PAGE_BAP_SR;
305 return ppc_md.ioremap(addr, size, flags, caller);
306 return __ioremap_caller(addr, size, flags, caller);
311 * Unmap an IO region and remove it from imalloc'd list.
312 * Access to IO memory should be serialized by driver.
314 void __iounmap(volatile void __iomem *token)
321 addr = (void *) ((unsigned long __force)
322 PCI_FIX_ADDR(token) & PAGE_MASK);
323 if ((unsigned long)addr < ioremap_bot) {
324 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
331 void iounmap(volatile void __iomem *token)
334 ppc_md.iounmap(token);
339 EXPORT_SYMBOL(ioremap);
340 EXPORT_SYMBOL(ioremap_wc);
341 EXPORT_SYMBOL(ioremap_prot);
342 EXPORT_SYMBOL(__ioremap);
343 EXPORT_SYMBOL(__ioremap_at);
344 EXPORT_SYMBOL(iounmap);
345 EXPORT_SYMBOL(__iounmap);
346 EXPORT_SYMBOL(__iounmap_at);
348 #ifndef __PAGETABLE_PUD_FOLDED
349 /* 4 level page table */
350 struct page *pgd_page(pgd_t pgd)
353 return pte_page(pgd_pte(pgd));
354 return virt_to_page(pgd_page_vaddr(pgd));
358 struct page *pud_page(pud_t pud)
361 return pte_page(pud_pte(pud));
362 return virt_to_page(pud_page_vaddr(pud));
366 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
367 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
369 struct page *pmd_page(pmd_t pmd)
371 if (pmd_trans_huge(pmd) || pmd_huge(pmd))
372 return pfn_to_page(pmd_pfn(pmd));
373 return virt_to_page(pmd_page_vaddr(pmd));
376 #ifdef CONFIG_PPC_64K_PAGES
377 static pte_t *get_from_cache(struct mm_struct *mm)
379 void *pte_frag, *ret;
381 spin_lock(&mm->page_table_lock);
382 ret = mm->context.pte_frag;
384 pte_frag = ret + PTE_FRAG_SIZE;
386 * If we have taken up all the fragments mark PTE page NULL
388 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
390 mm->context.pte_frag = pte_frag;
392 spin_unlock(&mm->page_table_lock);
396 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
399 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
400 __GFP_REPEAT | __GFP_ZERO);
403 if (!kernel && !pgtable_page_ctor(page)) {
408 ret = page_address(page);
409 spin_lock(&mm->page_table_lock);
411 * If we find pgtable_page set, we return
412 * the allocated page with single fragement
415 if (likely(!mm->context.pte_frag)) {
416 atomic_set(&page->_count, PTE_FRAG_NR);
417 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
419 spin_unlock(&mm->page_table_lock);
424 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
428 pte = get_from_cache(mm);
432 return __alloc_for_cache(mm, kernel);
435 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
437 struct page *page = virt_to_page(table);
438 if (put_page_testzero(page)) {
440 pgtable_page_dtor(page);
441 free_hot_cold_page(page, 0);
446 static void page_table_free_rcu(void *table)
448 struct page *page = virt_to_page(table);
449 if (put_page_testzero(page)) {
450 pgtable_page_dtor(page);
451 free_hot_cold_page(page, 0);
455 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
457 unsigned long pgf = (unsigned long)table;
459 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
461 tlb_remove_table(tlb, (void *)pgf);
464 void __tlb_remove_table(void *_table)
466 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
467 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
470 /* PTE page needs special handling */
471 page_table_free_rcu(table);
473 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
474 kmem_cache_free(PGT_CACHE(shift), table);
478 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
481 /* PTE page needs special handling */
482 struct page *page = virt_to_page(table);
483 if (put_page_testzero(page)) {
484 pgtable_page_dtor(page);
485 free_hot_cold_page(page, 0);
488 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
489 kmem_cache_free(PGT_CACHE(shift), table);
493 #endif /* CONFIG_PPC_64K_PAGES */
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
498 * This is called when relaxing access to a hugepage. It's also called in the page
499 * fault path when we don't hit any of the major fault cases, ie, a minor
500 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
501 * handled those two for us, we additionally deal with missing execute
502 * permission here on some processors
