1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * An RTC driver for Allwinner A31/A23
9 * An RTC driver for Allwinner A10/A20
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
32 /* Control register */
33 #define SUN6I_LOSC_CTRL 0x0000
34 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
43 #define SUN6I_LOSC_CLK_PRESCAL 0x0008
46 #define SUN6I_RTC_YMD 0x0010
47 #define SUN6I_RTC_HMS 0x0014
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER 0x0020
51 #define SUN6I_ALRM_CUR_VAL 0x0024
52 #define SUN6I_ALRM_EN 0x0028
53 #define SUN6I_ALRM_EN_CNT_EN BIT(0)
54 #define SUN6I_ALRM_IRQ_EN 0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
56 #define SUN6I_ALRM_IRQ_STA 0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN 0x0044
61 #define SUN6I_ALRM1_IRQ_EN 0x0048
62 #define SUN6I_ALRM1_IRQ_STA 0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
66 #define SUN6I_ALARM_CONFIG 0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
69 #define SUN6I_LOSC_OUT_GATING 0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
75 #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
83 #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
90 #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
98 #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
103 * The year parameter passed to the driver is usually an offset relative to
104 * the year 1900. This macro is used to convert this offset to another one
105 * relative to the minimum year allowed by the hardware.
107 * The year range is 1970 - 2033. This range is selected to match Allwinner's
108 * driver, even though it is somewhat limited.
110 #define SUN6I_YEAR_MIN 1970
111 #define SUN6I_YEAR_MAX 2033
112 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
115 * There are other differences between models, including:
117 * - number of GPIO pins that can be configured to hold a certain level
118 * - crypto-key related registers (H5, H6)
119 * - boot process related (super standby, secondary processor entry address)
120 * registers (R40, H6)
121 * - SYS power domain controls (R40)
122 * - DCXO controls (H6)
123 * - RC oscillator calibration (H6)
125 * These functions are not covered by this driver.
127 struct sun6i_rtc_clk_data {
128 unsigned long rc_osc_rate;
129 unsigned int fixed_prescaler : 16;
130 unsigned int has_prescaler : 1;
131 unsigned int has_out_clk : 1;
132 unsigned int export_iosc : 1;
133 unsigned int has_losc_en : 1;
134 unsigned int has_auto_swt : 1;
137 struct sun6i_rtc_dev {
138 struct rtc_device *rtc;
140 const struct sun6i_rtc_clk_data *data;
146 struct clk_hw *int_osc;
148 struct clk *ext_losc;
153 static struct sun6i_rtc_dev *sun6i_rtc;
155 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
156 unsigned long parent_rate)
158 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
161 val = readl(rtc->base + SUN6I_LOSC_CTRL);
162 if (val & SUN6I_LOSC_CTRL_EXT_OSC)
165 if (rtc->data->fixed_prescaler)
166 parent_rate /= rtc->data->fixed_prescaler;
168 if (rtc->data->has_prescaler) {
169 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
170 val &= GENMASK(4, 0);
173 return parent_rate / (val + 1);
176 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
178 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
180 return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
183 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
185 struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
192 spin_lock_irqsave(&rtc->lock, flags);
193 val = readl(rtc->base + SUN6I_LOSC_CTRL);
194 val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
195 val |= SUN6I_LOSC_CTRL_KEY;
196 val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
197 if (rtc->data->has_losc_en) {
198 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
199 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
201 writel(val, rtc->base + SUN6I_LOSC_CTRL);
202 spin_unlock_irqrestore(&rtc->lock, flags);
207 static const struct clk_ops sun6i_rtc_osc_ops = {
208 .recalc_rate = sun6i_rtc_osc_recalc_rate,
210 .get_parent = sun6i_rtc_osc_get_parent,
211 .set_parent = sun6i_rtc_osc_set_parent,
214 static void __init sun6i_rtc_clk_init(struct device_node *node,
215 const struct sun6i_rtc_clk_data *data)
217 struct clk_hw_onecell_data *clk_data;
218 struct sun6i_rtc_dev *rtc;
219 struct clk_init_data init = {
220 .ops = &sun6i_rtc_osc_ops,
223 const char *iosc_name = "rtc-int-osc";
224 const char *clkout_name = "osc32k-out";
225 const char *parents[2];
228 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
233 clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
239 spin_lock_init(&rtc->lock);
241 rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
242 if (IS_ERR(rtc->base)) {
243 pr_crit("Can't map RTC registers");
247 reg = SUN6I_LOSC_CTRL_KEY;
248 if (rtc->data->has_auto_swt) {
249 /* Bypass auto-switch to int osc, on ext losc failure */
250 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
251 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
254 /* Switch to the external, more precise, oscillator */
255 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
256 if (rtc->data->has_losc_en)
257 reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
258 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
260 /* Yes, I know, this is ugly. */
263 /* Deal with old DTs */
264 if (!of_get_property(node, "clocks", NULL))
267 /* Only read IOSC name from device tree if it is exported */
268 if (rtc->data->export_iosc)
269 of_property_read_string_index(node, "clock-output-names", 2,
272 rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
275 rtc->data->rc_osc_rate,
277 if (IS_ERR(rtc->int_osc)) {
278 pr_crit("Couldn't register the internal oscillator\n");
