2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
73 if (defrag1->root > defrag2->root)
75 else if (defrag1->root < defrag2->root)
77 else if (defrag1->ino > defrag2->ino)
79 else if (defrag1->ino < defrag2->ino)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
100 struct rb_node *parent = NULL;
103 p = &root->fs_info->defrag_inodes.rb_node;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
108 ret = __compare_inode_defrag(defrag, entry);
110 p = &parent->rb_left;
112 p = &parent->rb_right;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
131 static inline int __need_auto_defrag(struct btrfs_root *root)
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 if (btrfs_fs_closing(root->fs_info))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
154 if (!__need_auto_defrag(root))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
161 transid = trans->transid;
163 transid = BTRFS_I(inode)->root->last_trans;
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret = __btrfs_add_inode_defrag(inode, defrag);
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
198 struct btrfs_root *root = BTRFS_I(inode)->root;
201 if (!__need_auto_defrag(root))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
228 struct rb_node *parent = NULL;
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
240 ret = __compare_inode_defrag(&tmp, entry);
244 p = parent->rb_right;
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 struct inode_defrag *defrag;
266 struct rb_node *node;
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
278 spin_lock(&fs_info->defrag_inodes_lock);
281 node = rb_first(&fs_info->defrag_inodes);
283 spin_unlock(&fs_info->defrag_inodes_lock);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
291 struct btrfs_root *inode_root;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
304 index = srcu_read_lock(&fs_info->subvol_srcu);
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
312 key.objectid = defrag->ino;
313 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
315 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 ret = PTR_ERR(inode);
320 srcu_read_unlock(&fs_info->subvol_srcu, index);
322 /* do a chunk of defrag */
323 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 memset(&range, 0, sizeof(range));
326 range.start = defrag->last_offset;
328 sb_start_write(fs_info->sb);
329 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 sb_end_write(fs_info->sb);
333 * if we filled the whole defrag batch, there
334 * must be more work to do. Queue this defrag
337 if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 defrag->last_offset = range.start;
339 btrfs_requeue_inode_defrag(inode, defrag);
340 } else if (defrag->last_offset && !defrag->cycled) {
342 * we didn't fill our defrag batch, but
343 * we didn't start at zero. Make sure we loop
344 * around to the start of the file.
346 defrag->last_offset = 0;
348 btrfs_requeue_inode_defrag(inode, defrag);
350 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 srcu_read_unlock(&fs_info->subvol_srcu, index);
357 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 * run through the list of inodes in the FS that need
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367 struct inode_defrag *defrag;
369 u64 root_objectid = 0;
371 atomic_inc(&fs_info->defrag_running);
373 /* Pause the auto defragger. */
374 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
378 if (!__need_auto_defrag(fs_info->tree_root))
381 /* find an inode to defrag */
382 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
385 if (root_objectid || first_ino) {
394 first_ino = defrag->ino + 1;
395 root_objectid = defrag->root;
397 __btrfs_run_defrag_inode(fs_info, defrag);
399 atomic_dec(&fs_info->defrag_running);
402 * during unmount, we use the transaction_wait queue to
403 * wait for the defragger to stop
405 wake_up(&fs_info->transaction_wait);
409 /* simple helper to fault in pages and copy. This should go away
410 * and be replaced with calls into generic code.
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 struct page **prepared_pages,
418 size_t total_copied = 0;
420 int offset = pos & (PAGE_CACHE_SIZE - 1);
422 while (write_bytes > 0) {
423 size_t count = min_t(size_t,
424 PAGE_CACHE_SIZE - offset, write_bytes);
425 struct page *page = prepared_pages[pg];
427 * Copy data from userspace to the current page
429 * Disable pagefault to avoid recursive lock since
430 * the pages are already locked
433 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
436 /* Flush processor's dcache for this page */
437 flush_dcache_page(page);
440 * if we get a partial write, we can end up with
441 * partially up to date pages. These add
442 * a lot of complexity, so make sure they don't
443 * happen by forcing this copy to be retried.
445 * The rest of the btrfs_file_write code will fall
446 * back to page at a time copies after we return 0.
448 if (!PageUptodate(page) && copied < count)
451 iov_iter_advance(i, copied);
452 write_bytes -= copied;
453 total_copied += copied;
455 /* Return to btrfs_file_aio_write to fault page */
456 if (unlikely(copied == 0))
459 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
470 * unlocks pages after btrfs_file_write is done with them
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
475 for (i = 0; i < num_pages; i++) {
476 /* page checked is some magic around finding pages that
477 * have been modified without going through btrfs_set_page_dirty
480 ClearPageChecked(pages[i]);
481 unlock_page(pages[i]);
482 mark_page_accessed(pages[i]);
483 page_cache_release(pages[i]);
488 * after copy_from_user, pages need to be dirtied and we need to make
489 * sure holes are created between the current EOF and the start of
490 * any next extents (if required).
492 * this also makes the decision about creating an inline extent vs
493 * doing real data extents, marking pages dirty and delalloc as required.
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496 struct page **pages, size_t num_pages,
497 loff_t pos, size_t write_bytes,
498 struct extent_state **cached)
504 u64 end_of_last_block;
505 u64 end_pos = pos + write_bytes;
506 loff_t isize = i_size_read(inode);
508 start_pos = pos & ~((u64)root->sectorsize - 1);
509 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
511 end_of_last_block = start_pos + num_bytes - 1;
512 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
517 for (i = 0; i < num_pages; i++) {
518 struct page *p = pages[i];
525 * we've only changed i_size in ram, and we haven't updated
526 * the disk i_size. There is no need to log the inode
530 i_size_write(inode, end_pos);
535 * this drops all the extents in the cache that intersect the range
536 * [start, end]. Existing extents are split as required.
