2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/vmalloc.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32 {
73 } __attribute__ ((__packed__));
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 unsigned int iflags = 0;
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
136 * Update inode->i_flags based on the btrfs internal flags.
138 void btrfs_update_iflags(struct inode *inode)
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
143 if (ip->flags & BTRFS_INODE_SYNC)
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
149 if (ip->flags & BTRFS_INODE_NOATIME)
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
160 * Inherit flags from the parent inode.
162 * Currently only the compression flags and the cow flags are inherited.
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
171 flags = BTRFS_I(dir)->flags;
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
187 btrfs_update_iflags(inode);
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 if (copy_to_user(arg, &flags, sizeof(flags)))
200 static int check_flags(unsigned int flags)
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 struct inode *inode = file_inode(file);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
225 unsigned int i_oldflags;
228 if (!inode_owner_or_capable(inode))
231 if (btrfs_root_readonly(root))
234 if (copy_from_user(&flags, arg, sizeof(flags)))
237 ret = check_flags(flags);
241 ret = mnt_want_write_file(file);
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
295 ip->flags |= BTRFS_INODE_NODATACOW;
299 * Revert back under same assumptions as above
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
322 } else if (flags & FS_COMPR_FL) {
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
344 trans = btrfs_start_transaction(root, 1);
346 ret = PTR_ERR(trans);
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
355 btrfs_end_transaction(trans);
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
364 mnt_drop_write_file(file);
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
370 struct inode *inode = file_inode(file);
372 return put_user(inode->i_generation, arg);
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
377 struct inode *inode = file_inode(file);
378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 struct btrfs_device *device;
380 struct request_queue *q;
381 struct fstrim_range range;
382 u64 minlen = ULLONG_MAX;
384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
387 if (!capable(CAP_SYS_ADMIN))
391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
395 q = bdev_get_queue(device->bdev);
396 if (blk_queue_discard(q)) {
398 minlen = min_t(u64, q->limits.discard_granularity,
406 if (copy_from_user(&range, arg, sizeof(range)))
408 if (range.start > total_bytes ||
409 range.len < fs_info->sb->s_blocksize)
412 range.len = min(range.len, total_bytes - range.start);
413 range.minlen = max(range.minlen, minlen);
414 ret = btrfs_trim_fs(fs_info, &range);
418 if (copy_to_user(arg, &range, sizeof(range)))
424 int btrfs_is_empty_uuid(u8 *uuid)
428 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
435 static noinline int create_subvol(struct inode *dir,
436 struct dentry *dentry,
437 char *name, int namelen,
439 struct btrfs_qgroup_inherit *inherit)
441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item *root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = current_time(dir);
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
472 if (btrfs_qgroup_level(objectid)) {
477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 8, &qgroup_reserved, false);
487 trans = btrfs_start_transaction(root, 0);
489 ret = PTR_ERR(trans);
490 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
493 trans->block_rsv = &block_rsv;
494 trans->bytes_reserved = block_rsv.size;
496 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
500 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
507 btrfs_set_header_bytenr(leaf, leaf->start);
508 btrfs_set_header_generation(leaf, trans->transid);
509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
510 btrfs_set_header_owner(leaf, objectid);
512 write_extent_buffer_fsid(leaf, fs_info->fsid);
513 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
514 btrfs_mark_buffer_dirty(leaf);
516 inode_item = &root_item->inode;
517 btrfs_set_stack_inode_generation(inode_item, 1);
518 btrfs_set_stack_inode_size(inode_item, 3);
519 btrfs_set_stack_inode_nlink(inode_item, 1);
520 btrfs_set_stack_inode_nbytes(inode_item,
522 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524 btrfs_set_root_flags(root_item, 0);
525 btrfs_set_root_limit(root_item, 0);
526 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528 btrfs_set_root_bytenr(root_item, leaf->start);
529 btrfs_set_root_generation(root_item, trans->transid);
530 btrfs_set_root_level(root_item, 0);
531 btrfs_set_root_refs(root_item, 1);
532 btrfs_set_root_used(root_item, leaf->len);
533 btrfs_set_root_last_snapshot(root_item, 0);
535 btrfs_set_root_generation_v2(root_item,
536 btrfs_root_generation(root_item));
537 uuid_le_gen(&new_uuid);
538 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
539 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
540 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
541 root_item->ctime = root_item->otime;
542 btrfs_set_root_ctransid(root_item, trans->transid);
543 btrfs_set_root_otransid(root_item, trans->transid);
545 btrfs_tree_unlock(leaf);
546 free_extent_buffer(leaf);
549 btrfs_set_root_dirid(root_item, new_dirid);
551 key.objectid = objectid;
553 key.type = BTRFS_ROOT_ITEM_KEY;
554 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
559 key.offset = (u64)-1;
560 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
561 if (IS_ERR(new_root)) {
562 ret = PTR_ERR(new_root);
563 btrfs_abort_transaction(trans, ret);
567 btrfs_record_root_in_trans(trans, new_root);
569 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 /* We potentially lose an unused inode item here */
572 btrfs_abort_transaction(trans, ret);
576 mutex_lock(&new_root->objectid_mutex);
577 new_root->highest_objectid = new_dirid;
578 mutex_unlock(&new_root->objectid_mutex);
581 * insert the directory item
583 ret = btrfs_set_inode_index(dir, &index);
585 btrfs_abort_transaction(trans, ret);
589 ret = btrfs_insert_dir_item(trans, root,
590 name, namelen, dir, &key,
591 BTRFS_FT_DIR, index);
593 btrfs_abort_transaction(trans, ret);
597 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
598 ret = btrfs_update_inode(trans, root, dir);
601 ret = btrfs_add_root_ref(trans, fs_info,
602 objectid, root->root_key.objectid,
603 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
606 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
607 BTRFS_UUID_KEY_SUBVOL, objectid);
609 btrfs_abort_transaction(trans, ret);
613 trans->block_rsv = NULL;
614 trans->bytes_reserved = 0;
615 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
618 *async_transid = trans->transid;
619 err = btrfs_commit_transaction_async(trans, 1);
621 err = btrfs_commit_transaction(trans);
623 err = btrfs_commit_transaction(trans);
629 inode = btrfs_lookup_dentry(dir, dentry);
631 return PTR_ERR(inode);
632 d_instantiate(dentry, inode);
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
647 prepare_to_wait(&root->subv_writers->wait, &wait,
648 TASK_UNINTERRUPTIBLE);
650 writers = percpu_counter_sum(&root->subv_writers->counter);
654 finish_wait(&root->subv_writers->wait, &wait);
658 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
659 struct dentry *dentry,
660 u64 *async_transid, bool readonly,
661 struct btrfs_qgroup_inherit *inherit)
663 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
665 struct btrfs_pending_snapshot *pending_snapshot;
666 struct btrfs_trans_handle *trans;
669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
672 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
673 if (!pending_snapshot)
676 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 pending_snapshot->path = btrfs_alloc_path();
679 if (!pending_snapshot->root_item || !pending_snapshot->path) {
684 atomic_inc(&root->will_be_snapshoted);
685 smp_mb__after_atomic();
686 btrfs_wait_for_no_snapshoting_writes(root);
688 ret = btrfs_start_delalloc_inodes(root, 0);
692 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
695 BTRFS_BLOCK_RSV_TEMP);
697 * 1 - parent dir inode
700 * 2 - root ref/backref
701 * 1 - root of snapshot
704 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
705 &pending_snapshot->block_rsv, 8,
706 &pending_snapshot->qgroup_reserved,
711 pending_snapshot->dentry = dentry;
712 pending_snapshot->root = root;
713 pending_snapshot->readonly = readonly;
714 pending_snapshot->dir = dir;
715 pending_snapshot->inherit = inherit;
717 trans = btrfs_start_transaction(root, 0);
719 ret = PTR_ERR(trans);
723 spin_lock(&fs_info->trans_lock);
724 list_add(&pending_snapshot->list,
725 &trans->transaction->pending_snapshots);
726 spin_unlock(&fs_info->trans_lock);
728 *async_transid = trans->transid;
729 ret = btrfs_commit_transaction_async(trans, 1);
731 ret = btrfs_commit_transaction(trans);
733 ret = btrfs_commit_transaction(trans);
738 ret = pending_snapshot->error;
742 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
748 ret = PTR_ERR(inode);
752 d_instantiate(dentry, inode);
755 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
757 if (atomic_dec_and_test(&root->will_be_snapshoted))
758 wake_up_atomic_t(&root->will_be_snapshoted);
760 kfree(pending_snapshot->root_item);
761 btrfs_free_path(pending_snapshot->path);
762 kfree(pending_snapshot);
767 /* copy of may_delete in fs/namei.c()
768 * Check whether we can remove a link victim from directory dir, check
769 * whether the type of victim is right.
770 * 1. We can't do it if dir is read-only (done in permission())
771 * 2. We should have write and exec permissions on dir
772 * 3. We can't remove anything from append-only dir
773 * 4. We can't do anything with immutable dir (done in permission())
774 * 5. If the sticky bit on dir is set we should either
775 * a. be owner of dir, or
776 * b. be owner of victim, or
777 * c. have CAP_FOWNER capability
778 * 6. If the victim is append-only or immutable we can't do anything with
779 * links pointing to it.
780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782 * 9. We can't remove a root or mountpoint.
783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784 * nfs_async_unlink().
787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
791 if (d_really_is_negative(victim))
794 BUG_ON(d_inode(victim->d_parent) != dir);
795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
802 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
803 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
806 if (!d_is_dir(victim))
810 } else if (d_is_dir(victim))
814 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
822 if (d_really_is_positive(child))
826 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
830 * Create a new subvolume below @parent. This is largely modeled after
831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832 * inside this filesystem so it's quite a bit simpler.
834 static noinline int btrfs_mksubvol(const struct path *parent,
835 char *name, int namelen,
836 struct btrfs_root *snap_src,
837 u64 *async_transid, bool readonly,
838 struct btrfs_qgroup_inherit *inherit)
840 struct inode *dir = d_inode(parent->dentry);
841 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
842 struct dentry *dentry;
845 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
849 dentry = lookup_one_len(name, parent->dentry, namelen);
850 error = PTR_ERR(dentry);
854 error = btrfs_may_create(dir, dentry);
859 * even if this name doesn't exist, we may get hash collisions.
860 * check for them now when we can safely fail
862 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
868 down_read(&fs_info->subvol_sem);
870 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
874 error = create_snapshot(snap_src, dir, dentry,
875 async_transid, readonly, inherit);
877 error = create_subvol(dir, dentry, name, namelen,
878 async_transid, inherit);
881 fsnotify_mkdir(dir, dentry);
883 up_read(&fs_info->subvol_sem);
892 * When we're defragging a range, we don't want to kick it off again
893 * if it is really just waiting for delalloc to send it down.
894 * If we find a nice big extent or delalloc range for the bytes in the
895 * file you want to defrag, we return 0 to let you know to skip this
898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901 struct extent_map *em = NULL;
902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
905 read_lock(&em_tree->lock);
906 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
907 read_unlock(&em_tree->lock);
910 end = extent_map_end(em);
912 if (end - offset > thresh)
915 /* if we already have a nice delalloc here, just stop */
917 end = count_range_bits(io_tree, &offset, offset + thresh,
918 thresh, EXTENT_DELALLOC, 1);
925 * helper function to walk through a file and find extents
926 * newer than a specific transid, and smaller than thresh.
928 * This is used by the defragging code to find new and small
931 static int find_new_extents(struct btrfs_root *root,
932 struct inode *inode, u64 newer_than,
933 u64 *off, u32 thresh)
935 struct btrfs_path *path;
936 struct btrfs_key min_key;
937 struct extent_buffer *leaf;
938 struct btrfs_file_extent_item *extent;
941 u64 ino = btrfs_ino(BTRFS_I(inode));
943 path = btrfs_alloc_path();
947 min_key.objectid = ino;
948 min_key.type = BTRFS_EXTENT_DATA_KEY;
949 min_key.offset = *off;
952 ret = btrfs_search_forward(root, &min_key, path, newer_than);
956 if (min_key.objectid != ino)
958 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
961 leaf = path->nodes[0];
962 extent = btrfs_item_ptr(leaf, path->slots[0],
963 struct btrfs_file_extent_item);
965 type = btrfs_file_extent_type(leaf, extent);
966 if (type == BTRFS_FILE_EXTENT_REG &&
967 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
968 check_defrag_in_cache(inode, min_key.offset, thresh)) {
969 *off = min_key.offset;
970 btrfs_free_path(path);
975 if (path->slots[0] < btrfs_header_nritems(leaf)) {
976 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
980 if (min_key.offset == (u64)-1)
984 btrfs_release_path(path);
987 btrfs_free_path(path);
991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
995 struct extent_map *em;
999 * hopefully we have this extent in the tree already, try without
1000 * the full extent lock
1002 read_lock(&em_tree->lock);
1003 em = lookup_extent_mapping(em_tree, start, len);
1004 read_unlock(&em_tree->lock);
1007 struct extent_state *cached = NULL;
1008 u64 end = start + len - 1;
1010 /* get the big lock and read metadata off disk */
1011 lock_extent_bits(io_tree, start, end, &cached);
1012 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1013 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1024 struct extent_map *next;
1027 /* this is the last extent */
1028 if (em->start + em->len >= i_size_read(inode))
1031 next = defrag_lookup_extent(inode, em->start + em->len);
1032 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1034 else if ((em->block_start + em->block_len == next->block_start) &&
1035 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1038 free_extent_map(next);
1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1043 u64 *last_len, u64 *skip, u64 *defrag_end,
1046 struct extent_map *em;
1048 bool next_mergeable = true;
1049 bool prev_mergeable = true;
1052 * make sure that once we start defragging an extent, we keep on
1055 if (start < *defrag_end)
1060 em = defrag_lookup_extent(inode, start);
1064 /* this will cover holes, and inline extents */
1065 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1071 prev_mergeable = false;
1073 next_mergeable = defrag_check_next_extent(inode, em);
1075 * we hit a real extent, if it is big or the next extent is not a
1076 * real extent, don't bother defragging it
1078 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1083 * last_len ends up being a counter of how many bytes we've defragged.