282 parents[0] = clk_hw_get_name(rtc->int_osc);
283 parents[1] = of_clk_get_parent_name(node, 0);
285 rtc->hw.init = &init;
287 init.parent_names = parents;
288 init.num_parents = of_clk_get_parent_count(node) + 1;
289 of_property_read_string_index(node, "clock-output-names", 0,
292 rtc->losc = clk_register(NULL, &rtc->hw);
293 if (IS_ERR(rtc->losc)) {
294 pr_crit("Couldn't register the LOSC clock\n");
298 of_property_read_string_index(node, "clock-output-names", 1,
300 rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
301 0, rtc->base + SUN6I_LOSC_OUT_GATING,
302 SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
304 if (IS_ERR(rtc->ext_losc)) {
305 pr_crit("Couldn't register the LOSC external gate\n");
310 clk_data->hws[0] = &rtc->hw;
311 clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
312 if (rtc->data->export_iosc) {
313 clk_data->hws[2] = rtc->int_osc;
316 of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
323 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
324 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
328 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
330 sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
332 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
333 sun6i_a31_rtc_clk_init);
335 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
336 .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
341 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
343 sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
345 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
346 sun8i_a23_rtc_clk_init);
348 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
349 .rc_osc_rate = 16000000,
350 .fixed_prescaler = 32,
356 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
358 sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
360 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
361 sun8i_h3_rtc_clk_init);
362 /* As far as we are concerned, clocks for H5 are the same as H3 */
363 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
364 sun8i_h3_rtc_clk_init);
366 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
367 .rc_osc_rate = 16000000,
368 .fixed_prescaler = 32,
376 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
378 sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
380 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
381 sun50i_h6_rtc_clk_init);
383 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
384 .rc_osc_rate = 32000,
388 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
390 sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
392 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
393 sun8i_v3_rtc_clk_init);
395 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
397 struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
398 irqreturn_t ret = IRQ_NONE;
401 spin_lock(&chip->lock);
402 val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
404 if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
405 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
406 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
408 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
412 spin_unlock(&chip->lock);
417 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
420 u32 alrm_irq_val = 0;
421 u32 alrm_wake_val = 0;
425 alrm_val = SUN6I_ALRM_EN_CNT_EN;
426 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
427 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
429 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
430 chip->base + SUN6I_ALRM_IRQ_STA);
433 spin_lock_irqsave(&chip->lock, flags);
434 writel(alrm_val, chip->base + SUN6I_ALRM_EN);
435 writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
436 writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
437 spin_unlock_irqrestore(&chip->lock, flags);
440 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
442 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
446 * read again in case it changes
449 date = readl(chip->base + SUN6I_RTC_YMD);
450 time = readl(chip->base + SUN6I_RTC_HMS);
451 } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
452 (time != readl(chip->base + SUN6I_RTC_HMS)));
454 rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
455 rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
456 rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
458 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
459 rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date);
460 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
465 * switch from (data_year->min)-relative offset to
466 * a (1900)-relative one
468 rtc_tm->tm_year += SUN6I_YEAR_OFF;
473 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
475 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
480 spin_lock_irqsave(&chip->lock, flags);
481 alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
482 alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
483 spin_unlock_irqrestore(&chip->lock, flags);
485 wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
486 wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
487 rtc_time_to_tm(chip->alarm, &wkalrm->time);
492 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
494 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
495 struct rtc_time *alrm_tm = &wkalrm->time;
496 struct rtc_time tm_now;
497 unsigned long time_now = 0;
498 unsigned long time_set = 0;
499 unsigned long time_gap = 0;
502 ret = sun6i_rtc_gettime(dev, &tm_now);
504 dev_err(dev, "Error in getting time\n");
508 rtc_tm_to_time(alrm_tm, &time_set);
509 rtc_tm_to_time(&tm_now, &time_now);
510 if (time_set <= time_now) {
511 dev_err(dev, "Date to set in the past\n");
515 time_gap = time_set - time_now;
517 if (time_gap > U32_MAX) {
