1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * eCryptfs: Linux filesystem encryption layer
4 * In-kernel key management code. Includes functions to parse and
5 * write authentication token-related packets with the underlying
8 * Copyright (C) 2004-2006 International Business Machines Corp.
14 #include <crypto/hash.h>
15 #include <crypto/skcipher.h>
16 #include <linux/string.h>
17 #include <linux/pagemap.h>
18 #include <linux/key.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include "ecryptfs_kernel.h"
25 * request_key returned an error instead of a valid key address;
26 * determine the type of error, make appropriate log entries, and
27 * return an error code.
29 static int process_request_key_err(long err_code)
35 ecryptfs_printk(KERN_WARNING, "No key\n");
39 ecryptfs_printk(KERN_WARNING, "Key expired\n");
43 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
47 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48 "[0x%.16lx]\n", err_code);
54 static int process_find_global_auth_tok_for_sig_err(int err_code)
60 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
63 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
66 rc = process_request_key_err(err_code);
73 * ecryptfs_parse_packet_length
74 * @data: Pointer to memory containing length at offset
75 * @size: This function writes the decoded size to this memory
76 * address; zero on error
77 * @length_size: The number of bytes occupied by the encoded length
79 * Returns zero on success; non-zero on error
81 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
92 } else if (data[0] < 224) {
94 (*size) = (data[0] - 192) * 256;
95 (*size) += data[1] + 192;
97 } else if (data[0] == 255) {
98 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
104 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
113 * ecryptfs_write_packet_length
114 * @dest: The byte array target into which to write the length. Must
115 * have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116 * @size: The length to write.
117 * @packet_size_length: The number of bytes used to encode the packet
118 * length is written to this address.
120 * Returns zero on success; non-zero on error.
122 int ecryptfs_write_packet_length(char *dest, size_t size,
123 size_t *packet_size_length)
129 (*packet_size_length) = 1;
130 } else if (size < 65536) {
131 dest[0] = (((size - 192) / 256) + 192);
132 dest[1] = ((size - 192) % 256);
133 (*packet_size_length) = 2;
135 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
137 ecryptfs_printk(KERN_WARNING,
138 "Unsupported packet size: [%zd]\n", size);
144 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145 char **packet, size_t *packet_len)
149 size_t packet_size_len;
154 * ***** TAG 64 Packet Format *****
155 * | Content Type | 1 byte |
156 * | Key Identifier Size | 1 or 2 bytes |
157 * | Key Identifier | arbitrary |
158 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
159 * | Encrypted File Encryption Key | arbitrary |
161 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162 + session_key->encrypted_key_size);
163 *packet = kmalloc(data_len, GFP_KERNEL);
166 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
170 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
174 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175 "header; cannot generate packet length\n");
178 i += packet_size_len;
179 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180 i += ECRYPTFS_SIG_SIZE_HEX;
181 rc = ecryptfs_write_packet_length(&message[i],
182 session_key->encrypted_key_size,
185 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186 "header; cannot generate packet length\n");
189 i += packet_size_len;
190 memcpy(&message[i], session_key->encrypted_key,
191 session_key->encrypted_key_size);
192 i += session_key->encrypted_key_size;
199 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200 struct ecryptfs_message *msg)
208 u16 expected_checksum = 0;
212 * ***** TAG 65 Packet Format *****
213 * | Content Type | 1 byte |
214 * | Status Indicator | 1 byte |
215 * | File Encryption Key Size | 1 or 2 bytes |
216 * | File Encryption Key | arbitrary |
218 message_len = msg->data_len;
220 if (message_len < 4) {
224 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
230 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231 "[%d]\n", data[i-1]);
235 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
237 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
242 if (message_len < (i + m_size)) {
243 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244 "is shorter than expected\n");
249 ecryptfs_printk(KERN_ERR,
250 "The decrypted key is not long enough to "
251 "include a cipher code and checksum\n");
255 *cipher_code = data[i++];
256 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257 session_key->decrypted_key_size = m_size - 3;
258 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260 "the maximum key size [%d]\n",
261 session_key->decrypted_key_size,
262 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
266 memcpy(session_key->decrypted_key, &data[i],
267 session_key->decrypted_key_size);
268 i += session_key->decrypted_key_size;
269 expected_checksum += (unsigned char)(data[i++]) << 8;
270 expected_checksum += (unsigned char)(data[i++]);
271 for (i = 0; i < session_key->decrypted_key_size; i++)
272 checksum += session_key->decrypted_key[i];
273 if (expected_checksum != checksum) {
274 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275 "encryption key; expected [%x]; calculated "
276 "[%x]\n", expected_checksum, checksum);
285 write_tag_66_packet(char *signature, u8 cipher_code,
286 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
293 size_t packet_size_len;
298 * ***** TAG 66 Packet Format *****
299 * | Content Type | 1 byte |
300 * | Key Identifier Size | 1 or 2 bytes |
301 * | Key Identifier | arbitrary |
302 * | File Encryption Key Size | 1 or 2 bytes |
303 * | File Encryption Key | arbitrary |
305 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306 *packet = kmalloc(data_len, GFP_KERNEL);
309 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
313 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
317 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318 "header; cannot generate packet length\n");
321 i += packet_size_len;
322 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323 i += ECRYPTFS_SIG_SIZE_HEX;
324 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
328 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329 "header; cannot generate packet length\n");
332 i += packet_size_len;
333 message[i++] = cipher_code;
334 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335 i += crypt_stat->key_size;
336 for (j = 0; j < crypt_stat->key_size; j++)
337 checksum += crypt_stat->key[j];
338 message[i++] = (checksum / 256) % 256;
339 message[i++] = (checksum % 256);
346 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347 struct ecryptfs_message *msg)
356 * ***** TAG 65 Packet Format *****
357 * | Content Type | 1 byte |
358 * | Status Indicator | 1 byte |
359 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
360 * | Encrypted File Encryption Key | arbitrary |
362 message_len = msg->data_len;
364 /* verify that everything through the encrypted FEK size is present */
365 if (message_len < 4) {
367 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368 "message length is [%d]\n", __func__, message_len, 4);
371 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
373 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
379 printk(KERN_ERR "%s: Status indicator has non zero "
380 "value [%d]\n", __func__, data[i-1]);
384 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
387 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
392 if (message_len < (i + key_rec->enc_key_size)) {
394 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395 __func__, message_len, (i + key_rec->enc_key_size));
398 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
400 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401 "the maximum key size [%d]\n", __func__,
402 key_rec->enc_key_size,
403 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
406 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
412 * ecryptfs_verify_version
413 * @version: The version number to confirm
415 * Returns zero on good version; non-zero otherwise
417 static int ecryptfs_verify_version(u16 version)
423 major = ((version >> 8) & 0xFF);
424 minor = (version & 0xFF);
425 if (major != ECRYPTFS_VERSION_MAJOR) {
426 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427 "Expected [%d]; got [%d]\n",
428 ECRYPTFS_VERSION_MAJOR, major);
432 if (minor != ECRYPTFS_VERSION_MINOR) {
433 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434 "Expected [%d]; got [%d]\n",
435 ECRYPTFS_VERSION_MINOR, minor);
444 * ecryptfs_verify_auth_tok_from_key
445 * @auth_tok_key: key containing the authentication token
446 * @auth_tok: authentication token
448 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
452 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453 struct ecryptfs_auth_tok **auth_tok)
457 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458 if (IS_ERR(*auth_tok)) {
459 rc = PTR_ERR(*auth_tok);
464 if (ecryptfs_verify_version((*auth_tok)->version)) {
465 printk(KERN_ERR "Data structure version mismatch. Userspace "
466 "tools must match eCryptfs kernel module with major "
467 "version [%d] and minor version [%d]\n",
468 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
472 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474 printk(KERN_ERR "Invalid auth_tok structure "
475 "returned from key query\n");
484 ecryptfs_find_global_auth_tok_for_sig(
485 struct key **auth_tok_key,
486 struct ecryptfs_auth_tok **auth_tok,
487 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
489 struct ecryptfs_global_auth_tok *walker;
492 (*auth_tok_key) = NULL;
494 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495 list_for_each_entry(walker,
496 &mount_crypt_stat->global_auth_tok_list,
497 mount_crypt_stat_list) {
498 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
501 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
506 rc = key_validate(walker->global_auth_tok_key);
508 if (rc == -EKEYEXPIRED)
510 goto out_invalid_auth_tok;
513 down_write(&(walker->global_auth_tok_key->sem));
514 rc = ecryptfs_verify_auth_tok_from_key(
515 walker->global_auth_tok_key, auth_tok);
517 goto out_invalid_auth_tok_unlock;
519 (*auth_tok_key) = walker->global_auth_tok_key;
520 key_get(*auth_tok_key);
525 out_invalid_auth_tok_unlock:
526 up_write(&(walker->global_auth_tok_key->sem));
527 out_invalid_auth_tok:
528 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530 key_put(walker->global_auth_tok_key);
531 walker->global_auth_tok_key = NULL;
533 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
538 * ecryptfs_find_auth_tok_for_sig
539 * @auth_tok: Set to the matching auth_tok; NULL if not found
540 * @crypt_stat: inode crypt_stat crypto context
541 * @sig: Sig of auth_tok to find
543 * For now, this function simply looks at the registered auth_tok's
544 * linked off the mount_crypt_stat, so all the auth_toks that can be
545 * used must be registered at mount time. This function could
546 * potentially try a lot harder to find auth_tok's (e.g., by calling
547 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
548 * that static registration of auth_tok's will no longer be necessary.