1084 * every time we choose not to defrag an extent, we reset *last_len
1085 * so that the next tiny extent will force a defrag.
1087 * The end result of this is that tiny extents before a single big
1088 * extent will force at least part of that big extent to be defragged.
1091 *defrag_end = extent_map_end(em);
1094 *skip = extent_map_end(em);
1098 free_extent_map(em);
1103 * it doesn't do much good to defrag one or two pages
1104 * at a time. This pulls in a nice chunk of pages
1105 * to COW and defrag.
1107 * It also makes sure the delalloc code has enough
1108 * dirty data to avoid making new small extents as part
1111 * It's a good idea to start RA on this range
1112 * before calling this.
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115 struct page **pages,
1116 unsigned long start_index,
1117 unsigned long num_pages)
1119 unsigned long file_end;
1120 u64 isize = i_size_read(inode);
1127 struct btrfs_ordered_extent *ordered;
1128 struct extent_state *cached_state = NULL;
1129 struct extent_io_tree *tree;
1130 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1132 file_end = (isize - 1) >> PAGE_SHIFT;
1133 if (!isize || start_index > file_end)
1136 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1138 ret = btrfs_delalloc_reserve_space(inode,
1139 start_index << PAGE_SHIFT,
1140 page_cnt << PAGE_SHIFT);
1144 tree = &BTRFS_I(inode)->io_tree;
1146 /* step one, lock all the pages */
1147 for (i = 0; i < page_cnt; i++) {
1150 page = find_or_create_page(inode->i_mapping,
1151 start_index + i, mask);
1155 page_start = page_offset(page);
1156 page_end = page_start + PAGE_SIZE - 1;
1158 lock_extent_bits(tree, page_start, page_end,
1160 ordered = btrfs_lookup_ordered_extent(inode,
1162 unlock_extent_cached(tree, page_start, page_end,
1163 &cached_state, GFP_NOFS);
1168 btrfs_start_ordered_extent(inode, ordered, 1);
1169 btrfs_put_ordered_extent(ordered);
1172 * we unlocked the page above, so we need check if
1173 * it was released or not.
1175 if (page->mapping != inode->i_mapping) {
1182 if (!PageUptodate(page)) {
1183 btrfs_readpage(NULL, page);
1185 if (!PageUptodate(page)) {
1193 if (page->mapping != inode->i_mapping) {
1205 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1209 * so now we have a nice long stream of locked
1210 * and up to date pages, lets wait on them
1212 for (i = 0; i < i_done; i++)
1213 wait_on_page_writeback(pages[i]);
1215 page_start = page_offset(pages[0]);
1216 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1218 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1219 page_start, page_end - 1, &cached_state);
1220 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1221 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1222 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1223 &cached_state, GFP_NOFS);
1225 if (i_done != page_cnt) {
1226 spin_lock(&BTRFS_I(inode)->lock);
1227 BTRFS_I(inode)->outstanding_extents++;
1228 spin_unlock(&BTRFS_I(inode)->lock);
1229 btrfs_delalloc_release_space(inode,
1230 start_index << PAGE_SHIFT,
1231 (page_cnt - i_done) << PAGE_SHIFT);
1235 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1238 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1239 page_start, page_end - 1, &cached_state,
1242 for (i = 0; i < i_done; i++) {
1243 clear_page_dirty_for_io(pages[i]);
1244 ClearPageChecked(pages[i]);
1245 set_page_extent_mapped(pages[i]);
1246 set_page_dirty(pages[i]);
1247 unlock_page(pages[i]);
1252 for (i = 0; i < i_done; i++) {
1253 unlock_page(pages[i]);
1256 btrfs_delalloc_release_space(inode,
1257 start_index << PAGE_SHIFT,
1258 page_cnt << PAGE_SHIFT);
1263 int btrfs_defrag_file(struct inode *inode, struct file *file,
1264 struct btrfs_ioctl_defrag_range_args *range,
1265 u64 newer_than, unsigned long max_to_defrag)
1267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1268 struct btrfs_root *root = BTRFS_I(inode)->root;
1269 struct file_ra_state *ra = NULL;
1270 unsigned long last_index;
1271 u64 isize = i_size_read(inode);
1275 u64 newer_off = range->start;
1277 unsigned long ra_index = 0;
1279 int defrag_count = 0;
1280 int compress_type = BTRFS_COMPRESS_ZLIB;
1281 u32 extent_thresh = range->extent_thresh;
1282 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1283 unsigned long cluster = max_cluster;
1284 u64 new_align = ~((u64)SZ_128K - 1);
1285 struct page **pages = NULL;
1290 if (range->start >= isize)
1293 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1294 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1296 if (range->compress_type)
1297 compress_type = range->compress_type;
1300 if (extent_thresh == 0)
1301 extent_thresh = SZ_256K;
1304 * if we were not given a file, allocate a readahead
1308 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1311 file_ra_state_init(ra, inode->i_mapping);
1316 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1323 /* find the last page to defrag */
1324 if (range->start + range->len > range->start) {
1325 last_index = min_t(u64, isize - 1,
1326 range->start + range->len - 1) >> PAGE_SHIFT;
1328 last_index = (isize - 1) >> PAGE_SHIFT;
1332 ret = find_new_extents(root, inode, newer_than,
1333 &newer_off, SZ_64K);
1335 range->start = newer_off;
1337 * we always align our defrag to help keep
1338 * the extents in the file evenly spaced
1340 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 i = range->start >> PAGE_SHIFT;
1347 max_to_defrag = last_index - i + 1;
1350 * make writeback starts from i, so the defrag range can be
1351 * written sequentially.
1353 if (i < inode->i_mapping->writeback_index)
1354 inode->i_mapping->writeback_index = i;
1356 while (i <= last_index && defrag_count < max_to_defrag &&
1357 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1359 * make sure we stop running if someone unmounts
1362 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1365 if (btrfs_defrag_cancelled(fs_info)) {
1366 btrfs_debug(fs_info, "defrag_file cancelled");
1371 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1372 extent_thresh, &last_len, &skip,
1373 &defrag_end, range->flags &
1374 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1377 * the should_defrag function tells us how much to skip
1378 * bump our counter by the suggested amount
1380 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1381 i = max(i + 1, next);
1386 cluster = (PAGE_ALIGN(defrag_end) >>
1388 cluster = min(cluster, max_cluster);
1390 cluster = max_cluster;
1393 if (i + cluster > ra_index) {
1394 ra_index = max(i, ra_index);
1395 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1397 ra_index += cluster;
1401 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1402 BTRFS_I(inode)->force_compress = compress_type;
1403 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1405 inode_unlock(inode);
1409 defrag_count += ret;
1410 balance_dirty_pages_ratelimited(inode->i_mapping);
1411 inode_unlock(inode);
1414 if (newer_off == (u64)-1)
1420 newer_off = max(newer_off + 1,
1421 (u64)i << PAGE_SHIFT);
1423 ret = find_new_extents(root, inode, newer_than,
1424 &newer_off, SZ_64K);
1426 range->start = newer_off;
1427 i = (newer_off & new_align) >> PAGE_SHIFT;
1434 last_len += ret << PAGE_SHIFT;
1442 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1443 filemap_flush(inode->i_mapping);
1444 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1445 &BTRFS_I(inode)->runtime_flags))
1446 filemap_flush(inode->i_mapping);
1449 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1450 /* the filemap_flush will queue IO into the worker threads, but
1451 * we have to make sure the IO is actually started and that
1452 * ordered extents get created before we return
1454 atomic_inc(&fs_info->async_submit_draining);
1455 while (atomic_read(&fs_info->nr_async_submits) ||
1456 atomic_read(&fs_info->async_delalloc_pages)) {
1457 wait_event(fs_info->async_submit_wait,
1458 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1459 atomic_read(&fs_info->async_delalloc_pages) == 0));
1461 atomic_dec(&fs_info->async_submit_draining);
1464 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1465 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1471 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1473 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1474 inode_unlock(inode);
1482 static noinline int btrfs_ioctl_resize(struct file *file,
1485 struct inode *inode = file_inode(file);
1486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 struct btrfs_root *root = BTRFS_I(inode)->root;
1491 struct btrfs_ioctl_vol_args *vol_args;
1492 struct btrfs_trans_handle *trans;
1493 struct btrfs_device *device = NULL;
1496 char *devstr = NULL;
1500 if (!capable(CAP_SYS_ADMIN))
1503 ret = mnt_want_write_file(file);
1507 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
1508 mnt_drop_write_file(file);
1509 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 mutex_lock(&fs_info->volume_mutex);
1513 vol_args = memdup_user(arg, sizeof(*vol_args));
1514 if (IS_ERR(vol_args)) {
1515 ret = PTR_ERR(vol_args);
1519 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1521 sizestr = vol_args->name;
1522 devstr = strchr(sizestr, ':');
1524 sizestr = devstr + 1;
1526 devstr = vol_args->name;
1527 ret = kstrtoull(devstr, 10, &devid);
1534 btrfs_info(fs_info, "resizing devid %llu", devid);
1537 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1539 btrfs_info(fs_info, "resizer unable to find device %llu",
1545 if (!device->writeable) {
1547 "resizer unable to apply on readonly device %llu",
1553 if (!strcmp(sizestr, "max"))
1554 new_size = device->bdev->bd_inode->i_size;
1556 if (sizestr[0] == '-') {
1559 } else if (sizestr[0] == '+') {
1563 new_size = memparse(sizestr, &retptr);
1564 if (*retptr != '\0' || new_size == 0) {
1570 if (device->is_tgtdev_for_dev_replace) {
1575 old_size = btrfs_device_get_total_bytes(device);
1578 if (new_size > old_size) {
1582 new_size = old_size - new_size;
1583 } else if (mod > 0) {
1584 if (new_size > ULLONG_MAX - old_size) {
1588 new_size = old_size + new_size;
1591 if (new_size < SZ_256M) {
1595 if (new_size > device->bdev->bd_inode->i_size) {
1600 new_size = div_u64(new_size, fs_info->sectorsize);
1601 new_size *= fs_info->sectorsize;
1603 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1604 rcu_str_deref(device->name), new_size);
1606 if (new_size > old_size) {
1607 trans = btrfs_start_transaction(root, 0);
1608 if (IS_ERR(trans)) {
1609 ret = PTR_ERR(trans);
1612 ret = btrfs_grow_device(trans, device, new_size);
1613 btrfs_commit_transaction(trans);
1614 } else if (new_size < old_size) {
1615 ret = btrfs_shrink_device(device, new_size);
1616 } /* equal, nothing need to do */
1621 mutex_unlock(&fs_info->volume_mutex);
1622 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
1623 mnt_drop_write_file(file);
1627 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1628 char *name, unsigned long fd, int subvol,
1629 u64 *transid, bool readonly,
1630 struct btrfs_qgroup_inherit *inherit)
1635 if (!S_ISDIR(file_inode(file)->i_mode))
1638 ret = mnt_want_write_file(file);
1642 namelen = strlen(name);
1643 if (strchr(name, '/')) {
1645 goto out_drop_write;
1648 if (name[0] == '.' &&
1649 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1651 goto out_drop_write;
1655 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1656 NULL, transid, readonly, inherit);
1658 struct fd src = fdget(fd);
1659 struct inode *src_inode;
1662 goto out_drop_write;
1665 src_inode = file_inode(src.file);
1666 if (src_inode->i_sb != file_inode(file)->i_sb) {
1667 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1668 "Snapshot src from another FS");
1670 } else if (!inode_owner_or_capable(src_inode)) {
1672 * Subvolume creation is not restricted, but snapshots
1673 * are limited to own subvolumes only
1677 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1678 BTRFS_I(src_inode)->root,
1679 transid, readonly, inherit);
1684 mnt_drop_write_file(file);
1689 static noinline int btrfs_ioctl_snap_create(struct file *file,
1690 void __user *arg, int subvol)
1692 struct btrfs_ioctl_vol_args *vol_args;
1695 if (!S_ISDIR(file_inode(file)->i_mode))
1698 vol_args = memdup_user(arg, sizeof(*vol_args));
1699 if (IS_ERR(vol_args))
1700 return PTR_ERR(vol_args);
1701 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1703 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1704 vol_args->fd, subvol,
1711 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1712 void __user *arg, int subvol)
1714 struct btrfs_ioctl_vol_args_v2 *vol_args;
1718 bool readonly = false;
1719 struct btrfs_qgroup_inherit *inherit = NULL;
1721 if (!S_ISDIR(file_inode(file)->i_mode))
1724 vol_args = memdup_user(arg, sizeof(*vol_args));
1725 if (IS_ERR(vol_args))
1726 return PTR_ERR(vol_args);
1727 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1729 if (vol_args->flags &
1730 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1731 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1736 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1738 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1740 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1741 if (vol_args->size > PAGE_SIZE) {
1745 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1746 if (IS_ERR(inherit)) {
1747 ret = PTR_ERR(inherit);
1752 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1753 vol_args->fd, subvol, ptr,
1758 if (ptr && copy_to_user(arg +
1759 offsetof(struct btrfs_ioctl_vol_args_v2,
1771 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1774 struct inode *inode = file_inode(file);
1775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
1780 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1783 down_read(&fs_info->subvol_sem);
1784 if (btrfs_root_readonly(root))
1785 flags |= BTRFS_SUBVOL_RDONLY;
1786 up_read(&fs_info->subvol_sem);
1788 if (copy_to_user(arg, &flags, sizeof(flags)))
1794 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1797 struct inode *inode = file_inode(file);
1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 struct btrfs_trans_handle *trans;
1805 if (!inode_owner_or_capable(inode))
1808 ret = mnt_want_write_file(file);
1812 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1814 goto out_drop_write;
1817 if (copy_from_user(&flags, arg, sizeof(flags))) {
1819 goto out_drop_write;
1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1824 goto out_drop_write;
1827 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1829 goto out_drop_write;
1832 down_write(&fs_info->subvol_sem);
1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1838 root_flags = btrfs_root_flags(&root->root_item);
1839 if (flags & BTRFS_SUBVOL_RDONLY) {
1840 btrfs_set_root_flags(&root->root_item,
1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1844 * Block RO -> RW transition if this subvolume is involved in
1847 spin_lock(&root->root_item_lock);
1848 if (root->send_in_progress == 0) {
1849 btrfs_set_root_flags(&root->root_item,
1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851 spin_unlock(&root->root_item_lock);
1853 spin_unlock(&root->root_item_lock);
1855 "Attempt to set subvolume %llu read-write during send",
1856 root->root_key.objectid);
1862 trans = btrfs_start_transaction(root, 1);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1868 ret = btrfs_update_root(trans, fs_info->tree_root,
1869 &root->root_key, &root->root_item);
1871 btrfs_commit_transaction(trans);
1874 btrfs_set_root_flags(&root->root_item, root_flags);
1876 up_write(&fs_info->subvol_sem);
1878 mnt_drop_write_file(file);
1884 * helper to check if the subvolume references other subvolumes
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1888 struct btrfs_fs_info *fs_info = root->fs_info;
1889 struct btrfs_path *path;
1890 struct btrfs_dir_item *di;
1891 struct btrfs_key key;
1895 path = btrfs_alloc_path();
1899 /* Make sure this root isn't set as the default subvol */
1900 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1901 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1902 dir_id, "default", 7, 0);
1903 if (di && !IS_ERR(di)) {
1904 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1905 if (key.objectid == root->root_key.objectid) {
1908 "deleting default subvolume %llu is not allowed",
1912 btrfs_release_path(path);
1915 key.objectid = root->root_key.objectid;
1916 key.type = BTRFS_ROOT_REF_KEY;
1917 key.offset = (u64)-1;
1919 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1925 if (path->slots[0] > 0) {
1927 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1928 if (key.objectid == root->root_key.objectid &&
1929 key.type == BTRFS_ROOT_REF_KEY)
1933 btrfs_free_path(path);
1937 static noinline int key_in_sk(struct btrfs_key *key,
1938 struct btrfs_ioctl_search_key *sk)
1940 struct btrfs_key test;
1943 test.objectid = sk->min_objectid;
1944 test.type = sk->min_type;
1945 test.offset = sk->min_offset;
1947 ret = btrfs_comp_cpu_keys(key, &test);
1951 test.objectid = sk->max_objectid;
1952 test.type = sk->max_type;
1953 test.offset = sk->max_offset;
1955 ret = btrfs_comp_cpu_keys(key, &test);
1961 static noinline int copy_to_sk(struct btrfs_path *path,
1962 struct btrfs_key *key,
1963 struct btrfs_ioctl_search_key *sk,
1966 unsigned long *sk_offset,
1970 struct extent_buffer *leaf;
1971 struct btrfs_ioctl_search_header sh;
1972 struct btrfs_key test;
1973 unsigned long item_off;
1974 unsigned long item_len;
1980 leaf = path->nodes[0];
1981 slot = path->slots[0];
1982 nritems = btrfs_header_nritems(leaf);
1984 if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 found_transid = btrfs_header_generation(leaf);
1990 for (i = slot; i < nritems; i++) {
1991 item_off = btrfs_item_ptr_offset(leaf, i);
1992 item_len = btrfs_item_size_nr(leaf, i);
1994 btrfs_item_key_to_cpu(leaf, key, i);
1995 if (!key_in_sk(key, sk))
1998 if (sizeof(sh) + item_len > *buf_size) {
2005 * return one empty item back for v1, which does not
2009 *buf_size = sizeof(sh) + item_len;
2014 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2019 sh.objectid = key->objectid;
2020 sh.offset = key->offset;
2021 sh.type = key->type;
2023 sh.transid = found_transid;
2025 /* copy search result header */
2026 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2031 *sk_offset += sizeof(sh);
2034 char __user *up = ubuf + *sk_offset;
2036 if (read_extent_buffer_to_user(leaf, up,
2037 item_off, item_len)) {
2042 *sk_offset += item_len;
2046 if (ret) /* -EOVERFLOW from above */
2049 if (*num_found >= sk->nr_items) {
2056 test.objectid = sk->max_objectid;
2057 test.type = sk->max_type;
2058 test.offset = sk->max_offset;
2059 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2061 else if (key->offset < (u64)-1)
2063 else if (key->type < (u8)-1) {
2066 } else if (key->objectid < (u64)-1) {
2074 * 0: all items from this leaf copied, continue with next
2075 * 1: * more items can be copied, but unused buffer is too small
2076 * * all items were found
2077 * Either way, it will stops the loop which iterates to the next
2079 * -EOVERFLOW: item was to large for buffer
2080 * -EFAULT: could not copy extent buffer back to userspace
2085 static noinline int search_ioctl(struct inode *inode,
2086 struct btrfs_ioctl_search_key *sk,
2090 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2091 struct btrfs_root *root;
2092 struct btrfs_key key;
2093 struct btrfs_path *path;
2096 unsigned long sk_offset = 0;
2098 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2099 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 path = btrfs_alloc_path();
2107 if (sk->tree_id == 0) {
2108 /* search the root of the inode that was passed */
2109 root = BTRFS_I(inode)->root;
2111 key.objectid = sk->tree_id;
2112 key.type = BTRFS_ROOT_ITEM_KEY;
2113 key.offset = (u64)-1;
2114 root = btrfs_read_fs_root_no_name(info, &key);
2116 btrfs_free_path(path);
2121 key.objectid = sk->min_objectid;
2122 key.type = sk->min_type;
2123 key.offset = sk->min_offset;
2126 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2132 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2133 &sk_offset, &num_found);
2134 btrfs_release_path(path);
2142 sk->nr_items = num_found;
2143 btrfs_free_path(path);
2147 static noinline int btrfs_ioctl_tree_search(struct file *file,
2150 struct btrfs_ioctl_search_args __user *uargs;
2151 struct btrfs_ioctl_search_key sk;
2152 struct inode *inode;
2156 if (!capable(CAP_SYS_ADMIN))
2159 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2161 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2164 buf_size = sizeof(uargs->buf);
2166 inode = file_inode(file);
2167 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2170 * In the origin implementation an overflow is handled by returning a
2171 * search header with a len of zero, so reset ret.
2173 if (ret == -EOVERFLOW)
2176 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2184 struct btrfs_ioctl_search_args_v2 __user *uarg;
2185 struct btrfs_ioctl_search_args_v2 args;
2186 struct inode *inode;
2189 const size_t buf_limit = SZ_16M;
2191 if (!capable(CAP_SYS_ADMIN))
2194 /* copy search header and buffer size */
2195 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2196 if (copy_from_user(&args, uarg, sizeof(args)))
2199 buf_size = args.buf_size;
2201 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2204 /* limit result size to 16MB */
2205 if (buf_size > buf_limit)
2206 buf_size = buf_limit;
2208 inode = file_inode(file);
2209 ret = search_ioctl(inode, &args.key, &buf_size,
2210 (char *)(&uarg->buf[0]));
2211 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2213 else if (ret == -EOVERFLOW &&
2214 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2221 * Search INODE_REFs to identify path name of 'dirid' directory
2222 * in a 'tree_id' tree. and sets path name to 'name'.
2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2225 u64 tree_id, u64 dirid, char *name)
2227 struct btrfs_root *root;
2228 struct btrfs_key key;
2234 struct btrfs_inode_ref *iref;
2235 struct extent_buffer *l;
2236 struct btrfs_path *path;
2238 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2243 path = btrfs_alloc_path();
2247 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2249 key.objectid = tree_id;
2250 key.type = BTRFS_ROOT_ITEM_KEY;
2251 key.offset = (u64)-1;
2252 root = btrfs_read_fs_root_no_name(info, &key);
2254 btrfs_err(info, "could not find root %llu", tree_id);
2259 key.objectid = dirid;
2260 key.type = BTRFS_INODE_REF_KEY;
2261 key.offset = (u64)-1;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 ret = btrfs_previous_item(root, path, dirid,
2269 BTRFS_INODE_REF_KEY);
2279 slot = path->slots[0];
2280 btrfs_item_key_to_cpu(l, &key, slot);
2282 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2283 len = btrfs_inode_ref_name_len(l, iref);
2285 total_len += len + 1;
2287 ret = -ENAMETOOLONG;
2292 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2294 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2297 btrfs_release_path(path);
2298 key.objectid = key.offset;
2299 key.offset = (u64)-1;
2300 dirid = key.objectid;
2302 memmove(name, ptr, total_len);
2303 name[total_len] = '\0';
2306 btrfs_free_path(path);
2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2313 struct btrfs_ioctl_ino_lookup_args *args;
2314 struct inode *inode;
2317 args = memdup_user(argp, sizeof(*args));
2319 return PTR_ERR(args);
2321 inode = file_inode(file);
2324 * Unprivileged query to obtain the containing subvolume root id. The
2325 * path is reset so it's consistent with btrfs_search_path_in_tree.
2327 if (args->treeid == 0)
2328 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2330 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2335 if (!capable(CAP_SYS_ADMIN)) {
2340 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2341 args->treeid, args->objectid,
2345 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2355 struct dentry *parent = file->f_path.dentry;
2356 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2357 struct dentry *dentry;
2358 struct inode *dir = d_inode(parent);
2359 struct inode *inode;
2360 struct btrfs_root *root = BTRFS_I(dir)->root;
2361 struct btrfs_root *dest = NULL;
2362 struct btrfs_ioctl_vol_args *vol_args;
2363 struct btrfs_trans_handle *trans;
2364 struct btrfs_block_rsv block_rsv;
2366 u64 qgroup_reserved;
2371 if (!S_ISDIR(dir->i_mode))
2374 vol_args = memdup_user(arg, sizeof(*vol_args));
2375 if (IS_ERR(vol_args))
2376 return PTR_ERR(vol_args);
2378 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2379 namelen = strlen(vol_args->name);
2380 if (strchr(vol_args->name, '/') ||
2381 strncmp(vol_args->name, "..", namelen) == 0) {
2386 err = mnt_want_write_file(file);
2391 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2393 goto out_drop_write;
2394 dentry = lookup_one_len(vol_args->name, parent, namelen);
2395 if (IS_ERR(dentry)) {
2396 err = PTR_ERR(dentry);
2397 goto out_unlock_dir;
2400 if (d_really_is_negative(dentry)) {
2405 inode = d_inode(dentry);
2406 dest = BTRFS_I(inode)->root;
2407 if (!capable(CAP_SYS_ADMIN)) {
2409 * Regular user. Only allow this with a special mount
2410 * option, when the user has write+exec access to the
2411 * subvol root, and when rmdir(2) would have been
2414 * Note that this is _not_ check that the subvol is
2415 * empty or doesn't contain data that we wouldn't
2416 * otherwise be able to delete.
2418 * Users who want to delete empty subvols should try
2422 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2426 * Do not allow deletion if the parent dir is the same
2427 * as the dir to be deleted. That means the ioctl
2428 * must be called on the dentry referencing the root
2429 * of the subvol, not a random directory contained
2436 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2441 /* check if subvolume may be deleted by a user */
2442 err = btrfs_may_delete(dir, dentry, 1);
2446 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2454 * Don't allow to delete a subvolume with send in progress. This is
2455 * inside the i_mutex so the error handling that has to drop the bit
2456 * again is not run concurrently.
2458 spin_lock(&dest->root_item_lock);
2459 root_flags = btrfs_root_flags(&dest->root_item);
2460 if (dest->send_in_progress == 0) {
2461 btrfs_set_root_flags(&dest->root_item,
2462 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2463 spin_unlock(&dest->root_item_lock);
2465 spin_unlock(&dest->root_item_lock);
2467 "Attempt to delete subvolume %llu during send",
2468 dest->root_key.objectid);
2470 goto out_unlock_inode;
2473 down_write(&fs_info->subvol_sem);
2475 err = may_destroy_subvol(dest);
2479 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2481 * One for dir inode, two for dir entries, two for root
2484 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2485 5, &qgroup_reserved, true);
2489 trans = btrfs_start_transaction(root, 0);
2490 if (IS_ERR(trans)) {
2491 err = PTR_ERR(trans);
2494 trans->block_rsv = &block_rsv;
2495 trans->bytes_reserved = block_rsv.size;
2497 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2499 ret = btrfs_unlink_subvol(trans, root, dir,
2500 dest->root_key.objectid,
2501 dentry->d_name.name,
2502 dentry->d_name.len);
2505 btrfs_abort_transaction(trans, ret);
2509 btrfs_record_root_in_trans(trans, dest);
2511 memset(&dest->root_item.drop_progress, 0,
2512 sizeof(dest->root_item.drop_progress));
2513 dest->root_item.drop_level = 0;
2514 btrfs_set_root_refs(&dest->root_item, 0);
2516 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2517 ret = btrfs_insert_orphan_item(trans,
2519 dest->root_key.objectid);
2521 btrfs_abort_transaction(trans, ret);
2527 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2528 BTRFS_UUID_KEY_SUBVOL,
2529 dest->root_key.objectid);
2530 if (ret && ret != -ENOENT) {
2531 btrfs_abort_transaction(trans, ret);
2535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2536 ret = btrfs_uuid_tree_rem(trans, fs_info,
2537 dest->root_item.received_uuid,
2538 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2539 dest->root_key.objectid);
2540 if (ret && ret != -ENOENT) {
2541 btrfs_abort_transaction(trans, ret);
2548 trans->block_rsv = NULL;
2549 trans->bytes_reserved = 0;
2550 ret = btrfs_end_transaction(trans);
2553 inode->i_flags |= S_DEAD;
2555 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2557 up_write(&fs_info->subvol_sem);
2559 spin_lock(&dest->root_item_lock);
2560 root_flags = btrfs_root_flags(&dest->root_item);
2561 btrfs_set_root_flags(&dest->root_item,
2562 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2563 spin_unlock(&dest->root_item_lock);
2566 inode_unlock(inode);
2568 d_invalidate(dentry);
2569 btrfs_invalidate_inodes(dest);
2571 ASSERT(dest->send_in_progress == 0);
2574 if (dest->ino_cache_inode) {
2575 iput(dest->ino_cache_inode);
2576 dest->ino_cache_inode = NULL;
2584 mnt_drop_write_file(file);
2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2592 struct inode *inode = file_inode(file);
2593 struct btrfs_root *root = BTRFS_I(inode)->root;
2594 struct btrfs_ioctl_defrag_range_args *range;
2597 ret = mnt_want_write_file(file);
2601 if (btrfs_root_readonly(root)) {
2606 switch (inode->i_mode & S_IFMT) {
2608 if (!capable(CAP_SYS_ADMIN)) {
2612 ret = btrfs_defrag_root(root);
2615 if (!(file->f_mode & FMODE_WRITE)) {
2620 range = kzalloc(sizeof(*range), GFP_KERNEL);
2627 if (copy_from_user(range, argp,
2633 /* compression requires us to start the IO */
2634 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2635 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2636 range->extent_thresh = (u32)-1;
2639 /* the rest are all set to zero by kzalloc */
2640 range->len = (u64)-1;
2642 ret = btrfs_defrag_file(file_inode(file), file,
2652 mnt_drop_write_file(file);
2656 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2658 struct btrfs_ioctl_vol_args *vol_args;
2661 if (!capable(CAP_SYS_ADMIN))
2664 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1))
2665 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2667 mutex_lock(&fs_info->volume_mutex);
2668 vol_args = memdup_user(arg, sizeof(*vol_args));
2669 if (IS_ERR(vol_args)) {
2670 ret = PTR_ERR(vol_args);
2674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675 ret = btrfs_init_new_device(fs_info, vol_args->name);
2678 btrfs_info(fs_info, "disk added %s", vol_args->name);
2682 mutex_unlock(&fs_info->volume_mutex);
2683 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2687 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2689 struct inode *inode = file_inode(file);
2690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2691 struct btrfs_ioctl_vol_args_v2 *vol_args;
2694 if (!capable(CAP_SYS_ADMIN))
2697 ret = mnt_want_write_file(file);
2701 vol_args = memdup_user(arg, sizeof(*vol_args));
2702 if (IS_ERR(vol_args)) {
2703 ret = PTR_ERR(vol_args);
2707 /* Check for compatibility reject unknown flags */
2708 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2711 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2712 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2716 mutex_lock(&fs_info->volume_mutex);
2717 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2718 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2721 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2723 mutex_unlock(&fs_info->volume_mutex);
2724 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2727 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2728 btrfs_info(fs_info, "device deleted: id %llu",
2731 btrfs_info(fs_info, "device deleted: %s",
2737 mnt_drop_write_file(file);
2741 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2743 struct inode *inode = file_inode(file);
2744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2745 struct btrfs_ioctl_vol_args *vol_args;
2748 if (!capable(CAP_SYS_ADMIN))
2751 ret = mnt_want_write_file(file);
2755 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2756 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2757 goto out_drop_write;
2760 vol_args = memdup_user(arg, sizeof(*vol_args));
2761 if (IS_ERR(vol_args)) {
2762 ret = PTR_ERR(vol_args);
2766 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2767 mutex_lock(&fs_info->volume_mutex);
2768 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2769 mutex_unlock(&fs_info->volume_mutex);
2772 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2775 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2777 mnt_drop_write_file(file);
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2785 struct btrfs_ioctl_fs_info_args *fi_args;
2786 struct btrfs_device *device;
2787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2790 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2794 mutex_lock(&fs_devices->device_list_mutex);
2795 fi_args->num_devices = fs_devices->num_devices;
2796 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2798 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2799 if (device->devid > fi_args->max_id)
2800 fi_args->max_id = device->devid;
2802 mutex_unlock(&fs_devices->device_list_mutex);
2804 fi_args->nodesize = fs_info->super_copy->nodesize;
2805 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2806 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2808 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2815 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2818 struct btrfs_ioctl_dev_info_args *di_args;
2819 struct btrfs_device *dev;
2820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2822 char *s_uuid = NULL;
2824 di_args = memdup_user(arg, sizeof(*di_args));
2825 if (IS_ERR(di_args))
2826 return PTR_ERR(di_args);
2828 if (!btrfs_is_empty_uuid(di_args->uuid))
2829 s_uuid = di_args->uuid;
2831 mutex_lock(&fs_devices->device_list_mutex);
2832 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2839 di_args->devid = dev->devid;
2840 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2841 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2842 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2844 struct rcu_string *name;
2847 name = rcu_dereference(dev->name);
2848 strncpy(di_args->path, name->str, sizeof(di_args->path));
2850 di_args->path[sizeof(di_args->path) - 1] = 0;
2852 di_args->path[0] = '\0';
2856 mutex_unlock(&fs_devices->device_list_mutex);
2857 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2864 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2868 page = grab_cache_page(inode->i_mapping, index);
2870 return ERR_PTR(-ENOMEM);
2872 if (!PageUptodate(page)) {
2875 ret = btrfs_readpage(NULL, page);
2877 return ERR_PTR(ret);
2879 if (!PageUptodate(page)) {
2882 return ERR_PTR(-EIO);
2884 if (page->mapping != inode->i_mapping) {
2887 return ERR_PTR(-EAGAIN);
2894 static int gather_extent_pages(struct inode *inode, struct page **pages,
2895 int num_pages, u64 off)
2898 pgoff_t index = off >> PAGE_SHIFT;
2900 for (i = 0; i < num_pages; i++) {
2902 pages[i] = extent_same_get_page(inode, index + i);
2903 if (IS_ERR(pages[i])) {
2904 int err = PTR_ERR(pages[i]);
2915 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2916 bool retry_range_locking)
2919 * Do any pending delalloc/csum calculations on inode, one way or
2920 * another, and lock file content.
2921 * The locking order is:
2924 * 2) range in the inode's io tree
2927 struct btrfs_ordered_extent *ordered;
2928 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2929 ordered = btrfs_lookup_first_ordered_extent(inode,
2932 ordered->file_offset + ordered->len <= off ||
2933 ordered->file_offset >= off + len) &&
2934 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2935 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2937 btrfs_put_ordered_extent(ordered);
2940 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2942 btrfs_put_ordered_extent(ordered);
2943 if (!retry_range_locking)
2945 btrfs_wait_ordered_range(inode, off, len);
2950 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2952 inode_unlock(inode1);
2953 inode_unlock(inode2);
2956 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2958 if (inode1 < inode2)
2959 swap(inode1, inode2);
2961 inode_lock_nested(inode1, I_MUTEX_PARENT);
2962 inode_lock_nested(inode2, I_MUTEX_CHILD);
2965 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2966 struct inode *inode2, u64 loff2, u64 len)
2968 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2969 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2972 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2973 struct inode *inode2, u64 loff2, u64 len,
2974 bool retry_range_locking)
2978 if (inode1 < inode2) {
2979 swap(inode1, inode2);
2982 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2985 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2987 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2994 struct page **src_pages;
2995 struct page **dst_pages;
2998 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3003 for (i = 0; i < cmp->num_pages; i++) {
3004 pg = cmp->src_pages[i];
3009 pg = cmp->dst_pages[i];
3015 kfree(cmp->src_pages);
3016 kfree(cmp->dst_pages);
3019 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3020 struct inode *dst, u64 dst_loff,
3021 u64 len, struct cmp_pages *cmp)
3024 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3025 struct page **src_pgarr, **dst_pgarr;
3028 * We must gather up all the pages before we initiate our
3029 * extent locking. We use an array for the page pointers. Size
3030 * of the array is bounded by len, which is in turn bounded by
3031 * BTRFS_MAX_DEDUPE_LEN.
3033 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3034 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3035 if (!src_pgarr || !dst_pgarr) {
3040 cmp->num_pages = num_pages;
3041 cmp->src_pages = src_pgarr;
3042 cmp->dst_pages = dst_pgarr;
3044 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3048 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3052 btrfs_cmp_data_free(cmp);
3056 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3060 struct page *src_page, *dst_page;
3061 unsigned int cmp_len = PAGE_SIZE;
3062 void *addr, *dst_addr;
3066 if (len < PAGE_SIZE)
3069 BUG_ON(i >= cmp->num_pages);
3071 src_page = cmp->src_pages[i];
3072 dst_page = cmp->dst_pages[i];
3073 ASSERT(PageLocked(src_page));
3074 ASSERT(PageLocked(dst_page));
3076 addr = kmap_atomic(src_page);
3077 dst_addr = kmap_atomic(dst_page);
3079 flush_dcache_page(src_page);
3080 flush_dcache_page(dst_page);
3082 if (memcmp(addr, dst_addr, cmp_len))
3085 kunmap_atomic(addr);
3086 kunmap_atomic(dst_addr);
3098 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3102 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3104 if (off + olen > inode->i_size || off + olen < off)
3107 /* if we extend to eof, continue to block boundary */
3108 if (off + len == inode->i_size)
3109 *plen = len = ALIGN(inode->i_size, bs) - off;
3111 /* Check that we are block aligned - btrfs_clone() requires this */
3112 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3118 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3119 struct inode *dst, u64 dst_loff)
3123 struct cmp_pages cmp;
3124 bool same_inode = (src == dst);
3125 u64 same_lock_start = 0;
3126 u64 same_lock_len = 0;
3134 btrfs_double_inode_lock(src, dst);
3136 ret = extent_same_check_offsets(src, loff, &len, olen);
3140 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3146 * Single inode case wants the same checks, except we
3147 * don't want our length pushed out past i_size as
3148 * comparing that data range makes no sense.
3150 * extent_same_check_offsets() will do this for an
3151 * unaligned length at i_size, so catch it here and
3152 * reject the request.
3154 * This effectively means we require aligned extents
3155 * for the single-inode case, whereas the other cases
3156 * allow an unaligned length so long as it ends at
3164 /* Check for overlapping ranges */
3165 if (dst_loff + len > loff && dst_loff < loff + len) {
3170 same_lock_start = min_t(u64, loff, dst_loff);
3171 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3174 /* don't make the dst file partly checksummed */
3175 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3176 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3182 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3187 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3190 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3193 * If one of the inodes has dirty pages in the respective range or
3194 * ordered extents, we need to flush dellaloc and wait for all ordered
3195 * extents in the range. We must unlock the pages and the ranges in the
3196 * io trees to avoid deadlocks when flushing delalloc (requires locking
3197 * pages) and when waiting for ordered extents to complete (they require
3200 if (ret == -EAGAIN) {
3202 * Ranges in the io trees already unlocked. Now unlock all
3203 * pages before waiting for all IO to complete.
3205 btrfs_cmp_data_free(&cmp);
3207 btrfs_wait_ordered_range(src, same_lock_start,
3210 btrfs_wait_ordered_range(src, loff, len);
3211 btrfs_wait_ordered_range(dst, dst_loff, len);
3217 /* ranges in the io trees already unlocked */
3218 btrfs_cmp_data_free(&cmp);
3222 /* pass original length for comparison so we stay within i_size */
3223 ret = btrfs_cmp_data(olen, &cmp);
3225 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3228 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3229 same_lock_start + same_lock_len - 1);
3231 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3233 btrfs_cmp_data_free(&cmp);
3238 btrfs_double_inode_unlock(src, dst);
3243 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3245 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3246 struct file *dst_file, u64 dst_loff)
3248 struct inode *src = file_inode(src_file);
3249 struct inode *dst = file_inode(dst_file);
3250 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3253 if (olen > BTRFS_MAX_DEDUPE_LEN)
3254 olen = BTRFS_MAX_DEDUPE_LEN;
3256 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3258 * Btrfs does not support blocksize < page_size. As a
3259 * result, btrfs_cmp_data() won't correctly handle
3260 * this situation without an update.
3265 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3271 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3272 struct inode *inode,
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3281 inode_inc_iversion(inode);
3282 if (!no_time_update)
3283 inode->i_mtime = inode->i_ctime = current_time(inode);
3285 * We round up to the block size at eof when determining which
3286 * extents to clone above, but shouldn't round up the file size.
3288 if (endoff > destoff + olen)
3289 endoff = destoff + olen;
3290 if (endoff > inode->i_size)
3291 btrfs_i_size_write(inode, endoff);
3293 ret = btrfs_update_inode(trans, root, inode);
3295 btrfs_abort_transaction(trans, ret);
3296 btrfs_end_transaction(trans);
3299 ret = btrfs_end_transaction(trans);
3304 static void clone_update_extent_map(struct inode *inode,
3305 const struct btrfs_trans_handle *trans,
3306 const struct btrfs_path *path,
3307 const u64 hole_offset,
3310 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3311 struct extent_map *em;
3314 em = alloc_extent_map();
3316 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3317 &BTRFS_I(inode)->runtime_flags);
3322 struct btrfs_file_extent_item *fi;
3324 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3325 struct btrfs_file_extent_item);
3326 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3327 em->generation = -1;
3328 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3329 BTRFS_FILE_EXTENT_INLINE)
3330 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3331 &BTRFS_I(inode)->runtime_flags);
3333 em->start = hole_offset;
3335 em->ram_bytes = em->len;
3336 em->orig_start = hole_offset;
3337 em->block_start = EXTENT_MAP_HOLE;
3339 em->orig_block_len = 0;
3340 em->compress_type = BTRFS_COMPRESS_NONE;
3341 em->generation = trans->transid;
3345 write_lock(&em_tree->lock);
3346 ret = add_extent_mapping(em_tree, em, 1);
3347 write_unlock(&em_tree->lock);
3348 if (ret != -EEXIST) {
3349 free_extent_map(em);
3352 btrfs_drop_extent_cache(inode, em->start,
3353 em->start + em->len - 1, 0);
3357 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3358 &BTRFS_I(inode)->runtime_flags);
3362 * Make sure we do not end up inserting an inline extent into a file that has
3363 * already other (non-inline) extents. If a file has an inline extent it can
3364 * not have any other extents and the (single) inline extent must start at the
3365 * file offset 0. Failing to respect these rules will lead to file corruption,
3366 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3368 * We can have extents that have been already written to disk or we can have
3369 * dirty ranges still in delalloc, in which case the extent maps and items are
3370 * created only when we run delalloc, and the delalloc ranges might fall outside
3371 * the range we are currently locking in the inode's io tree. So we check the
3372 * inode's i_size because of that (i_size updates are done while holding the
3373 * i_mutex, which we are holding here).
3374 * We also check to see if the inode has a size not greater than "datal" but has
3375 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3376 * protected against such concurrent fallocate calls by the i_mutex).
3378 * If the file has no extents but a size greater than datal, do not allow the
3379 * copy because we would need turn the inline extent into a non-inline one (even
3380 * with NO_HOLES enabled). If we find our destination inode only has one inline
3381 * extent, just overwrite it with the source inline extent if its size is less
3382 * than the source extent's size, or we could copy the source inline extent's
3383 * data into the destination inode's inline extent if the later is greater then
3386 static int clone_copy_inline_extent(struct inode *src,
3388 struct btrfs_trans_handle *trans,
3389 struct btrfs_path *path,
3390 struct btrfs_key *new_key,
3391 const u64 drop_start,
3397 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3398 struct btrfs_root *root = BTRFS_I(dst)->root;
3399 const u64 aligned_end = ALIGN(new_key->offset + datal,
3400 fs_info->sectorsize);
3402 struct btrfs_key key;
3404 if (new_key->offset > 0)
3407 key.objectid = btrfs_ino(BTRFS_I(dst));
3408 key.type = BTRFS_EXTENT_DATA_KEY;
3410 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3413 } else if (ret > 0) {
3414 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3415 ret = btrfs_next_leaf(root, path);
3419 goto copy_inline_extent;
3421 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3422 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3423 key.type == BTRFS_EXTENT_DATA_KEY) {
3424 ASSERT(key.offset > 0);
3427 } else if (i_size_read(dst) <= datal) {
3428 struct btrfs_file_extent_item *ei;
3432 * If the file size is <= datal, make sure there are no other
3433 * extents following (can happen do to an fallocate call with
3434 * the flag FALLOC_FL_KEEP_SIZE).
3436 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3437 struct btrfs_file_extent_item);
3439 * If it's an inline extent, it can not have other extents
3442 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3443 BTRFS_FILE_EXTENT_INLINE)
3444 goto copy_inline_extent;
3446 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3447 if (ext_len > aligned_end)
3450 ret = btrfs_next_item(root, path);
3453 } else if (ret == 0) {
3454 btrfs_item_key_to_cpu(path->nodes[0], &key,
3456 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3457 key.type == BTRFS_EXTENT_DATA_KEY)
3464 * We have no extent items, or we have an extent at offset 0 which may
3465 * or may not be inlined. All these cases are dealt the same way.
3467 if (i_size_read(dst) > datal) {
3469 * If the destination inode has an inline extent...
3470 * This would require copying the data from the source inline
3471 * extent into the beginning of the destination's inline extent.
3472 * But this is really complex, both extents can be compressed
3473 * or just one of them, which would require decompressing and
3474 * re-compressing data (which could increase the new compressed
3475 * size, not allowing the compressed data to fit anymore in an
3477 * So just don't support this case for now (it should be rare,
3478 * we are not really saving space when cloning inline extents).
3483 btrfs_release_path(path);
3484 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3487 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3492 const u32 start = btrfs_file_extent_calc_inline_size(0);
3494 memmove(inline_data + start, inline_data + start + skip, datal);
3497 write_extent_buffer(path->nodes[0], inline_data,
3498 btrfs_item_ptr_offset(path->nodes[0],
3501 inode_add_bytes(dst, datal);
3507 * btrfs_clone() - clone a range from inode file to another
3509 * @src: Inode to clone from
3510 * @inode: Inode to clone to
3511 * @off: Offset within source to start clone from
3512 * @olen: Original length, passed by user, of range to clone
3513 * @olen_aligned: Block-aligned value of olen
3514 * @destoff: Offset within @inode to start clone
3515 * @no_time_update: Whether to update mtime/ctime on the target inode
3517 static int btrfs_clone(struct inode *src, struct inode *inode,
3518 const u64 off, const u64 olen, const u64 olen_aligned,
3519 const u64 destoff, int no_time_update)
3521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3522 struct btrfs_root *root = BTRFS_I(inode)->root;
3523 struct btrfs_path *path = NULL;
3524 struct extent_buffer *leaf;
3525 struct btrfs_trans_handle *trans;
3527 struct btrfs_key key;
3531 const u64 len = olen_aligned;
3532 u64 last_dest_end = destoff;
3535 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
3537 buf = vmalloc(fs_info->nodesize);
3542 path = btrfs_alloc_path();
3548 path->reada = READA_FORWARD;
3550 key.objectid = btrfs_ino(BTRFS_I(src));
3551 key.type = BTRFS_EXTENT_DATA_KEY;
3555 u64 next_key_min_offset = key.offset + 1;
3558 * note the key will change type as we walk through the
3561 path->leave_spinning = 1;
3562 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3567 * First search, if no extent item that starts at offset off was
3568 * found but the previous item is an extent item, it's possible
3569 * it might overlap our target range, therefore process it.
3571 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3572 btrfs_item_key_to_cpu(path->nodes[0], &key,
3573 path->slots[0] - 1);
3574 if (key.type == BTRFS_EXTENT_DATA_KEY)
3578 nritems = btrfs_header_nritems(path->nodes[0]);
3580 if (path->slots[0] >= nritems) {
3581 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3586 nritems = btrfs_header_nritems(path->nodes[0]);
3588 leaf = path->nodes[0];
3589 slot = path->slots[0];
3591 btrfs_item_key_to_cpu(leaf, &key, slot);
3592 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3593 key.objectid != btrfs_ino(BTRFS_I(src)))
3596 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3597 struct btrfs_file_extent_item *extent;
3600 struct btrfs_key new_key;
3601 u64 disko = 0, diskl = 0;
3602 u64 datao = 0, datal = 0;
3606 extent = btrfs_item_ptr(leaf, slot,
3607 struct btrfs_file_extent_item);
3608 comp = btrfs_file_extent_compression(leaf, extent);
3609 type = btrfs_file_extent_type(leaf, extent);
3610 if (type == BTRFS_FILE_EXTENT_REG ||
3611 type == BTRFS_FILE_EXTENT_PREALLOC) {
3612 disko = btrfs_file_extent_disk_bytenr(leaf,
3614 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3616 datao = btrfs_file_extent_offset(leaf, extent);
3617 datal = btrfs_file_extent_num_bytes(leaf,
3619 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3620 /* take upper bound, may be compressed */
3621 datal = btrfs_file_extent_ram_bytes(leaf,
3626 * The first search might have left us at an extent
3627 * item that ends before our target range's start, can
3628 * happen if we have holes and NO_HOLES feature enabled.
3630 if (key.offset + datal <= off) {
3633 } else if (key.offset >= off + len) {
3636 next_key_min_offset = key.offset + datal;
3637 size = btrfs_item_size_nr(leaf, slot);
3638 read_extent_buffer(leaf, buf,
3639 btrfs_item_ptr_offset(leaf, slot),
3642 btrfs_release_path(path);
3643 path->leave_spinning = 0;
3645 memcpy(&new_key, &key, sizeof(new_key));
3646 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3647 if (off <= key.offset)
3648 new_key.offset = key.offset + destoff - off;
3650 new_key.offset = destoff;
3653 * Deal with a hole that doesn't have an extent item
3654 * that represents it (NO_HOLES feature enabled).
3655 * This hole is either in the middle of the cloning
3656 * range or at the beginning (fully overlaps it or
3657 * partially overlaps it).
3659 if (new_key.offset != last_dest_end)
3660 drop_start = last_dest_end;
3662 drop_start = new_key.offset;
3665 * 1 - adjusting old extent (we may have to split it)
3666 * 1 - add new extent
3669 trans = btrfs_start_transaction(root, 3);
3670 if (IS_ERR(trans)) {
3671 ret = PTR_ERR(trans);
3675 if (type == BTRFS_FILE_EXTENT_REG ||
3676 type == BTRFS_FILE_EXTENT_PREALLOC) {
3678 * a | --- range to clone ---| b
3679 * | ------------- extent ------------- |
3682 /* subtract range b */
3683 if (key.offset + datal > off + len)
3684 datal = off + len - key.offset;
3686 /* subtract range a */
3687 if (off > key.offset) {
3688 datao += off - key.offset;
3689 datal -= off - key.offset;
3692 ret = btrfs_drop_extents(trans, root, inode,
3694 new_key.offset + datal,
3697 if (ret != -EOPNOTSUPP)
3698 btrfs_abort_transaction(trans,
3700 btrfs_end_transaction(trans);
3704 ret = btrfs_insert_empty_item(trans, root, path,
3707 btrfs_abort_transaction(trans, ret);
3708 btrfs_end_transaction(trans);
3712 leaf = path->nodes[0];
3713 slot = path->slots[0];
3714 write_extent_buffer(leaf, buf,
3715 btrfs_item_ptr_offset(leaf, slot),
3718 extent = btrfs_item_ptr(leaf, slot,
3719 struct btrfs_file_extent_item);
3721 /* disko == 0 means it's a hole */
3725 btrfs_set_file_extent_offset(leaf, extent,
3727 btrfs_set_file_extent_num_bytes(leaf, extent,
3731 inode_add_bytes(inode, datal);
3732 ret = btrfs_inc_extent_ref(trans,
3735 root->root_key.objectid,
3736 btrfs_ino(BTRFS_I(inode)),
3737 new_key.offset - datao);
3739 btrfs_abort_transaction(trans,
3741 btrfs_end_transaction(trans);
3746 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3750 if (off > key.offset) {
3751 skip = off - key.offset;
3752 new_key.offset += skip;
3755 if (key.offset + datal > off + len)
3756 trim = key.offset + datal - (off + len);
3758 if (comp && (skip || trim)) {
3760 btrfs_end_transaction(trans);
3763 size -= skip + trim;
3764 datal -= skip + trim;
3766 ret = clone_copy_inline_extent(src, inode,
3773 if (ret != -EOPNOTSUPP)
3774 btrfs_abort_transaction(trans,
3776 btrfs_end_transaction(trans);
3779 leaf = path->nodes[0];
3780 slot = path->slots[0];
3783 /* If we have an implicit hole (NO_HOLES feature). */
3784 if (drop_start < new_key.offset)
3785 clone_update_extent_map(inode, trans,
3787 new_key.offset - drop_start);
3789 clone_update_extent_map(inode, trans, path, 0, 0);
3791 btrfs_mark_buffer_dirty(leaf);
3792 btrfs_release_path(path);
3794 last_dest_end = ALIGN(new_key.offset + datal,
3795 fs_info->sectorsize);
3796 ret = clone_finish_inode_update(trans, inode,
3802 if (new_key.offset + datal >= destoff + len)
3805 btrfs_release_path(path);
3806 key.offset = next_key_min_offset;
3808 if (fatal_signal_pending(current)) {
3815 if (last_dest_end < destoff + len) {
3817 * We have an implicit hole (NO_HOLES feature is enabled) that
3818 * fully or partially overlaps our cloning range at its end.
3820 btrfs_release_path(path);
3823 * 1 - remove extent(s)
3826 trans = btrfs_start_transaction(root, 2);
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3831 ret = btrfs_drop_extents(trans, root, inode,
3832 last_dest_end, destoff + len, 1);
3834 if (ret != -EOPNOTSUPP)
3835 btrfs_abort_transaction(trans, ret);
3836 btrfs_end_transaction(trans);
3839 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3840 destoff + len - last_dest_end);
3841 ret = clone_finish_inode_update(trans, inode, destoff + len,
3842 destoff, olen, no_time_update);
3846 btrfs_free_path(path);
3851 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3852 u64 off, u64 olen, u64 destoff)
3854 struct inode *inode = file_inode(file);
3855 struct inode *src = file_inode(file_src);
3856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3857 struct btrfs_root *root = BTRFS_I(inode)->root;
3860 u64 bs = fs_info->sb->s_blocksize;
3861 int same_inode = src == inode;
3865 * - split compressed inline extents. annoying: we need to
3866 * decompress into destination's address_space (the file offset
3867 * may change, so source mapping won't do), then recompress (or
3868 * otherwise reinsert) a subrange.
3870 * - split destination inode's inline extents. The inline extents can
3871 * be either compressed or non-compressed.
3874 if (btrfs_root_readonly(root))
3877 if (file_src->f_path.mnt != file->f_path.mnt ||
3878 src->i_sb != inode->i_sb)
3881 /* don't make the dst file partly checksummed */
3882 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3883 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3886 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3890 btrfs_double_inode_lock(src, inode);
3895 /* determine range to clone */
3897 if (off + len > src->i_size || off + len < off)
3900 olen = len = src->i_size - off;
3901 /* if we extend to eof, continue to block boundary */
3902 if (off + len == src->i_size)
3903 len = ALIGN(src->i_size, bs) - off;
3910 /* verify the end result is block aligned */
3911 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3912 !IS_ALIGNED(destoff, bs))
3915 /* verify if ranges are overlapped within the same file */
3917 if (destoff + len > off && destoff < off + len)
3921 if (destoff > inode->i_size) {
3922 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3928 * Lock the target range too. Right after we replace the file extent
3929 * items in the fs tree (which now point to the cloned data), we might
3930 * have a worker replace them with extent items relative to a write
3931 * operation that was issued before this clone operation (i.e. confront
3932 * with inode.c:btrfs_finish_ordered_io).
3935 u64 lock_start = min_t(u64, off, destoff);
3936 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3938 ret = lock_extent_range(src, lock_start, lock_len, true);
3940 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3945 /* ranges in the io trees already unlocked */
3949 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3952 u64 lock_start = min_t(u64, off, destoff);
3953 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3955 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3957 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3960 * Truncate page cache pages so that future reads will see the cloned
3961 * data immediately and not the previous data.
3963 truncate_inode_pages_range(&inode->i_data,
3964 round_down(destoff, PAGE_SIZE),
3965 round_up(destoff + len, PAGE_SIZE) - 1);
3968 btrfs_double_inode_unlock(src, inode);
3974 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3975 struct file *dst_file, loff_t destoff, u64 len)
3977 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3981 * there are many ways the trans_start and trans_end ioctls can lead
3982 * to deadlocks. They should only be used by applications that
3983 * basically own the machine, and have a very in depth understanding
3984 * of all the possible deadlocks and enospc problems.
3986 static long btrfs_ioctl_trans_start(struct file *file)
3988 struct inode *inode = file_inode(file);
3989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3990 struct btrfs_root *root = BTRFS_I(inode)->root;
3991 struct btrfs_trans_handle *trans;
3995 if (!capable(CAP_SYS_ADMIN))
3999 if (file->private_data)
4003 if (btrfs_root_readonly(root))
4006 ret = mnt_want_write_file(file);
4010 atomic_inc(&fs_info->open_ioctl_trans);
4013 trans = btrfs_start_ioctl_transaction(root);
4017 file->private_data = trans;
4021 atomic_dec(&fs_info->open_ioctl_trans);
4022 mnt_drop_write_file(file);
4027 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4029 struct inode *inode = file_inode(file);
4030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4031 struct btrfs_root *root = BTRFS_I(inode)->root;
4032 struct btrfs_root *new_root;
4033 struct btrfs_dir_item *di;
4034 struct btrfs_trans_handle *trans;
4035 struct btrfs_path *path;
4036 struct btrfs_key location;
4037 struct btrfs_disk_key disk_key;
4042 if (!capable(CAP_SYS_ADMIN))
4045 ret = mnt_want_write_file(file);
4049 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4055 objectid = BTRFS_FS_TREE_OBJECTID;
4057 location.objectid = objectid;
4058 location.type = BTRFS_ROOT_ITEM_KEY;
4059 location.offset = (u64)-1;
4061 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4062 if (IS_ERR(new_root)) {
4063 ret = PTR_ERR(new_root);
4067 path = btrfs_alloc_path();
4072 path->leave_spinning = 1;
4074 trans = btrfs_start_transaction(root, 1);
4075 if (IS_ERR(trans)) {
4076 btrfs_free_path(path);
4077 ret = PTR_ERR(trans);
4081 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4082 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4083 dir_id, "default", 7, 1);
4084 if (IS_ERR_OR_NULL(di)) {
4085 btrfs_free_path(path);
4086 btrfs_end_transaction(trans);
4088 "Umm, you don't have the default diritem, this isn't going to work");
4093 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4094 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4095 btrfs_mark_buffer_dirty(path->nodes[0]);
4096 btrfs_free_path(path);
4098 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4099 btrfs_end_transaction(trans);
4101 mnt_drop_write_file(file);
4105 void btrfs_get_block_group_info(struct list_head *groups_list,
4106 struct btrfs_ioctl_space_info *space)
4108 struct btrfs_block_group_cache *block_group;
4110 space->total_bytes = 0;
4111 space->used_bytes = 0;
4113 list_for_each_entry(block_group, groups_list, list) {
4114 space->flags = block_group->flags;
4115 space->total_bytes += block_group->key.offset;
4116 space->used_bytes +=
4117 btrfs_block_group_used(&block_group->item);
4121 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4124 struct btrfs_ioctl_space_args space_args;
4125 struct btrfs_ioctl_space_info space;
4126 struct btrfs_ioctl_space_info *dest;
4127 struct btrfs_ioctl_space_info *dest_orig;
4128 struct btrfs_ioctl_space_info __user *user_dest;
4129 struct btrfs_space_info *info;
4130 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4131 BTRFS_BLOCK_GROUP_SYSTEM,
4132 BTRFS_BLOCK_GROUP_METADATA,
4133 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4140 if (copy_from_user(&space_args,
4141 (struct btrfs_ioctl_space_args __user *)arg,
4142 sizeof(space_args)))
4145 for (i = 0; i < num_types; i++) {
4146 struct btrfs_space_info *tmp;
4150 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4152 if (tmp->flags == types[i]) {
4162 down_read(&info->groups_sem);
4163 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4164 if (!list_empty(&info->block_groups[c]))
4167 up_read(&info->groups_sem);
4171 * Global block reserve, exported as a space_info
4175 /* space_slots == 0 means they are asking for a count */
4176 if (space_args.space_slots == 0) {
4177 space_args.total_spaces = slot_count;
4181 slot_count = min_t(u64, space_args.space_slots, slot_count);
4183 alloc_size = sizeof(*dest) * slot_count;
4185 /* we generally have at most 6 or so space infos, one for each raid
4186 * level. So, a whole page should be more than enough for everyone
4188 if (alloc_size > PAGE_SIZE)
4191 space_args.total_spaces = 0;
4192 dest = kmalloc(alloc_size, GFP_KERNEL);
4197 /* now we have a buffer to copy into */
4198 for (i = 0; i < num_types; i++) {
4199 struct btrfs_space_info *tmp;
4206 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4208 if (tmp->flags == types[i]) {
4217 down_read(&info->groups_sem);
4218 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4219 if (!list_empty(&info->block_groups[c])) {
4220 btrfs_get_block_group_info(
4221 &info->block_groups[c], &space);
4222 memcpy(dest, &space, sizeof(space));
4224 space_args.total_spaces++;
4230 up_read(&info->groups_sem);
4234 * Add global block reserve
4237 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4239 spin_lock(&block_rsv->lock);
4240 space.total_bytes = block_rsv->size;
4241 space.used_bytes = block_rsv->size - block_rsv->reserved;
4242 spin_unlock(&block_rsv->lock);
4243 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4244 memcpy(dest, &space, sizeof(space));
4245 space_args.total_spaces++;
4248 user_dest = (struct btrfs_ioctl_space_info __user *)
4249 (arg + sizeof(struct btrfs_ioctl_space_args));
4251 if (copy_to_user(user_dest, dest_orig, alloc_size))
4256 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4263 * there are many ways the trans_start and trans_end ioctls can lead
4264 * to deadlocks. They should only be used by applications that
4265 * basically own the machine, and have a very in depth understanding
4266 * of all the possible deadlocks and enospc problems.
4268 long btrfs_ioctl_trans_end(struct file *file)
4270 struct inode *inode = file_inode(file);
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 struct btrfs_trans_handle *trans;
4274 trans = file->private_data;
4277 file->private_data = NULL;
4279 btrfs_end_transaction(trans);
4281 atomic_dec(&root->fs_info->open_ioctl_trans);
4283 mnt_drop_write_file(file);
4287 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4290 struct btrfs_trans_handle *trans;
4294 trans = btrfs_attach_transaction_barrier(root);
4295 if (IS_ERR(trans)) {
4296 if (PTR_ERR(trans) != -ENOENT)
4297 return PTR_ERR(trans);
4299 /* No running transaction, don't bother */
4300 transid = root->fs_info->last_trans_committed;
4303 transid = trans->transid;
4304 ret = btrfs_commit_transaction_async(trans, 0);
4306 btrfs_end_transaction(trans);
4311 if (copy_to_user(argp, &transid, sizeof(transid)))
4316 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4322 if (copy_from_user(&transid, argp, sizeof(transid)))
4325 transid = 0; /* current trans */
4327 return btrfs_wait_for_commit(fs_info, transid);
4330 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4332 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4333 struct btrfs_ioctl_scrub_args *sa;
4336 if (!capable(CAP_SYS_ADMIN))
4339 sa = memdup_user(arg, sizeof(*sa));
4343 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4344 ret = mnt_want_write_file(file);
4349 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4350 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4353 if (copy_to_user(arg, sa, sizeof(*sa)))
4356 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4357 mnt_drop_write_file(file);
4363 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4365 if (!capable(CAP_SYS_ADMIN))
4368 return btrfs_scrub_cancel(fs_info);
4371 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4374 struct btrfs_ioctl_scrub_args *sa;
4377 if (!capable(CAP_SYS_ADMIN))
4380 sa = memdup_user(arg, sizeof(*sa));
4384 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4386 if (copy_to_user(arg, sa, sizeof(*sa)))
4393 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4396 struct btrfs_ioctl_get_dev_stats *sa;
4399 sa = memdup_user(arg, sizeof(*sa));
4403 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4408 ret = btrfs_get_dev_stats(fs_info, sa);
4410 if (copy_to_user(arg, sa, sizeof(*sa)))
4417 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4420 struct btrfs_ioctl_dev_replace_args *p;
4423 if (!capable(CAP_SYS_ADMIN))
4426 p = memdup_user(arg, sizeof(*p));
4431 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4432 if (fs_info->sb->s_flags & MS_RDONLY) {
4437 &fs_info->mutually_exclusive_operation_running, 1)) {
4438 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4440 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4442 &fs_info->mutually_exclusive_operation_running, 0);
4445 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4446 btrfs_dev_replace_status(fs_info, p);
4449 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4450 ret = btrfs_dev_replace_cancel(fs_info, p);
4457 if (copy_to_user(arg, p, sizeof(*p)))
4464 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4470 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4471 struct inode_fs_paths *ipath = NULL;
4472 struct btrfs_path *path;
4474 if (!capable(CAP_DAC_READ_SEARCH))
4477 path = btrfs_alloc_path();
4483 ipa = memdup_user(arg, sizeof(*ipa));
4490 size = min_t(u32, ipa->size, 4096);
4491 ipath = init_ipath(size, root, path);
4492 if (IS_ERR(ipath)) {
4493 ret = PTR_ERR(ipath);
4498 ret = paths_from_inode(ipa->inum, ipath);
4502 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4503 rel_ptr = ipath->fspath->val[i] -
4504 (u64)(unsigned long)ipath->fspath->val;
4505 ipath->fspath->val[i] = rel_ptr;
4508 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4509 (void *)(unsigned long)ipath->fspath, size);
4516 btrfs_free_path(path);
4523 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4525 struct btrfs_data_container *inodes = ctx;
4526 const size_t c = 3 * sizeof(u64);
4528 if (inodes->bytes_left >= c) {
4529 inodes->bytes_left -= c;
4530 inodes->val[inodes->elem_cnt] = inum;
4531 inodes->val[inodes->elem_cnt + 1] = offset;
4532 inodes->val[inodes->elem_cnt + 2] = root;
4533 inodes->elem_cnt += 3;
4535 inodes->bytes_missing += c - inodes->bytes_left;
4536 inodes->bytes_left = 0;
4537 inodes->elem_missed += 3;
4543 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4548 struct btrfs_ioctl_logical_ino_args *loi;
4549 struct btrfs_data_container *inodes = NULL;
4550 struct btrfs_path *path = NULL;
4552 if (!capable(CAP_SYS_ADMIN))
4555 loi = memdup_user(arg, sizeof(*loi));
4557 return PTR_ERR(loi);
4559 path = btrfs_alloc_path();
4565 size = min_t(u32, loi->size, SZ_64K);
4566 inodes = init_data_container(size);
4567 if (IS_ERR(inodes)) {
4568 ret = PTR_ERR(inodes);
4573 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4574 build_ino_list, inodes);
4580 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4581 (void *)(unsigned long)inodes, size);
4586 btrfs_free_path(path);
4593 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4594 struct btrfs_ioctl_balance_args *bargs)
4596 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4598 bargs->flags = bctl->flags;
4600 if (atomic_read(&fs_info->balance_running))
4601 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4602 if (atomic_read(&fs_info->balance_pause_req))
4603 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4604 if (atomic_read(&fs_info->balance_cancel_req))
4605 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4607 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4608 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4609 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4612 spin_lock(&fs_info->balance_lock);
4613 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4614 spin_unlock(&fs_info->balance_lock);
4616 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4620 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4622 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4623 struct btrfs_fs_info *fs_info = root->fs_info;
4624 struct btrfs_ioctl_balance_args *bargs;
4625 struct btrfs_balance_control *bctl;
4626 bool need_unlock; /* for mut. excl. ops lock */
4629 if (!capable(CAP_SYS_ADMIN))
4632 ret = mnt_want_write_file(file);
4637 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4638 mutex_lock(&fs_info->volume_mutex);
4639 mutex_lock(&fs_info->balance_mutex);
4645 * mut. excl. ops lock is locked. Three possibilities:
4646 * (1) some other op is running
4647 * (2) balance is running
4648 * (3) balance is paused -- special case (think resume)
4650 mutex_lock(&fs_info->balance_mutex);
4651 if (fs_info->balance_ctl) {
4652 /* this is either (2) or (3) */
4653 if (!atomic_read(&fs_info->balance_running)) {
4654 mutex_unlock(&fs_info->balance_mutex);
4655 if (!mutex_trylock(&fs_info->volume_mutex))
4657 mutex_lock(&fs_info->balance_mutex);
4659 if (fs_info->balance_ctl &&
4660 !atomic_read(&fs_info->balance_running)) {
4662 need_unlock = false;
4666 mutex_unlock(&fs_info->balance_mutex);
4667 mutex_unlock(&fs_info->volume_mutex);
4671 mutex_unlock(&fs_info->balance_mutex);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4683 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4686 bargs = memdup_user(arg, sizeof(*bargs));
4687 if (IS_ERR(bargs)) {
4688 ret = PTR_ERR(bargs);
4692 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4693 if (!fs_info->balance_ctl) {
4698 bctl = fs_info->balance_ctl;
4699 spin_lock(&fs_info->balance_lock);
4700 bctl->flags |= BTRFS_BALANCE_RESUME;
4701 spin_unlock(&fs_info->balance_lock);
4709 if (fs_info->balance_ctl) {
4714 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4720 bctl->fs_info = fs_info;
4722 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4723 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4724 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4726 bctl->flags = bargs->flags;
4728 /* balance everything - no filters */
4729 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4732 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4739 * Ownership of bctl and mutually_exclusive_operation_running
4740 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4741 * or, if restriper was paused all the way until unmount, in
4742 * free_fs_info. mutually_exclusive_operation_running is
4743 * cleared in __cancel_balance.
4745 need_unlock = false;
4747 ret = btrfs_balance(bctl, bargs);
4751 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4760 mutex_unlock(&fs_info->balance_mutex);
4761 mutex_unlock(&fs_info->volume_mutex);
4763 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4765 mnt_drop_write_file(file);
4769 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4771 if (!capable(CAP_SYS_ADMIN))
4775 case BTRFS_BALANCE_CTL_PAUSE:
4776 return btrfs_pause_balance(fs_info);
4777 case BTRFS_BALANCE_CTL_CANCEL:
4778 return btrfs_cancel_balance(fs_info);
4784 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4787 struct btrfs_ioctl_balance_args *bargs;
4790 if (!capable(CAP_SYS_ADMIN))
4793 mutex_lock(&fs_info->balance_mutex);
4794 if (!fs_info->balance_ctl) {
4799 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4805 update_ioctl_balance_args(fs_info, 1, bargs);
4807 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4812 mutex_unlock(&fs_info->balance_mutex);
4816 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4818 struct inode *inode = file_inode(file);
4819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4820 struct btrfs_ioctl_quota_ctl_args *sa;
4821 struct btrfs_trans_handle *trans = NULL;
4825 if (!capable(CAP_SYS_ADMIN))
4828 ret = mnt_want_write_file(file);
4832 sa = memdup_user(arg, sizeof(*sa));
4838 down_write(&fs_info->subvol_sem);
4839 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4840 if (IS_ERR(trans)) {
4841 ret = PTR_ERR(trans);
4846 case BTRFS_QUOTA_CTL_ENABLE:
4847 ret = btrfs_quota_enable(trans, fs_info);
4849 case BTRFS_QUOTA_CTL_DISABLE:
4850 ret = btrfs_quota_disable(trans, fs_info);
4857 err = btrfs_commit_transaction(trans);
4862 up_write(&fs_info->subvol_sem);
4864 mnt_drop_write_file(file);
4868 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4870 struct inode *inode = file_inode(file);
4871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4872 struct btrfs_root *root = BTRFS_I(inode)->root;
4873 struct btrfs_ioctl_qgroup_assign_args *sa;
4874 struct btrfs_trans_handle *trans;
4878 if (!capable(CAP_SYS_ADMIN))
4881 ret = mnt_want_write_file(file);
4885 sa = memdup_user(arg, sizeof(*sa));
4891 trans = btrfs_join_transaction(root);
4892 if (IS_ERR(trans)) {
4893 ret = PTR_ERR(trans);
4897 /* FIXME: check if the IDs really exist */
4899 ret = btrfs_add_qgroup_relation(trans, fs_info,
4902 ret = btrfs_del_qgroup_relation(trans, fs_info,
4906 /* update qgroup status and info */
4907 err = btrfs_run_qgroups(trans, fs_info);
4909 btrfs_handle_fs_error(fs_info, err,
4910 "failed to update qgroup status and info");
4911 err = btrfs_end_transaction(trans);
4918 mnt_drop_write_file(file);
4922 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4924 struct inode *inode = file_inode(file);
4925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4926 struct btrfs_root *root = BTRFS_I(inode)->root;
4927 struct btrfs_ioctl_qgroup_create_args *sa;
4928 struct btrfs_trans_handle *trans;
4932 if (!capable(CAP_SYS_ADMIN))
4935 ret = mnt_want_write_file(file);
4939 sa = memdup_user(arg, sizeof(*sa));
4945 if (!sa->qgroupid) {
4950 trans = btrfs_join_transaction(root);
4951 if (IS_ERR(trans)) {
4952 ret = PTR_ERR(trans);
4956 /* FIXME: check if the IDs really exist */
4958 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4960 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4963 err = btrfs_end_transaction(trans);
4970 mnt_drop_write_file(file);
4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4976 struct inode *inode = file_inode(file);
4977 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4978 struct btrfs_root *root = BTRFS_I(inode)->root;
4979 struct btrfs_ioctl_qgroup_limit_args *sa;
4980 struct btrfs_trans_handle *trans;
4985 if (!capable(CAP_SYS_ADMIN))
4988 ret = mnt_want_write_file(file);
4992 sa = memdup_user(arg, sizeof(*sa));
4998 trans = btrfs_join_transaction(root);
4999 if (IS_ERR(trans)) {
5000 ret = PTR_ERR(trans);
5004 qgroupid = sa->qgroupid;
5006 /* take the current subvol as qgroup */
5007 qgroupid = root->root_key.objectid;
5010 /* FIXME: check if the IDs really exist */
5011 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5013 err = btrfs_end_transaction(trans);
5020 mnt_drop_write_file(file);
5024 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5026 struct inode *inode = file_inode(file);
5027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5028 struct btrfs_ioctl_quota_rescan_args *qsa;
5031 if (!capable(CAP_SYS_ADMIN))
5034 ret = mnt_want_write_file(file);
5038 qsa = memdup_user(arg, sizeof(*qsa));
5049 ret = btrfs_qgroup_rescan(fs_info);
5054 mnt_drop_write_file(file);
5058 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5060 struct inode *inode = file_inode(file);
5061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5062 struct btrfs_ioctl_quota_rescan_args *qsa;
5065 if (!capable(CAP_SYS_ADMIN))
5068 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5072 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5074 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5077 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5086 struct inode *inode = file_inode(file);
5087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5089 if (!capable(CAP_SYS_ADMIN))
5092 return btrfs_qgroup_wait_for_completion(fs_info, true);
5095 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5096 struct btrfs_ioctl_received_subvol_args *sa)
5098 struct inode *inode = file_inode(file);
5099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5100 struct btrfs_root *root = BTRFS_I(inode)->root;
5101 struct btrfs_root_item *root_item = &root->root_item;
5102 struct btrfs_trans_handle *trans;
5103 struct timespec ct = current_time(inode);
5105 int received_uuid_changed;
5107 if (!inode_owner_or_capable(inode))
5110 ret = mnt_want_write_file(file);
5114 down_write(&fs_info->subvol_sem);
5116 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5121 if (btrfs_root_readonly(root)) {
5128 * 2 - uuid items (received uuid + subvol uuid)
5130 trans = btrfs_start_transaction(root, 3);
5131 if (IS_ERR(trans)) {
5132 ret = PTR_ERR(trans);
5137 sa->rtransid = trans->transid;
5138 sa->rtime.sec = ct.tv_sec;
5139 sa->rtime.nsec = ct.tv_nsec;
5141 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5143 if (received_uuid_changed &&
5144 !btrfs_is_empty_uuid(root_item->received_uuid))
5145 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5146 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5147 root->root_key.objectid);
5148 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5149 btrfs_set_root_stransid(root_item, sa->stransid);
5150 btrfs_set_root_rtransid(root_item, sa->rtransid);
5151 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5152 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5153 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5154 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5156 ret = btrfs_update_root(trans, fs_info->tree_root,
5157 &root->root_key, &root->root_item);
5159 btrfs_end_transaction(trans);
5162 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5163 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5164 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5165 root->root_key.objectid);
5166 if (ret < 0 && ret != -EEXIST) {
5167 btrfs_abort_transaction(trans, ret);
5171 ret = btrfs_commit_transaction(trans);
5173 btrfs_abort_transaction(trans, ret);
5178 up_write(&fs_info->subvol_sem);
5179 mnt_drop_write_file(file);
5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5187 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5188 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5191 args32 = memdup_user(arg, sizeof(*args32));
5193 return PTR_ERR(args32);
5195 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5201 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5202 args64->stransid = args32->stransid;
5203 args64->rtransid = args32->rtransid;
5204 args64->stime.sec = args32->stime.sec;
5205 args64->stime.nsec = args32->stime.nsec;
5206 args64->rtime.sec = args32->rtime.sec;
5207 args64->rtime.nsec = args32->rtime.nsec;
5208 args64->flags = args32->flags;
5210 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5214 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5215 args32->stransid = args64->stransid;
5216 args32->rtransid = args64->rtransid;
5217 args32->stime.sec = args64->stime.sec;
5218 args32->stime.nsec = args64->stime.nsec;
5219 args32->rtime.sec = args64->rtime.sec;
5220 args32->rtime.nsec = args64->rtime.nsec;
5221 args32->flags = args64->flags;
5223 ret = copy_to_user(arg, args32, sizeof(*args32));
5234 static long btrfs_ioctl_set_received_subvol(struct file *file,
5237 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5240 sa = memdup_user(arg, sizeof(*sa));
5244 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5249 ret = copy_to_user(arg, sa, sizeof(*sa));
5258 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5260 struct inode *inode = file_inode(file);
5261 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5264 char label[BTRFS_LABEL_SIZE];
5266 spin_lock(&fs_info->super_lock);
5267 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5268 spin_unlock(&fs_info->super_lock);
5270 len = strnlen(label, BTRFS_LABEL_SIZE);
5272 if (len == BTRFS_LABEL_SIZE) {
5274 "label is too long, return the first %zu bytes",
5278 ret = copy_to_user(arg, label, len);
5280 return ret ? -EFAULT : 0;
5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5285 struct inode *inode = file_inode(file);
5286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5287 struct btrfs_root *root = BTRFS_I(inode)->root;
5288 struct btrfs_super_block *super_block = fs_info->super_copy;
5289 struct btrfs_trans_handle *trans;
5290 char label[BTRFS_LABEL_SIZE];
5293 if (!capable(CAP_SYS_ADMIN))
5296 if (copy_from_user(label, arg, sizeof(label)))
5299 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5301 "unable to set label with more than %d bytes",
5302 BTRFS_LABEL_SIZE - 1);
5306 ret = mnt_want_write_file(file);
5310 trans = btrfs_start_transaction(root, 0);
5311 if (IS_ERR(trans)) {
5312 ret = PTR_ERR(trans);
5316 spin_lock(&fs_info->super_lock);
5317 strcpy(super_block->label, label);
5318 spin_unlock(&fs_info->super_lock);
5319 ret = btrfs_commit_transaction(trans);
5322 mnt_drop_write_file(file);
5326 #define INIT_FEATURE_FLAGS(suffix) \
5327 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5328 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5329 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5331 int btrfs_ioctl_get_supported_features(void __user *arg)
5333 static const struct btrfs_ioctl_feature_flags features[3] = {
5334 INIT_FEATURE_FLAGS(SUPP),
5335 INIT_FEATURE_FLAGS(SAFE_SET),
5336 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5339 if (copy_to_user(arg, &features, sizeof(features)))
5345 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5347 struct inode *inode = file_inode(file);
5348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5349 struct btrfs_super_block *super_block = fs_info->super_copy;
5350 struct btrfs_ioctl_feature_flags features;
5352 features.compat_flags = btrfs_super_compat_flags(super_block);
5353 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5354 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5356 if (copy_to_user(arg, &features, sizeof(features)))
5362 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5363 enum btrfs_feature_set set,
5364 u64 change_mask, u64 flags, u64 supported_flags,
5365 u64 safe_set, u64 safe_clear)
5367 const char *type = btrfs_feature_set_names[set];
5369 u64 disallowed, unsupported;
5370 u64 set_mask = flags & change_mask;
5371 u64 clear_mask = ~flags & change_mask;
5373 unsupported = set_mask & ~supported_flags;
5375 names = btrfs_printable_features(set, unsupported);
5378 "this kernel does not support the %s feature bit%s",
5379 names, strchr(names, ',') ? "s" : "");
5383 "this kernel does not support %s bits 0x%llx",
5388 disallowed = set_mask & ~safe_set;
5390 names = btrfs_printable_features(set, disallowed);
5393 "can't set the %s feature bit%s while mounted",
5394 names, strchr(names, ',') ? "s" : "");
5398 "can't set %s bits 0x%llx while mounted",
5403 disallowed = clear_mask & ~safe_clear;
5405 names = btrfs_printable_features(set, disallowed);
5408 "can't clear the %s feature bit%s while mounted",
5409 names, strchr(names, ',') ? "s" : "");
5413 "can't clear %s bits 0x%llx while mounted",
5421 #define check_feature(fs_info, change_mask, flags, mask_base) \
5422 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5423 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5424 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5425 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5429 struct inode *inode = file_inode(file);
5430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5431 struct btrfs_root *root = BTRFS_I(inode)->root;
5432 struct btrfs_super_block *super_block = fs_info->super_copy;
5433 struct btrfs_ioctl_feature_flags flags[2];
5434 struct btrfs_trans_handle *trans;
5438 if (!capable(CAP_SYS_ADMIN))
5441 if (copy_from_user(flags, arg, sizeof(flags)))
5445 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5446 !flags[0].incompat_flags)
5449 ret = check_feature(fs_info, flags[0].compat_flags,
5450 flags[1].compat_flags, COMPAT);
5454 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5455 flags[1].compat_ro_flags, COMPAT_RO);
5459 ret = check_feature(fs_info, flags[0].incompat_flags,
5460 flags[1].incompat_flags, INCOMPAT);
5464 ret = mnt_want_write_file(file);
5468 trans = btrfs_start_transaction(root, 0);
5469 if (IS_ERR(trans)) {
5470 ret = PTR_ERR(trans);
5471 goto out_drop_write;
5474 spin_lock(&fs_info->super_lock);
5475 newflags = btrfs_super_compat_flags(super_block);
5476 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5477 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5478 btrfs_set_super_compat_flags(super_block, newflags);
5480 newflags = btrfs_super_compat_ro_flags(super_block);
5481 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5482 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5483 btrfs_set_super_compat_ro_flags(super_block, newflags);
5485 newflags = btrfs_super_incompat_flags(super_block);
5486 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5487 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5488 btrfs_set_super_incompat_flags(super_block, newflags);
5489 spin_unlock(&fs_info->super_lock);
5491 ret = btrfs_commit_transaction(trans);
5493 mnt_drop_write_file(file);
5498 long btrfs_ioctl(struct file *file, unsigned int
5499 cmd, unsigned long arg)
5501 struct inode *inode = file_inode(file);
5502 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5503 struct btrfs_root *root = BTRFS_I(inode)->root;
5504 void __user *argp = (void __user *)arg;
5507 case FS_IOC_GETFLAGS:
5508 return btrfs_ioctl_getflags(file, argp);
5509 case FS_IOC_SETFLAGS:
5510 return btrfs_ioctl_setflags(file, argp);
5511 case FS_IOC_GETVERSION:
5512 return btrfs_ioctl_getversion(file, argp);
5514 return btrfs_ioctl_fitrim(file, argp);
5515 case BTRFS_IOC_SNAP_CREATE:
5516 return btrfs_ioctl_snap_create(file, argp, 0);
5517 case BTRFS_IOC_SNAP_CREATE_V2:
5518 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5519 case BTRFS_IOC_SUBVOL_CREATE:
5520 return btrfs_ioctl_snap_create(file, argp, 1);
5521 case BTRFS_IOC_SUBVOL_CREATE_V2:
5522 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5523 case BTRFS_IOC_SNAP_DESTROY:
5524 return btrfs_ioctl_snap_destroy(file, argp);
5525 case BTRFS_IOC_SUBVOL_GETFLAGS:
5526 return btrfs_ioctl_subvol_getflags(file, argp);
5527 case BTRFS_IOC_SUBVOL_SETFLAGS:
5528 return btrfs_ioctl_subvol_setflags(file, argp);
5529 case BTRFS_IOC_DEFAULT_SUBVOL:
5530 return btrfs_ioctl_default_subvol(file, argp);
5531 case BTRFS_IOC_DEFRAG:
5532 return btrfs_ioctl_defrag(file, NULL);
5533 case BTRFS_IOC_DEFRAG_RANGE:
5534 return btrfs_ioctl_defrag(file, argp);
5535 case BTRFS_IOC_RESIZE:
5536 return btrfs_ioctl_resize(file, argp);
5537 case BTRFS_IOC_ADD_DEV:
5538 return btrfs_ioctl_add_dev(fs_info, argp);
5539 case BTRFS_IOC_RM_DEV:
5540 return btrfs_ioctl_rm_dev(file, argp);
5541 case BTRFS_IOC_RM_DEV_V2:
5542 return btrfs_ioctl_rm_dev_v2(file, argp);
5543 case BTRFS_IOC_FS_INFO:
5544 return btrfs_ioctl_fs_info(fs_info, argp);
5545 case BTRFS_IOC_DEV_INFO:
5546 return btrfs_ioctl_dev_info(fs_info, argp);
5547 case BTRFS_IOC_BALANCE:
5548 return btrfs_ioctl_balance(file, NULL);
5549 case BTRFS_IOC_TRANS_START:
5550 return btrfs_ioctl_trans_start(file);
5551 case BTRFS_IOC_TRANS_END:
5552 return btrfs_ioctl_trans_end(file);
5553 case BTRFS_IOC_TREE_SEARCH:
5554 return btrfs_ioctl_tree_search(file, argp);
5555 case BTRFS_IOC_TREE_SEARCH_V2:
5556 return btrfs_ioctl_tree_search_v2(file, argp);
5557 case BTRFS_IOC_INO_LOOKUP:
5558 return btrfs_ioctl_ino_lookup(file, argp);
5559 case BTRFS_IOC_INO_PATHS:
5560 return btrfs_ioctl_ino_to_path(root, argp);
5561 case BTRFS_IOC_LOGICAL_INO:
5562 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5563 case BTRFS_IOC_SPACE_INFO:
5564 return btrfs_ioctl_space_info(fs_info, argp);
5565 case BTRFS_IOC_SYNC: {
5568 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5571 ret = btrfs_sync_fs(inode->i_sb, 1);
5573 * The transaction thread may want to do more work,
5574 * namely it pokes the cleaner kthread that will start
5575 * processing uncleaned subvols.
5577 wake_up_process(fs_info->transaction_kthread);
5580 case BTRFS_IOC_START_SYNC:
5581 return btrfs_ioctl_start_sync(root, argp);
5582 case BTRFS_IOC_WAIT_SYNC:
5583 return btrfs_ioctl_wait_sync(fs_info, argp);
5584 case BTRFS_IOC_SCRUB:
5585 return btrfs_ioctl_scrub(file, argp);
5586 case BTRFS_IOC_SCRUB_CANCEL:
5587 return btrfs_ioctl_scrub_cancel(fs_info);
5588 case BTRFS_IOC_SCRUB_PROGRESS:
5589 return btrfs_ioctl_scrub_progress(fs_info, argp);
5590 case BTRFS_IOC_BALANCE_V2:
5591 return btrfs_ioctl_balance(file, argp);
5592 case BTRFS_IOC_BALANCE_CTL:
5593 return btrfs_ioctl_balance_ctl(fs_info, arg);
5594 case BTRFS_IOC_BALANCE_PROGRESS:
5595 return btrfs_ioctl_balance_progress(fs_info, argp);
5596 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5597 return btrfs_ioctl_set_received_subvol(file, argp);
5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5600 return btrfs_ioctl_set_received_subvol_32(file, argp);
5602 case BTRFS_IOC_SEND:
5603 return btrfs_ioctl_send(file, argp);
5604 case BTRFS_IOC_GET_DEV_STATS:
5605 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5606 case BTRFS_IOC_QUOTA_CTL:
5607 return btrfs_ioctl_quota_ctl(file, argp);
5608 case BTRFS_IOC_QGROUP_ASSIGN:
5609 return btrfs_ioctl_qgroup_assign(file, argp);
5610 case BTRFS_IOC_QGROUP_CREATE:
5611 return btrfs_ioctl_qgroup_create(file, argp);
5612 case BTRFS_IOC_QGROUP_LIMIT:
5613 return btrfs_ioctl_qgroup_limit(file, argp);
5614 case BTRFS_IOC_QUOTA_RESCAN:
5615 return btrfs_ioctl_quota_rescan(file, argp);
5616 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5617 return btrfs_ioctl_quota_rescan_status(file, argp);
5618 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5619 return btrfs_ioctl_quota_rescan_wait(file, argp);
5620 case BTRFS_IOC_DEV_REPLACE:
5621 return btrfs_ioctl_dev_replace(fs_info, argp);
5622 case BTRFS_IOC_GET_FSLABEL:
5623 return btrfs_ioctl_get_fslabel(file, argp);
5624 case BTRFS_IOC_SET_FSLABEL:
5625 return btrfs_ioctl_set_fslabel(file, argp);
5626 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5627 return btrfs_ioctl_get_supported_features(argp);
5628 case BTRFS_IOC_GET_FEATURES:
5629 return btrfs_ioctl_get_features(file, argp);
5630 case BTRFS_IOC_SET_FEATURES:
5631 return btrfs_ioctl_set_features(file, argp);
5637 #ifdef CONFIG_COMPAT
5638 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5641 * These all access 32-bit values anyway so no further
5642 * handling is necessary.
5645 case FS_IOC32_GETFLAGS:
5646 cmd = FS_IOC_GETFLAGS;
5648 case FS_IOC32_SETFLAGS:
5649 cmd = FS_IOC_SETFLAGS;
5651 case FS_IOC32_GETVERSION:
5652 cmd = FS_IOC_GETVERSION;
5656 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));