518 dev_err(dev, "Date too far in the future\n");
522 sun6i_rtc_setaie(0, chip);
523 writel(0, chip->base + SUN6I_ALRM_COUNTER);
524 usleep_range(100, 300);
526 writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
527 chip->alarm = time_set;
529 sun6i_rtc_setaie(wkalrm->enabled, chip);
534 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
535 unsigned int mask, unsigned int ms_timeout)
537 const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
541 reg = readl(chip->base + offset);
547 } while (time_before(jiffies, timeout));
552 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
554 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
559 year = rtc_tm->tm_year + 1900;
560 if (year < SUN6I_YEAR_MIN || year > SUN6I_YEAR_MAX) {
561 dev_err(dev, "rtc only supports year in range %d - %d\n",
562 SUN6I_YEAR_MIN, SUN6I_YEAR_MAX);
566 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
569 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
570 SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
571 SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
573 if (is_leap_year(year))
574 date |= SUN6I_LEAP_SET_VALUE(1);
576 time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
577 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
578 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
580 /* Check whether registers are writable */
581 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
582 SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
583 dev_err(dev, "rtc is still busy.\n");
587 writel(time, chip->base + SUN6I_RTC_HMS);
590 * After writing the RTC HH-MM-SS register, the
591 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
592 * be cleared until the real writing operation is finished
595 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
596 SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
597 dev_err(dev, "Failed to set rtc time.\n");
601 writel(date, chip->base + SUN6I_RTC_YMD);
604 * After writing the RTC YY-MM-DD register, the
605 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
606 * be cleared until the real writing operation is finished
609 if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
610 SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
611 dev_err(dev, "Failed to set rtc time.\n");
618 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
620 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
623 sun6i_rtc_setaie(enabled, chip);
628 static const struct rtc_class_ops sun6i_rtc_ops = {
629 .read_time = sun6i_rtc_gettime,
630 .set_time = sun6i_rtc_settime,
631 .read_alarm = sun6i_rtc_getalarm,
632 .set_alarm = sun6i_rtc_setalarm,
633 .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
636 #ifdef CONFIG_PM_SLEEP
637 /* Enable IRQ wake on suspend, to wake up from RTC. */
638 static int sun6i_rtc_suspend(struct device *dev)
640 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
642 if (device_may_wakeup(dev))
643 enable_irq_wake(chip->irq);
648 /* Disable IRQ wake on resume. */
649 static int sun6i_rtc_resume(struct device *dev)
651 struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
653 if (device_may_wakeup(dev))
654 disable_irq_wake(chip->irq);
660 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
661 sun6i_rtc_suspend, sun6i_rtc_resume);
663 static int sun6i_rtc_probe(struct platform_device *pdev)
665 struct sun6i_rtc_dev *chip = sun6i_rtc;
671 platform_set_drvdata(pdev, chip);
672 chip->dev = &pdev->dev;
674 chip->irq = platform_get_irq(pdev, 0);
678 ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
679 0, dev_name(&pdev->dev), chip);
681 dev_err(&pdev->dev, "Could not request IRQ\n");
685 /* clear the alarm counter value */
686 writel(0, chip->base + SUN6I_ALRM_COUNTER);
688 /* disable counter alarm */
689 writel(0, chip->base + SUN6I_ALRM_EN);
691 /* disable counter alarm interrupt */
692 writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
694 /* disable week alarm */
695 writel(0, chip->base + SUN6I_ALRM1_EN);
697 /* disable week alarm interrupt */
698 writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
700 /* clear counter alarm pending interrupts */
701 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
702 chip->base + SUN6I_ALRM_IRQ_STA);
704 /* clear week alarm pending interrupts */
705 writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
706 chip->base + SUN6I_ALRM1_IRQ_STA);
708 /* disable alarm wakeup */
709 writel(0, chip->base + SUN6I_ALARM_CONFIG);
711 clk_prepare_enable(chip->losc);
713 device_init_wakeup(&pdev->dev, 1);
715 chip->rtc = devm_rtc_device_register(&pdev->dev, "rtc-sun6i",
716 &sun6i_rtc_ops, THIS_MODULE);
717 if (IS_ERR(chip->rtc)) {
718 dev_err(&pdev->dev, "unable to register device\n");
719 return PTR_ERR(chip->rtc);
722 dev_info(&pdev->dev, "RTC enabled\n");
728 * As far as RTC functionality goes, all models are the same. The
729 * datasheets claim that different models have different number of
730 * registers available for non-volatile storage, but experiments show
731 * that all SoCs have 16 registers available for this purpose.
733 static const struct of_device_id sun6i_rtc_dt_ids[] = {
734 { .compatible = "allwinner,sun6i-a31-rtc" },
735 { .compatible = "allwinner,sun8i-a23-rtc" },
736 { .compatible = "allwinner,sun8i-h3-rtc" },
737 { .compatible = "allwinner,sun8i-r40-rtc" },
738 { .compatible = "allwinner,sun8i-v3-rtc" },
739 { .compatible = "allwinner,sun50i-h5-rtc" },
740 { .compatible = "allwinner,sun50i-h6-rtc" },
743 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
745 static struct platform_driver sun6i_rtc_driver = {
746 .probe = sun6i_rtc_probe,
749 .of_match_table = sun6i_rtc_dt_ids,
750 .pm = &sun6i_rtc_pm_ops,
753 builtin_platform_driver(sun6i_rtc_driver);