504 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
505 pmd_t *pmdp, pmd_t entry, int dirty)
508 #ifdef CONFIG_DEBUG_VM
509 WARN_ON(!pmd_trans_huge(*pmdp));
510 assert_spin_locked(&vma->vm_mm->page_table_lock);
512 changed = !pmd_same(*(pmdp), entry);
514 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
516 * Since we are not supporting SW TLB systems, we don't
517 * have any thing similar to flush_tlb_page_nohash()
523 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
524 pmd_t *pmdp, unsigned long clr,
528 unsigned long old, tmp;
530 #ifdef CONFIG_DEBUG_VM
531 WARN_ON(!pmd_trans_huge(*pmdp));
532 assert_spin_locked(&mm->page_table_lock);
535 #ifdef PTE_ATOMIC_UPDATES
536 __asm__ __volatile__(
544 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
545 : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
548 old = pmd_val(*pmdp);
549 *pmdp = __pmd((old & ~clr) | set);
551 trace_hugepage_update(addr, old, clr, set);
552 if (old & _PAGE_HASHPTE)
553 hpte_do_hugepage_flush(mm, addr, pmdp, old);
557 pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
562 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
563 if (pmd_trans_huge(*pmdp)) {
564 pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
567 * khugepaged calls this for normal pmd
572 * Wait for all pending hash_page to finish. This is needed
573 * in case of subpage collapse. When we collapse normal pages
574 * to hugepage, we first clear the pmd, then invalidate all
575 * the PTE entries. The assumption here is that any low level
576 * page fault will see a none pmd and take the slow path that
577 * will wait on mmap_sem. But we could very well be in a
578 * hash_page with local ptep pointer value. Such a hash page
579 * can result in adding new HPTE entries for normal subpages.
580 * That means we could be modifying the page content as we
581 * copy them to a huge page. So wait for parallel hash_page
582 * to finish before invalidating HPTE entries. We can do this
583 * by sending an IPI to all the cpus and executing a dummy
586 kick_all_cpus_sync();
588 * Now invalidate the hpte entries in the range
589 * covered by pmd. This make sure we take a
590 * fault and will find the pmd as none, which will
591 * result in a major fault which takes mmap_sem and
592 * hence wait for collapse to complete. Without this
593 * the __collapse_huge_page_copy can result in copying
596 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
601 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
602 unsigned long address, pmd_t *pmdp)
604 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
608 * We currently remove entries from the hashtable regardless of whether
609 * the entry was young or dirty. The generic routines only flush if the
610 * entry was young or dirty which is not good enough.
612 * We should be more intelligent about this but for the moment we override
613 * these functions and force a tlb flush unconditionally
615 int pmdp_clear_flush_young(struct vm_area_struct *vma,
616 unsigned long address, pmd_t *pmdp)
618 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
622 * We mark the pmd splitting and invalidate all the hpte
623 * entries for this hugepage.
625 void pmdp_splitting_flush(struct vm_area_struct *vma,
626 unsigned long address, pmd_t *pmdp)
628 unsigned long old, tmp;
630 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
632 #ifdef CONFIG_DEBUG_VM
633 WARN_ON(!pmd_trans_huge(*pmdp));
634 assert_spin_locked(&vma->vm_mm->page_table_lock);
637 #ifdef PTE_ATOMIC_UPDATES
639 __asm__ __volatile__(
646 : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
647 : "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
650 old = pmd_val(*pmdp);
651 *pmdp = __pmd(old | _PAGE_SPLITTING);
654 * If we didn't had the splitting flag set, go and flush the
657 trace_hugepage_splitting(address, old);
658 if (!(old & _PAGE_SPLITTING)) {
659 /* We need to flush the hpte */
660 if (old & _PAGE_HASHPTE)
661 hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
664 * This ensures that generic code that rely on IRQ disabling
665 * to prevent a parallel THP split work as expected.