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
541 struct extent_map *em;
542 struct extent_map *split = NULL;
543 struct extent_map *split2 = NULL;
544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545 u64 len = end - start + 1;
553 WARN_ON(end < start);
554 if (end == (u64)-1) {
563 split = alloc_extent_map();
565 split2 = alloc_extent_map();
566 if (!split || !split2)
569 write_lock(&em_tree->lock);
570 em = lookup_extent_mapping(em_tree, start, len);
572 write_unlock(&em_tree->lock);
576 gen = em->generation;
577 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578 if (testend && em->start + em->len >= start + len) {
580 write_unlock(&em_tree->lock);
583 start = em->start + em->len;
585 len = start + len - (em->start + em->len);
587 write_unlock(&em_tree->lock);
590 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593 modified = !list_empty(&em->list);
594 remove_extent_mapping(em_tree, em);
598 if (em->start < start) {
599 split->start = em->start;
600 split->len = start - em->start;
602 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603 split->orig_start = em->orig_start;
604 split->block_start = em->block_start;
607 split->block_len = em->block_len;
609 split->block_len = split->len;
610 split->orig_block_len = max(split->block_len,
612 split->ram_bytes = em->ram_bytes;
614 split->orig_start = split->start;
615 split->block_len = 0;
616 split->block_start = em->block_start;
617 split->orig_block_len = 0;
618 split->ram_bytes = split->len;
621 split->generation = gen;
622 split->bdev = em->bdev;
623 split->flags = flags;
624 split->compress_type = em->compress_type;
625 ret = add_extent_mapping(em_tree, split, modified);
626 BUG_ON(ret); /* Logic error */
627 free_extent_map(split);
631 if (testend && em->start + em->len > start + len) {
632 u64 diff = start + len - em->start;
634 split->start = start + len;
635 split->len = em->start + em->len - (start + len);
636 split->bdev = em->bdev;
637 split->flags = flags;
638 split->compress_type = em->compress_type;
639 split->generation = gen;
641 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642 split->orig_block_len = max(em->block_len,
645 split->ram_bytes = em->ram_bytes;
647 split->block_len = em->block_len;
648 split->block_start = em->block_start;
649 split->orig_start = em->orig_start;
651 split->block_len = split->len;
652 split->block_start = em->block_start
654 split->orig_start = em->orig_start;
657 split->ram_bytes = split->len;
658 split->orig_start = split->start;
659 split->block_len = 0;
660 split->block_start = em->block_start;
661 split->orig_block_len = 0;
664 ret = add_extent_mapping(em_tree, split, modified);
665 BUG_ON(ret); /* Logic error */
666 free_extent_map(split);
670 write_unlock(&em_tree->lock);
674 /* once for the tree*/
678 free_extent_map(split);
680 free_extent_map(split2);
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
695 u64 *drop_end, int drop_cache,
697 u32 extent_item_size,
700 struct extent_buffer *leaf;
701 struct btrfs_file_extent_item *fi;
702 struct btrfs_key key;
703 struct btrfs_key new_key;
704 u64 ino = btrfs_ino(inode);
705 u64 search_start = start;
708 u64 extent_offset = 0;
715 int modify_tree = -1;
716 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
718 int leafs_visited = 0;
721 btrfs_drop_extent_cache(inode, start, end - 1, 0);
723 if (start >= BTRFS_I(inode)->disk_i_size)
728 ret = btrfs_lookup_file_extent(trans, root, path, ino,
729 search_start, modify_tree);
732 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
733 leaf = path->nodes[0];
734 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
735 if (key.objectid == ino &&
736 key.type == BTRFS_EXTENT_DATA_KEY)
742 leaf = path->nodes[0];
743 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 ret = btrfs_next_leaf(root, path);
753 leaf = path->nodes[0];
757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
758 if (key.objectid > ino ||
759 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
762 fi = btrfs_item_ptr(leaf, path->slots[0],
763 struct btrfs_file_extent_item);
764 extent_type = btrfs_file_extent_type(leaf, fi);
766 if (extent_type == BTRFS_FILE_EXTENT_REG ||
767 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
768 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
769 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
770 extent_offset = btrfs_file_extent_offset(leaf, fi);
771 extent_end = key.offset +
772 btrfs_file_extent_num_bytes(leaf, fi);
773 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
774 extent_end = key.offset +
775 btrfs_file_extent_inline_len(leaf, fi);
778 extent_end = search_start;
781 if (extent_end <= search_start) {
787 search_start = max(key.offset, start);
788 if (recow || !modify_tree) {
790 btrfs_release_path(path);
795 * | - range to drop - |
796 * | -------- extent -------- |
798 if (start > key.offset && end < extent_end) {
800 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
802 memcpy(&new_key, &key, sizeof(new_key));
803 new_key.offset = start;
804 ret = btrfs_duplicate_item(trans, root, path,
806 if (ret == -EAGAIN) {
807 btrfs_release_path(path);
813 leaf = path->nodes[0];
814 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
815 struct btrfs_file_extent_item);
816 btrfs_set_file_extent_num_bytes(leaf, fi,
819 fi = btrfs_item_ptr(leaf, path->slots[0],
820 struct btrfs_file_extent_item);
822 extent_offset += start - key.offset;
823 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
824 btrfs_set_file_extent_num_bytes(leaf, fi,
826 btrfs_mark_buffer_dirty(leaf);
828 if (update_refs && disk_bytenr > 0) {
829 ret = btrfs_inc_extent_ref(trans, root,
830 disk_bytenr, num_bytes, 0,
831 root->root_key.objectid,
833 start - extent_offset, 0);
834 BUG_ON(ret); /* -ENOMEM */
839 * | ---- range to drop ----- |
840 * | -------- extent -------- |
842 if (start <= key.offset && end < extent_end) {
843 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
845 memcpy(&new_key, &key, sizeof(new_key));
846 new_key.offset = end;
847 btrfs_set_item_key_safe(root, path, &new_key);
849 extent_offset += end - key.offset;
850 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
851 btrfs_set_file_extent_num_bytes(leaf, fi,
853 btrfs_mark_buffer_dirty(leaf);
854 if (update_refs && disk_bytenr > 0)
855 inode_sub_bytes(inode, end - key.offset);
859 search_start = extent_end;
861 * | ---- range to drop ----- |
862 * | -------- extent -------- |
864 if (start > key.offset && end >= extent_end) {
866 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
868 btrfs_set_file_extent_num_bytes(leaf, fi,
870 btrfs_mark_buffer_dirty(leaf);
871 if (update_refs && disk_bytenr > 0)
872 inode_sub_bytes(inode, extent_end - start);
873 if (end == extent_end)
881 * | ---- range to drop ----- |
882 * | ------ extent ------ |
884 if (start <= key.offset && end >= extent_end) {
886 del_slot = path->slots[0];
889 BUG_ON(del_slot + del_nr != path->slots[0]);
894 extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 inode_sub_bytes(inode,
896 extent_end - key.offset);
897 extent_end = ALIGN(extent_end,
899 } else if (update_refs && disk_bytenr > 0) {
900 ret = btrfs_free_extent(trans, root,
901 disk_bytenr, num_bytes, 0,
902 root->root_key.objectid,
903 key.objectid, key.offset -
905 BUG_ON(ret); /* -ENOMEM */
906 inode_sub_bytes(inode,
907 extent_end - key.offset);
910 if (end == extent_end)
913 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
918 ret = btrfs_del_items(trans, root, path, del_slot,
921 btrfs_abort_transaction(trans, root, ret);
928 btrfs_release_path(path);
935 if (!ret && del_nr > 0) {
937 * Set path->slots[0] to first slot, so that after the delete
938 * if items are move off from our leaf to its immediate left or
939 * right neighbor leafs, we end up with a correct and adjusted
940 * path->slots[0] for our insertion.
942 path->slots[0] = del_slot;
943 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
945 btrfs_abort_transaction(trans, root, ret);
947 leaf = path->nodes[0];
949 * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that
950 * is, its contents got pushed to its neighbors), in which case
951 * it means path->locks[0] == 0
953 if (!ret && replace_extent && leafs_visited == 1 &&
955 btrfs_leaf_free_space(root, leaf) >=
956 sizeof(struct btrfs_item) + extent_item_size) {
959 key.type = BTRFS_EXTENT_DATA_KEY;
961 setup_items_for_insert(root, path, &key,
964 sizeof(struct btrfs_item) +
965 extent_item_size, 1);
970 if (!replace_extent || !(*key_inserted))
971 btrfs_release_path(path);
973 *drop_end = found ? min(end, extent_end) : end;
977 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root, struct inode *inode, u64 start,
979 u64 end, int drop_cache)
981 struct btrfs_path *path;
984 path = btrfs_alloc_path();
987 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
988 drop_cache, 0, 0, NULL);
989 btrfs_free_path(path);
993 static int extent_mergeable(struct extent_buffer *leaf, int slot,
994 u64 objectid, u64 bytenr, u64 orig_offset,
995 u64 *start, u64 *end)
997 struct btrfs_file_extent_item *fi;
998 struct btrfs_key key;
1001 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1004 btrfs_item_key_to_cpu(leaf, &key, slot);
1005 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1008 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1009 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1010 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1011 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1012 btrfs_file_extent_compression(leaf, fi) ||
1013 btrfs_file_extent_encryption(leaf, fi) ||
1014 btrfs_file_extent_other_encoding(leaf, fi))
1017 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1018 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1021 *start = key.offset;
1027 * Mark extent in the range start - end as written.
1029 * This changes extent type from 'pre-allocated' to 'regular'. If only
1030 * part of extent is marked as written, the extent will be split into
1033 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1034 struct inode *inode, u64 start, u64 end)
1036 struct btrfs_root *root = BTRFS_I(inode)->root;
1037 struct extent_buffer *leaf;
1038 struct btrfs_path *path;
1039 struct btrfs_file_extent_item *fi;
1040 struct btrfs_key key;
1041 struct btrfs_key new_key;
1053 u64 ino = btrfs_ino(inode);
1055 path = btrfs_alloc_path();
1062 key.type = BTRFS_EXTENT_DATA_KEY;
1065 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1068 if (ret > 0 && path->slots[0] > 0)
1071 leaf = path->nodes[0];
1072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1074 fi = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_file_extent_item);
1076 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1077 BTRFS_FILE_EXTENT_PREALLOC);
1078 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1079 BUG_ON(key.offset > start || extent_end < end);
1081 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1082 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1083 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1084 memcpy(&new_key, &key, sizeof(new_key));
1086 if (start == key.offset && end < extent_end) {
1089 if (extent_mergeable(leaf, path->slots[0] - 1,
1090 ino, bytenr, orig_offset,
1091 &other_start, &other_end)) {
1092 new_key.offset = end;
1093 btrfs_set_item_key_safe(root, path, &new_key);
1094 fi = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_file_extent_item);
1096 btrfs_set_file_extent_generation(leaf, fi,
1098 btrfs_set_file_extent_num_bytes(leaf, fi,
1100 btrfs_set_file_extent_offset(leaf, fi,
1102 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1103 struct btrfs_file_extent_item);
1104 btrfs_set_file_extent_generation(leaf, fi,
1106 btrfs_set_file_extent_num_bytes(leaf, fi,
1108 btrfs_mark_buffer_dirty(leaf);
1113 if (start > key.offset && end == extent_end) {
1116 if (extent_mergeable(leaf, path->slots[0] + 1,
1117 ino, bytenr, orig_offset,
1118 &other_start, &other_end)) {
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 btrfs_set_file_extent_num_bytes(leaf, fi,
1122 start - key.offset);
1123 btrfs_set_file_extent_generation(leaf, fi,
1126 new_key.offset = start;
1127 btrfs_set_item_key_safe(root, path, &new_key);
1129 fi = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_file_extent_item);
1131 btrfs_set_file_extent_generation(leaf, fi,
1133 btrfs_set_file_extent_num_bytes(leaf, fi,
1135 btrfs_set_file_extent_offset(leaf, fi,
1136 start - orig_offset);
1137 btrfs_mark_buffer_dirty(leaf);
1142 while (start > key.offset || end < extent_end) {
1143 if (key.offset == start)
1146 new_key.offset = split;
1147 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1148 if (ret == -EAGAIN) {
1149 btrfs_release_path(path);
1153 btrfs_abort_transaction(trans, root, ret);
1157 leaf = path->nodes[0];
1158 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1159 struct btrfs_file_extent_item);
1160 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 split - key.offset);
1164 fi = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_file_extent_item);
1167 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1168 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1169 btrfs_set_file_extent_num_bytes(leaf, fi,
1170 extent_end - split);
1171 btrfs_mark_buffer_dirty(leaf);
1173 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1174 root->root_key.objectid,
1175 ino, orig_offset, 0);
1176 BUG_ON(ret); /* -ENOMEM */
1178 if (split == start) {
1181 BUG_ON(start != key.offset);
1190 if (extent_mergeable(leaf, path->slots[0] + 1,
1191 ino, bytenr, orig_offset,
1192 &other_start, &other_end)) {
1194 btrfs_release_path(path);
1197 extent_end = other_end;
1198 del_slot = path->slots[0] + 1;
1200 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1201 0, root->root_key.objectid,
1202 ino, orig_offset, 0);
1203 BUG_ON(ret); /* -ENOMEM */
1207 if (extent_mergeable(leaf, path->slots[0] - 1,
1208 ino, bytenr, orig_offset,
1209 &other_start, &other_end)) {
1211 btrfs_release_path(path);
1214 key.offset = other_start;
1215 del_slot = path->slots[0];
1217 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1218 0, root->root_key.objectid,
1219 ino, orig_offset, 0);
1220 BUG_ON(ret); /* -ENOMEM */
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 btrfs_set_file_extent_type(leaf, fi,
1226 BTRFS_FILE_EXTENT_REG);
1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228 btrfs_mark_buffer_dirty(leaf);
1230 fi = btrfs_item_ptr(leaf, del_slot - 1,
1231 struct btrfs_file_extent_item);
1232 btrfs_set_file_extent_type(leaf, fi,
1233 BTRFS_FILE_EXTENT_REG);
1234 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1235 btrfs_set_file_extent_num_bytes(leaf, fi,
1236 extent_end - key.offset);
1237 btrfs_mark_buffer_dirty(leaf);
1239 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1241 btrfs_abort_transaction(trans, root, ret);
1246 btrfs_free_path(path);
1251 * on error we return an unlocked page and the error value
1252 * on success we return a locked page and 0
1254 static int prepare_uptodate_page(struct page *page, u64 pos,
1255 bool force_uptodate)
1259 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1260 !PageUptodate(page)) {
1261 ret = btrfs_readpage(NULL, page);
1265 if (!PageUptodate(page)) {
1274 * this just gets pages into the page cache and locks them down.
1276 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1277 size_t num_pages, loff_t pos,
1278 size_t write_bytes, bool force_uptodate)
1281 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1282 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1286 for (i = 0; i < num_pages; i++) {
1287 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1288 mask | __GFP_WRITE);
1296 err = prepare_uptodate_page(pages[i], pos,
1298 if (i == num_pages - 1)
1299 err = prepare_uptodate_page(pages[i],
1300 pos + write_bytes, false);
1302 page_cache_release(pages[i]);
1306 wait_on_page_writeback(pages[i]);
1311 while (faili >= 0) {
1312 unlock_page(pages[faili]);
1313 page_cache_release(pages[faili]);
1321 * This function locks the extent and properly waits for data=ordered extents
1322 * to finish before allowing the pages to be modified if need.
1325 * 1 - the extent is locked
1326 * 0 - the extent is not locked, and everything is OK
1327 * -EAGAIN - need re-prepare the pages
1328 * the other < 0 number - Something wrong happens
1331 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1332 size_t num_pages, loff_t pos,
1333 u64 *lockstart, u64 *lockend,
1334 struct extent_state **cached_state)
1341 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1342 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1344 if (start_pos < inode->i_size) {
1345 struct btrfs_ordered_extent *ordered;
1346 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1347 start_pos, last_pos, 0, cached_state);
1348 ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
1350 ordered->file_offset + ordered->len > start_pos &&
1351 ordered->file_offset <= last_pos) {
1352 btrfs_put_ordered_extent(ordered);
1353 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1354 start_pos, last_pos,
1355 cached_state, GFP_NOFS);
1356 for (i = 0; i < num_pages; i++) {
1357 unlock_page(pages[i]);
1358 page_cache_release(pages[i]);
1360 ret = btrfs_wait_ordered_range(inode, start_pos,
1361 last_pos - start_pos + 1);
1368 btrfs_put_ordered_extent(ordered);
1370 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1371 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1373 0, 0, cached_state, GFP_NOFS);
1374 *lockstart = start_pos;
1375 *lockend = last_pos;
1379 for (i = 0; i < num_pages; i++) {
1380 if (clear_page_dirty_for_io(pages[i]))
1381 account_page_redirty(pages[i]);
1382 set_page_extent_mapped(pages[i]);
1383 WARN_ON(!PageLocked(pages[i]));
1389 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1390 size_t *write_bytes)
1392 struct btrfs_root *root = BTRFS_I(inode)->root;
1393 struct btrfs_ordered_extent *ordered;
1394 u64 lockstart, lockend;
1398 lockstart = round_down(pos, root->sectorsize);
1399 lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1402 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1403 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1404 lockend - lockstart + 1);
1408 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1409 btrfs_start_ordered_extent(inode, ordered, 1);
1410 btrfs_put_ordered_extent(ordered);
1413 num_bytes = lockend - lockstart + 1;
1414 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1418 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1419 EXTENT_DIRTY | EXTENT_DELALLOC |
1420 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1422 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1425 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1430 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1434 struct inode *inode = file_inode(file);
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
1436 struct page **pages = NULL;
1437 struct extent_state *cached_state = NULL;
1438 u64 release_bytes = 0;
1441 unsigned long first_index;
1442 size_t num_written = 0;
1445 bool only_release_metadata = false;
1446 bool force_page_uptodate = false;
1449 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1450 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1451 (sizeof(struct page *)));
1452 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1453 nrptrs = max(nrptrs, 8);
1454 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1458 first_index = pos >> PAGE_CACHE_SHIFT;
1460 while (iov_iter_count(i) > 0) {
1461 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1462 size_t write_bytes = min(iov_iter_count(i),
1463 nrptrs * (size_t)PAGE_CACHE_SIZE -
1465 size_t num_pages = (write_bytes + offset +
1466 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1467 size_t reserve_bytes;
1471 WARN_ON(num_pages > nrptrs);
1474 * Fault pages before locking them in prepare_pages
1475 * to avoid recursive lock
1477 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1482 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1483 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1484 if (ret == -ENOSPC &&
1485 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1486 BTRFS_INODE_PREALLOC))) {
1487 ret = check_can_nocow(inode, pos, &write_bytes);
1489 only_release_metadata = true;
1491 * our prealloc extent may be smaller than
1492 * write_bytes, so scale down.
1494 num_pages = (write_bytes + offset +
1495 PAGE_CACHE_SIZE - 1) >>
1497 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1507 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1509 if (!only_release_metadata)
1510 btrfs_free_reserved_data_space(inode,
1515 release_bytes = reserve_bytes;
1516 need_unlock = false;
1519 * This is going to setup the pages array with the number of
1520 * pages we want, so we don't really need to worry about the
1521 * contents of pages from loop to loop
1523 ret = prepare_pages(inode, pages, num_pages,
1525 force_page_uptodate);
1529 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1530 pos, &lockstart, &lockend,
1536 } else if (ret > 0) {
1541 copied = btrfs_copy_from_user(pos, num_pages,
1542 write_bytes, pages, i);
1545 * if we have trouble faulting in the pages, fall
1546 * back to one page at a time
1548 if (copied < write_bytes)
1552 force_page_uptodate = true;
1555 force_page_uptodate = false;
1556 dirty_pages = (copied + offset +
1557 PAGE_CACHE_SIZE - 1) >>
1562 * If we had a short copy we need to release the excess delaloc
1563 * bytes we reserved. We need to increment outstanding_extents
1564 * because btrfs_delalloc_release_space will decrement it, but
1565 * we still have an outstanding extent for the chunk we actually
1568 if (num_pages > dirty_pages) {
1569 release_bytes = (num_pages - dirty_pages) <<
1572 spin_lock(&BTRFS_I(inode)->lock);
1573 BTRFS_I(inode)->outstanding_extents++;
1574 spin_unlock(&BTRFS_I(inode)->lock);
1576 if (only_release_metadata)
1577 btrfs_delalloc_release_metadata(inode,
1580 btrfs_delalloc_release_space(inode,
1584 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1587 ret = btrfs_dirty_pages(root, inode, pages,
1588 dirty_pages, pos, copied,
1591 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1592 lockstart, lockend, &cached_state,
1594 btrfs_drop_pages(pages, num_pages);
1599 if (only_release_metadata && copied > 0) {
1600 u64 lockstart = round_down(pos, root->sectorsize);
1601 u64 lockend = lockstart +
1602 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1604 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1605 lockend, EXTENT_NORESERVE, NULL,
1607 only_release_metadata = false;
1612 balance_dirty_pages_ratelimited(inode->i_mapping);
1613 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1614 btrfs_btree_balance_dirty(root);
1617 num_written += copied;
1622 if (release_bytes) {
1623 if (only_release_metadata)
1624 btrfs_delalloc_release_metadata(inode, release_bytes);
1626 btrfs_delalloc_release_space(inode, release_bytes);
1629 return num_written ? num_written : ret;
1632 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1633 const struct iovec *iov,
1634 unsigned long nr_segs, loff_t pos,
1635 loff_t *ppos, size_t count, size_t ocount)
1637 struct file *file = iocb->ki_filp;
1640 ssize_t written_buffered;
1644 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1647 if (written < 0 || written == count)
1652 iov_iter_init(&i, iov, nr_segs, count, written);
1653 written_buffered = __btrfs_buffered_write(file, &i, pos);
1654 if (written_buffered < 0) {
1655 err = written_buffered;
1658 endbyte = pos + written_buffered - 1;
1659 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1662 written += written_buffered;
1663 *ppos = pos + written_buffered;
1664 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1665 endbyte >> PAGE_CACHE_SHIFT);
1667 return written ? written : err;
1670 static void update_time_for_write(struct inode *inode)
1672 struct timespec now;
1674 if (IS_NOCMTIME(inode))
1677 now = current_fs_time(inode->i_sb);
1678 if (!timespec_equal(&inode->i_mtime, &now))
1679 inode->i_mtime = now;
1681 if (!timespec_equal(&inode->i_ctime, &now))
1682 inode->i_ctime = now;
1684 if (IS_I_VERSION(inode))
1685 inode_inc_iversion(inode);
1688 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1689 const struct iovec *iov,
1690 unsigned long nr_segs, loff_t pos)
1692 struct file *file = iocb->ki_filp;
1693 struct inode *inode = file_inode(file);
1694 struct btrfs_root *root = BTRFS_I(inode)->root;
1695 loff_t *ppos = &iocb->ki_pos;
1697 ssize_t num_written = 0;
1699 size_t count, ocount;
1700 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1702 mutex_lock(&inode->i_mutex);
1704 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1706 mutex_unlock(&inode->i_mutex);
1711 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1712 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1714 mutex_unlock(&inode->i_mutex);
1719 mutex_unlock(&inode->i_mutex);
1723 err = file_remove_suid(file);
1725 mutex_unlock(&inode->i_mutex);
1730 * If BTRFS flips readonly due to some impossible error
1731 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1732 * although we have opened a file as writable, we have
1733 * to stop this write operation to ensure FS consistency.
1735 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1736 mutex_unlock(&inode->i_mutex);
1742 * We reserve space for updating the inode when we reserve space for the
1743 * extent we are going to write, so we will enospc out there. We don't
1744 * need to start yet another transaction to update the inode as we will
1745 * update the inode when we finish writing whatever data we write.
1747 update_time_for_write(inode);
1749 start_pos = round_down(pos, root->sectorsize);
1750 if (start_pos > i_size_read(inode)) {
1751 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1753 mutex_unlock(&inode->i_mutex);
1759 atomic_inc(&BTRFS_I(inode)->sync_writers);
1761 if (unlikely(file->f_flags & O_DIRECT)) {
1762 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1763 pos, ppos, count, ocount);
1767 iov_iter_init(&i, iov, nr_segs, count, num_written);
1769 num_written = __btrfs_buffered_write(file, &i, pos);
1770 if (num_written > 0)
1771 *ppos = pos + num_written;
1774 mutex_unlock(&inode->i_mutex);
1777 * we want to make sure fsync finds this change
1778 * but we haven't joined a transaction running right now.
1780 * Later on, someone is sure to update the inode and get the
1781 * real transid recorded.
1783 * We set last_trans now to the fs_info generation + 1,
1784 * this will either be one more than the running transaction
1785 * or the generation used for the next transaction if there isn't
1786 * one running right now.
1788 * We also have to set last_sub_trans to the current log transid,
1789 * otherwise subsequent syncs to a file that's been synced in this
1790 * transaction will appear to have already occured.
1792 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1793 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1794 if (num_written > 0) {
1795 err = generic_write_sync(file, pos, num_written);
1796 if (err < 0 && num_written > 0)
1801 atomic_dec(&BTRFS_I(inode)->sync_writers);
1803 current->backing_dev_info = NULL;
1804 return num_written ? num_written : err;
1807 int btrfs_release_file(struct inode *inode, struct file *filp)
1810 * ordered_data_close is set by settattr when we are about to truncate
1811 * a file from a non-zero size to a zero size. This tries to
1812 * flush down new bytes that may have been written if the
1813 * application were using truncate to replace a file in place.
1815 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1816 &BTRFS_I(inode)->runtime_flags)) {
1817 struct btrfs_trans_handle *trans;
1818 struct btrfs_root *root = BTRFS_I(inode)->root;
1821 * We need to block on a committing transaction to keep us from
1822 * throwing a ordered operation on to the list and causing
1823 * something like sync to deadlock trying to flush out this
1826 trans = btrfs_start_transaction(root, 0);
1828 return PTR_ERR(trans);
1829 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1830 btrfs_end_transaction(trans, root);
1831 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1832 filemap_flush(inode->i_mapping);
1834 if (filp->private_data)
1835 btrfs_ioctl_trans_end(filp);
1840 * fsync call for both files and directories. This logs the inode into
1841 * the tree log instead of forcing full commits whenever possible.
1843 * It needs to call filemap_fdatawait so that all ordered extent updates are
1844 * in the metadata btree are up to date for copying to the log.
1846 * It drops the inode mutex before doing the tree log commit. This is an
1847 * important optimization for directories because holding the mutex prevents
1848 * new operations on the dir while we write to disk.
1850 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1852 struct dentry *dentry = file->f_path.dentry;
1853 struct inode *inode = dentry->d_inode;
1854 struct btrfs_root *root = BTRFS_I(inode)->root;
1856 struct btrfs_trans_handle *trans;
1859 trace_btrfs_sync_file(file, datasync);
1862 * We write the dirty pages in the range and wait until they complete
1863 * out of the ->i_mutex. If so, we can flush the dirty pages by
1864 * multi-task, and make the performance up. See
1865 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1867 atomic_inc(&BTRFS_I(inode)->sync_writers);
1868 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1869 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1870 &BTRFS_I(inode)->runtime_flags))
1871 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1872 atomic_dec(&BTRFS_I(inode)->sync_writers);
1876 mutex_lock(&inode->i_mutex);
1879 * We flush the dirty pages again to avoid some dirty pages in the
1882 atomic_inc(&root->log_batch);
1883 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1884 &BTRFS_I(inode)->runtime_flags);
1886 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1888 mutex_unlock(&inode->i_mutex);
1892 atomic_inc(&root->log_batch);
1895 * check the transaction that last modified this inode
1896 * and see if its already been committed
1898 if (!BTRFS_I(inode)->last_trans) {
1899 mutex_unlock(&inode->i_mutex);
1904 * if the last transaction that changed this file was before
1905 * the current transaction, we can bail out now without any
1909 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1910 BTRFS_I(inode)->last_trans <=
1911 root->fs_info->last_trans_committed) {
1912 BTRFS_I(inode)->last_trans = 0;
1915 * We'v had everything committed since the last time we were
1916 * modified so clear this flag in case it was set for whatever
1917 * reason, it's no longer relevant.
1919 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1920 &BTRFS_I(inode)->runtime_flags);
1921 mutex_unlock(&inode->i_mutex);
1926 * ok we haven't committed the transaction yet, lets do a commit
1928 if (file->private_data)
1929 btrfs_ioctl_trans_end(file);
1931 trans = btrfs_start_transaction(root, 0);
1932 if (IS_ERR(trans)) {
1933 ret = PTR_ERR(trans);
1934 mutex_unlock(&inode->i_mutex);
1938 ret = btrfs_log_dentry_safe(trans, root, dentry);
1940 /* Fallthrough and commit/free transaction. */
1944 /* we've logged all the items and now have a consistent
1945 * version of the file in the log. It is possible that
1946 * someone will come in and modify the file, but that's
1947 * fine because the log is consistent on disk, and we
1948 * have references to all of the file's extents
1950 * It is possible that someone will come in and log the
1951 * file again, but that will end up using the synchronization
1952 * inside btrfs_sync_log to keep things safe.
1954 mutex_unlock(&inode->i_mutex);
1956 if (ret != BTRFS_NO_LOG_SYNC) {
1958 ret = btrfs_sync_log(trans, root);
1960 ret = btrfs_end_transaction(trans, root);
1965 ret = btrfs_wait_ordered_range(inode, start,
1970 ret = btrfs_commit_transaction(trans, root);
1972 ret = btrfs_end_transaction(trans, root);
1975 return ret > 0 ? -EIO : ret;
1978 static const struct vm_operations_struct btrfs_file_vm_ops = {
1979 .fault = filemap_fault,
1980 .page_mkwrite = btrfs_page_mkwrite,
1981 .remap_pages = generic_file_remap_pages,
1984 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1986 struct address_space *mapping = filp->f_mapping;
1988 if (!mapping->a_ops->readpage)
1991 file_accessed(filp);
1992 vma->vm_ops = &btrfs_file_vm_ops;
1997 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1998 int slot, u64 start, u64 end)
2000 struct btrfs_file_extent_item *fi;
2001 struct btrfs_key key;
2003 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2006 btrfs_item_key_to_cpu(leaf, &key, slot);
2007 if (key.objectid != btrfs_ino(inode) ||
2008 key.type != BTRFS_EXTENT_DATA_KEY)
2011 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2013 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2016 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2019 if (key.offset == end)
2021 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2026 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2027 struct btrfs_path *path, u64 offset, u64 end)
2029 struct btrfs_root *root = BTRFS_I(inode)->root;
2030 struct extent_buffer *leaf;
2031 struct btrfs_file_extent_item *fi;
2032 struct extent_map *hole_em;
2033 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2034 struct btrfs_key key;
2037 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2040 key.objectid = btrfs_ino(inode);
2041 key.type = BTRFS_EXTENT_DATA_KEY;
2042 key.offset = offset;
2044 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2049 leaf = path->nodes[0];
2050 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2054 fi = btrfs_item_ptr(leaf, path->slots[0],
2055 struct btrfs_file_extent_item);
2056 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2058 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2059 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2060 btrfs_set_file_extent_offset(leaf, fi, 0);
2061 btrfs_mark_buffer_dirty(leaf);
2065 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2069 key.offset = offset;
2070 btrfs_set_item_key_safe(root, path, &key);
2071 fi = btrfs_item_ptr(leaf, path->slots[0],
2072 struct btrfs_file_extent_item);
2073 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2075 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2076 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2077 btrfs_set_file_extent_offset(leaf, fi, 0);
2078 btrfs_mark_buffer_dirty(leaf);
2081 btrfs_release_path(path);
2083 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2084 0, 0, end - offset, 0, end - offset,
2090 btrfs_release_path(path);
2092 hole_em = alloc_extent_map();
2094 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2095 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2096 &BTRFS_I(inode)->runtime_flags);
2098 hole_em->start = offset;
2099 hole_em->len = end - offset;
2100 hole_em->ram_bytes = hole_em->len;
2101 hole_em->orig_start = offset;
2103 hole_em->block_start = EXTENT_MAP_HOLE;
2104 hole_em->block_len = 0;
2105 hole_em->orig_block_len = 0;
2106 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2107 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2108 hole_em->generation = trans->transid;
2111 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2112 write_lock(&em_tree->lock);
2113 ret = add_extent_mapping(em_tree, hole_em, 1);
2114 write_unlock(&em_tree->lock);
2115 } while (ret == -EEXIST);
2116 free_extent_map(hole_em);
2118 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2119 &BTRFS_I(inode)->runtime_flags);
2125 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2127 struct btrfs_root *root = BTRFS_I(inode)->root;
2128 struct extent_state *cached_state = NULL;
2129 struct btrfs_path *path;
2130 struct btrfs_block_rsv *rsv;
2131 struct btrfs_trans_handle *trans;
2132 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2133 u64 lockend = round_down(offset + len,
2134 BTRFS_I(inode)->root->sectorsize) - 1;
2135 u64 cur_offset = lockstart;
2136 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2141 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2142 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2143 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2145 ret = btrfs_wait_ordered_range(inode, offset, len);
2149 mutex_lock(&inode->i_mutex);
2151 * We needn't truncate any page which is beyond the end of the file
2152 * because we are sure there is no data there.
2155 * Only do this if we are in the same page and we aren't doing the
2158 if (same_page && len < PAGE_CACHE_SIZE) {
2159 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2160 ret = btrfs_truncate_page(inode, offset, len, 0);
2161 mutex_unlock(&inode->i_mutex);
2165 /* zero back part of the first page */
2166 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2167 ret = btrfs_truncate_page(inode, offset, 0, 0);
2169 mutex_unlock(&inode->i_mutex);
2174 /* zero the front end of the last page */
2175 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2176 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2178 mutex_unlock(&inode->i_mutex);
2183 if (lockend < lockstart) {
2184 mutex_unlock(&inode->i_mutex);
2189 struct btrfs_ordered_extent *ordered;
2191 truncate_pagecache_range(inode, lockstart, lockend);
2193 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2195 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2198 * We need to make sure we have no ordered extents in this range
2199 * and nobody raced in and read a page in this range, if we did
2200 * we need to try again.
2203 (ordered->file_offset + ordered->len <= lockstart ||
2204 ordered->file_offset > lockend)) &&
2205 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2206 lockend, EXTENT_UPTODATE, 0,
2209 btrfs_put_ordered_extent(ordered);
2213 btrfs_put_ordered_extent(ordered);
2214 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2215 lockend, &cached_state, GFP_NOFS);
2216 ret = btrfs_wait_ordered_range(inode, lockstart,
2217 lockend - lockstart + 1);
2219 mutex_unlock(&inode->i_mutex);
2224 path = btrfs_alloc_path();
2230 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2235 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2239 * 1 - update the inode
2240 * 1 - removing the extents in the range
2241 * 1 - adding the hole extent if no_holes isn't set
2243 rsv_count = no_holes ? 2 : 3;
2244 trans = btrfs_start_transaction(root, rsv_count);
2245 if (IS_ERR(trans)) {
2246 err = PTR_ERR(trans);
2250 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2253 trans->block_rsv = rsv;
2255 while (cur_offset < lockend) {
2256 ret = __btrfs_drop_extents(trans, root, inode, path,
2257 cur_offset, lockend + 1,
2258 &drop_end, 1, 0, 0, NULL);
2262 trans->block_rsv = &root->fs_info->trans_block_rsv;
2264 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2270 cur_offset = drop_end;
2272 ret = btrfs_update_inode(trans, root, inode);
2278 btrfs_end_transaction(trans, root);
2279 btrfs_btree_balance_dirty(root);
2281 trans = btrfs_start_transaction(root, rsv_count);
2282 if (IS_ERR(trans)) {
2283 ret = PTR_ERR(trans);
2288 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2290 BUG_ON(ret); /* shouldn't happen */
2291 trans->block_rsv = rsv;
2299 trans->block_rsv = &root->fs_info->trans_block_rsv;
2300 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2310 inode_inc_iversion(inode);
2311 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2313 trans->block_rsv = &root->fs_info->trans_block_rsv;
2314 ret = btrfs_update_inode(trans, root, inode);
2315 btrfs_end_transaction(trans, root);
2316 btrfs_btree_balance_dirty(root);
2318 btrfs_free_path(path);
2319 btrfs_free_block_rsv(root, rsv);
2321 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2322 &cached_state, GFP_NOFS);
2323 mutex_unlock(&inode->i_mutex);
2329 static long btrfs_fallocate(struct file *file, int mode,
2330 loff_t offset, loff_t len)
2332 struct inode *inode = file_inode(file);
2333 struct extent_state *cached_state = NULL;
2334 struct btrfs_root *root = BTRFS_I(inode)->root;
2341 struct extent_map *em;
2342 int blocksize = BTRFS_I(inode)->root->sectorsize;
2345 alloc_start = round_down(offset, blocksize);
2346 alloc_end = round_up(offset + len, blocksize);
2348 /* Make sure we aren't being give some crap mode */
2349 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2352 if (mode & FALLOC_FL_PUNCH_HOLE)
2353 return btrfs_punch_hole(inode, offset, len);
2356 * Make sure we have enough space before we do the
2359 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2362 if (root->fs_info->quota_enabled) {
2363 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2365 goto out_reserve_fail;
2368 mutex_lock(&inode->i_mutex);
2369 ret = inode_newsize_ok(inode, alloc_end);
2373 if (alloc_start > inode->i_size) {
2374 ret = btrfs_cont_expand(inode, i_size_read(inode),
2380 * If we are fallocating from the end of the file onward we
2381 * need to zero out the end of the page if i_size lands in the
2384 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2390 * wait for ordered IO before we have any locks. We'll loop again
2391 * below with the locks held.
2393 ret = btrfs_wait_ordered_range(inode, alloc_start,
2394 alloc_end - alloc_start);
2398 locked_end = alloc_end - 1;
2400 struct btrfs_ordered_extent *ordered;
2402 /* the extent lock is ordered inside the running
2405 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2406 locked_end, 0, &cached_state);
2407 ordered = btrfs_lookup_first_ordered_extent(inode,
2410 ordered->file_offset + ordered->len > alloc_start &&
2411 ordered->file_offset < alloc_end) {
2412 btrfs_put_ordered_extent(ordered);
2413 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2414 alloc_start, locked_end,
2415 &cached_state, GFP_NOFS);
2417 * we can't wait on the range with the transaction
2418 * running or with the extent lock held
2420 ret = btrfs_wait_ordered_range(inode, alloc_start,
2421 alloc_end - alloc_start);
2426 btrfs_put_ordered_extent(ordered);
2431 cur_offset = alloc_start;
2435 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2436 alloc_end - cur_offset, 0);
2437 if (IS_ERR_OR_NULL(em)) {
2444 last_byte = min(extent_map_end(em), alloc_end);
2445 actual_end = min_t(u64, extent_map_end(em), offset + len);
2446 last_byte = ALIGN(last_byte, blocksize);
2448 if (em->block_start == EXTENT_MAP_HOLE ||
2449 (cur_offset >= inode->i_size &&
2450 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2451 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2452 last_byte - cur_offset,
2453 1 << inode->i_blkbits,
2458 free_extent_map(em);
2461 } else if (actual_end > inode->i_size &&
2462 !(mode & FALLOC_FL_KEEP_SIZE)) {
2464 * We didn't need to allocate any more space, but we
2465 * still extended the size of the file so we need to
2468 inode->i_ctime = CURRENT_TIME;
2469 i_size_write(inode, actual_end);
2470 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2472 free_extent_map(em);
2474 cur_offset = last_byte;
2475 if (cur_offset >= alloc_end) {
2480 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2481 &cached_state, GFP_NOFS);
2483 mutex_unlock(&inode->i_mutex);
2484 if (root->fs_info->quota_enabled)
2485 btrfs_qgroup_free(root, alloc_end - alloc_start);
2487 /* Let go of our reservation. */
2488 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2492 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2494 struct btrfs_root *root = BTRFS_I(inode)->root;
2495 struct extent_map *em = NULL;
2496 struct extent_state *cached_state = NULL;
2497 u64 lockstart = *offset;
2498 u64 lockend = i_size_read(inode);
2499 u64 start = *offset;
2500 u64 len = i_size_read(inode);
2503 lockend = max_t(u64, root->sectorsize, lockend);
2504 if (lockend <= lockstart)
2505 lockend = lockstart + root->sectorsize;
2508 len = lockend - lockstart + 1;
2510 len = max_t(u64, len, root->sectorsize);
2511 if (inode->i_size == 0)
2514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2517 while (start < inode->i_size) {
2518 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2525 if (whence == SEEK_HOLE &&
2526 (em->block_start == EXTENT_MAP_HOLE ||
2527 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2529 else if (whence == SEEK_DATA &&
2530 (em->block_start != EXTENT_MAP_HOLE &&
2531 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2534 start = em->start + em->len;
2535 free_extent_map(em);
2539 free_extent_map(em);
2541 if (whence == SEEK_DATA && start >= inode->i_size)
2544 *offset = min_t(loff_t, start, inode->i_size);
2546 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2547 &cached_state, GFP_NOFS);
2551 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2553 struct inode *inode = file->f_mapping->host;
2556 mutex_lock(&inode->i_mutex);
2560 offset = generic_file_llseek(file, offset, whence);
2564 if (offset >= i_size_read(inode)) {
2565 mutex_unlock(&inode->i_mutex);
2569 ret = find_desired_extent(inode, &offset, whence);
2571 mutex_unlock(&inode->i_mutex);
2576 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2578 mutex_unlock(&inode->i_mutex);
2582 const struct file_operations btrfs_file_operations = {
2583 .llseek = btrfs_file_llseek,
2584 .read = do_sync_read,
2585 .write = do_sync_write,
2586 .aio_read = generic_file_aio_read,
2587 .splice_read = generic_file_splice_read,
2588 .aio_write = btrfs_file_aio_write,
2589 .mmap = btrfs_file_mmap,
2590 .open = generic_file_open,
2591 .release = btrfs_release_file,
2592 .fsync = btrfs_sync_file,
2593 .fallocate = btrfs_fallocate,
2594 .unlocked_ioctl = btrfs_ioctl,
2595 #ifdef CONFIG_COMPAT
2596 .compat_ioctl = btrfs_ioctl,
2600 void btrfs_auto_defrag_exit(void)
2602 if (btrfs_inode_defrag_cachep)
2603 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2606 int btrfs_auto_defrag_init(void)
2608 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2609 sizeof(struct inode_defrag), 0,
2610 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2612 if (!btrfs_inode_defrag_cachep)