550 * Returns zero on no error; non-zero on error
553 ecryptfs_find_auth_tok_for_sig(
554 struct key **auth_tok_key,
555 struct ecryptfs_auth_tok **auth_tok,
556 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
561 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
562 mount_crypt_stat, sig);
564 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
565 * mount_crypt_stat structure, we prevent to use auth toks that
566 * are not inserted through the ecryptfs_add_global_auth_tok
569 if (mount_crypt_stat->flags
570 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
573 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 * write_tag_70_packet can gobble a lot of stack space. We stuff most
581 * of the function's parameters in a kmalloc'd struct to help reduce
582 * eCryptfs' overall stack usage.
584 struct ecryptfs_write_tag_70_packet_silly_stack {
586 size_t max_packet_size;
587 size_t packet_size_len;
588 size_t block_aligned_filename_size;
592 size_t num_rand_bytes;
593 struct mutex *tfm_mutex;
594 char *block_aligned_filename;
595 struct ecryptfs_auth_tok *auth_tok;
596 struct scatterlist src_sg[2];
597 struct scatterlist dst_sg[2];
598 struct crypto_skcipher *skcipher_tfm;
599 struct skcipher_request *skcipher_req;
600 char iv[ECRYPTFS_MAX_IV_BYTES];
601 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
602 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603 struct crypto_shash *hash_tfm;
604 struct shash_desc *hash_desc;
608 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
609 * @filename: NULL-terminated filename string
611 * This is the simplest mechanism for achieving filename encryption in
612 * eCryptfs. It encrypts the given filename with the mount-wide
613 * filename encryption key (FNEK) and stores it in a packet to @dest,
614 * which the callee will encode and write directly into the dentry
618 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
620 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
621 char *filename, size_t filename_size)
623 struct ecryptfs_write_tag_70_packet_silly_stack *s;
624 struct key *auth_tok_key = NULL;
627 s = kzalloc(sizeof(*s), GFP_KERNEL);
632 rc = ecryptfs_find_auth_tok_for_sig(
634 &s->auth_tok, mount_crypt_stat,
635 mount_crypt_stat->global_default_fnek_sig);
637 printk(KERN_ERR "%s: Error attempting to find auth tok for "
638 "fnek sig [%s]; rc = [%d]\n", __func__,
639 mount_crypt_stat->global_default_fnek_sig, rc);
642 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
644 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
646 printk(KERN_ERR "Internal error whilst attempting to get "
647 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
648 mount_crypt_stat->global_default_fn_cipher_name, rc);
651 mutex_lock(s->tfm_mutex);
652 s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
653 /* Plus one for the \0 separator between the random prefix
654 * and the plaintext filename */
655 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
656 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
657 if ((s->block_aligned_filename_size % s->block_size) != 0) {
658 s->num_rand_bytes += (s->block_size
659 - (s->block_aligned_filename_size
661 s->block_aligned_filename_size = (s->num_rand_bytes
664 /* Octet 0: Tag 70 identifier
665 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
666 * and block-aligned encrypted filename size)
667 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
668 * Octet N2-N3: Cipher identifier (1 octet)
669 * Octets N3-N4: Block-aligned encrypted filename
670 * - Consists of a minimum number of random characters, a \0
671 * separator, and then the filename */
672 s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
673 + s->block_aligned_filename_size);
675 (*packet_size) = s->max_packet_size;
678 if (s->max_packet_size > (*remaining_bytes)) {
679 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
680 "[%zd] available\n", __func__, s->max_packet_size,
686 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
687 if (!s->skcipher_req) {
688 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
689 "skcipher_request_alloc for %s\n", __func__,
690 crypto_skcipher_driver_name(s->skcipher_tfm));
695 skcipher_request_set_callback(s->skcipher_req,
696 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
698 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
700 if (!s->block_aligned_filename) {
704 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
705 rc = ecryptfs_write_packet_length(&dest[s->i],
707 + 1 /* Cipher code */
708 + s->block_aligned_filename_size),
709 &s->packet_size_len);
711 printk(KERN_ERR "%s: Error generating tag 70 packet "
712 "header; cannot generate packet length; rc = [%d]\n",
714 goto out_free_unlock;
716 s->i += s->packet_size_len;
717 ecryptfs_from_hex(&dest[s->i],
718 mount_crypt_stat->global_default_fnek_sig,
720 s->i += ECRYPTFS_SIG_SIZE;
721 s->cipher_code = ecryptfs_code_for_cipher_string(
722 mount_crypt_stat->global_default_fn_cipher_name,
723 mount_crypt_stat->global_default_fn_cipher_key_bytes);
724 if (s->cipher_code == 0) {
725 printk(KERN_WARNING "%s: Unable to generate code for "
726 "cipher [%s] with key bytes [%zd]\n", __func__,
727 mount_crypt_stat->global_default_fn_cipher_name,
728 mount_crypt_stat->global_default_fn_cipher_key_bytes);
730 goto out_free_unlock;
732 dest[s->i++] = s->cipher_code;
733 /* TODO: Support other key modules than passphrase for
734 * filename encryption */
735 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
737 printk(KERN_INFO "%s: Filename encryption only supports "
738 "password tokens\n", __func__);
739 goto out_free_unlock;
741 s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
742 if (IS_ERR(s->hash_tfm)) {
743 rc = PTR_ERR(s->hash_tfm);
744 printk(KERN_ERR "%s: Error attempting to "
745 "allocate hash crypto context; rc = [%d]\n",
747 goto out_free_unlock;
750 s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
751 crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
754 goto out_release_free_unlock;
757 s->hash_desc->tfm = s->hash_tfm;
759 rc = crypto_shash_digest(s->hash_desc,
760 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
761 s->auth_tok->token.password.session_key_encryption_key_bytes,
765 "%s: Error computing crypto hash; rc = [%d]\n",
767 goto out_release_free_unlock;
769 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
770 s->block_aligned_filename[s->j] =
771 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
772 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
773 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
774 rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
775 ECRYPTFS_TAG_70_DIGEST_SIZE,
779 "%s: Error computing crypto hash; "
780 "rc = [%d]\n", __func__, rc);
781 goto out_release_free_unlock;
783 memcpy(s->hash, s->tmp_hash,
784 ECRYPTFS_TAG_70_DIGEST_SIZE);
786 if (s->block_aligned_filename[s->j] == '\0')
787 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
789 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
791 rc = virt_to_scatterlist(s->block_aligned_filename,
792 s->block_aligned_filename_size, s->src_sg, 2);
794 printk(KERN_ERR "%s: Internal error whilst attempting to "
795 "convert filename memory to scatterlist; rc = [%d]. "
796 "block_aligned_filename_size = [%zd]\n", __func__, rc,
797 s->block_aligned_filename_size);
798 goto out_release_free_unlock;
800 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
803 printk(KERN_ERR "%s: Internal error whilst attempting to "
804 "convert encrypted filename memory to scatterlist; "
805 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
806 __func__, rc, s->block_aligned_filename_size);
807 goto out_release_free_unlock;
809 /* The characters in the first block effectively do the job
810 * of the IV here, so we just use 0's for the IV. Note the
811 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
812 * >= ECRYPTFS_MAX_IV_BYTES. */
813 rc = crypto_skcipher_setkey(
815 s->auth_tok->token.password.session_key_encryption_key,
816 mount_crypt_stat->global_default_fn_cipher_key_bytes);
818 printk(KERN_ERR "%s: Error setting key for crypto context; "
819 "rc = [%d]. s->auth_tok->token.password.session_key_"
820 "encryption_key = [0x%p]; mount_crypt_stat->"
821 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
823 s->auth_tok->token.password.session_key_encryption_key,
824 mount_crypt_stat->global_default_fn_cipher_key_bytes);
825 goto out_release_free_unlock;
827 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
828 s->block_aligned_filename_size, s->iv);
829 rc = crypto_skcipher_encrypt(s->skcipher_req);
831 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
832 "rc = [%d]\n", __func__, rc);
833 goto out_release_free_unlock;
835 s->i += s->block_aligned_filename_size;
836 (*packet_size) = s->i;
837 (*remaining_bytes) -= (*packet_size);
838 out_release_free_unlock:
839 crypto_free_shash(s->hash_tfm);
841 kzfree(s->block_aligned_filename);
843 mutex_unlock(s->tfm_mutex);
846 up_write(&(auth_tok_key->sem));
847 key_put(auth_tok_key);
849 skcipher_request_free(s->skcipher_req);
850 kzfree(s->hash_desc);
855 struct ecryptfs_parse_tag_70_packet_silly_stack {
857 size_t max_packet_size;
858 size_t packet_size_len;
859 size_t parsed_tag_70_packet_size;
860 size_t block_aligned_filename_size;
863 struct mutex *tfm_mutex;
864 char *decrypted_filename;
865 struct ecryptfs_auth_tok *auth_tok;
866 struct scatterlist src_sg[2];
867 struct scatterlist dst_sg[2];
868 struct crypto_skcipher *skcipher_tfm;
869 struct skcipher_request *skcipher_req;
870 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
871 char iv[ECRYPTFS_MAX_IV_BYTES];
872 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
876 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
877 * @filename: This function kmalloc's the memory for the filename
878 * @filename_size: This function sets this to the amount of memory
879 * kmalloc'd for the filename
880 * @packet_size: This function sets this to the the number of octets
881 * in the packet parsed
882 * @mount_crypt_stat: The mount-wide cryptographic context
883 * @data: The memory location containing the start of the tag 70
885 * @max_packet_size: The maximum legal size of the packet to be parsed
888 * Returns zero on success; non-zero otherwise
891 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
893 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
894 char *data, size_t max_packet_size)
896 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
897 struct key *auth_tok_key = NULL;
901 (*filename_size) = 0;
903 s = kzalloc(sizeof(*s), GFP_KERNEL);
907 if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
908 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
909 "at least [%d]\n", __func__, max_packet_size,
910 ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
914 /* Octet 0: Tag 70 identifier
915 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
916 * and block-aligned encrypted filename size)
917 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
918 * Octet N2-N3: Cipher identifier (1 octet)
919 * Octets N3-N4: Block-aligned encrypted filename
920 * - Consists of a minimum number of random numbers, a \0
921 * separator, and then the filename */
922 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
923 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
924 "tag [0x%.2x]\n", __func__,
925 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
929 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
930 &s->parsed_tag_70_packet_size,
931 &s->packet_size_len);
933 printk(KERN_WARNING "%s: Error parsing packet length; "
934 "rc = [%d]\n", __func__, rc);
937 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
938 - ECRYPTFS_SIG_SIZE - 1);
939 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
941 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
942 "size is [%zd]\n", __func__, max_packet_size,
943 (1 + s->packet_size_len + 1
944 + s->block_aligned_filename_size));
948 (*packet_size) += s->packet_size_len;
949 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
951 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
952 (*packet_size) += ECRYPTFS_SIG_SIZE;
953 s->cipher_code = data[(*packet_size)++];
954 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
956 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
957 __func__, s->cipher_code);
960 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
961 &s->auth_tok, mount_crypt_stat,
964 printk(KERN_ERR "%s: Error attempting to find auth tok for "
965 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
969 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
973 printk(KERN_ERR "Internal error whilst attempting to get "
974 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
975 s->cipher_string, rc);
978 mutex_lock(s->tfm_mutex);
979 rc = virt_to_scatterlist(&data[(*packet_size)],
980 s->block_aligned_filename_size, s->src_sg, 2);
982 printk(KERN_ERR "%s: Internal error whilst attempting to "
983 "convert encrypted filename memory to scatterlist; "
984 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
985 __func__, rc, s->block_aligned_filename_size);
988 (*packet_size) += s->block_aligned_filename_size;
989 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
991 if (!s->decrypted_filename) {
995 rc = virt_to_scatterlist(s->decrypted_filename,
996 s->block_aligned_filename_size, s->dst_sg, 2);
998 printk(KERN_ERR "%s: Internal error whilst attempting to "
999 "convert decrypted filename memory to scatterlist; "
1000 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1001 __func__, rc, s->block_aligned_filename_size);
1002 goto out_free_unlock;
1005 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1006 if (!s->skcipher_req) {
1007 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1008 "skcipher_request_alloc for %s\n", __func__,
1009 crypto_skcipher_driver_name(s->skcipher_tfm));
1011 goto out_free_unlock;
1014 skcipher_request_set_callback(s->skcipher_req,
1015 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1017 /* The characters in the first block effectively do the job of
1018 * the IV here, so we just use 0's for the IV. Note the
1019 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1020 * >= ECRYPTFS_MAX_IV_BYTES. */
1021 /* TODO: Support other key modules than passphrase for
1022 * filename encryption */
1023 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1025 printk(KERN_INFO "%s: Filename encryption only supports "
1026 "password tokens\n", __func__);
1027 goto out_free_unlock;
1029 rc = crypto_skcipher_setkey(
1031 s->auth_tok->token.password.session_key_encryption_key,
1032 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1034 printk(KERN_ERR "%s: Error setting key for crypto context; "
1035 "rc = [%d]. s->auth_tok->token.password.session_key_"
1036 "encryption_key = [0x%p]; mount_crypt_stat->"
1037 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1039 s->auth_tok->token.password.session_key_encryption_key,
1040 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1041 goto out_free_unlock;
1043 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1044 s->block_aligned_filename_size, s->iv);
1045 rc = crypto_skcipher_decrypt(s->skcipher_req);
1047 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1048 "rc = [%d]\n", __func__, rc);
1049 goto out_free_unlock;
1051 while (s->decrypted_filename[s->i] != '\0'
1052 && s->i < s->block_aligned_filename_size)
1054 if (s->i == s->block_aligned_filename_size) {
1055 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1056 "find valid separator between random characters and "
1057 "the filename\n", __func__);
1059 goto out_free_unlock;
1062 (*filename_size) = (s->block_aligned_filename_size - s->i);
1063 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1064 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1065 "invalid\n", __func__, (*filename_size));
1067 goto out_free_unlock;
1069 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1072 goto out_free_unlock;
1074 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1075 (*filename)[(*filename_size)] = '\0';
1077 kfree(s->decrypted_filename);
1079 mutex_unlock(s->tfm_mutex);
1083 (*filename_size) = 0;
1087 up_write(&(auth_tok_key->sem));
1088 key_put(auth_tok_key);
1090 skcipher_request_free(s->skcipher_req);
1096 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1101 switch (auth_tok->token_type) {
1102 case ECRYPTFS_PASSWORD:
1103 (*sig) = auth_tok->token.password.signature;
1105 case ECRYPTFS_PRIVATE_KEY:
1106 (*sig) = auth_tok->token.private_key.signature;
1109 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1110 auth_tok->token_type);
1117 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1118 * @auth_tok: The key authentication token used to decrypt the session key
1119 * @crypt_stat: The cryptographic context
1121 * Returns zero on success; non-zero error otherwise.
1124 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1125 struct ecryptfs_crypt_stat *crypt_stat)
1128 struct ecryptfs_msg_ctx *msg_ctx;
1129 struct ecryptfs_message *msg = NULL;
1131 char *payload = NULL;
1132 size_t payload_len = 0;
1135 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1137 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1138 auth_tok->token_type);
1141 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1142 &payload, &payload_len);
1144 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1147 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1149 ecryptfs_printk(KERN_ERR, "Error sending message to "
1150 "ecryptfsd: %d\n", rc);
1153 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1155 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1156 "from the user space daemon\n");
1160 rc = parse_tag_65_packet(&(auth_tok->session_key),
1163 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1167 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1168 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1169 auth_tok->session_key.decrypted_key_size);
1170 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1171 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1173 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1177 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1178 if (ecryptfs_verbosity > 0) {
1179 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1180 ecryptfs_dump_hex(crypt_stat->key,
1181 crypt_stat->key_size);
1189 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1191 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1192 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1194 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1195 auth_tok_list_head, list) {
1196 list_del(&auth_tok_list_item->list);
1197 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1198 auth_tok_list_item);
1202 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1205 * parse_tag_1_packet
1206 * @crypt_stat: The cryptographic context to modify based on packet contents
1207 * @data: The raw bytes of the packet.
1208 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1209 * a new authentication token will be placed at the
1210 * end of this list for this packet.
1211 * @new_auth_tok: Pointer to a pointer to memory that this function
1212 * allocates; sets the memory address of the pointer to
1213 * NULL on error. This object is added to the
1215 * @packet_size: This function writes the size of the parsed packet
1216 * into this memory location; zero on error.
1217 * @max_packet_size: The maximum allowable packet size
1219 * Returns zero on success; non-zero on error.
1222 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1223 unsigned char *data, struct list_head *auth_tok_list,
1224 struct ecryptfs_auth_tok **new_auth_tok,
1225 size_t *packet_size, size_t max_packet_size)
1228 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1233 (*new_auth_tok) = NULL;
1235 * This format is inspired by OpenPGP; see RFC 2440
1238 * Tag 1 identifier (1 byte)
1239 * Max Tag 1 packet size (max 3 bytes)
1241 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1242 * Cipher identifier (1 byte)
1243 * Encrypted key size (arbitrary)
1245 * 12 bytes minimum packet size
1247 if (unlikely(max_packet_size < 12)) {
1248 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1252 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1253 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1254 ECRYPTFS_TAG_1_PACKET_TYPE);
1258 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1259 * at end of function upon failure */
1260 auth_tok_list_item =
1261 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1263 if (!auth_tok_list_item) {
1264 printk(KERN_ERR "Unable to allocate memory\n");
1268 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1269 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1272 printk(KERN_WARNING "Error parsing packet length; "
1276 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1277 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1281 (*packet_size) += length_size;
1282 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1283 printk(KERN_WARNING "Packet size exceeds max\n");
1287 if (unlikely(data[(*packet_size)++] != 0x03)) {
1288 printk(KERN_WARNING "Unknown version number [%d]\n",
1289 data[(*packet_size) - 1]);
1293 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1294 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1295 *packet_size += ECRYPTFS_SIG_SIZE;
1296 /* This byte is skipped because the kernel does not need to
1297 * know which public key encryption algorithm was used */
1299 (*new_auth_tok)->session_key.encrypted_key_size =
1300 body_size - (ECRYPTFS_SIG_SIZE + 2);
1301 if ((*new_auth_tok)->session_key.encrypted_key_size
1302 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1303 printk(KERN_WARNING "Tag 1 packet contains key larger "
1304 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1308 memcpy((*new_auth_tok)->session_key.encrypted_key,
1309 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1310 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1311 (*new_auth_tok)->session_key.flags &=
1312 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1313 (*new_auth_tok)->session_key.flags |=
1314 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1315 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1316 (*new_auth_tok)->flags = 0;
1317 (*new_auth_tok)->session_key.flags &=
1318 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1319 (*new_auth_tok)->session_key.flags &=
1320 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1321 list_add(&auth_tok_list_item->list, auth_tok_list);
1324 (*new_auth_tok) = NULL;
1325 memset(auth_tok_list_item, 0,
1326 sizeof(struct ecryptfs_auth_tok_list_item));
1327 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1328 auth_tok_list_item);
1336 * parse_tag_3_packet
1337 * @crypt_stat: The cryptographic context to modify based on packet
1339 * @data: The raw bytes of the packet.
1340 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1341 * a new authentication token will be placed at the end
1342 * of this list for this packet.
1343 * @new_auth_tok: Pointer to a pointer to memory that this function
1344 * allocates; sets the memory address of the pointer to
1345 * NULL on error. This object is added to the
1347 * @packet_size: This function writes the size of the parsed packet
1348 * into this memory location; zero on error.
1349 * @max_packet_size: maximum number of bytes to parse
1351 * Returns zero on success; non-zero on error.
1354 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1355 unsigned char *data, struct list_head *auth_tok_list,
1356 struct ecryptfs_auth_tok **new_auth_tok,
1357 size_t *packet_size, size_t max_packet_size)
1360 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1365 (*new_auth_tok) = NULL;
1367 *This format is inspired by OpenPGP; see RFC 2440
1370 * Tag 3 identifier (1 byte)
1371 * Max Tag 3 packet size (max 3 bytes)
1373 * Cipher code (1 byte)
1374 * S2K specifier (1 byte)
1375 * Hash identifier (1 byte)
1376 * Salt (ECRYPTFS_SALT_SIZE)
1377 * Hash iterations (1 byte)
1378 * Encrypted key (arbitrary)
1380 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1382 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1383 printk(KERN_ERR "Max packet size too large\n");
1387 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1388 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1389 ECRYPTFS_TAG_3_PACKET_TYPE);
1393 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1394 * at end of function upon failure */
1395 auth_tok_list_item =
1396 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1397 if (!auth_tok_list_item) {
1398 printk(KERN_ERR "Unable to allocate memory\n");
1402 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1403 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1406 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1410 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1411 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1415 (*packet_size) += length_size;
1416 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1417 printk(KERN_ERR "Packet size exceeds max\n");
1421 (*new_auth_tok)->session_key.encrypted_key_size =
1422 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1423 if ((*new_auth_tok)->session_key.encrypted_key_size
1424 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1425 printk(KERN_WARNING "Tag 3 packet contains key larger "
1426 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1430 if (unlikely(data[(*packet_size)++] != 0x04)) {
1431 printk(KERN_WARNING "Unknown version number [%d]\n",
1432 data[(*packet_size) - 1]);
1436 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1437 (u16)data[(*packet_size)]);
1440 /* A little extra work to differentiate among the AES key
1441 * sizes; see RFC2440 */
1442 switch(data[(*packet_size)++]) {
1443 case RFC2440_CIPHER_AES_192:
1444 crypt_stat->key_size = 24;
1447 crypt_stat->key_size =
1448 (*new_auth_tok)->session_key.encrypted_key_size;
1450 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1453 if (unlikely(data[(*packet_size)++] != 0x03)) {
1454 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1458 /* TODO: finish the hash mapping */
1459 switch (data[(*packet_size)++]) {
1460 case 0x01: /* See RFC2440 for these numbers and their mappings */
1462 memcpy((*new_auth_tok)->token.password.salt,
1463 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1464 (*packet_size) += ECRYPTFS_SALT_SIZE;
1465 /* This conversion was taken straight from RFC2440 */
1466 (*new_auth_tok)->token.password.hash_iterations =
1467 ((u32) 16 + (data[(*packet_size)] & 15))
1468 << ((data[(*packet_size)] >> 4) + 6);
1470 /* Friendly reminder:
1471 * (*new_auth_tok)->session_key.encrypted_key_size =
1472 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1473 memcpy((*new_auth_tok)->session_key.encrypted_key,
1474 &data[(*packet_size)],
1475 (*new_auth_tok)->session_key.encrypted_key_size);
1477 (*new_auth_tok)->session_key.encrypted_key_size;
1478 (*new_auth_tok)->session_key.flags &=
1479 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1480 (*new_auth_tok)->session_key.flags |=
1481 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1482 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1485 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1486 "[%d]\n", data[(*packet_size) - 1]);
1490 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1491 /* TODO: Parametarize; we might actually want userspace to
1492 * decrypt the session key. */
1493 (*new_auth_tok)->session_key.flags &=
1494 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1495 (*new_auth_tok)->session_key.flags &=
1496 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1497 list_add(&auth_tok_list_item->list, auth_tok_list);
1500 (*new_auth_tok) = NULL;
1501 memset(auth_tok_list_item, 0,
1502 sizeof(struct ecryptfs_auth_tok_list_item));
1503 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1504 auth_tok_list_item);
1512 * parse_tag_11_packet
1513 * @data: The raw bytes of the packet
1514 * @contents: This function writes the data contents of the literal
1515 * packet into this memory location
1516 * @max_contents_bytes: The maximum number of bytes that this function
1517 * is allowed to write into contents
1518 * @tag_11_contents_size: This function writes the size of the parsed
1519 * contents into this memory location; zero on
1521 * @packet_size: This function writes the size of the parsed packet
1522 * into this memory location; zero on error
1523 * @max_packet_size: maximum number of bytes to parse
1525 * Returns zero on success; non-zero on error.
1528 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1529 size_t max_contents_bytes, size_t *tag_11_contents_size,
1530 size_t *packet_size, size_t max_packet_size)
1537 (*tag_11_contents_size) = 0;
1538 /* This format is inspired by OpenPGP; see RFC 2440
1541 * Tag 11 identifier (1 byte)
1542 * Max Tag 11 packet size (max 3 bytes)
1543 * Binary format specifier (1 byte)
1544 * Filename length (1 byte)
1545 * Filename ("_CONSOLE") (8 bytes)
1546 * Modification date (4 bytes)
1547 * Literal data (arbitrary)
1549 * We need at least 16 bytes of data for the packet to even be
1552 if (max_packet_size < 16) {
1553 printk(KERN_ERR "Maximum packet size too small\n");
1557 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1558 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1562 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1565 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1568 if (body_size < 14) {
1569 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1573 (*packet_size) += length_size;
1574 (*tag_11_contents_size) = (body_size - 14);
1575 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1576 printk(KERN_ERR "Packet size exceeds max\n");
1580 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1581 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1586 if (data[(*packet_size)++] != 0x62) {
1587 printk(KERN_WARNING "Unrecognizable packet\n");
1591 if (data[(*packet_size)++] != 0x08) {
1592 printk(KERN_WARNING "Unrecognizable packet\n");
1596 (*packet_size) += 12; /* Ignore filename and modification date */
1597 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1598 (*packet_size) += (*tag_11_contents_size);
1602 (*tag_11_contents_size) = 0;
1607 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1608 struct ecryptfs_auth_tok **auth_tok,
1613 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1614 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1615 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1616 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1617 printk(KERN_ERR "Could not find key with description: [%s]\n",
1619 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1620 (*auth_tok_key) = NULL;
1624 down_write(&(*auth_tok_key)->sem);
1625 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1627 up_write(&(*auth_tok_key)->sem);
1628 key_put(*auth_tok_key);
1629 (*auth_tok_key) = NULL;
1637 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1638 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1639 * @crypt_stat: The cryptographic context
1641 * Returns zero on success; non-zero error otherwise
1644 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1645 struct ecryptfs_crypt_stat *crypt_stat)
1647 struct scatterlist dst_sg[2];
1648 struct scatterlist src_sg[2];
1649 struct mutex *tfm_mutex;
1650 struct crypto_skcipher *tfm;
1651 struct skcipher_request *req = NULL;
1654 if (unlikely(ecryptfs_verbosity > 0)) {
1656 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1657 auth_tok->token.password.session_key_encryption_key_bytes);
1659 auth_tok->token.password.session_key_encryption_key,
1660 auth_tok->token.password.session_key_encryption_key_bytes);
1662 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1663 crypt_stat->cipher);
1665 printk(KERN_ERR "Internal error whilst attempting to get "
1666 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1667 crypt_stat->cipher, rc);
1670 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1671 auth_tok->session_key.encrypted_key_size,
1673 if (rc < 1 || rc > 2) {
1674 printk(KERN_ERR "Internal error whilst attempting to convert "
1675 "auth_tok->session_key.encrypted_key to scatterlist; "
1676 "expected rc = 1; got rc = [%d]. "
1677 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1678 auth_tok->session_key.encrypted_key_size);
1681 auth_tok->session_key.decrypted_key_size =
1682 auth_tok->session_key.encrypted_key_size;
1683 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1684 auth_tok->session_key.decrypted_key_size,
1686 if (rc < 1 || rc > 2) {
1687 printk(KERN_ERR "Internal error whilst attempting to convert "
1688 "auth_tok->session_key.decrypted_key to scatterlist; "
1689 "expected rc = 1; got rc = [%d]\n", rc);
1692 mutex_lock(tfm_mutex);
1693 req = skcipher_request_alloc(tfm, GFP_KERNEL);
1695 mutex_unlock(tfm_mutex);
1696 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1697 "skcipher_request_alloc for %s\n", __func__,
1698 crypto_skcipher_driver_name(tfm));
1703 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1705 rc = crypto_skcipher_setkey(
1706 tfm, auth_tok->token.password.session_key_encryption_key,
1707 crypt_stat->key_size);
1708 if (unlikely(rc < 0)) {
1709 mutex_unlock(tfm_mutex);
1710 printk(KERN_ERR "Error setting key for crypto context\n");
1714 skcipher_request_set_crypt(req, src_sg, dst_sg,
1715 auth_tok->session_key.encrypted_key_size,
1717 rc = crypto_skcipher_decrypt(req);
1718 mutex_unlock(tfm_mutex);
1720 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1723 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1724 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1725 auth_tok->session_key.decrypted_key_size);
1726 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1727 if (unlikely(ecryptfs_verbosity > 0)) {
1728 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1729 crypt_stat->key_size);
1730 ecryptfs_dump_hex(crypt_stat->key,
1731 crypt_stat->key_size);
1734 skcipher_request_free(req);
1739 * ecryptfs_parse_packet_set
1740 * @crypt_stat: The cryptographic context
1741 * @src: Virtual address of region of memory containing the packets
1742 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1744 * Get crypt_stat to have the file's session key if the requisite key
1745 * is available to decrypt the session key.
1747 * Returns Zero if a valid authentication token was retrieved and
1748 * processed; negative value for file not encrypted or for error
1751 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1753 struct dentry *ecryptfs_dentry)
1756 size_t found_auth_tok;
1757 size_t next_packet_is_auth_tok_packet;
1758 struct list_head auth_tok_list;
1759 struct ecryptfs_auth_tok *matching_auth_tok;
1760 struct ecryptfs_auth_tok *candidate_auth_tok;
1761 char *candidate_auth_tok_sig;
1763 struct ecryptfs_auth_tok *new_auth_tok;
1764 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1765 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1766 size_t tag_11_contents_size;
1767 size_t tag_11_packet_size;
1768 struct key *auth_tok_key = NULL;
1771 INIT_LIST_HEAD(&auth_tok_list);
1772 /* Parse the header to find as many packets as we can; these will be
1773 * added the our &auth_tok_list */
1774 next_packet_is_auth_tok_packet = 1;
1775 while (next_packet_is_auth_tok_packet) {
1776 size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1779 case ECRYPTFS_TAG_3_PACKET_TYPE:
1780 rc = parse_tag_3_packet(crypt_stat,
1781 (unsigned char *)&src[i],
1782 &auth_tok_list, &new_auth_tok,
1783 &packet_size, max_packet_size);
1785 ecryptfs_printk(KERN_ERR, "Error parsing "
1791 rc = parse_tag_11_packet((unsigned char *)&src[i],
1794 &tag_11_contents_size,
1795 &tag_11_packet_size,
1798 ecryptfs_printk(KERN_ERR, "No valid "
1799 "(ecryptfs-specific) literal "
1800 "packet containing "
1801 "authentication token "
1802 "signature found after "
1807 i += tag_11_packet_size;
1808 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1809 ecryptfs_printk(KERN_ERR, "Expected "
1810 "signature of size [%d]; "
1811 "read size [%zd]\n",
1813 tag_11_contents_size);
1817 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1818 sig_tmp_space, tag_11_contents_size);
1819 new_auth_tok->token.password.signature[
1820 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1821 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1823 case ECRYPTFS_TAG_1_PACKET_TYPE:
1824 rc = parse_tag_1_packet(crypt_stat,
1825 (unsigned char *)&src[i],
1826 &auth_tok_list, &new_auth_tok,
1827 &packet_size, max_packet_size);
1829 ecryptfs_printk(KERN_ERR, "Error parsing "
1835 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1837 case ECRYPTFS_TAG_11_PACKET_TYPE:
1838 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1839 "(Tag 11 not allowed by itself)\n");
1843 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1844 "of the file header; hex value of "
1845 "character is [0x%.2x]\n", i, src[i]);
1846 next_packet_is_auth_tok_packet = 0;
1849 if (list_empty(&auth_tok_list)) {
1850 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1851 "eCryptfs file; this is not supported in this version "
1852 "of the eCryptfs kernel module\n");
1856 /* auth_tok_list contains the set of authentication tokens
1857 * parsed from the metadata. We need to find a matching
1858 * authentication token that has the secret component(s)
1859 * necessary to decrypt the EFEK in the auth_tok parsed from
1860 * the metadata. There may be several potential matches, but
1861 * just one will be sufficient to decrypt to get the FEK. */
1862 find_next_matching_auth_tok:
1864 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1865 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1866 if (unlikely(ecryptfs_verbosity > 0)) {
1867 ecryptfs_printk(KERN_DEBUG,
1868 "Considering candidate auth tok:\n");
1869 ecryptfs_dump_auth_tok(candidate_auth_tok);
1871 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1872 candidate_auth_tok);
1875 "Unrecognized candidate auth tok type: [%d]\n",
1876 candidate_auth_tok->token_type);
1880 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1882 crypt_stat->mount_crypt_stat,
1883 candidate_auth_tok_sig);
1886 goto found_matching_auth_tok;
1889 if (!found_auth_tok) {
1890 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1891 "authentication token\n");
1895 found_matching_auth_tok:
1896 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1897 memcpy(&(candidate_auth_tok->token.private_key),
1898 &(matching_auth_tok->token.private_key),
1899 sizeof(struct ecryptfs_private_key));
1900 up_write(&(auth_tok_key->sem));
1901 key_put(auth_tok_key);
1902 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1904 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1905 memcpy(&(candidate_auth_tok->token.password),
1906 &(matching_auth_tok->token.password),
1907 sizeof(struct ecryptfs_password));
1908 up_write(&(auth_tok_key->sem));
1909 key_put(auth_tok_key);
1910 rc = decrypt_passphrase_encrypted_session_key(
1911 candidate_auth_tok, crypt_stat);
1913 up_write(&(auth_tok_key->sem));
1914 key_put(auth_tok_key);
1918 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1920 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1921 "session key for authentication token with sig "
1922 "[%.*s]; rc = [%d]. Removing auth tok "
1923 "candidate from the list and searching for "
1924 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1925 candidate_auth_tok_sig, rc);
1926 list_for_each_entry_safe(auth_tok_list_item,
1927 auth_tok_list_item_tmp,
1928 &auth_tok_list, list) {
1929 if (candidate_auth_tok
1930 == &auth_tok_list_item->auth_tok) {
1931 list_del(&auth_tok_list_item->list);
1933 ecryptfs_auth_tok_list_item_cache,
1934 auth_tok_list_item);
1935 goto find_next_matching_auth_tok;
1940 rc = ecryptfs_compute_root_iv(crypt_stat);
1942 ecryptfs_printk(KERN_ERR, "Error computing "
1946 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1948 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1949 "context for cipher [%s]; rc = [%d]\n",
1950 crypt_stat->cipher, rc);
1953 wipe_auth_tok_list(&auth_tok_list);
1959 pki_encrypt_session_key(struct key *auth_tok_key,
1960 struct ecryptfs_auth_tok *auth_tok,
1961 struct ecryptfs_crypt_stat *crypt_stat,
1962 struct ecryptfs_key_record *key_rec)
1964 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1965 char *payload = NULL;
1966 size_t payload_len = 0;
1967 struct ecryptfs_message *msg;
1970 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1971 ecryptfs_code_for_cipher_string(
1973 crypt_stat->key_size),
1974 crypt_stat, &payload, &payload_len);
1975 up_write(&(auth_tok_key->sem));
1976 key_put(auth_tok_key);
1978 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1981 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1983 ecryptfs_printk(KERN_ERR, "Error sending message to "
1984 "ecryptfsd: %d\n", rc);
1987 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1989 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1990 "from the user space daemon\n");
1994 rc = parse_tag_67_packet(key_rec, msg);
1996 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2003 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2004 * @dest: Buffer into which to write the packet
2005 * @remaining_bytes: Maximum number of bytes that can be writtn
2006 * @auth_tok_key: The authentication token key to unlock and put when done with
2008 * @auth_tok: The authentication token used for generating the tag 1 packet
2009 * @crypt_stat: The cryptographic context
2010 * @key_rec: The key record struct for the tag 1 packet
2011 * @packet_size: This function will write the number of bytes that end
2012 * up constituting the packet; set to zero on error
2014 * Returns zero on success; non-zero on error.
2017 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2018 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2019 struct ecryptfs_crypt_stat *crypt_stat,
2020 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2023 size_t encrypted_session_key_valid = 0;
2024 size_t packet_size_length;
2025 size_t max_packet_size;
2029 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2031 encrypted_session_key_valid = 0;
2032 for (i = 0; i < crypt_stat->key_size; i++)
2033 encrypted_session_key_valid |=
2034 auth_tok->session_key.encrypted_key[i];
2035 if (encrypted_session_key_valid) {
2036 memcpy(key_rec->enc_key,
2037 auth_tok->session_key.encrypted_key,
2038 auth_tok->session_key.encrypted_key_size);
2039 up_write(&(auth_tok_key->sem));
2040 key_put(auth_tok_key);
2041 goto encrypted_session_key_set;
2043 if (auth_tok->session_key.encrypted_key_size == 0)
2044 auth_tok->session_key.encrypted_key_size =
2045 auth_tok->token.private_key.key_size;
2046 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2049 printk(KERN_ERR "Failed to encrypt session key via a key "
2050 "module; rc = [%d]\n", rc);
2053 if (ecryptfs_verbosity > 0) {
2054 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2055 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2057 encrypted_session_key_set:
2058 /* This format is inspired by OpenPGP; see RFC 2440
2060 max_packet_size = (1 /* Tag 1 identifier */
2061 + 3 /* Max Tag 1 packet size */
2063 + ECRYPTFS_SIG_SIZE /* Key identifier */
2064 + 1 /* Cipher identifier */
2065 + key_rec->enc_key_size); /* Encrypted key size */
2066 if (max_packet_size > (*remaining_bytes)) {
2067 printk(KERN_ERR "Packet length larger than maximum allowable; "
2068 "need up to [%td] bytes, but there are only [%td] "
2069 "available\n", max_packet_size, (*remaining_bytes));
2073 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2074 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2075 (max_packet_size - 4),
2076 &packet_size_length);
2078 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2079 "header; cannot generate packet length\n");
2082 (*packet_size) += packet_size_length;
2083 dest[(*packet_size)++] = 0x03; /* version 3 */
2084 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2085 (*packet_size) += ECRYPTFS_SIG_SIZE;
2086 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2087 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2088 key_rec->enc_key_size);
2089 (*packet_size) += key_rec->enc_key_size;
2094 (*remaining_bytes) -= (*packet_size);
2099 * write_tag_11_packet
2100 * @dest: Target into which Tag 11 packet is to be written
2101 * @remaining_bytes: Maximum packet length
2102 * @contents: Byte array of contents to copy in
2103 * @contents_length: Number of bytes in contents
2104 * @packet_length: Length of the Tag 11 packet written; zero on error
2106 * Returns zero on success; non-zero on error.
2109 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2110 size_t contents_length, size_t *packet_length)
2112 size_t packet_size_length;
2113 size_t max_packet_size;
2116 (*packet_length) = 0;
2117 /* This format is inspired by OpenPGP; see RFC 2440
2119 max_packet_size = (1 /* Tag 11 identifier */
2120 + 3 /* Max Tag 11 packet size */
2121 + 1 /* Binary format specifier */
2122 + 1 /* Filename length */
2123 + 8 /* Filename ("_CONSOLE") */
2124 + 4 /* Modification date */
2125 + contents_length); /* Literal data */
2126 if (max_packet_size > (*remaining_bytes)) {
2127 printk(KERN_ERR "Packet length larger than maximum allowable; "
2128 "need up to [%td] bytes, but there are only [%td] "
2129 "available\n", max_packet_size, (*remaining_bytes));
2133 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2134 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2135 (max_packet_size - 4),
2136 &packet_size_length);
2138 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2139 "generate packet length. rc = [%d]\n", rc);
2142 (*packet_length) += packet_size_length;
2143 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2144 dest[(*packet_length)++] = 8;
2145 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2146 (*packet_length) += 8;
2147 memset(&dest[(*packet_length)], 0x00, 4);
2148 (*packet_length) += 4;
2149 memcpy(&dest[(*packet_length)], contents, contents_length);
2150 (*packet_length) += contents_length;
2153 (*packet_length) = 0;
2155 (*remaining_bytes) -= (*packet_length);
2160 * write_tag_3_packet
2161 * @dest: Buffer into which to write the packet
2162 * @remaining_bytes: Maximum number of bytes that can be written
2163 * @auth_tok: Authentication token
2164 * @crypt_stat: The cryptographic context
2165 * @key_rec: encrypted key
2166 * @packet_size: This function will write the number of bytes that end
2167 * up constituting the packet; set to zero on error
2169 * Returns zero on success; non-zero on error.
2172 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2173 struct ecryptfs_auth_tok *auth_tok,
2174 struct ecryptfs_crypt_stat *crypt_stat,
2175 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2178 size_t encrypted_session_key_valid = 0;
2179 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2180 struct scatterlist dst_sg[2];
2181 struct scatterlist src_sg[2];
2182 struct mutex *tfm_mutex = NULL;
2184 size_t packet_size_length;
2185 size_t max_packet_size;
2186 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2187 crypt_stat->mount_crypt_stat;
2188 struct crypto_skcipher *tfm;
2189 struct skcipher_request *req;
2193 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2195 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2196 crypt_stat->cipher);
2198 printk(KERN_ERR "Internal error whilst attempting to get "
2199 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2200 crypt_stat->cipher, rc);
2203 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2204 printk(KERN_WARNING "No key size specified at mount; "
2205 "defaulting to [%d]\n",
2206 crypto_skcipher_default_keysize(tfm));
2207 mount_crypt_stat->global_default_cipher_key_size =
2208 crypto_skcipher_default_keysize(tfm);
2210 if (crypt_stat->key_size == 0)
2211 crypt_stat->key_size =
2212 mount_crypt_stat->global_default_cipher_key_size;
2213 if (auth_tok->session_key.encrypted_key_size == 0)
2214 auth_tok->session_key.encrypted_key_size =
2215 crypt_stat->key_size;
2216 if (crypt_stat->key_size == 24
2217 && strcmp("aes", crypt_stat->cipher) == 0) {
2218 memset((crypt_stat->key + 24), 0, 8);
2219 auth_tok->session_key.encrypted_key_size = 32;
2221 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2222 key_rec->enc_key_size =
2223 auth_tok->session_key.encrypted_key_size;
2224 encrypted_session_key_valid = 0;
2225 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2226 encrypted_session_key_valid |=
2227 auth_tok->session_key.encrypted_key[i];
2228 if (encrypted_session_key_valid) {
2229 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2230 "using auth_tok->session_key.encrypted_key, "
2231 "where key_rec->enc_key_size = [%zd]\n",
2232 key_rec->enc_key_size);
2233 memcpy(key_rec->enc_key,
2234 auth_tok->session_key.encrypted_key,
2235 key_rec->enc_key_size);
2236 goto encrypted_session_key_set;
2238 if (auth_tok->token.password.flags &
2239 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2240 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2241 "session key encryption key of size [%d]\n",
2242 auth_tok->token.password.
2243 session_key_encryption_key_bytes);
2244 memcpy(session_key_encryption_key,
2245 auth_tok->token.password.session_key_encryption_key,
2246 crypt_stat->key_size);
2247 ecryptfs_printk(KERN_DEBUG,
2248 "Cached session key encryption key:\n");
2249 if (ecryptfs_verbosity > 0)
2250 ecryptfs_dump_hex(session_key_encryption_key, 16);
2252 if (unlikely(ecryptfs_verbosity > 0)) {
2253 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2254 ecryptfs_dump_hex(session_key_encryption_key, 16);
2256 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2258 if (rc < 1 || rc > 2) {
2259 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2260 "for crypt_stat session key; expected rc = 1; "
2261 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2262 rc, key_rec->enc_key_size);
2266 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2268 if (rc < 1 || rc > 2) {
2269 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2270 "for crypt_stat encrypted session key; "
2271 "expected rc = 1; got rc = [%d]. "
2272 "key_rec->enc_key_size = [%zd]\n", rc,
2273 key_rec->enc_key_size);
2277 mutex_lock(tfm_mutex);
2278 rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2279 crypt_stat->key_size);
2281 mutex_unlock(tfm_mutex);
2282 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2283 "context; rc = [%d]\n", rc);
2287 req = skcipher_request_alloc(tfm, GFP_KERNEL);
2289 mutex_unlock(tfm_mutex);
2290 ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2291 "attempting to skcipher_request_alloc for "
2292 "%s\n", crypto_skcipher_driver_name(tfm));
2297 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2301 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2302 crypt_stat->key_size);
2303 skcipher_request_set_crypt(req, src_sg, dst_sg,
2304 (*key_rec).enc_key_size, NULL);
2305 rc = crypto_skcipher_encrypt(req);
2306 mutex_unlock(tfm_mutex);
2307 skcipher_request_free(req);
2309 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2312 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2313 if (ecryptfs_verbosity > 0) {
2314 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2315 key_rec->enc_key_size);
2316 ecryptfs_dump_hex(key_rec->enc_key,
2317 key_rec->enc_key_size);
2319 encrypted_session_key_set:
2320 /* This format is inspired by OpenPGP; see RFC 2440
2322 max_packet_size = (1 /* Tag 3 identifier */
2323 + 3 /* Max Tag 3 packet size */
2325 + 1 /* Cipher code */
2326 + 1 /* S2K specifier */
2327 + 1 /* Hash identifier */
2328 + ECRYPTFS_SALT_SIZE /* Salt */
2329 + 1 /* Hash iterations */
2330 + key_rec->enc_key_size); /* Encrypted key size */
2331 if (max_packet_size > (*remaining_bytes)) {
2332 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2333 "there are only [%td] available\n", max_packet_size,
2334 (*remaining_bytes));
2338 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2339 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2340 * to get the number of octets in the actual Tag 3 packet */
2341 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2342 (max_packet_size - 4),
2343 &packet_size_length);
2345 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2346 "generate packet length. rc = [%d]\n", rc);
2349 (*packet_size) += packet_size_length;
2350 dest[(*packet_size)++] = 0x04; /* version 4 */
2351 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2352 * specified with strings */
2353 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2354 crypt_stat->key_size);
2355 if (cipher_code == 0) {
2356 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2357 "cipher [%s]\n", crypt_stat->cipher);
2361 dest[(*packet_size)++] = cipher_code;
2362 dest[(*packet_size)++] = 0x03; /* S2K */
2363 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2364 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2365 ECRYPTFS_SALT_SIZE);
2366 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2367 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2368 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2369 key_rec->enc_key_size);
2370 (*packet_size) += key_rec->enc_key_size;
2375 (*remaining_bytes) -= (*packet_size);
2379 struct kmem_cache *ecryptfs_key_record_cache;
2382 * ecryptfs_generate_key_packet_set
2383 * @dest_base: Virtual address from which to write the key record set
2384 * @crypt_stat: The cryptographic context from which the
2385 * authentication tokens will be retrieved
2386 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2387 * for the global parameters
2388 * @len: The amount written
2389 * @max: The maximum amount of data allowed to be written
2391 * Generates a key packet set and writes it to the virtual address
2394 * Returns zero on success; non-zero on error.
2397 ecryptfs_generate_key_packet_set(char *dest_base,
2398 struct ecryptfs_crypt_stat *crypt_stat,
2399 struct dentry *ecryptfs_dentry, size_t *len,
2402 struct ecryptfs_auth_tok *auth_tok;
2403 struct key *auth_tok_key = NULL;
2404 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2405 &ecryptfs_superblock_to_private(
2406 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2408 struct ecryptfs_key_record *key_rec;
2409 struct ecryptfs_key_sig *key_sig;
2413 mutex_lock(&crypt_stat->keysig_list_mutex);
2414 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2419 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2421 memset(key_rec, 0, sizeof(*key_rec));
2422 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2427 printk(KERN_WARNING "Unable to retrieve auth tok with "
2428 "sig = [%s]\n", key_sig->keysig);
2429 rc = process_find_global_auth_tok_for_sig_err(rc);
2432 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2433 rc = write_tag_3_packet((dest_base + (*len)),
2435 crypt_stat, key_rec,
2437 up_write(&(auth_tok_key->sem));
2438 key_put(auth_tok_key);
2440 ecryptfs_printk(KERN_WARNING, "Error "
2441 "writing tag 3 packet\n");
2445 /* Write auth tok signature packet */
2446 rc = write_tag_11_packet((dest_base + (*len)), &max,
2448 ECRYPTFS_SIG_SIZE, &written);
2450 ecryptfs_printk(KERN_ERR, "Error writing "
2451 "auth tok signature packet\n");
2455 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2456 rc = write_tag_1_packet(dest_base + (*len), &max,
2457 auth_tok_key, auth_tok,
2458 crypt_stat, key_rec, &written);
2460 ecryptfs_printk(KERN_WARNING, "Error "
2461 "writing tag 1 packet\n");
2466 up_write(&(auth_tok_key->sem));
2467 key_put(auth_tok_key);
2468 ecryptfs_printk(KERN_WARNING, "Unsupported "
2469 "authentication token type\n");
2474 if (likely(max > 0)) {
2475 dest_base[(*len)] = 0x00;
2477 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2481 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2485 mutex_unlock(&crypt_stat->keysig_list_mutex);
2489 struct kmem_cache *ecryptfs_key_sig_cache;
2491 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2493 struct ecryptfs_key_sig *new_key_sig;
2495 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2499 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2500 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2501 /* Caller must hold keysig_list_mutex */
2502 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2507 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2510 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2511 char *sig, u32 global_auth_tok_flags)
2513 struct ecryptfs_global_auth_tok *new_auth_tok;
2515 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2520 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2521 new_auth_tok->flags = global_auth_tok_flags;
2522 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2523 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2524 list_add(&new_auth_tok->mount_crypt_stat_list,
2525 &mount_crypt_stat->global_auth_tok_list);
2526 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);