667 kick_all_cpus_sync();
671 * We want to put the pgtable in pmd and use pgtable for tracking
672 * the base page size hptes
674 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
677 pgtable_t *pgtable_slot;
678 assert_spin_locked(&mm->page_table_lock);
680 * we store the pgtable in the second half of PMD
682 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
683 *pgtable_slot = pgtable;
685 * expose the deposited pgtable to other cpus.
686 * before we set the hugepage PTE at pmd level
687 * hash fault code looks at the deposted pgtable
688 * to store hash index values.
693 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
696 pgtable_t *pgtable_slot;
698 assert_spin_locked(&mm->page_table_lock);
699 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
700 pgtable = *pgtable_slot;
702 * Once we withdraw, mark the entry NULL.
704 *pgtable_slot = NULL;
706 * We store HPTE information in the deposited PTE fragment.
707 * zero out the content on withdraw.
709 memset(pgtable, 0, PTE_FRAG_SIZE);
714 * set a new huge pmd. We should not be called for updating
715 * an existing pmd entry. That should go via pmd_hugepage_update.
717 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
718 pmd_t *pmdp, pmd_t pmd)
720 #ifdef CONFIG_DEBUG_VM
721 WARN_ON((pmd_val(*pmdp) & (_PAGE_PRESENT | _PAGE_USER)) ==
722 (_PAGE_PRESENT | _PAGE_USER));
723 assert_spin_locked(&mm->page_table_lock);
724 WARN_ON(!pmd_trans_huge(pmd));
726 trace_hugepage_set_pmd(addr, pmd);
727 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
730 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
733 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
737 * A linux hugepage PMD was changed and the corresponding hash table entries
738 * neesd to be flushed.
740 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
741 pmd_t *pmdp, unsigned long old_pmd)
746 unsigned long flags = 0;
747 const struct cpumask *tmp;
749 /* get the base page size,vsid and segment size */
750 #ifdef CONFIG_DEBUG_VM
751 psize = get_slice_psize(mm, addr);
752 BUG_ON(psize == MMU_PAGE_16M);
754 if (old_pmd & _PAGE_COMBO)
757 psize = MMU_PAGE_64K;
759 if (!is_kernel_addr(addr)) {
760 ssize = user_segment_size(addr);
761 vsid = get_vsid(mm->context.id, addr, ssize);
764 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
765 ssize = mmu_kernel_ssize;
768 tmp = cpumask_of(smp_processor_id());
769 if (cpumask_equal(mm_cpumask(mm), tmp))
770 flags |= HPTE_LOCAL_UPDATE;
772 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
775 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
777 pmd_val(pmd) |= pgprot_val(pgprot);
781 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
785 * For a valid pte, we would have _PAGE_PRESENT always
786 * set. We use this to check THP page at pmd level.
787 * leaf pte for huge page, bottom two bits != 00
789 pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
790 pmd_val(pmd) |= _PAGE_THP_HUGE;
791 pmd = pmd_set_protbits(pmd, pgprot);
795 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
797 return pfn_pmd(page_to_pfn(page), pgprot);
800 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
803 pmd_val(pmd) &= _HPAGE_CHG_MASK;
804 pmd = pmd_set_protbits(pmd, newprot);
809 * This is called at the end of handling a user page fault, when the
810 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
811 * We use it to preload an HPTE into the hash table corresponding to
812 * the updated linux HUGE PMD entry.
814 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
820 pmd_t pmdp_get_and_clear(struct mm_struct *mm,
821 unsigned long addr, pmd_t *pmdp)
826 pgtable_t *pgtable_slot;
828 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
829 old_pmd = __pmd(old);
831 * We have pmd == none and we are holding page_table_lock.
832 * So we can safely go and clear the pgtable hash
835 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
836 pgtable = *pgtable_slot;
838 * Let's zero out old valid and hash index details
839 * hash fault look at them.
841 memset(pgtable, 0, PTE_FRAG_SIZE);
845 int has_transparent_hugepage(void)
847 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
850 * We support THP only if PMD_SIZE is 16MB.
852 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
855 * We need to make sure that we support 16MB hugepage in a segement
856 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
860 * If we have 64K HPTE, we will be using that by default
862 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
863 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
866 * Ok we only have 4K HPTE
868 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */