]> Git Repo - linux.git/blob - fs/btrfs/ioctl.c
btrfs: remove unused parameters from btrfs_cmp_data
[linux.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/vmalloc.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66  * structures are incorrect, as the timespec structure from userspace
67  * is 4 bytes too small. We define these alternatives here to teach
68  * the kernel about the 32-bit struct packing.
69  */
70 struct btrfs_ioctl_timespec_32 {
71         __u64 sec;
72         __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76         char    uuid[BTRFS_UUID_SIZE];  /* in */
77         __u64   stransid;               /* in */
78         __u64   rtransid;               /* out */
79         struct btrfs_ioctl_timespec_32 stime; /* in */
80         struct btrfs_ioctl_timespec_32 rtime; /* out */
81         __u64   flags;                  /* in */
82         __u64   reserved[16];           /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86                                 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91                        u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92                        int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97         if (S_ISDIR(mode))
98                 return flags;
99         else if (S_ISREG(mode))
100                 return flags & ~FS_DIRSYNC_FL;
101         else
102                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107  */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110         unsigned int iflags = 0;
111
112         if (flags & BTRFS_INODE_SYNC)
113                 iflags |= FS_SYNC_FL;
114         if (flags & BTRFS_INODE_IMMUTABLE)
115                 iflags |= FS_IMMUTABLE_FL;
116         if (flags & BTRFS_INODE_APPEND)
117                 iflags |= FS_APPEND_FL;
118         if (flags & BTRFS_INODE_NODUMP)
119                 iflags |= FS_NODUMP_FL;
120         if (flags & BTRFS_INODE_NOATIME)
121                 iflags |= FS_NOATIME_FL;
122         if (flags & BTRFS_INODE_DIRSYNC)
123                 iflags |= FS_DIRSYNC_FL;
124         if (flags & BTRFS_INODE_NODATACOW)
125                 iflags |= FS_NOCOW_FL;
126
127         if (flags & BTRFS_INODE_NOCOMPRESS)
128                 iflags |= FS_NOCOMP_FL;
129         else if (flags & BTRFS_INODE_COMPRESS)
130                 iflags |= FS_COMPR_FL;
131
132         return iflags;
133 }
134
135 /*
136  * Update inode->i_flags based on the btrfs internal flags.
137  */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140         struct btrfs_inode *ip = BTRFS_I(inode);
141         unsigned int new_fl = 0;
142
143         if (ip->flags & BTRFS_INODE_SYNC)
144                 new_fl |= S_SYNC;
145         if (ip->flags & BTRFS_INODE_IMMUTABLE)
146                 new_fl |= S_IMMUTABLE;
147         if (ip->flags & BTRFS_INODE_APPEND)
148                 new_fl |= S_APPEND;
149         if (ip->flags & BTRFS_INODE_NOATIME)
150                 new_fl |= S_NOATIME;
151         if (ip->flags & BTRFS_INODE_DIRSYNC)
152                 new_fl |= S_DIRSYNC;
153
154         set_mask_bits(&inode->i_flags,
155                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156                       new_fl);
157 }
158
159 /*
160  * Inherit flags from the parent inode.
161  *
162  * Currently only the compression flags and the cow flags are inherited.
163  */
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 {
166         unsigned int flags;
167
168         if (!dir)
169                 return;
170
171         flags = BTRFS_I(dir)->flags;
172
173         if (flags & BTRFS_INODE_NOCOMPRESS) {
174                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176         } else if (flags & BTRFS_INODE_COMPRESS) {
177                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179         }
180
181         if (flags & BTRFS_INODE_NODATACOW) {
182                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183                 if (S_ISREG(inode->i_mode))
184                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185         }
186
187         btrfs_update_iflags(inode);
188 }
189
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 {
192         struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194
195         if (copy_to_user(arg, &flags, sizeof(flags)))
196                 return -EFAULT;
197         return 0;
198 }
199
200 static int check_flags(unsigned int flags)
201 {
202         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203                       FS_NOATIME_FL | FS_NODUMP_FL | \
204                       FS_SYNC_FL | FS_DIRSYNC_FL | \
205                       FS_NOCOMP_FL | FS_COMPR_FL |
206                       FS_NOCOW_FL))
207                 return -EOPNOTSUPP;
208
209         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210                 return -EINVAL;
211
212         return 0;
213 }
214
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 {
217         struct inode *inode = file_inode(file);
218         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219         struct btrfs_inode *ip = BTRFS_I(inode);
220         struct btrfs_root *root = ip->root;
221         struct btrfs_trans_handle *trans;
222         unsigned int flags, oldflags;
223         int ret;
224         u64 ip_oldflags;
225         unsigned int i_oldflags;
226         umode_t mode;
227
228         if (!inode_owner_or_capable(inode))
229                 return -EPERM;
230
231         if (btrfs_root_readonly(root))
232                 return -EROFS;
233
234         if (copy_from_user(&flags, arg, sizeof(flags)))
235                 return -EFAULT;
236
237         ret = check_flags(flags);
238         if (ret)
239                 return ret;
240
241         ret = mnt_want_write_file(file);
242         if (ret)
243                 return ret;
244
245         inode_lock(inode);
246
247         ip_oldflags = ip->flags;
248         i_oldflags = inode->i_flags;
249         mode = inode->i_mode;
250
251         flags = btrfs_mask_flags(inode->i_mode, flags);
252         oldflags = btrfs_flags_to_ioctl(ip->flags);
253         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254                 if (!capable(CAP_LINUX_IMMUTABLE)) {
255                         ret = -EPERM;
256                         goto out_unlock;
257                 }
258         }
259
260         if (flags & FS_SYNC_FL)
261                 ip->flags |= BTRFS_INODE_SYNC;
262         else
263                 ip->flags &= ~BTRFS_INODE_SYNC;
264         if (flags & FS_IMMUTABLE_FL)
265                 ip->flags |= BTRFS_INODE_IMMUTABLE;
266         else
267                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268         if (flags & FS_APPEND_FL)
269                 ip->flags |= BTRFS_INODE_APPEND;
270         else
271                 ip->flags &= ~BTRFS_INODE_APPEND;
272         if (flags & FS_NODUMP_FL)
273                 ip->flags |= BTRFS_INODE_NODUMP;
274         else
275                 ip->flags &= ~BTRFS_INODE_NODUMP;
276         if (flags & FS_NOATIME_FL)
277                 ip->flags |= BTRFS_INODE_NOATIME;
278         else
279                 ip->flags &= ~BTRFS_INODE_NOATIME;
280         if (flags & FS_DIRSYNC_FL)
281                 ip->flags |= BTRFS_INODE_DIRSYNC;
282         else
283                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284         if (flags & FS_NOCOW_FL) {
285                 if (S_ISREG(mode)) {
286                         /*
287                          * It's safe to turn csums off here, no extents exist.
288                          * Otherwise we want the flag to reflect the real COW
289                          * status of the file and will not set it.
290                          */
291                         if (inode->i_size == 0)
292                                 ip->flags |= BTRFS_INODE_NODATACOW
293                                            | BTRFS_INODE_NODATASUM;
294                 } else {
295                         ip->flags |= BTRFS_INODE_NODATACOW;
296                 }
297         } else {
298                 /*
299                  * Revert back under same assumptions as above
300                  */
301                 if (S_ISREG(mode)) {
302                         if (inode->i_size == 0)
303                                 ip->flags &= ~(BTRFS_INODE_NODATACOW
304                                              | BTRFS_INODE_NODATASUM);
305                 } else {
306                         ip->flags &= ~BTRFS_INODE_NODATACOW;
307                 }
308         }
309
310         /*
311          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312          * flag may be changed automatically if compression code won't make
313          * things smaller.
314          */
315         if (flags & FS_NOCOMP_FL) {
316                 ip->flags &= ~BTRFS_INODE_COMPRESS;
317                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319                 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320                 if (ret && ret != -ENODATA)
321                         goto out_drop;
322         } else if (flags & FS_COMPR_FL) {
323                 const char *comp;
324
325                 ip->flags |= BTRFS_INODE_COMPRESS;
326                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328                 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
329                         comp = "lzo";
330                 else
331                         comp = "zlib";
332                 ret = btrfs_set_prop(inode, "btrfs.compression",
333                                      comp, strlen(comp), 0);
334                 if (ret)
335                         goto out_drop;
336
337         } else {
338                 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339                 if (ret && ret != -ENODATA)
340                         goto out_drop;
341                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342         }
343
344         trans = btrfs_start_transaction(root, 1);
345         if (IS_ERR(trans)) {
346                 ret = PTR_ERR(trans);
347                 goto out_drop;
348         }
349
350         btrfs_update_iflags(inode);
351         inode_inc_iversion(inode);
352         inode->i_ctime = current_time(inode);
353         ret = btrfs_update_inode(trans, root, inode);
354
355         btrfs_end_transaction(trans);
356  out_drop:
357         if (ret) {
358                 ip->flags = ip_oldflags;
359                 inode->i_flags = i_oldflags;
360         }
361
362  out_unlock:
363         inode_unlock(inode);
364         mnt_drop_write_file(file);
365         return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370         struct inode *inode = file_inode(file);
371
372         return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377         struct inode *inode = file_inode(file);
378         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379         struct btrfs_device *device;
380         struct request_queue *q;
381         struct fstrim_range range;
382         u64 minlen = ULLONG_MAX;
383         u64 num_devices = 0;
384         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
385         int ret;
386
387         if (!capable(CAP_SYS_ADMIN))
388                 return -EPERM;
389
390         rcu_read_lock();
391         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
392                                 dev_list) {
393                 if (!device->bdev)
394                         continue;
395                 q = bdev_get_queue(device->bdev);
396                 if (blk_queue_discard(q)) {
397                         num_devices++;
398                         minlen = min_t(u64, q->limits.discard_granularity,
399                                      minlen);
400                 }
401         }
402         rcu_read_unlock();
403
404         if (!num_devices)
405                 return -EOPNOTSUPP;
406         if (copy_from_user(&range, arg, sizeof(range)))
407                 return -EFAULT;
408         if (range.start > total_bytes ||
409             range.len < fs_info->sb->s_blocksize)
410                 return -EINVAL;
411
412         range.len = min(range.len, total_bytes - range.start);
413         range.minlen = max(range.minlen, minlen);
414         ret = btrfs_trim_fs(fs_info, &range);
415         if (ret < 0)
416                 return ret;
417
418         if (copy_to_user(arg, &range, sizeof(range)))
419                 return -EFAULT;
420
421         return 0;
422 }
423
424 int btrfs_is_empty_uuid(u8 *uuid)
425 {
426         int i;
427
428         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
429                 if (uuid[i])
430                         return 0;
431         }
432         return 1;
433 }
434
435 static noinline int create_subvol(struct inode *dir,
436                                   struct dentry *dentry,
437                                   char *name, int namelen,
438                                   u64 *async_transid,
439                                   struct btrfs_qgroup_inherit *inherit)
440 {
441         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442         struct btrfs_trans_handle *trans;
443         struct btrfs_key key;
444         struct btrfs_root_item *root_item;
445         struct btrfs_inode_item *inode_item;
446         struct extent_buffer *leaf;
447         struct btrfs_root *root = BTRFS_I(dir)->root;
448         struct btrfs_root *new_root;
449         struct btrfs_block_rsv block_rsv;
450         struct timespec cur_time = current_time(dir);
451         struct inode *inode;
452         int ret;
453         int err;
454         u64 objectid;
455         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456         u64 index = 0;
457         u64 qgroup_reserved;
458         uuid_le new_uuid;
459
460         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
461         if (!root_item)
462                 return -ENOMEM;
463
464         ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
465         if (ret)
466                 goto fail_free;
467
468         /*
469          * Don't create subvolume whose level is not zero. Or qgroup will be
470          * screwed up since it assumes subvolume qgroup's level to be 0.
471          */
472         if (btrfs_qgroup_level(objectid)) {
473                 ret = -ENOSPC;
474                 goto fail_free;
475         }
476
477         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
478         /*
479          * The same as the snapshot creation, please see the comment
480          * of create_snapshot().
481          */
482         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483                                                8, &qgroup_reserved, false);
484         if (ret)
485                 goto fail_free;
486
487         trans = btrfs_start_transaction(root, 0);
488         if (IS_ERR(trans)) {
489                 ret = PTR_ERR(trans);
490                 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
491                 goto fail_free;
492         }
493         trans->block_rsv = &block_rsv;
494         trans->bytes_reserved = block_rsv.size;
495
496         ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
497         if (ret)
498                 goto fail;
499
500         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
501         if (IS_ERR(leaf)) {
502                 ret = PTR_ERR(leaf);
503                 goto fail;
504         }
505
506         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
507         btrfs_set_header_bytenr(leaf, leaf->start);
508         btrfs_set_header_generation(leaf, trans->transid);
509         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
510         btrfs_set_header_owner(leaf, objectid);
511
512         write_extent_buffer_fsid(leaf, fs_info->fsid);
513         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
514         btrfs_mark_buffer_dirty(leaf);
515
516         inode_item = &root_item->inode;
517         btrfs_set_stack_inode_generation(inode_item, 1);
518         btrfs_set_stack_inode_size(inode_item, 3);
519         btrfs_set_stack_inode_nlink(inode_item, 1);
520         btrfs_set_stack_inode_nbytes(inode_item,
521                                      fs_info->nodesize);
522         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
523
524         btrfs_set_root_flags(root_item, 0);
525         btrfs_set_root_limit(root_item, 0);
526         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
527
528         btrfs_set_root_bytenr(root_item, leaf->start);
529         btrfs_set_root_generation(root_item, trans->transid);
530         btrfs_set_root_level(root_item, 0);
531         btrfs_set_root_refs(root_item, 1);
532         btrfs_set_root_used(root_item, leaf->len);
533         btrfs_set_root_last_snapshot(root_item, 0);
534
535         btrfs_set_root_generation_v2(root_item,
536                         btrfs_root_generation(root_item));
537         uuid_le_gen(&new_uuid);
538         memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
539         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
540         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
541         root_item->ctime = root_item->otime;
542         btrfs_set_root_ctransid(root_item, trans->transid);
543         btrfs_set_root_otransid(root_item, trans->transid);
544
545         btrfs_tree_unlock(leaf);
546         free_extent_buffer(leaf);
547         leaf = NULL;
548
549         btrfs_set_root_dirid(root_item, new_dirid);
550
551         key.objectid = objectid;
552         key.offset = 0;
553         key.type = BTRFS_ROOT_ITEM_KEY;
554         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
555                                 root_item);
556         if (ret)
557                 goto fail;
558
559         key.offset = (u64)-1;
560         new_root = btrfs_read_fs_root_no_name(fs_info, &key);
561         if (IS_ERR(new_root)) {
562                 ret = PTR_ERR(new_root);
563                 btrfs_abort_transaction(trans, ret);
564                 goto fail;
565         }
566
567         btrfs_record_root_in_trans(trans, new_root);
568
569         ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
570         if (ret) {
571                 /* We potentially lose an unused inode item here */
572                 btrfs_abort_transaction(trans, ret);
573                 goto fail;
574         }
575
576         mutex_lock(&new_root->objectid_mutex);
577         new_root->highest_objectid = new_dirid;
578         mutex_unlock(&new_root->objectid_mutex);
579
580         /*
581          * insert the directory item
582          */
583         ret = btrfs_set_inode_index(dir, &index);
584         if (ret) {
585                 btrfs_abort_transaction(trans, ret);
586                 goto fail;
587         }
588
589         ret = btrfs_insert_dir_item(trans, root,
590                                     name, namelen, dir, &key,
591                                     BTRFS_FT_DIR, index);
592         if (ret) {
593                 btrfs_abort_transaction(trans, ret);
594                 goto fail;
595         }
596
597         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
598         ret = btrfs_update_inode(trans, root, dir);
599         BUG_ON(ret);
600
601         ret = btrfs_add_root_ref(trans, fs_info,
602                                  objectid, root->root_key.objectid,
603                                  btrfs_ino(BTRFS_I(dir)), index, name, namelen);
604         BUG_ON(ret);
605
606         ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
607                                   BTRFS_UUID_KEY_SUBVOL, objectid);
608         if (ret)
609                 btrfs_abort_transaction(trans, ret);
610
611 fail:
612         kfree(root_item);
613         trans->block_rsv = NULL;
614         trans->bytes_reserved = 0;
615         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
616
617         if (async_transid) {
618                 *async_transid = trans->transid;
619                 err = btrfs_commit_transaction_async(trans, 1);
620                 if (err)
621                         err = btrfs_commit_transaction(trans);
622         } else {
623                 err = btrfs_commit_transaction(trans);
624         }
625         if (err && !ret)
626                 ret = err;
627
628         if (!ret) {
629                 inode = btrfs_lookup_dentry(dir, dentry);
630                 if (IS_ERR(inode))
631                         return PTR_ERR(inode);
632                 d_instantiate(dentry, inode);
633         }
634         return ret;
635
636 fail_free:
637         kfree(root_item);
638         return ret;
639 }
640
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
642 {
643         s64 writers;
644         DEFINE_WAIT(wait);
645
646         do {
647                 prepare_to_wait(&root->subv_writers->wait, &wait,
648                                 TASK_UNINTERRUPTIBLE);
649
650                 writers = percpu_counter_sum(&root->subv_writers->counter);
651                 if (writers)
652                         schedule();
653
654                 finish_wait(&root->subv_writers->wait, &wait);
655         } while (writers);
656 }
657
658 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
659                            struct dentry *dentry,
660                            u64 *async_transid, bool readonly,
661                            struct btrfs_qgroup_inherit *inherit)
662 {
663         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
664         struct inode *inode;
665         struct btrfs_pending_snapshot *pending_snapshot;
666         struct btrfs_trans_handle *trans;
667         int ret;
668
669         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
670                 return -EINVAL;
671
672         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
673         if (!pending_snapshot)
674                 return -ENOMEM;
675
676         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
677                         GFP_KERNEL);
678         pending_snapshot->path = btrfs_alloc_path();
679         if (!pending_snapshot->root_item || !pending_snapshot->path) {
680                 ret = -ENOMEM;
681                 goto free_pending;
682         }
683
684         atomic_inc(&root->will_be_snapshoted);
685         smp_mb__after_atomic();
686         btrfs_wait_for_no_snapshoting_writes(root);
687
688         ret = btrfs_start_delalloc_inodes(root, 0);
689         if (ret)
690                 goto dec_and_free;
691
692         btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
693
694         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
695                              BTRFS_BLOCK_RSV_TEMP);
696         /*
697          * 1 - parent dir inode
698          * 2 - dir entries
699          * 1 - root item
700          * 2 - root ref/backref
701          * 1 - root of snapshot
702          * 1 - UUID item
703          */
704         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
705                                         &pending_snapshot->block_rsv, 8,
706                                         &pending_snapshot->qgroup_reserved,
707                                         false);
708         if (ret)
709                 goto dec_and_free;
710
711         pending_snapshot->dentry = dentry;
712         pending_snapshot->root = root;
713         pending_snapshot->readonly = readonly;
714         pending_snapshot->dir = dir;
715         pending_snapshot->inherit = inherit;
716
717         trans = btrfs_start_transaction(root, 0);
718         if (IS_ERR(trans)) {
719                 ret = PTR_ERR(trans);
720                 goto fail;
721         }
722
723         spin_lock(&fs_info->trans_lock);
724         list_add(&pending_snapshot->list,
725                  &trans->transaction->pending_snapshots);
726         spin_unlock(&fs_info->trans_lock);
727         if (async_transid) {
728                 *async_transid = trans->transid;
729                 ret = btrfs_commit_transaction_async(trans, 1);
730                 if (ret)
731                         ret = btrfs_commit_transaction(trans);
732         } else {
733                 ret = btrfs_commit_transaction(trans);
734         }
735         if (ret)
736                 goto fail;
737
738         ret = pending_snapshot->error;
739         if (ret)
740                 goto fail;
741
742         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
743         if (ret)
744                 goto fail;
745
746         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
747         if (IS_ERR(inode)) {
748                 ret = PTR_ERR(inode);
749                 goto fail;
750         }
751
752         d_instantiate(dentry, inode);
753         ret = 0;
754 fail:
755         btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
756 dec_and_free:
757         if (atomic_dec_and_test(&root->will_be_snapshoted))
758                 wake_up_atomic_t(&root->will_be_snapshoted);
759 free_pending:
760         kfree(pending_snapshot->root_item);
761         btrfs_free_path(pending_snapshot->path);
762         kfree(pending_snapshot);
763
764         return ret;
765 }
766
767 /*  copy of may_delete in fs/namei.c()
768  *      Check whether we can remove a link victim from directory dir, check
769  *  whether the type of victim is right.
770  *  1. We can't do it if dir is read-only (done in permission())
771  *  2. We should have write and exec permissions on dir
772  *  3. We can't remove anything from append-only dir
773  *  4. We can't do anything with immutable dir (done in permission())
774  *  5. If the sticky bit on dir is set we should either
775  *      a. be owner of dir, or
776  *      b. be owner of victim, or
777  *      c. have CAP_FOWNER capability
778  *  6. If the victim is append-only or immutable we can't do anything with
779  *     links pointing to it.
780  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782  *  9. We can't remove a root or mountpoint.
783  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784  *     nfs_async_unlink().
785  */
786
787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
788 {
789         int error;
790
791         if (d_really_is_negative(victim))
792                 return -ENOENT;
793
794         BUG_ON(d_inode(victim->d_parent) != dir);
795         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
796
797         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
798         if (error)
799                 return error;
800         if (IS_APPEND(dir))
801                 return -EPERM;
802         if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
803             IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
804                 return -EPERM;
805         if (isdir) {
806                 if (!d_is_dir(victim))
807                         return -ENOTDIR;
808                 if (IS_ROOT(victim))
809                         return -EBUSY;
810         } else if (d_is_dir(victim))
811                 return -EISDIR;
812         if (IS_DEADDIR(dir))
813                 return -ENOENT;
814         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
815                 return -EBUSY;
816         return 0;
817 }
818
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
821 {
822         if (d_really_is_positive(child))
823                 return -EEXIST;
824         if (IS_DEADDIR(dir))
825                 return -ENOENT;
826         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
827 }
828
829 /*
830  * Create a new subvolume below @parent.  This is largely modeled after
831  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832  * inside this filesystem so it's quite a bit simpler.
833  */
834 static noinline int btrfs_mksubvol(const struct path *parent,
835                                    char *name, int namelen,
836                                    struct btrfs_root *snap_src,
837                                    u64 *async_transid, bool readonly,
838                                    struct btrfs_qgroup_inherit *inherit)
839 {
840         struct inode *dir = d_inode(parent->dentry);
841         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
842         struct dentry *dentry;
843         int error;
844
845         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
846         if (error == -EINTR)
847                 return error;
848
849         dentry = lookup_one_len(name, parent->dentry, namelen);
850         error = PTR_ERR(dentry);
851         if (IS_ERR(dentry))
852                 goto out_unlock;
853
854         error = btrfs_may_create(dir, dentry);
855         if (error)
856                 goto out_dput;
857
858         /*
859          * even if this name doesn't exist, we may get hash collisions.
860          * check for them now when we can safely fail
861          */
862         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
863                                                dir->i_ino, name,
864                                                namelen);
865         if (error)
866                 goto out_dput;
867
868         down_read(&fs_info->subvol_sem);
869
870         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
871                 goto out_up_read;
872
873         if (snap_src) {
874                 error = create_snapshot(snap_src, dir, dentry,
875                                         async_transid, readonly, inherit);
876         } else {
877                 error = create_subvol(dir, dentry, name, namelen,
878                                       async_transid, inherit);
879         }
880         if (!error)
881                 fsnotify_mkdir(dir, dentry);
882 out_up_read:
883         up_read(&fs_info->subvol_sem);
884 out_dput:
885         dput(dentry);
886 out_unlock:
887         inode_unlock(dir);
888         return error;
889 }
890
891 /*
892  * When we're defragging a range, we don't want to kick it off again
893  * if it is really just waiting for delalloc to send it down.
894  * If we find a nice big extent or delalloc range for the bytes in the
895  * file you want to defrag, we return 0 to let you know to skip this
896  * part of the file
897  */
898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
899 {
900         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901         struct extent_map *em = NULL;
902         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903         u64 end;
904
905         read_lock(&em_tree->lock);
906         em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
907         read_unlock(&em_tree->lock);
908
909         if (em) {
910                 end = extent_map_end(em);
911                 free_extent_map(em);
912                 if (end - offset > thresh)
913                         return 0;
914         }
915         /* if we already have a nice delalloc here, just stop */
916         thresh /= 2;
917         end = count_range_bits(io_tree, &offset, offset + thresh,
918                                thresh, EXTENT_DELALLOC, 1);
919         if (end >= thresh)
920                 return 0;
921         return 1;
922 }
923
924 /*
925  * helper function to walk through a file and find extents
926  * newer than a specific transid, and smaller than thresh.
927  *
928  * This is used by the defragging code to find new and small
929  * extents
930  */
931 static int find_new_extents(struct btrfs_root *root,
932                             struct inode *inode, u64 newer_than,
933                             u64 *off, u32 thresh)
934 {
935         struct btrfs_path *path;
936         struct btrfs_key min_key;
937         struct extent_buffer *leaf;
938         struct btrfs_file_extent_item *extent;
939         int type;
940         int ret;
941         u64 ino = btrfs_ino(BTRFS_I(inode));
942
943         path = btrfs_alloc_path();
944         if (!path)
945                 return -ENOMEM;
946
947         min_key.objectid = ino;
948         min_key.type = BTRFS_EXTENT_DATA_KEY;
949         min_key.offset = *off;
950
951         while (1) {
952                 ret = btrfs_search_forward(root, &min_key, path, newer_than);
953                 if (ret != 0)
954                         goto none;
955 process_slot:
956                 if (min_key.objectid != ino)
957                         goto none;
958                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
959                         goto none;
960
961                 leaf = path->nodes[0];
962                 extent = btrfs_item_ptr(leaf, path->slots[0],
963                                         struct btrfs_file_extent_item);
964
965                 type = btrfs_file_extent_type(leaf, extent);
966                 if (type == BTRFS_FILE_EXTENT_REG &&
967                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
968                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
969                         *off = min_key.offset;
970                         btrfs_free_path(path);
971                         return 0;
972                 }
973
974                 path->slots[0]++;
975                 if (path->slots[0] < btrfs_header_nritems(leaf)) {
976                         btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
977                         goto process_slot;
978                 }
979
980                 if (min_key.offset == (u64)-1)
981                         goto none;
982
983                 min_key.offset++;
984                 btrfs_release_path(path);
985         }
986 none:
987         btrfs_free_path(path);
988         return -ENOENT;
989 }
990
991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
992 {
993         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
995         struct extent_map *em;
996         u64 len = PAGE_SIZE;
997
998         /*
999          * hopefully we have this extent in the tree already, try without
1000          * the full extent lock
1001          */
1002         read_lock(&em_tree->lock);
1003         em = lookup_extent_mapping(em_tree, start, len);
1004         read_unlock(&em_tree->lock);
1005
1006         if (!em) {
1007                 struct extent_state *cached = NULL;
1008                 u64 end = start + len - 1;
1009
1010                 /* get the big lock and read metadata off disk */
1011                 lock_extent_bits(io_tree, start, end, &cached);
1012                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1013                 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1014
1015                 if (IS_ERR(em))
1016                         return NULL;
1017         }
1018
1019         return em;
1020 }
1021
1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1023 {
1024         struct extent_map *next;
1025         bool ret = true;
1026
1027         /* this is the last extent */
1028         if (em->start + em->len >= i_size_read(inode))
1029                 return false;
1030
1031         next = defrag_lookup_extent(inode, em->start + em->len);
1032         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1033                 ret = false;
1034         else if ((em->block_start + em->block_len == next->block_start) &&
1035                  (em->block_len > SZ_128K && next->block_len > SZ_128K))
1036                 ret = false;
1037
1038         free_extent_map(next);
1039         return ret;
1040 }
1041
1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1043                                u64 *last_len, u64 *skip, u64 *defrag_end,
1044                                int compress)
1045 {
1046         struct extent_map *em;
1047         int ret = 1;
1048         bool next_mergeable = true;
1049         bool prev_mergeable = true;
1050
1051         /*
1052          * make sure that once we start defragging an extent, we keep on
1053          * defragging it
1054          */
1055         if (start < *defrag_end)
1056                 return 1;
1057
1058         *skip = 0;
1059
1060         em = defrag_lookup_extent(inode, start);
1061         if (!em)
1062                 return 0;
1063
1064         /* this will cover holes, and inline extents */
1065         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1066                 ret = 0;
1067                 goto out;
1068         }
1069
1070         if (!*defrag_end)
1071                 prev_mergeable = false;
1072
1073         next_mergeable = defrag_check_next_extent(inode, em);
1074         /*
1075          * we hit a real extent, if it is big or the next extent is not a
1076          * real extent, don't bother defragging it
1077          */
1078         if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079             (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1080                 ret = 0;
1081 out:
1082         /*
1083          * last_len ends up being a counter of how many bytes we've defragged.
1084          * every time we choose not to defrag an extent, we reset *last_len
1085          * so that the next tiny extent will force a defrag.
1086          *
1087          * The end result of this is that tiny extents before a single big
1088          * extent will force at least part of that big extent to be defragged.
1089          */
1090         if (ret) {
1091                 *defrag_end = extent_map_end(em);
1092         } else {
1093                 *last_len = 0;
1094                 *skip = extent_map_end(em);
1095                 *defrag_end = 0;
1096         }
1097
1098         free_extent_map(em);
1099         return ret;
1100 }
1101
1102 /*
1103  * it doesn't do much good to defrag one or two pages
1104  * at a time.  This pulls in a nice chunk of pages
1105  * to COW and defrag.
1106  *
1107  * It also makes sure the delalloc code has enough
1108  * dirty data to avoid making new small extents as part
1109  * of the defrag
1110  *
1111  * It's a good idea to start RA on this range
1112  * before calling this.
1113  */
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115                                     struct page **pages,
1116                                     unsigned long start_index,
1117                                     unsigned long num_pages)
1118 {
1119         unsigned long file_end;
1120         u64 isize = i_size_read(inode);
1121         u64 page_start;
1122         u64 page_end;
1123         u64 page_cnt;
1124         int ret;
1125         int i;
1126         int i_done;
1127         struct btrfs_ordered_extent *ordered;
1128         struct extent_state *cached_state = NULL;
1129         struct extent_io_tree *tree;
1130         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1131
1132         file_end = (isize - 1) >> PAGE_SHIFT;
1133         if (!isize || start_index > file_end)
1134                 return 0;
1135
1136         page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1137
1138         ret = btrfs_delalloc_reserve_space(inode,
1139                         start_index << PAGE_SHIFT,
1140                         page_cnt << PAGE_SHIFT);
1141         if (ret)
1142                 return ret;
1143         i_done = 0;
1144         tree = &BTRFS_I(inode)->io_tree;
1145
1146         /* step one, lock all the pages */
1147         for (i = 0; i < page_cnt; i++) {
1148                 struct page *page;
1149 again:
1150                 page = find_or_create_page(inode->i_mapping,
1151                                            start_index + i, mask);
1152                 if (!page)
1153                         break;
1154
1155                 page_start = page_offset(page);
1156                 page_end = page_start + PAGE_SIZE - 1;
1157                 while (1) {
1158                         lock_extent_bits(tree, page_start, page_end,
1159                                          &cached_state);
1160                         ordered = btrfs_lookup_ordered_extent(inode,
1161                                                               page_start);
1162                         unlock_extent_cached(tree, page_start, page_end,
1163                                              &cached_state, GFP_NOFS);
1164                         if (!ordered)
1165                                 break;
1166
1167                         unlock_page(page);
1168                         btrfs_start_ordered_extent(inode, ordered, 1);
1169                         btrfs_put_ordered_extent(ordered);
1170                         lock_page(page);
1171                         /*
1172                          * we unlocked the page above, so we need check if
1173                          * it was released or not.
1174                          */
1175                         if (page->mapping != inode->i_mapping) {
1176                                 unlock_page(page);
1177                                 put_page(page);
1178                                 goto again;
1179                         }
1180                 }
1181
1182                 if (!PageUptodate(page)) {
1183                         btrfs_readpage(NULL, page);
1184                         lock_page(page);
1185                         if (!PageUptodate(page)) {
1186                                 unlock_page(page);
1187                                 put_page(page);
1188                                 ret = -EIO;
1189                                 break;
1190                         }
1191                 }
1192
1193                 if (page->mapping != inode->i_mapping) {
1194                         unlock_page(page);
1195                         put_page(page);
1196                         goto again;
1197                 }
1198
1199                 pages[i] = page;
1200                 i_done++;
1201         }
1202         if (!i_done || ret)
1203                 goto out;
1204
1205         if (!(inode->i_sb->s_flags & MS_ACTIVE))
1206                 goto out;
1207
1208         /*
1209          * so now we have a nice long stream of locked
1210          * and up to date pages, lets wait on them
1211          */
1212         for (i = 0; i < i_done; i++)
1213                 wait_on_page_writeback(pages[i]);
1214
1215         page_start = page_offset(pages[0]);
1216         page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1217
1218         lock_extent_bits(&BTRFS_I(inode)->io_tree,
1219                          page_start, page_end - 1, &cached_state);
1220         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1221                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1222                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1223                           &cached_state, GFP_NOFS);
1224
1225         if (i_done != page_cnt) {
1226                 spin_lock(&BTRFS_I(inode)->lock);
1227                 BTRFS_I(inode)->outstanding_extents++;
1228                 spin_unlock(&BTRFS_I(inode)->lock);
1229                 btrfs_delalloc_release_space(inode,
1230                                 start_index << PAGE_SHIFT,
1231                                 (page_cnt - i_done) << PAGE_SHIFT);
1232         }
1233
1234
1235         set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1236                           &cached_state);
1237
1238         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1239                              page_start, page_end - 1, &cached_state,
1240                              GFP_NOFS);
1241
1242         for (i = 0; i < i_done; i++) {
1243                 clear_page_dirty_for_io(pages[i]);
1244                 ClearPageChecked(pages[i]);
1245                 set_page_extent_mapped(pages[i]);
1246                 set_page_dirty(pages[i]);
1247                 unlock_page(pages[i]);
1248                 put_page(pages[i]);
1249         }
1250         return i_done;
1251 out:
1252         for (i = 0; i < i_done; i++) {
1253                 unlock_page(pages[i]);
1254                 put_page(pages[i]);
1255         }
1256         btrfs_delalloc_release_space(inode,
1257                         start_index << PAGE_SHIFT,
1258                         page_cnt << PAGE_SHIFT);
1259         return ret;
1260
1261 }
1262
1263 int btrfs_defrag_file(struct inode *inode, struct file *file,
1264                       struct btrfs_ioctl_defrag_range_args *range,
1265                       u64 newer_than, unsigned long max_to_defrag)
1266 {
1267         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1268         struct btrfs_root *root = BTRFS_I(inode)->root;
1269         struct file_ra_state *ra = NULL;
1270         unsigned long last_index;
1271         u64 isize = i_size_read(inode);
1272         u64 last_len = 0;
1273         u64 skip = 0;
1274         u64 defrag_end = 0;
1275         u64 newer_off = range->start;
1276         unsigned long i;
1277         unsigned long ra_index = 0;
1278         int ret;
1279         int defrag_count = 0;
1280         int compress_type = BTRFS_COMPRESS_ZLIB;
1281         u32 extent_thresh = range->extent_thresh;
1282         unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1283         unsigned long cluster = max_cluster;
1284         u64 new_align = ~((u64)SZ_128K - 1);
1285         struct page **pages = NULL;
1286
1287         if (isize == 0)
1288                 return 0;
1289
1290         if (range->start >= isize)
1291                 return -EINVAL;
1292
1293         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1294                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1295                         return -EINVAL;
1296                 if (range->compress_type)
1297                         compress_type = range->compress_type;
1298         }
1299
1300         if (extent_thresh == 0)
1301                 extent_thresh = SZ_256K;
1302
1303         /*
1304          * if we were not given a file, allocate a readahead
1305          * context
1306          */
1307         if (!file) {
1308                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1309                 if (!ra)
1310                         return -ENOMEM;
1311                 file_ra_state_init(ra, inode->i_mapping);
1312         } else {
1313                 ra = &file->f_ra;
1314         }
1315
1316         pages = kmalloc_array(max_cluster, sizeof(struct page *),
1317                         GFP_NOFS);
1318         if (!pages) {
1319                 ret = -ENOMEM;
1320                 goto out_ra;
1321         }
1322
1323         /* find the last page to defrag */
1324         if (range->start + range->len > range->start) {
1325                 last_index = min_t(u64, isize - 1,
1326                          range->start + range->len - 1) >> PAGE_SHIFT;
1327         } else {
1328                 last_index = (isize - 1) >> PAGE_SHIFT;
1329         }
1330
1331         if (newer_than) {
1332                 ret = find_new_extents(root, inode, newer_than,
1333                                        &newer_off, SZ_64K);
1334                 if (!ret) {
1335                         range->start = newer_off;
1336                         /*
1337                          * we always align our defrag to help keep
1338                          * the extents in the file evenly spaced
1339                          */
1340                         i = (newer_off & new_align) >> PAGE_SHIFT;
1341                 } else
1342                         goto out_ra;
1343         } else {
1344                 i = range->start >> PAGE_SHIFT;
1345         }
1346         if (!max_to_defrag)
1347                 max_to_defrag = last_index - i + 1;
1348
1349         /*
1350          * make writeback starts from i, so the defrag range can be
1351          * written sequentially.
1352          */
1353         if (i < inode->i_mapping->writeback_index)
1354                 inode->i_mapping->writeback_index = i;
1355
1356         while (i <= last_index && defrag_count < max_to_defrag &&
1357                (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1358                 /*
1359                  * make sure we stop running if someone unmounts
1360                  * the FS
1361                  */
1362                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1363                         break;
1364
1365                 if (btrfs_defrag_cancelled(fs_info)) {
1366                         btrfs_debug(fs_info, "defrag_file cancelled");
1367                         ret = -EAGAIN;
1368                         break;
1369                 }
1370
1371                 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1372                                          extent_thresh, &last_len, &skip,
1373                                          &defrag_end, range->flags &
1374                                          BTRFS_DEFRAG_RANGE_COMPRESS)) {
1375                         unsigned long next;
1376                         /*
1377                          * the should_defrag function tells us how much to skip
1378                          * bump our counter by the suggested amount
1379                          */
1380                         next = DIV_ROUND_UP(skip, PAGE_SIZE);
1381                         i = max(i + 1, next);
1382                         continue;
1383                 }
1384
1385                 if (!newer_than) {
1386                         cluster = (PAGE_ALIGN(defrag_end) >>
1387                                    PAGE_SHIFT) - i;
1388                         cluster = min(cluster, max_cluster);
1389                 } else {
1390                         cluster = max_cluster;
1391                 }
1392
1393                 if (i + cluster > ra_index) {
1394                         ra_index = max(i, ra_index);
1395                         btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1396                                        cluster);
1397                         ra_index += cluster;
1398                 }
1399
1400                 inode_lock(inode);
1401                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1402                         BTRFS_I(inode)->force_compress = compress_type;
1403                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1404                 if (ret < 0) {
1405                         inode_unlock(inode);
1406                         goto out_ra;
1407                 }
1408
1409                 defrag_count += ret;
1410                 balance_dirty_pages_ratelimited(inode->i_mapping);
1411                 inode_unlock(inode);
1412
1413                 if (newer_than) {
1414                         if (newer_off == (u64)-1)
1415                                 break;
1416
1417                         if (ret > 0)
1418                                 i += ret;
1419
1420                         newer_off = max(newer_off + 1,
1421                                         (u64)i << PAGE_SHIFT);
1422
1423                         ret = find_new_extents(root, inode, newer_than,
1424                                                &newer_off, SZ_64K);
1425                         if (!ret) {
1426                                 range->start = newer_off;
1427                                 i = (newer_off & new_align) >> PAGE_SHIFT;
1428                         } else {
1429                                 break;
1430                         }
1431                 } else {
1432                         if (ret > 0) {
1433                                 i += ret;
1434                                 last_len += ret << PAGE_SHIFT;
1435                         } else {
1436                                 i++;
1437                                 last_len = 0;
1438                         }
1439                 }
1440         }
1441
1442         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1443                 filemap_flush(inode->i_mapping);
1444                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1445                              &BTRFS_I(inode)->runtime_flags))
1446                         filemap_flush(inode->i_mapping);
1447         }
1448
1449         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1450                 /* the filemap_flush will queue IO into the worker threads, but
1451                  * we have to make sure the IO is actually started and that
1452                  * ordered extents get created before we return
1453                  */
1454                 atomic_inc(&fs_info->async_submit_draining);
1455                 while (atomic_read(&fs_info->nr_async_submits) ||
1456                        atomic_read(&fs_info->async_delalloc_pages)) {
1457                         wait_event(fs_info->async_submit_wait,
1458                                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
1459                                     atomic_read(&fs_info->async_delalloc_pages) == 0));
1460                 }
1461                 atomic_dec(&fs_info->async_submit_draining);
1462         }
1463
1464         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1465                 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1466         }
1467
1468         ret = defrag_count;
1469
1470 out_ra:
1471         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1472                 inode_lock(inode);
1473                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1474                 inode_unlock(inode);
1475         }
1476         if (!file)
1477                 kfree(ra);
1478         kfree(pages);
1479         return ret;
1480 }
1481
1482 static noinline int btrfs_ioctl_resize(struct file *file,
1483                                         void __user *arg)
1484 {
1485         struct inode *inode = file_inode(file);
1486         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1487         u64 new_size;
1488         u64 old_size;
1489         u64 devid = 1;
1490         struct btrfs_root *root = BTRFS_I(inode)->root;
1491         struct btrfs_ioctl_vol_args *vol_args;
1492         struct btrfs_trans_handle *trans;
1493         struct btrfs_device *device = NULL;
1494         char *sizestr;
1495         char *retptr;
1496         char *devstr = NULL;
1497         int ret = 0;
1498         int mod = 0;
1499
1500         if (!capable(CAP_SYS_ADMIN))
1501                 return -EPERM;
1502
1503         ret = mnt_want_write_file(file);
1504         if (ret)
1505                 return ret;
1506
1507         if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
1508                 mnt_drop_write_file(file);
1509                 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1510         }
1511
1512         mutex_lock(&fs_info->volume_mutex);
1513         vol_args = memdup_user(arg, sizeof(*vol_args));
1514         if (IS_ERR(vol_args)) {
1515                 ret = PTR_ERR(vol_args);
1516                 goto out;
1517         }
1518
1519         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1520
1521         sizestr = vol_args->name;
1522         devstr = strchr(sizestr, ':');
1523         if (devstr) {
1524                 sizestr = devstr + 1;
1525                 *devstr = '\0';
1526                 devstr = vol_args->name;
1527                 ret = kstrtoull(devstr, 10, &devid);
1528                 if (ret)
1529                         goto out_free;
1530                 if (!devid) {
1531                         ret = -EINVAL;
1532                         goto out_free;
1533                 }
1534                 btrfs_info(fs_info, "resizing devid %llu", devid);
1535         }
1536
1537         device = btrfs_find_device(fs_info, devid, NULL, NULL);
1538         if (!device) {
1539                 btrfs_info(fs_info, "resizer unable to find device %llu",
1540                            devid);
1541                 ret = -ENODEV;
1542                 goto out_free;
1543         }
1544
1545         if (!device->writeable) {
1546                 btrfs_info(fs_info,
1547                            "resizer unable to apply on readonly device %llu",
1548                        devid);
1549                 ret = -EPERM;
1550                 goto out_free;
1551         }
1552
1553         if (!strcmp(sizestr, "max"))
1554                 new_size = device->bdev->bd_inode->i_size;
1555         else {
1556                 if (sizestr[0] == '-') {
1557                         mod = -1;
1558                         sizestr++;
1559                 } else if (sizestr[0] == '+') {
1560                         mod = 1;
1561                         sizestr++;
1562                 }
1563                 new_size = memparse(sizestr, &retptr);
1564                 if (*retptr != '\0' || new_size == 0) {
1565                         ret = -EINVAL;
1566                         goto out_free;
1567                 }
1568         }
1569
1570         if (device->is_tgtdev_for_dev_replace) {
1571                 ret = -EPERM;
1572                 goto out_free;
1573         }
1574
1575         old_size = btrfs_device_get_total_bytes(device);
1576
1577         if (mod < 0) {
1578                 if (new_size > old_size) {
1579                         ret = -EINVAL;
1580                         goto out_free;
1581                 }
1582                 new_size = old_size - new_size;
1583         } else if (mod > 0) {
1584                 if (new_size > ULLONG_MAX - old_size) {
1585                         ret = -ERANGE;
1586                         goto out_free;
1587                 }
1588                 new_size = old_size + new_size;
1589         }
1590
1591         if (new_size < SZ_256M) {
1592                 ret = -EINVAL;
1593                 goto out_free;
1594         }
1595         if (new_size > device->bdev->bd_inode->i_size) {
1596                 ret = -EFBIG;
1597                 goto out_free;
1598         }
1599
1600         new_size = div_u64(new_size, fs_info->sectorsize);
1601         new_size *= fs_info->sectorsize;
1602
1603         btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1604                           rcu_str_deref(device->name), new_size);
1605
1606         if (new_size > old_size) {
1607                 trans = btrfs_start_transaction(root, 0);
1608                 if (IS_ERR(trans)) {
1609                         ret = PTR_ERR(trans);
1610                         goto out_free;
1611                 }
1612                 ret = btrfs_grow_device(trans, device, new_size);
1613                 btrfs_commit_transaction(trans);
1614         } else if (new_size < old_size) {
1615                 ret = btrfs_shrink_device(device, new_size);
1616         } /* equal, nothing need to do */
1617
1618 out_free:
1619         kfree(vol_args);
1620 out:
1621         mutex_unlock(&fs_info->volume_mutex);
1622         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
1623         mnt_drop_write_file(file);
1624         return ret;
1625 }
1626
1627 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1628                                 char *name, unsigned long fd, int subvol,
1629                                 u64 *transid, bool readonly,
1630                                 struct btrfs_qgroup_inherit *inherit)
1631 {
1632         int namelen;
1633         int ret = 0;
1634
1635         if (!S_ISDIR(file_inode(file)->i_mode))
1636                 return -ENOTDIR;
1637
1638         ret = mnt_want_write_file(file);
1639         if (ret)
1640                 goto out;
1641
1642         namelen = strlen(name);
1643         if (strchr(name, '/')) {
1644                 ret = -EINVAL;
1645                 goto out_drop_write;
1646         }
1647
1648         if (name[0] == '.' &&
1649            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1650                 ret = -EEXIST;
1651                 goto out_drop_write;
1652         }
1653
1654         if (subvol) {
1655                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1656                                      NULL, transid, readonly, inherit);
1657         } else {
1658                 struct fd src = fdget(fd);
1659                 struct inode *src_inode;
1660                 if (!src.file) {
1661                         ret = -EINVAL;
1662                         goto out_drop_write;
1663                 }
1664
1665                 src_inode = file_inode(src.file);
1666                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1667                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1668                                    "Snapshot src from another FS");
1669                         ret = -EXDEV;
1670                 } else if (!inode_owner_or_capable(src_inode)) {
1671                         /*
1672                          * Subvolume creation is not restricted, but snapshots
1673                          * are limited to own subvolumes only
1674                          */
1675                         ret = -EPERM;
1676                 } else {
1677                         ret = btrfs_mksubvol(&file->f_path, name, namelen,
1678                                              BTRFS_I(src_inode)->root,
1679                                              transid, readonly, inherit);
1680                 }
1681                 fdput(src);
1682         }
1683 out_drop_write:
1684         mnt_drop_write_file(file);
1685 out:
1686         return ret;
1687 }
1688
1689 static noinline int btrfs_ioctl_snap_create(struct file *file,
1690                                             void __user *arg, int subvol)
1691 {
1692         struct btrfs_ioctl_vol_args *vol_args;
1693         int ret;
1694
1695         if (!S_ISDIR(file_inode(file)->i_mode))
1696                 return -ENOTDIR;
1697
1698         vol_args = memdup_user(arg, sizeof(*vol_args));
1699         if (IS_ERR(vol_args))
1700                 return PTR_ERR(vol_args);
1701         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1702
1703         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1704                                               vol_args->fd, subvol,
1705                                               NULL, false, NULL);
1706
1707         kfree(vol_args);
1708         return ret;
1709 }
1710
1711 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1712                                                void __user *arg, int subvol)
1713 {
1714         struct btrfs_ioctl_vol_args_v2 *vol_args;
1715         int ret;
1716         u64 transid = 0;
1717         u64 *ptr = NULL;
1718         bool readonly = false;
1719         struct btrfs_qgroup_inherit *inherit = NULL;
1720
1721         if (!S_ISDIR(file_inode(file)->i_mode))
1722                 return -ENOTDIR;
1723
1724         vol_args = memdup_user(arg, sizeof(*vol_args));
1725         if (IS_ERR(vol_args))
1726                 return PTR_ERR(vol_args);
1727         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1728
1729         if (vol_args->flags &
1730             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1731               BTRFS_SUBVOL_QGROUP_INHERIT)) {
1732                 ret = -EOPNOTSUPP;
1733                 goto free_args;
1734         }
1735
1736         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1737                 ptr = &transid;
1738         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1739                 readonly = true;
1740         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1741                 if (vol_args->size > PAGE_SIZE) {
1742                         ret = -EINVAL;
1743                         goto free_args;
1744                 }
1745                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1746                 if (IS_ERR(inherit)) {
1747                         ret = PTR_ERR(inherit);
1748                         goto free_args;
1749                 }
1750         }
1751
1752         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1753                                               vol_args->fd, subvol, ptr,
1754                                               readonly, inherit);
1755         if (ret)
1756                 goto free_inherit;
1757
1758         if (ptr && copy_to_user(arg +
1759                                 offsetof(struct btrfs_ioctl_vol_args_v2,
1760                                         transid),
1761                                 ptr, sizeof(*ptr)))
1762                 ret = -EFAULT;
1763
1764 free_inherit:
1765         kfree(inherit);
1766 free_args:
1767         kfree(vol_args);
1768         return ret;
1769 }
1770
1771 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1772                                                 void __user *arg)
1773 {
1774         struct inode *inode = file_inode(file);
1775         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1776         struct btrfs_root *root = BTRFS_I(inode)->root;
1777         int ret = 0;
1778         u64 flags = 0;
1779
1780         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1781                 return -EINVAL;
1782
1783         down_read(&fs_info->subvol_sem);
1784         if (btrfs_root_readonly(root))
1785                 flags |= BTRFS_SUBVOL_RDONLY;
1786         up_read(&fs_info->subvol_sem);
1787
1788         if (copy_to_user(arg, &flags, sizeof(flags)))
1789                 ret = -EFAULT;
1790
1791         return ret;
1792 }
1793
1794 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1795                                               void __user *arg)
1796 {
1797         struct inode *inode = file_inode(file);
1798         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1799         struct btrfs_root *root = BTRFS_I(inode)->root;
1800         struct btrfs_trans_handle *trans;
1801         u64 root_flags;
1802         u64 flags;
1803         int ret = 0;
1804
1805         if (!inode_owner_or_capable(inode))
1806                 return -EPERM;
1807
1808         ret = mnt_want_write_file(file);
1809         if (ret)
1810                 goto out;
1811
1812         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1813                 ret = -EINVAL;
1814                 goto out_drop_write;
1815         }
1816
1817         if (copy_from_user(&flags, arg, sizeof(flags))) {
1818                 ret = -EFAULT;
1819                 goto out_drop_write;
1820         }
1821
1822         if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1823                 ret = -EINVAL;
1824                 goto out_drop_write;
1825         }
1826
1827         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1828                 ret = -EOPNOTSUPP;
1829                 goto out_drop_write;
1830         }
1831
1832         down_write(&fs_info->subvol_sem);
1833
1834         /* nothing to do */
1835         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1836                 goto out_drop_sem;
1837
1838         root_flags = btrfs_root_flags(&root->root_item);
1839         if (flags & BTRFS_SUBVOL_RDONLY) {
1840                 btrfs_set_root_flags(&root->root_item,
1841                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1842         } else {
1843                 /*
1844                  * Block RO -> RW transition if this subvolume is involved in
1845                  * send
1846                  */
1847                 spin_lock(&root->root_item_lock);
1848                 if (root->send_in_progress == 0) {
1849                         btrfs_set_root_flags(&root->root_item,
1850                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851                         spin_unlock(&root->root_item_lock);
1852                 } else {
1853                         spin_unlock(&root->root_item_lock);
1854                         btrfs_warn(fs_info,
1855                                    "Attempt to set subvolume %llu read-write during send",
1856                                    root->root_key.objectid);
1857                         ret = -EPERM;
1858                         goto out_drop_sem;
1859                 }
1860         }
1861
1862         trans = btrfs_start_transaction(root, 1);
1863         if (IS_ERR(trans)) {
1864                 ret = PTR_ERR(trans);
1865                 goto out_reset;
1866         }
1867
1868         ret = btrfs_update_root(trans, fs_info->tree_root,
1869                                 &root->root_key, &root->root_item);
1870
1871         btrfs_commit_transaction(trans);
1872 out_reset:
1873         if (ret)
1874                 btrfs_set_root_flags(&root->root_item, root_flags);
1875 out_drop_sem:
1876         up_write(&fs_info->subvol_sem);
1877 out_drop_write:
1878         mnt_drop_write_file(file);
1879 out:
1880         return ret;
1881 }
1882
1883 /*
1884  * helper to check if the subvolume references other subvolumes
1885  */
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1887 {
1888         struct btrfs_fs_info *fs_info = root->fs_info;
1889         struct btrfs_path *path;
1890         struct btrfs_dir_item *di;
1891         struct btrfs_key key;
1892         u64 dir_id;
1893         int ret;
1894
1895         path = btrfs_alloc_path();
1896         if (!path)
1897                 return -ENOMEM;
1898
1899         /* Make sure this root isn't set as the default subvol */
1900         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1901         di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1902                                    dir_id, "default", 7, 0);
1903         if (di && !IS_ERR(di)) {
1904                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1905                 if (key.objectid == root->root_key.objectid) {
1906                         ret = -EPERM;
1907                         btrfs_err(fs_info,
1908                                   "deleting default subvolume %llu is not allowed",
1909                                   key.objectid);
1910                         goto out;
1911                 }
1912                 btrfs_release_path(path);
1913         }
1914
1915         key.objectid = root->root_key.objectid;
1916         key.type = BTRFS_ROOT_REF_KEY;
1917         key.offset = (u64)-1;
1918
1919         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1920         if (ret < 0)
1921                 goto out;
1922         BUG_ON(ret == 0);
1923
1924         ret = 0;
1925         if (path->slots[0] > 0) {
1926                 path->slots[0]--;
1927                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1928                 if (key.objectid == root->root_key.objectid &&
1929                     key.type == BTRFS_ROOT_REF_KEY)
1930                         ret = -ENOTEMPTY;
1931         }
1932 out:
1933         btrfs_free_path(path);
1934         return ret;
1935 }
1936
1937 static noinline int key_in_sk(struct btrfs_key *key,
1938                               struct btrfs_ioctl_search_key *sk)
1939 {
1940         struct btrfs_key test;
1941         int ret;
1942
1943         test.objectid = sk->min_objectid;
1944         test.type = sk->min_type;
1945         test.offset = sk->min_offset;
1946
1947         ret = btrfs_comp_cpu_keys(key, &test);
1948         if (ret < 0)
1949                 return 0;
1950
1951         test.objectid = sk->max_objectid;
1952         test.type = sk->max_type;
1953         test.offset = sk->max_offset;
1954
1955         ret = btrfs_comp_cpu_keys(key, &test);
1956         if (ret > 0)
1957                 return 0;
1958         return 1;
1959 }
1960
1961 static noinline int copy_to_sk(struct btrfs_path *path,
1962                                struct btrfs_key *key,
1963                                struct btrfs_ioctl_search_key *sk,
1964                                size_t *buf_size,
1965                                char __user *ubuf,
1966                                unsigned long *sk_offset,
1967                                int *num_found)
1968 {
1969         u64 found_transid;
1970         struct extent_buffer *leaf;
1971         struct btrfs_ioctl_search_header sh;
1972         struct btrfs_key test;
1973         unsigned long item_off;
1974         unsigned long item_len;
1975         int nritems;
1976         int i;
1977         int slot;
1978         int ret = 0;
1979
1980         leaf = path->nodes[0];
1981         slot = path->slots[0];
1982         nritems = btrfs_header_nritems(leaf);
1983
1984         if (btrfs_header_generation(leaf) > sk->max_transid) {
1985                 i = nritems;
1986                 goto advance_key;
1987         }
1988         found_transid = btrfs_header_generation(leaf);
1989
1990         for (i = slot; i < nritems; i++) {
1991                 item_off = btrfs_item_ptr_offset(leaf, i);
1992                 item_len = btrfs_item_size_nr(leaf, i);
1993
1994                 btrfs_item_key_to_cpu(leaf, key, i);
1995                 if (!key_in_sk(key, sk))
1996                         continue;
1997
1998                 if (sizeof(sh) + item_len > *buf_size) {
1999                         if (*num_found) {
2000                                 ret = 1;
2001                                 goto out;
2002                         }
2003
2004                         /*
2005                          * return one empty item back for v1, which does not
2006                          * handle -EOVERFLOW
2007                          */
2008
2009                         *buf_size = sizeof(sh) + item_len;
2010                         item_len = 0;
2011                         ret = -EOVERFLOW;
2012                 }
2013
2014                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2015                         ret = 1;
2016                         goto out;
2017                 }
2018
2019                 sh.objectid = key->objectid;
2020                 sh.offset = key->offset;
2021                 sh.type = key->type;
2022                 sh.len = item_len;
2023                 sh.transid = found_transid;
2024
2025                 /* copy search result header */
2026                 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2027                         ret = -EFAULT;
2028                         goto out;
2029                 }
2030
2031                 *sk_offset += sizeof(sh);
2032
2033                 if (item_len) {
2034                         char __user *up = ubuf + *sk_offset;
2035                         /* copy the item */
2036                         if (read_extent_buffer_to_user(leaf, up,
2037                                                        item_off, item_len)) {
2038                                 ret = -EFAULT;
2039                                 goto out;
2040                         }
2041
2042                         *sk_offset += item_len;
2043                 }
2044                 (*num_found)++;
2045
2046                 if (ret) /* -EOVERFLOW from above */
2047                         goto out;
2048
2049                 if (*num_found >= sk->nr_items) {
2050                         ret = 1;
2051                         goto out;
2052                 }
2053         }
2054 advance_key:
2055         ret = 0;
2056         test.objectid = sk->max_objectid;
2057         test.type = sk->max_type;
2058         test.offset = sk->max_offset;
2059         if (btrfs_comp_cpu_keys(key, &test) >= 0)
2060                 ret = 1;
2061         else if (key->offset < (u64)-1)
2062                 key->offset++;
2063         else if (key->type < (u8)-1) {
2064                 key->offset = 0;
2065                 key->type++;
2066         } else if (key->objectid < (u64)-1) {
2067                 key->offset = 0;
2068                 key->type = 0;
2069                 key->objectid++;
2070         } else
2071                 ret = 1;
2072 out:
2073         /*
2074          *  0: all items from this leaf copied, continue with next
2075          *  1: * more items can be copied, but unused buffer is too small
2076          *     * all items were found
2077          *     Either way, it will stops the loop which iterates to the next
2078          *     leaf
2079          *  -EOVERFLOW: item was to large for buffer
2080          *  -EFAULT: could not copy extent buffer back to userspace
2081          */
2082         return ret;
2083 }
2084
2085 static noinline int search_ioctl(struct inode *inode,
2086                                  struct btrfs_ioctl_search_key *sk,
2087                                  size_t *buf_size,
2088                                  char __user *ubuf)
2089 {
2090         struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2091         struct btrfs_root *root;
2092         struct btrfs_key key;
2093         struct btrfs_path *path;
2094         int ret;
2095         int num_found = 0;
2096         unsigned long sk_offset = 0;
2097
2098         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2099                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2100                 return -EOVERFLOW;
2101         }
2102
2103         path = btrfs_alloc_path();
2104         if (!path)
2105                 return -ENOMEM;
2106
2107         if (sk->tree_id == 0) {
2108                 /* search the root of the inode that was passed */
2109                 root = BTRFS_I(inode)->root;
2110         } else {
2111                 key.objectid = sk->tree_id;
2112                 key.type = BTRFS_ROOT_ITEM_KEY;
2113                 key.offset = (u64)-1;
2114                 root = btrfs_read_fs_root_no_name(info, &key);
2115                 if (IS_ERR(root)) {
2116                         btrfs_free_path(path);
2117                         return -ENOENT;
2118                 }
2119         }
2120
2121         key.objectid = sk->min_objectid;
2122         key.type = sk->min_type;
2123         key.offset = sk->min_offset;
2124
2125         while (1) {
2126                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2127                 if (ret != 0) {
2128                         if (ret > 0)
2129                                 ret = 0;
2130                         goto err;
2131                 }
2132                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2133                                  &sk_offset, &num_found);
2134                 btrfs_release_path(path);
2135                 if (ret)
2136                         break;
2137
2138         }
2139         if (ret > 0)
2140                 ret = 0;
2141 err:
2142         sk->nr_items = num_found;
2143         btrfs_free_path(path);
2144         return ret;
2145 }
2146
2147 static noinline int btrfs_ioctl_tree_search(struct file *file,
2148                                            void __user *argp)
2149 {
2150         struct btrfs_ioctl_search_args __user *uargs;
2151         struct btrfs_ioctl_search_key sk;
2152         struct inode *inode;
2153         int ret;
2154         size_t buf_size;
2155
2156         if (!capable(CAP_SYS_ADMIN))
2157                 return -EPERM;
2158
2159         uargs = (struct btrfs_ioctl_search_args __user *)argp;
2160
2161         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2162                 return -EFAULT;
2163
2164         buf_size = sizeof(uargs->buf);
2165
2166         inode = file_inode(file);
2167         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2168
2169         /*
2170          * In the origin implementation an overflow is handled by returning a
2171          * search header with a len of zero, so reset ret.
2172          */
2173         if (ret == -EOVERFLOW)
2174                 ret = 0;
2175
2176         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2177                 ret = -EFAULT;
2178         return ret;
2179 }
2180
2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2182                                                void __user *argp)
2183 {
2184         struct btrfs_ioctl_search_args_v2 __user *uarg;
2185         struct btrfs_ioctl_search_args_v2 args;
2186         struct inode *inode;
2187         int ret;
2188         size_t buf_size;
2189         const size_t buf_limit = SZ_16M;
2190
2191         if (!capable(CAP_SYS_ADMIN))
2192                 return -EPERM;
2193
2194         /* copy search header and buffer size */
2195         uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2196         if (copy_from_user(&args, uarg, sizeof(args)))
2197                 return -EFAULT;
2198
2199         buf_size = args.buf_size;
2200
2201         if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2202                 return -EOVERFLOW;
2203
2204         /* limit result size to 16MB */
2205         if (buf_size > buf_limit)
2206                 buf_size = buf_limit;
2207
2208         inode = file_inode(file);
2209         ret = search_ioctl(inode, &args.key, &buf_size,
2210                            (char *)(&uarg->buf[0]));
2211         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2212                 ret = -EFAULT;
2213         else if (ret == -EOVERFLOW &&
2214                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2215                 ret = -EFAULT;
2216
2217         return ret;
2218 }
2219
2220 /*
2221  * Search INODE_REFs to identify path name of 'dirid' directory
2222  * in a 'tree_id' tree. and sets path name to 'name'.
2223  */
2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2225                                 u64 tree_id, u64 dirid, char *name)
2226 {
2227         struct btrfs_root *root;
2228         struct btrfs_key key;
2229         char *ptr;
2230         int ret = -1;
2231         int slot;
2232         int len;
2233         int total_len = 0;
2234         struct btrfs_inode_ref *iref;
2235         struct extent_buffer *l;
2236         struct btrfs_path *path;
2237
2238         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2239                 name[0]='\0';
2240                 return 0;
2241         }
2242
2243         path = btrfs_alloc_path();
2244         if (!path)
2245                 return -ENOMEM;
2246
2247         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2248
2249         key.objectid = tree_id;
2250         key.type = BTRFS_ROOT_ITEM_KEY;
2251         key.offset = (u64)-1;
2252         root = btrfs_read_fs_root_no_name(info, &key);
2253         if (IS_ERR(root)) {
2254                 btrfs_err(info, "could not find root %llu", tree_id);
2255                 ret = -ENOENT;
2256                 goto out;
2257         }
2258
2259         key.objectid = dirid;
2260         key.type = BTRFS_INODE_REF_KEY;
2261         key.offset = (u64)-1;
2262
2263         while (1) {
2264                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2265                 if (ret < 0)
2266                         goto out;
2267                 else if (ret > 0) {
2268                         ret = btrfs_previous_item(root, path, dirid,
2269                                                   BTRFS_INODE_REF_KEY);
2270                         if (ret < 0)
2271                                 goto out;
2272                         else if (ret > 0) {
2273                                 ret = -ENOENT;
2274                                 goto out;
2275                         }
2276                 }
2277
2278                 l = path->nodes[0];
2279                 slot = path->slots[0];
2280                 btrfs_item_key_to_cpu(l, &key, slot);
2281
2282                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2283                 len = btrfs_inode_ref_name_len(l, iref);
2284                 ptr -= len + 1;
2285                 total_len += len + 1;
2286                 if (ptr < name) {
2287                         ret = -ENAMETOOLONG;
2288                         goto out;
2289                 }
2290
2291                 *(ptr + len) = '/';
2292                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2293
2294                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2295                         break;
2296
2297                 btrfs_release_path(path);
2298                 key.objectid = key.offset;
2299                 key.offset = (u64)-1;
2300                 dirid = key.objectid;
2301         }
2302         memmove(name, ptr, total_len);
2303         name[total_len] = '\0';
2304         ret = 0;
2305 out:
2306         btrfs_free_path(path);
2307         return ret;
2308 }
2309
2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2311                                            void __user *argp)
2312 {
2313          struct btrfs_ioctl_ino_lookup_args *args;
2314          struct inode *inode;
2315         int ret = 0;
2316
2317         args = memdup_user(argp, sizeof(*args));
2318         if (IS_ERR(args))
2319                 return PTR_ERR(args);
2320
2321         inode = file_inode(file);
2322
2323         /*
2324          * Unprivileged query to obtain the containing subvolume root id. The
2325          * path is reset so it's consistent with btrfs_search_path_in_tree.
2326          */
2327         if (args->treeid == 0)
2328                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2329
2330         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2331                 args->name[0] = 0;
2332                 goto out;
2333         }
2334
2335         if (!capable(CAP_SYS_ADMIN)) {
2336                 ret = -EPERM;
2337                 goto out;
2338         }
2339
2340         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2341                                         args->treeid, args->objectid,
2342                                         args->name);
2343
2344 out:
2345         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2346                 ret = -EFAULT;
2347
2348         kfree(args);
2349         return ret;
2350 }
2351
2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2353                                              void __user *arg)
2354 {
2355         struct dentry *parent = file->f_path.dentry;
2356         struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2357         struct dentry *dentry;
2358         struct inode *dir = d_inode(parent);
2359         struct inode *inode;
2360         struct btrfs_root *root = BTRFS_I(dir)->root;
2361         struct btrfs_root *dest = NULL;
2362         struct btrfs_ioctl_vol_args *vol_args;
2363         struct btrfs_trans_handle *trans;
2364         struct btrfs_block_rsv block_rsv;
2365         u64 root_flags;
2366         u64 qgroup_reserved;
2367         int namelen;
2368         int ret;
2369         int err = 0;
2370
2371         if (!S_ISDIR(dir->i_mode))
2372                 return -ENOTDIR;
2373
2374         vol_args = memdup_user(arg, sizeof(*vol_args));
2375         if (IS_ERR(vol_args))
2376                 return PTR_ERR(vol_args);
2377
2378         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2379         namelen = strlen(vol_args->name);
2380         if (strchr(vol_args->name, '/') ||
2381             strncmp(vol_args->name, "..", namelen) == 0) {
2382                 err = -EINVAL;
2383                 goto out;
2384         }
2385
2386         err = mnt_want_write_file(file);
2387         if (err)
2388                 goto out;
2389
2390
2391         err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2392         if (err == -EINTR)
2393                 goto out_drop_write;
2394         dentry = lookup_one_len(vol_args->name, parent, namelen);
2395         if (IS_ERR(dentry)) {
2396                 err = PTR_ERR(dentry);
2397                 goto out_unlock_dir;
2398         }
2399
2400         if (d_really_is_negative(dentry)) {
2401                 err = -ENOENT;
2402                 goto out_dput;
2403         }
2404
2405         inode = d_inode(dentry);
2406         dest = BTRFS_I(inode)->root;
2407         if (!capable(CAP_SYS_ADMIN)) {
2408                 /*
2409                  * Regular user.  Only allow this with a special mount
2410                  * option, when the user has write+exec access to the
2411                  * subvol root, and when rmdir(2) would have been
2412                  * allowed.
2413                  *
2414                  * Note that this is _not_ check that the subvol is
2415                  * empty or doesn't contain data that we wouldn't
2416                  * otherwise be able to delete.
2417                  *
2418                  * Users who want to delete empty subvols should try
2419                  * rmdir(2).
2420                  */
2421                 err = -EPERM;
2422                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2423                         goto out_dput;
2424
2425                 /*
2426                  * Do not allow deletion if the parent dir is the same
2427                  * as the dir to be deleted.  That means the ioctl
2428                  * must be called on the dentry referencing the root
2429                  * of the subvol, not a random directory contained
2430                  * within it.
2431                  */
2432                 err = -EINVAL;
2433                 if (root == dest)
2434                         goto out_dput;
2435
2436                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2437                 if (err)
2438                         goto out_dput;
2439         }
2440
2441         /* check if subvolume may be deleted by a user */
2442         err = btrfs_may_delete(dir, dentry, 1);
2443         if (err)
2444                 goto out_dput;
2445
2446         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2447                 err = -EINVAL;
2448                 goto out_dput;
2449         }
2450
2451         inode_lock(inode);
2452
2453         /*
2454          * Don't allow to delete a subvolume with send in progress. This is
2455          * inside the i_mutex so the error handling that has to drop the bit
2456          * again is not run concurrently.
2457          */
2458         spin_lock(&dest->root_item_lock);
2459         root_flags = btrfs_root_flags(&dest->root_item);
2460         if (dest->send_in_progress == 0) {
2461                 btrfs_set_root_flags(&dest->root_item,
2462                                 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2463                 spin_unlock(&dest->root_item_lock);
2464         } else {
2465                 spin_unlock(&dest->root_item_lock);
2466                 btrfs_warn(fs_info,
2467                            "Attempt to delete subvolume %llu during send",
2468                            dest->root_key.objectid);
2469                 err = -EPERM;
2470                 goto out_unlock_inode;
2471         }
2472
2473         down_write(&fs_info->subvol_sem);
2474
2475         err = may_destroy_subvol(dest);
2476         if (err)
2477                 goto out_up_write;
2478
2479         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2480         /*
2481          * One for dir inode, two for dir entries, two for root
2482          * ref/backref.
2483          */
2484         err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2485                                                5, &qgroup_reserved, true);
2486         if (err)
2487                 goto out_up_write;
2488
2489         trans = btrfs_start_transaction(root, 0);
2490         if (IS_ERR(trans)) {
2491                 err = PTR_ERR(trans);
2492                 goto out_release;
2493         }
2494         trans->block_rsv = &block_rsv;
2495         trans->bytes_reserved = block_rsv.size;
2496
2497         btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2498
2499         ret = btrfs_unlink_subvol(trans, root, dir,
2500                                 dest->root_key.objectid,
2501                                 dentry->d_name.name,
2502                                 dentry->d_name.len);
2503         if (ret) {
2504                 err = ret;
2505                 btrfs_abort_transaction(trans, ret);
2506                 goto out_end_trans;
2507         }
2508
2509         btrfs_record_root_in_trans(trans, dest);
2510
2511         memset(&dest->root_item.drop_progress, 0,
2512                 sizeof(dest->root_item.drop_progress));
2513         dest->root_item.drop_level = 0;
2514         btrfs_set_root_refs(&dest->root_item, 0);
2515
2516         if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2517                 ret = btrfs_insert_orphan_item(trans,
2518                                         fs_info->tree_root,
2519                                         dest->root_key.objectid);
2520                 if (ret) {
2521                         btrfs_abort_transaction(trans, ret);
2522                         err = ret;
2523                         goto out_end_trans;
2524                 }
2525         }
2526
2527         ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2528                                   BTRFS_UUID_KEY_SUBVOL,
2529                                   dest->root_key.objectid);
2530         if (ret && ret != -ENOENT) {
2531                 btrfs_abort_transaction(trans, ret);
2532                 err = ret;
2533                 goto out_end_trans;
2534         }
2535         if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2536                 ret = btrfs_uuid_tree_rem(trans, fs_info,
2537                                           dest->root_item.received_uuid,
2538                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2539                                           dest->root_key.objectid);
2540                 if (ret && ret != -ENOENT) {
2541                         btrfs_abort_transaction(trans, ret);
2542                         err = ret;
2543                         goto out_end_trans;
2544                 }
2545         }
2546
2547 out_end_trans:
2548         trans->block_rsv = NULL;
2549         trans->bytes_reserved = 0;
2550         ret = btrfs_end_transaction(trans);
2551         if (ret && !err)
2552                 err = ret;
2553         inode->i_flags |= S_DEAD;
2554 out_release:
2555         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2556 out_up_write:
2557         up_write(&fs_info->subvol_sem);
2558         if (err) {
2559                 spin_lock(&dest->root_item_lock);
2560                 root_flags = btrfs_root_flags(&dest->root_item);
2561                 btrfs_set_root_flags(&dest->root_item,
2562                                 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2563                 spin_unlock(&dest->root_item_lock);
2564         }
2565 out_unlock_inode:
2566         inode_unlock(inode);
2567         if (!err) {
2568                 d_invalidate(dentry);
2569                 btrfs_invalidate_inodes(dest);
2570                 d_delete(dentry);
2571                 ASSERT(dest->send_in_progress == 0);
2572
2573                 /* the last ref */
2574                 if (dest->ino_cache_inode) {
2575                         iput(dest->ino_cache_inode);
2576                         dest->ino_cache_inode = NULL;
2577                 }
2578         }
2579 out_dput:
2580         dput(dentry);
2581 out_unlock_dir:
2582         inode_unlock(dir);
2583 out_drop_write:
2584         mnt_drop_write_file(file);
2585 out:
2586         kfree(vol_args);
2587         return err;
2588 }
2589
2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2591 {
2592         struct inode *inode = file_inode(file);
2593         struct btrfs_root *root = BTRFS_I(inode)->root;
2594         struct btrfs_ioctl_defrag_range_args *range;
2595         int ret;
2596
2597         ret = mnt_want_write_file(file);
2598         if (ret)
2599                 return ret;
2600
2601         if (btrfs_root_readonly(root)) {
2602                 ret = -EROFS;
2603                 goto out;
2604         }
2605
2606         switch (inode->i_mode & S_IFMT) {
2607         case S_IFDIR:
2608                 if (!capable(CAP_SYS_ADMIN)) {
2609                         ret = -EPERM;
2610                         goto out;
2611                 }
2612                 ret = btrfs_defrag_root(root);
2613                 break;
2614         case S_IFREG:
2615                 if (!(file->f_mode & FMODE_WRITE)) {
2616                         ret = -EINVAL;
2617                         goto out;
2618                 }
2619
2620                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2621                 if (!range) {
2622                         ret = -ENOMEM;
2623                         goto out;
2624                 }
2625
2626                 if (argp) {
2627                         if (copy_from_user(range, argp,
2628                                            sizeof(*range))) {
2629                                 ret = -EFAULT;
2630                                 kfree(range);
2631                                 goto out;
2632                         }
2633                         /* compression requires us to start the IO */
2634                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2635                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2636                                 range->extent_thresh = (u32)-1;
2637                         }
2638                 } else {
2639                         /* the rest are all set to zero by kzalloc */
2640                         range->len = (u64)-1;
2641                 }
2642                 ret = btrfs_defrag_file(file_inode(file), file,
2643                                         range, 0, 0);
2644                 if (ret > 0)
2645                         ret = 0;
2646                 kfree(range);
2647                 break;
2648         default:
2649                 ret = -EINVAL;
2650         }
2651 out:
2652         mnt_drop_write_file(file);
2653         return ret;
2654 }
2655
2656 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2657 {
2658         struct btrfs_ioctl_vol_args *vol_args;
2659         int ret;
2660
2661         if (!capable(CAP_SYS_ADMIN))
2662                 return -EPERM;
2663
2664         if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1))
2665                 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2666
2667         mutex_lock(&fs_info->volume_mutex);
2668         vol_args = memdup_user(arg, sizeof(*vol_args));
2669         if (IS_ERR(vol_args)) {
2670                 ret = PTR_ERR(vol_args);
2671                 goto out;
2672         }
2673
2674         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675         ret = btrfs_init_new_device(fs_info, vol_args->name);
2676
2677         if (!ret)
2678                 btrfs_info(fs_info, "disk added %s", vol_args->name);
2679
2680         kfree(vol_args);
2681 out:
2682         mutex_unlock(&fs_info->volume_mutex);
2683         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2684         return ret;
2685 }
2686
2687 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2688 {
2689         struct inode *inode = file_inode(file);
2690         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2691         struct btrfs_ioctl_vol_args_v2 *vol_args;
2692         int ret;
2693
2694         if (!capable(CAP_SYS_ADMIN))
2695                 return -EPERM;
2696
2697         ret = mnt_want_write_file(file);
2698         if (ret)
2699                 return ret;
2700
2701         vol_args = memdup_user(arg, sizeof(*vol_args));
2702         if (IS_ERR(vol_args)) {
2703                 ret = PTR_ERR(vol_args);
2704                 goto err_drop;
2705         }
2706
2707         /* Check for compatibility reject unknown flags */
2708         if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2709                 return -EOPNOTSUPP;
2710
2711         if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2712                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2713                 goto out;
2714         }
2715
2716         mutex_lock(&fs_info->volume_mutex);
2717         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2718                 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2719         } else {
2720                 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2721                 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2722         }
2723         mutex_unlock(&fs_info->volume_mutex);
2724         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2725
2726         if (!ret) {
2727                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2728                         btrfs_info(fs_info, "device deleted: id %llu",
2729                                         vol_args->devid);
2730                 else
2731                         btrfs_info(fs_info, "device deleted: %s",
2732                                         vol_args->name);
2733         }
2734 out:
2735         kfree(vol_args);
2736 err_drop:
2737         mnt_drop_write_file(file);
2738         return ret;
2739 }
2740
2741 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2742 {
2743         struct inode *inode = file_inode(file);
2744         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2745         struct btrfs_ioctl_vol_args *vol_args;
2746         int ret;
2747
2748         if (!capable(CAP_SYS_ADMIN))
2749                 return -EPERM;
2750
2751         ret = mnt_want_write_file(file);
2752         if (ret)
2753                 return ret;
2754
2755         if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
2756                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2757                 goto out_drop_write;
2758         }
2759
2760         vol_args = memdup_user(arg, sizeof(*vol_args));
2761         if (IS_ERR(vol_args)) {
2762                 ret = PTR_ERR(vol_args);
2763                 goto out;
2764         }
2765
2766         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2767         mutex_lock(&fs_info->volume_mutex);
2768         ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2769         mutex_unlock(&fs_info->volume_mutex);
2770
2771         if (!ret)
2772                 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2773         kfree(vol_args);
2774 out:
2775         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
2776 out_drop_write:
2777         mnt_drop_write_file(file);
2778
2779         return ret;
2780 }
2781
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2783                                 void __user *arg)
2784 {
2785         struct btrfs_ioctl_fs_info_args *fi_args;
2786         struct btrfs_device *device;
2787         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2788         int ret = 0;
2789
2790         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2791         if (!fi_args)
2792                 return -ENOMEM;
2793
2794         mutex_lock(&fs_devices->device_list_mutex);
2795         fi_args->num_devices = fs_devices->num_devices;
2796         memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2797
2798         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2799                 if (device->devid > fi_args->max_id)
2800                         fi_args->max_id = device->devid;
2801         }
2802         mutex_unlock(&fs_devices->device_list_mutex);
2803
2804         fi_args->nodesize = fs_info->super_copy->nodesize;
2805         fi_args->sectorsize = fs_info->super_copy->sectorsize;
2806         fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2807
2808         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2809                 ret = -EFAULT;
2810
2811         kfree(fi_args);
2812         return ret;
2813 }
2814
2815 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2816                                  void __user *arg)
2817 {
2818         struct btrfs_ioctl_dev_info_args *di_args;
2819         struct btrfs_device *dev;
2820         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2821         int ret = 0;
2822         char *s_uuid = NULL;
2823
2824         di_args = memdup_user(arg, sizeof(*di_args));
2825         if (IS_ERR(di_args))
2826                 return PTR_ERR(di_args);
2827
2828         if (!btrfs_is_empty_uuid(di_args->uuid))
2829                 s_uuid = di_args->uuid;
2830
2831         mutex_lock(&fs_devices->device_list_mutex);
2832         dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2833
2834         if (!dev) {
2835                 ret = -ENODEV;
2836                 goto out;
2837         }
2838
2839         di_args->devid = dev->devid;
2840         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2841         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2842         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2843         if (dev->name) {
2844                 struct rcu_string *name;
2845
2846                 rcu_read_lock();
2847                 name = rcu_dereference(dev->name);
2848                 strncpy(di_args->path, name->str, sizeof(di_args->path));
2849                 rcu_read_unlock();
2850                 di_args->path[sizeof(di_args->path) - 1] = 0;
2851         } else {
2852                 di_args->path[0] = '\0';
2853         }
2854
2855 out:
2856         mutex_unlock(&fs_devices->device_list_mutex);
2857         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2858                 ret = -EFAULT;
2859
2860         kfree(di_args);
2861         return ret;
2862 }
2863
2864 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2865 {
2866         struct page *page;
2867
2868         page = grab_cache_page(inode->i_mapping, index);
2869         if (!page)
2870                 return ERR_PTR(-ENOMEM);
2871
2872         if (!PageUptodate(page)) {
2873                 int ret;
2874
2875                 ret = btrfs_readpage(NULL, page);
2876                 if (ret)
2877                         return ERR_PTR(ret);
2878                 lock_page(page);
2879                 if (!PageUptodate(page)) {
2880                         unlock_page(page);
2881                         put_page(page);
2882                         return ERR_PTR(-EIO);
2883                 }
2884                 if (page->mapping != inode->i_mapping) {
2885                         unlock_page(page);
2886                         put_page(page);
2887                         return ERR_PTR(-EAGAIN);
2888                 }
2889         }
2890
2891         return page;
2892 }
2893
2894 static int gather_extent_pages(struct inode *inode, struct page **pages,
2895                                int num_pages, u64 off)
2896 {
2897         int i;
2898         pgoff_t index = off >> PAGE_SHIFT;
2899
2900         for (i = 0; i < num_pages; i++) {
2901 again:
2902                 pages[i] = extent_same_get_page(inode, index + i);
2903                 if (IS_ERR(pages[i])) {
2904                         int err = PTR_ERR(pages[i]);
2905
2906                         if (err == -EAGAIN)
2907                                 goto again;
2908                         pages[i] = NULL;
2909                         return err;
2910                 }
2911         }
2912         return 0;
2913 }
2914
2915 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2916                              bool retry_range_locking)
2917 {
2918         /*
2919          * Do any pending delalloc/csum calculations on inode, one way or
2920          * another, and lock file content.
2921          * The locking order is:
2922          *
2923          *   1) pages
2924          *   2) range in the inode's io tree
2925          */
2926         while (1) {
2927                 struct btrfs_ordered_extent *ordered;
2928                 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2929                 ordered = btrfs_lookup_first_ordered_extent(inode,
2930                                                             off + len - 1);
2931                 if ((!ordered ||
2932                      ordered->file_offset + ordered->len <= off ||
2933                      ordered->file_offset >= off + len) &&
2934                     !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2935                                     off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2936                         if (ordered)
2937                                 btrfs_put_ordered_extent(ordered);
2938                         break;
2939                 }
2940                 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2941                 if (ordered)
2942                         btrfs_put_ordered_extent(ordered);
2943                 if (!retry_range_locking)
2944                         return -EAGAIN;
2945                 btrfs_wait_ordered_range(inode, off, len);
2946         }
2947         return 0;
2948 }
2949
2950 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2951 {
2952         inode_unlock(inode1);
2953         inode_unlock(inode2);
2954 }
2955
2956 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2957 {
2958         if (inode1 < inode2)
2959                 swap(inode1, inode2);
2960
2961         inode_lock_nested(inode1, I_MUTEX_PARENT);
2962         inode_lock_nested(inode2, I_MUTEX_CHILD);
2963 }
2964
2965 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2966                                       struct inode *inode2, u64 loff2, u64 len)
2967 {
2968         unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2969         unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2970 }
2971
2972 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2973                                     struct inode *inode2, u64 loff2, u64 len,
2974                                     bool retry_range_locking)
2975 {
2976         int ret;
2977
2978         if (inode1 < inode2) {
2979                 swap(inode1, inode2);
2980                 swap(loff1, loff2);
2981         }
2982         ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2983         if (ret)
2984                 return ret;
2985         ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2986         if (ret)
2987                 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2988                               loff1 + len - 1);
2989         return ret;
2990 }
2991
2992 struct cmp_pages {
2993         int             num_pages;
2994         struct page     **src_pages;
2995         struct page     **dst_pages;
2996 };
2997
2998 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2999 {
3000         int i;
3001         struct page *pg;
3002
3003         for (i = 0; i < cmp->num_pages; i++) {
3004                 pg = cmp->src_pages[i];
3005                 if (pg) {
3006                         unlock_page(pg);
3007                         put_page(pg);
3008                 }
3009                 pg = cmp->dst_pages[i];
3010                 if (pg) {
3011                         unlock_page(pg);
3012                         put_page(pg);
3013                 }
3014         }
3015         kfree(cmp->src_pages);
3016         kfree(cmp->dst_pages);
3017 }
3018
3019 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3020                                   struct inode *dst, u64 dst_loff,
3021                                   u64 len, struct cmp_pages *cmp)
3022 {
3023         int ret;
3024         int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3025         struct page **src_pgarr, **dst_pgarr;
3026
3027         /*
3028          * We must gather up all the pages before we initiate our
3029          * extent locking. We use an array for the page pointers. Size
3030          * of the array is bounded by len, which is in turn bounded by
3031          * BTRFS_MAX_DEDUPE_LEN.
3032          */
3033         src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3034         dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3035         if (!src_pgarr || !dst_pgarr) {
3036                 kfree(src_pgarr);
3037                 kfree(dst_pgarr);
3038                 return -ENOMEM;
3039         }
3040         cmp->num_pages = num_pages;
3041         cmp->src_pages = src_pgarr;
3042         cmp->dst_pages = dst_pgarr;
3043
3044         ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3045         if (ret)
3046                 goto out;
3047
3048         ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3049
3050 out:
3051         if (ret)
3052                 btrfs_cmp_data_free(cmp);
3053         return 0;
3054 }
3055
3056 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3057 {
3058         int ret = 0;
3059         int i;
3060         struct page *src_page, *dst_page;
3061         unsigned int cmp_len = PAGE_SIZE;
3062         void *addr, *dst_addr;
3063
3064         i = 0;
3065         while (len) {
3066                 if (len < PAGE_SIZE)
3067                         cmp_len = len;
3068
3069                 BUG_ON(i >= cmp->num_pages);
3070
3071                 src_page = cmp->src_pages[i];
3072                 dst_page = cmp->dst_pages[i];
3073                 ASSERT(PageLocked(src_page));
3074                 ASSERT(PageLocked(dst_page));
3075
3076                 addr = kmap_atomic(src_page);
3077                 dst_addr = kmap_atomic(dst_page);
3078
3079                 flush_dcache_page(src_page);
3080                 flush_dcache_page(dst_page);
3081
3082                 if (memcmp(addr, dst_addr, cmp_len))
3083                         ret = -EBADE;
3084
3085                 kunmap_atomic(addr);
3086                 kunmap_atomic(dst_addr);
3087
3088                 if (ret)
3089                         break;
3090
3091                 len -= cmp_len;
3092                 i++;
3093         }
3094
3095         return ret;
3096 }
3097
3098 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3099                                      u64 olen)
3100 {
3101         u64 len = *plen;
3102         u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3103
3104         if (off + olen > inode->i_size || off + olen < off)
3105                 return -EINVAL;
3106
3107         /* if we extend to eof, continue to block boundary */
3108         if (off + len == inode->i_size)
3109                 *plen = len = ALIGN(inode->i_size, bs) - off;
3110
3111         /* Check that we are block aligned - btrfs_clone() requires this */
3112         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3113                 return -EINVAL;
3114
3115         return 0;
3116 }
3117
3118 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3119                              struct inode *dst, u64 dst_loff)
3120 {
3121         int ret;
3122         u64 len = olen;
3123         struct cmp_pages cmp;
3124         bool same_inode = (src == dst);
3125         u64 same_lock_start = 0;
3126         u64 same_lock_len = 0;
3127
3128         if (len == 0)
3129                 return 0;
3130
3131         if (same_inode)
3132                 inode_lock(src);
3133         else
3134                 btrfs_double_inode_lock(src, dst);
3135
3136         ret = extent_same_check_offsets(src, loff, &len, olen);
3137         if (ret)
3138                 goto out_unlock;
3139
3140         ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3141         if (ret)
3142                 goto out_unlock;
3143
3144         if (same_inode) {
3145                 /*
3146                  * Single inode case wants the same checks, except we
3147                  * don't want our length pushed out past i_size as
3148                  * comparing that data range makes no sense.
3149                  *
3150                  * extent_same_check_offsets() will do this for an
3151                  * unaligned length at i_size, so catch it here and
3152                  * reject the request.
3153                  *
3154                  * This effectively means we require aligned extents
3155                  * for the single-inode case, whereas the other cases
3156                  * allow an unaligned length so long as it ends at
3157                  * i_size.
3158                  */
3159                 if (len != olen) {
3160                         ret = -EINVAL;
3161                         goto out_unlock;
3162                 }
3163
3164                 /* Check for overlapping ranges */
3165                 if (dst_loff + len > loff && dst_loff < loff + len) {
3166                         ret = -EINVAL;
3167                         goto out_unlock;
3168                 }
3169
3170                 same_lock_start = min_t(u64, loff, dst_loff);
3171                 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3172         }
3173
3174         /* don't make the dst file partly checksummed */
3175         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3176             (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3177                 ret = -EINVAL;
3178                 goto out_unlock;
3179         }
3180
3181 again:
3182         ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3183         if (ret)
3184                 goto out_unlock;
3185
3186         if (same_inode)
3187                 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3188                                         false);
3189         else
3190                 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3191                                                false);
3192         /*
3193          * If one of the inodes has dirty pages in the respective range or
3194          * ordered extents, we need to flush dellaloc and wait for all ordered
3195          * extents in the range. We must unlock the pages and the ranges in the
3196          * io trees to avoid deadlocks when flushing delalloc (requires locking
3197          * pages) and when waiting for ordered extents to complete (they require
3198          * range locking).
3199          */
3200         if (ret == -EAGAIN) {
3201                 /*
3202                  * Ranges in the io trees already unlocked. Now unlock all
3203                  * pages before waiting for all IO to complete.
3204                  */
3205                 btrfs_cmp_data_free(&cmp);
3206                 if (same_inode) {
3207                         btrfs_wait_ordered_range(src, same_lock_start,
3208                                                  same_lock_len);
3209                 } else {
3210                         btrfs_wait_ordered_range(src, loff, len);
3211                         btrfs_wait_ordered_range(dst, dst_loff, len);
3212                 }
3213                 goto again;
3214         }
3215         ASSERT(ret == 0);
3216         if (WARN_ON(ret)) {
3217                 /* ranges in the io trees already unlocked */
3218                 btrfs_cmp_data_free(&cmp);
3219                 return ret;
3220         }
3221
3222         /* pass original length for comparison so we stay within i_size */
3223         ret = btrfs_cmp_data(olen, &cmp);
3224         if (ret == 0)
3225                 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3226
3227         if (same_inode)
3228                 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3229                               same_lock_start + same_lock_len - 1);
3230         else
3231                 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3232
3233         btrfs_cmp_data_free(&cmp);
3234 out_unlock:
3235         if (same_inode)
3236                 inode_unlock(src);
3237         else
3238                 btrfs_double_inode_unlock(src, dst);
3239
3240         return ret;
3241 }
3242
3243 #define BTRFS_MAX_DEDUPE_LEN    SZ_16M
3244
3245 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3246                                 struct file *dst_file, u64 dst_loff)
3247 {
3248         struct inode *src = file_inode(src_file);
3249         struct inode *dst = file_inode(dst_file);
3250         u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3251         ssize_t res;
3252
3253         if (olen > BTRFS_MAX_DEDUPE_LEN)
3254                 olen = BTRFS_MAX_DEDUPE_LEN;
3255
3256         if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3257                 /*
3258                  * Btrfs does not support blocksize < page_size. As a
3259                  * result, btrfs_cmp_data() won't correctly handle
3260                  * this situation without an update.
3261                  */
3262                 return -EINVAL;
3263         }
3264
3265         res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3266         if (res)
3267                 return res;
3268         return olen;
3269 }
3270
3271 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3272                                      struct inode *inode,
3273                                      u64 endoff,
3274                                      const u64 destoff,
3275                                      const u64 olen,
3276                                      int no_time_update)
3277 {
3278         struct btrfs_root *root = BTRFS_I(inode)->root;
3279         int ret;
3280
3281         inode_inc_iversion(inode);
3282         if (!no_time_update)
3283                 inode->i_mtime = inode->i_ctime = current_time(inode);
3284         /*
3285          * We round up to the block size at eof when determining which
3286          * extents to clone above, but shouldn't round up the file size.
3287          */
3288         if (endoff > destoff + olen)
3289                 endoff = destoff + olen;
3290         if (endoff > inode->i_size)
3291                 btrfs_i_size_write(inode, endoff);
3292
3293         ret = btrfs_update_inode(trans, root, inode);
3294         if (ret) {
3295                 btrfs_abort_transaction(trans, ret);
3296                 btrfs_end_transaction(trans);
3297                 goto out;
3298         }
3299         ret = btrfs_end_transaction(trans);
3300 out:
3301         return ret;
3302 }
3303
3304 static void clone_update_extent_map(struct inode *inode,
3305                                     const struct btrfs_trans_handle *trans,
3306                                     const struct btrfs_path *path,
3307                                     const u64 hole_offset,
3308                                     const u64 hole_len)
3309 {
3310         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3311         struct extent_map *em;
3312         int ret;
3313
3314         em = alloc_extent_map();
3315         if (!em) {
3316                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3317                         &BTRFS_I(inode)->runtime_flags);
3318                 return;
3319         }
3320
3321         if (path) {
3322                 struct btrfs_file_extent_item *fi;
3323
3324                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3325                                     struct btrfs_file_extent_item);
3326                 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3327                 em->generation = -1;
3328                 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3329                     BTRFS_FILE_EXTENT_INLINE)
3330                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3331                                 &BTRFS_I(inode)->runtime_flags);
3332         } else {
3333                 em->start = hole_offset;
3334                 em->len = hole_len;
3335                 em->ram_bytes = em->len;
3336                 em->orig_start = hole_offset;
3337                 em->block_start = EXTENT_MAP_HOLE;
3338                 em->block_len = 0;
3339                 em->orig_block_len = 0;
3340                 em->compress_type = BTRFS_COMPRESS_NONE;
3341                 em->generation = trans->transid;
3342         }
3343
3344         while (1) {
3345                 write_lock(&em_tree->lock);
3346                 ret = add_extent_mapping(em_tree, em, 1);
3347                 write_unlock(&em_tree->lock);
3348                 if (ret != -EEXIST) {
3349                         free_extent_map(em);
3350                         break;
3351                 }
3352                 btrfs_drop_extent_cache(inode, em->start,
3353                                         em->start + em->len - 1, 0);
3354         }
3355
3356         if (ret)
3357                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3358                         &BTRFS_I(inode)->runtime_flags);
3359 }
3360
3361 /*
3362  * Make sure we do not end up inserting an inline extent into a file that has
3363  * already other (non-inline) extents. If a file has an inline extent it can
3364  * not have any other extents and the (single) inline extent must start at the
3365  * file offset 0. Failing to respect these rules will lead to file corruption,
3366  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3367  *
3368  * We can have extents that have been already written to disk or we can have
3369  * dirty ranges still in delalloc, in which case the extent maps and items are
3370  * created only when we run delalloc, and the delalloc ranges might fall outside
3371  * the range we are currently locking in the inode's io tree. So we check the
3372  * inode's i_size because of that (i_size updates are done while holding the
3373  * i_mutex, which we are holding here).
3374  * We also check to see if the inode has a size not greater than "datal" but has
3375  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3376  * protected against such concurrent fallocate calls by the i_mutex).
3377  *
3378  * If the file has no extents but a size greater than datal, do not allow the
3379  * copy because we would need turn the inline extent into a non-inline one (even
3380  * with NO_HOLES enabled). If we find our destination inode only has one inline
3381  * extent, just overwrite it with the source inline extent if its size is less
3382  * than the source extent's size, or we could copy the source inline extent's
3383  * data into the destination inode's inline extent if the later is greater then
3384  * the former.
3385  */
3386 static int clone_copy_inline_extent(struct inode *src,
3387                                     struct inode *dst,
3388                                     struct btrfs_trans_handle *trans,
3389                                     struct btrfs_path *path,
3390                                     struct btrfs_key *new_key,
3391                                     const u64 drop_start,
3392                                     const u64 datal,
3393                                     const u64 skip,
3394                                     const u64 size,
3395                                     char *inline_data)
3396 {
3397         struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3398         struct btrfs_root *root = BTRFS_I(dst)->root;
3399         const u64 aligned_end = ALIGN(new_key->offset + datal,
3400                                       fs_info->sectorsize);
3401         int ret;
3402         struct btrfs_key key;
3403
3404         if (new_key->offset > 0)
3405                 return -EOPNOTSUPP;
3406
3407         key.objectid = btrfs_ino(BTRFS_I(dst));
3408         key.type = BTRFS_EXTENT_DATA_KEY;
3409         key.offset = 0;
3410         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3411         if (ret < 0) {
3412                 return ret;
3413         } else if (ret > 0) {
3414                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3415                         ret = btrfs_next_leaf(root, path);
3416                         if (ret < 0)
3417                                 return ret;
3418                         else if (ret > 0)
3419                                 goto copy_inline_extent;
3420                 }
3421                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3422                 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3423                     key.type == BTRFS_EXTENT_DATA_KEY) {
3424                         ASSERT(key.offset > 0);
3425                         return -EOPNOTSUPP;
3426                 }
3427         } else if (i_size_read(dst) <= datal) {
3428                 struct btrfs_file_extent_item *ei;
3429                 u64 ext_len;
3430
3431                 /*
3432                  * If the file size is <= datal, make sure there are no other
3433                  * extents following (can happen do to an fallocate call with
3434                  * the flag FALLOC_FL_KEEP_SIZE).
3435                  */
3436                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3437                                     struct btrfs_file_extent_item);
3438                 /*
3439                  * If it's an inline extent, it can not have other extents
3440                  * following it.
3441                  */
3442                 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3443                     BTRFS_FILE_EXTENT_INLINE)
3444                         goto copy_inline_extent;
3445
3446                 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3447                 if (ext_len > aligned_end)
3448                         return -EOPNOTSUPP;
3449
3450                 ret = btrfs_next_item(root, path);
3451                 if (ret < 0) {
3452                         return ret;
3453                 } else if (ret == 0) {
3454                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3455                                               path->slots[0]);
3456                         if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3457                             key.type == BTRFS_EXTENT_DATA_KEY)
3458                                 return -EOPNOTSUPP;
3459                 }
3460         }
3461
3462 copy_inline_extent:
3463         /*
3464          * We have no extent items, or we have an extent at offset 0 which may
3465          * or may not be inlined. All these cases are dealt the same way.
3466          */
3467         if (i_size_read(dst) > datal) {
3468                 /*
3469                  * If the destination inode has an inline extent...
3470                  * This would require copying the data from the source inline
3471                  * extent into the beginning of the destination's inline extent.
3472                  * But this is really complex, both extents can be compressed
3473                  * or just one of them, which would require decompressing and
3474                  * re-compressing data (which could increase the new compressed
3475                  * size, not allowing the compressed data to fit anymore in an
3476                  * inline extent).
3477                  * So just don't support this case for now (it should be rare,
3478                  * we are not really saving space when cloning inline extents).
3479                  */
3480                 return -EOPNOTSUPP;
3481         }
3482
3483         btrfs_release_path(path);
3484         ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3485         if (ret)
3486                 return ret;
3487         ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3488         if (ret)
3489                 return ret;
3490
3491         if (skip) {
3492                 const u32 start = btrfs_file_extent_calc_inline_size(0);
3493
3494                 memmove(inline_data + start, inline_data + start + skip, datal);
3495         }
3496
3497         write_extent_buffer(path->nodes[0], inline_data,
3498                             btrfs_item_ptr_offset(path->nodes[0],
3499                                                   path->slots[0]),
3500                             size);
3501         inode_add_bytes(dst, datal);
3502
3503         return 0;
3504 }
3505
3506 /**
3507  * btrfs_clone() - clone a range from inode file to another
3508  *
3509  * @src: Inode to clone from
3510  * @inode: Inode to clone to
3511  * @off: Offset within source to start clone from
3512  * @olen: Original length, passed by user, of range to clone
3513  * @olen_aligned: Block-aligned value of olen
3514  * @destoff: Offset within @inode to start clone
3515  * @no_time_update: Whether to update mtime/ctime on the target inode
3516  */
3517 static int btrfs_clone(struct inode *src, struct inode *inode,
3518                        const u64 off, const u64 olen, const u64 olen_aligned,
3519                        const u64 destoff, int no_time_update)
3520 {
3521         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3522         struct btrfs_root *root = BTRFS_I(inode)->root;
3523         struct btrfs_path *path = NULL;
3524         struct extent_buffer *leaf;
3525         struct btrfs_trans_handle *trans;
3526         char *buf = NULL;
3527         struct btrfs_key key;
3528         u32 nritems;
3529         int slot;
3530         int ret;
3531         const u64 len = olen_aligned;
3532         u64 last_dest_end = destoff;
3533
3534         ret = -ENOMEM;
3535         buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
3536         if (!buf) {
3537                 buf = vmalloc(fs_info->nodesize);
3538                 if (!buf)
3539                         return ret;
3540         }
3541
3542         path = btrfs_alloc_path();
3543         if (!path) {
3544                 kvfree(buf);
3545                 return ret;
3546         }
3547
3548         path->reada = READA_FORWARD;
3549         /* clone data */
3550         key.objectid = btrfs_ino(BTRFS_I(src));
3551         key.type = BTRFS_EXTENT_DATA_KEY;
3552         key.offset = off;
3553
3554         while (1) {
3555                 u64 next_key_min_offset = key.offset + 1;
3556
3557                 /*
3558                  * note the key will change type as we walk through the
3559                  * tree.
3560                  */
3561                 path->leave_spinning = 1;
3562                 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3563                                 0, 0);
3564                 if (ret < 0)
3565                         goto out;
3566                 /*
3567                  * First search, if no extent item that starts at offset off was
3568                  * found but the previous item is an extent item, it's possible
3569                  * it might overlap our target range, therefore process it.
3570                  */
3571                 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3572                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3573                                               path->slots[0] - 1);
3574                         if (key.type == BTRFS_EXTENT_DATA_KEY)
3575                                 path->slots[0]--;
3576                 }
3577
3578                 nritems = btrfs_header_nritems(path->nodes[0]);
3579 process_slot:
3580                 if (path->slots[0] >= nritems) {
3581                         ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3582                         if (ret < 0)
3583                                 goto out;
3584                         if (ret > 0)
3585                                 break;
3586                         nritems = btrfs_header_nritems(path->nodes[0]);
3587                 }
3588                 leaf = path->nodes[0];
3589                 slot = path->slots[0];
3590
3591                 btrfs_item_key_to_cpu(leaf, &key, slot);
3592                 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3593                     key.objectid != btrfs_ino(BTRFS_I(src)))
3594                         break;
3595
3596                 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3597                         struct btrfs_file_extent_item *extent;
3598                         int type;
3599                         u32 size;
3600                         struct btrfs_key new_key;
3601                         u64 disko = 0, diskl = 0;
3602                         u64 datao = 0, datal = 0;
3603                         u8 comp;
3604                         u64 drop_start;
3605
3606                         extent = btrfs_item_ptr(leaf, slot,
3607                                                 struct btrfs_file_extent_item);
3608                         comp = btrfs_file_extent_compression(leaf, extent);
3609                         type = btrfs_file_extent_type(leaf, extent);
3610                         if (type == BTRFS_FILE_EXTENT_REG ||
3611                             type == BTRFS_FILE_EXTENT_PREALLOC) {
3612                                 disko = btrfs_file_extent_disk_bytenr(leaf,
3613                                                                       extent);
3614                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3615                                                                  extent);
3616                                 datao = btrfs_file_extent_offset(leaf, extent);
3617                                 datal = btrfs_file_extent_num_bytes(leaf,
3618                                                                     extent);
3619                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3620                                 /* take upper bound, may be compressed */
3621                                 datal = btrfs_file_extent_ram_bytes(leaf,
3622                                                                     extent);
3623                         }
3624
3625                         /*
3626                          * The first search might have left us at an extent
3627                          * item that ends before our target range's start, can
3628                          * happen if we have holes and NO_HOLES feature enabled.
3629                          */
3630                         if (key.offset + datal <= off) {
3631                                 path->slots[0]++;
3632                                 goto process_slot;
3633                         } else if (key.offset >= off + len) {
3634                                 break;
3635                         }
3636                         next_key_min_offset = key.offset + datal;
3637                         size = btrfs_item_size_nr(leaf, slot);
3638                         read_extent_buffer(leaf, buf,
3639                                            btrfs_item_ptr_offset(leaf, slot),
3640                                            size);
3641
3642                         btrfs_release_path(path);
3643                         path->leave_spinning = 0;
3644
3645                         memcpy(&new_key, &key, sizeof(new_key));
3646                         new_key.objectid = btrfs_ino(BTRFS_I(inode));
3647                         if (off <= key.offset)
3648                                 new_key.offset = key.offset + destoff - off;
3649                         else
3650                                 new_key.offset = destoff;
3651
3652                         /*
3653                          * Deal with a hole that doesn't have an extent item
3654                          * that represents it (NO_HOLES feature enabled).
3655                          * This hole is either in the middle of the cloning
3656                          * range or at the beginning (fully overlaps it or
3657                          * partially overlaps it).
3658                          */
3659                         if (new_key.offset != last_dest_end)
3660                                 drop_start = last_dest_end;
3661                         else
3662                                 drop_start = new_key.offset;
3663
3664                         /*
3665                          * 1 - adjusting old extent (we may have to split it)
3666                          * 1 - add new extent
3667                          * 1 - inode update
3668                          */
3669                         trans = btrfs_start_transaction(root, 3);
3670                         if (IS_ERR(trans)) {
3671                                 ret = PTR_ERR(trans);
3672                                 goto out;
3673                         }
3674
3675                         if (type == BTRFS_FILE_EXTENT_REG ||
3676                             type == BTRFS_FILE_EXTENT_PREALLOC) {
3677                                 /*
3678                                  *    a  | --- range to clone ---|  b
3679                                  * | ------------- extent ------------- |
3680                                  */
3681
3682                                 /* subtract range b */
3683                                 if (key.offset + datal > off + len)
3684                                         datal = off + len - key.offset;
3685
3686                                 /* subtract range a */
3687                                 if (off > key.offset) {
3688                                         datao += off - key.offset;
3689                                         datal -= off - key.offset;
3690                                 }
3691
3692                                 ret = btrfs_drop_extents(trans, root, inode,
3693                                                          drop_start,
3694                                                          new_key.offset + datal,
3695                                                          1);
3696                                 if (ret) {
3697                                         if (ret != -EOPNOTSUPP)
3698                                                 btrfs_abort_transaction(trans,
3699                                                                         ret);
3700                                         btrfs_end_transaction(trans);
3701                                         goto out;
3702                                 }
3703
3704                                 ret = btrfs_insert_empty_item(trans, root, path,
3705                                                               &new_key, size);
3706                                 if (ret) {
3707                                         btrfs_abort_transaction(trans, ret);
3708                                         btrfs_end_transaction(trans);
3709                                         goto out;
3710                                 }
3711
3712                                 leaf = path->nodes[0];
3713                                 slot = path->slots[0];
3714                                 write_extent_buffer(leaf, buf,
3715                                             btrfs_item_ptr_offset(leaf, slot),
3716                                             size);
3717
3718                                 extent = btrfs_item_ptr(leaf, slot,
3719                                                 struct btrfs_file_extent_item);
3720
3721                                 /* disko == 0 means it's a hole */
3722                                 if (!disko)
3723                                         datao = 0;
3724
3725                                 btrfs_set_file_extent_offset(leaf, extent,
3726                                                              datao);
3727                                 btrfs_set_file_extent_num_bytes(leaf, extent,
3728                                                                 datal);
3729
3730                                 if (disko) {
3731                                         inode_add_bytes(inode, datal);
3732                                         ret = btrfs_inc_extent_ref(trans,
3733                                                         fs_info,
3734                                                         disko, diskl, 0,
3735                                                         root->root_key.objectid,
3736                                                         btrfs_ino(BTRFS_I(inode)),
3737                                                         new_key.offset - datao);
3738                                         if (ret) {
3739                                                 btrfs_abort_transaction(trans,
3740                                                                         ret);
3741                                                 btrfs_end_transaction(trans);
3742                                                 goto out;
3743
3744                                         }
3745                                 }
3746                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3747                                 u64 skip = 0;
3748                                 u64 trim = 0;
3749
3750                                 if (off > key.offset) {
3751                                         skip = off - key.offset;
3752                                         new_key.offset += skip;
3753                                 }
3754
3755                                 if (key.offset + datal > off + len)
3756                                         trim = key.offset + datal - (off + len);
3757
3758                                 if (comp && (skip || trim)) {
3759                                         ret = -EINVAL;
3760                                         btrfs_end_transaction(trans);
3761                                         goto out;
3762                                 }
3763                                 size -= skip + trim;
3764                                 datal -= skip + trim;
3765
3766                                 ret = clone_copy_inline_extent(src, inode,
3767                                                                trans, path,
3768                                                                &new_key,
3769                                                                drop_start,
3770                                                                datal,
3771                                                                skip, size, buf);
3772                                 if (ret) {
3773                                         if (ret != -EOPNOTSUPP)
3774                                                 btrfs_abort_transaction(trans,
3775                                                                         ret);
3776                                         btrfs_end_transaction(trans);
3777                                         goto out;
3778                                 }
3779                                 leaf = path->nodes[0];
3780                                 slot = path->slots[0];
3781                         }
3782
3783                         /* If we have an implicit hole (NO_HOLES feature). */
3784                         if (drop_start < new_key.offset)
3785                                 clone_update_extent_map(inode, trans,
3786                                                 NULL, drop_start,
3787                                                 new_key.offset - drop_start);
3788
3789                         clone_update_extent_map(inode, trans, path, 0, 0);
3790
3791                         btrfs_mark_buffer_dirty(leaf);
3792                         btrfs_release_path(path);
3793
3794                         last_dest_end = ALIGN(new_key.offset + datal,
3795                                               fs_info->sectorsize);
3796                         ret = clone_finish_inode_update(trans, inode,
3797                                                         last_dest_end,
3798                                                         destoff, olen,
3799                                                         no_time_update);
3800                         if (ret)
3801                                 goto out;
3802                         if (new_key.offset + datal >= destoff + len)
3803                                 break;
3804                 }
3805                 btrfs_release_path(path);
3806                 key.offset = next_key_min_offset;
3807
3808                 if (fatal_signal_pending(current)) {
3809                         ret = -EINTR;
3810                         goto out;
3811                 }
3812         }
3813         ret = 0;
3814
3815         if (last_dest_end < destoff + len) {
3816                 /*
3817                  * We have an implicit hole (NO_HOLES feature is enabled) that
3818                  * fully or partially overlaps our cloning range at its end.
3819                  */
3820                 btrfs_release_path(path);
3821
3822                 /*
3823                  * 1 - remove extent(s)
3824                  * 1 - inode update
3825                  */
3826                 trans = btrfs_start_transaction(root, 2);
3827                 if (IS_ERR(trans)) {
3828                         ret = PTR_ERR(trans);
3829                         goto out;
3830                 }
3831                 ret = btrfs_drop_extents(trans, root, inode,
3832                                          last_dest_end, destoff + len, 1);
3833                 if (ret) {
3834                         if (ret != -EOPNOTSUPP)
3835                                 btrfs_abort_transaction(trans, ret);
3836                         btrfs_end_transaction(trans);
3837                         goto out;
3838                 }
3839                 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3840                                         destoff + len - last_dest_end);
3841                 ret = clone_finish_inode_update(trans, inode, destoff + len,
3842                                                 destoff, olen, no_time_update);
3843         }
3844
3845 out:
3846         btrfs_free_path(path);
3847         kvfree(buf);
3848         return ret;
3849 }
3850
3851 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3852                                         u64 off, u64 olen, u64 destoff)
3853 {
3854         struct inode *inode = file_inode(file);
3855         struct inode *src = file_inode(file_src);
3856         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3857         struct btrfs_root *root = BTRFS_I(inode)->root;
3858         int ret;
3859         u64 len = olen;
3860         u64 bs = fs_info->sb->s_blocksize;
3861         int same_inode = src == inode;
3862
3863         /*
3864          * TODO:
3865          * - split compressed inline extents.  annoying: we need to
3866          *   decompress into destination's address_space (the file offset
3867          *   may change, so source mapping won't do), then recompress (or
3868          *   otherwise reinsert) a subrange.
3869          *
3870          * - split destination inode's inline extents.  The inline extents can
3871          *   be either compressed or non-compressed.
3872          */
3873
3874         if (btrfs_root_readonly(root))
3875                 return -EROFS;
3876
3877         if (file_src->f_path.mnt != file->f_path.mnt ||
3878             src->i_sb != inode->i_sb)
3879                 return -EXDEV;
3880
3881         /* don't make the dst file partly checksummed */
3882         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3883             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3884                 return -EINVAL;
3885
3886         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3887                 return -EISDIR;
3888
3889         if (!same_inode) {
3890                 btrfs_double_inode_lock(src, inode);
3891         } else {
3892                 inode_lock(src);
3893         }
3894
3895         /* determine range to clone */
3896         ret = -EINVAL;
3897         if (off + len > src->i_size || off + len < off)
3898                 goto out_unlock;
3899         if (len == 0)
3900                 olen = len = src->i_size - off;
3901         /* if we extend to eof, continue to block boundary */
3902         if (off + len == src->i_size)
3903                 len = ALIGN(src->i_size, bs) - off;
3904
3905         if (len == 0) {
3906                 ret = 0;
3907                 goto out_unlock;
3908         }
3909
3910         /* verify the end result is block aligned */
3911         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3912             !IS_ALIGNED(destoff, bs))
3913                 goto out_unlock;
3914
3915         /* verify if ranges are overlapped within the same file */
3916         if (same_inode) {
3917                 if (destoff + len > off && destoff < off + len)
3918                         goto out_unlock;
3919         }
3920
3921         if (destoff > inode->i_size) {
3922                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3923                 if (ret)
3924                         goto out_unlock;
3925         }
3926
3927         /*
3928          * Lock the target range too. Right after we replace the file extent
3929          * items in the fs tree (which now point to the cloned data), we might
3930          * have a worker replace them with extent items relative to a write
3931          * operation that was issued before this clone operation (i.e. confront
3932          * with inode.c:btrfs_finish_ordered_io).
3933          */
3934         if (same_inode) {
3935                 u64 lock_start = min_t(u64, off, destoff);
3936                 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3937
3938                 ret = lock_extent_range(src, lock_start, lock_len, true);
3939         } else {
3940                 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3941                                                true);
3942         }
3943         ASSERT(ret == 0);
3944         if (WARN_ON(ret)) {
3945                 /* ranges in the io trees already unlocked */
3946                 goto out_unlock;
3947         }
3948
3949         ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3950
3951         if (same_inode) {
3952                 u64 lock_start = min_t(u64, off, destoff);
3953                 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3954
3955                 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3956         } else {
3957                 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3958         }
3959         /*
3960          * Truncate page cache pages so that future reads will see the cloned
3961          * data immediately and not the previous data.
3962          */
3963         truncate_inode_pages_range(&inode->i_data,
3964                                 round_down(destoff, PAGE_SIZE),
3965                                 round_up(destoff + len, PAGE_SIZE) - 1);
3966 out_unlock:
3967         if (!same_inode)
3968                 btrfs_double_inode_unlock(src, inode);
3969         else
3970                 inode_unlock(src);
3971         return ret;
3972 }
3973
3974 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3975                 struct file *dst_file, loff_t destoff, u64 len)
3976 {
3977         return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3978 }
3979
3980 /*
3981  * there are many ways the trans_start and trans_end ioctls can lead
3982  * to deadlocks.  They should only be used by applications that
3983  * basically own the machine, and have a very in depth understanding
3984  * of all the possible deadlocks and enospc problems.
3985  */
3986 static long btrfs_ioctl_trans_start(struct file *file)
3987 {
3988         struct inode *inode = file_inode(file);
3989         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3990         struct btrfs_root *root = BTRFS_I(inode)->root;
3991         struct btrfs_trans_handle *trans;
3992         int ret;
3993
3994         ret = -EPERM;
3995         if (!capable(CAP_SYS_ADMIN))
3996                 goto out;
3997
3998         ret = -EINPROGRESS;
3999         if (file->private_data)
4000                 goto out;
4001
4002         ret = -EROFS;
4003         if (btrfs_root_readonly(root))
4004                 goto out;
4005
4006         ret = mnt_want_write_file(file);
4007         if (ret)
4008                 goto out;
4009
4010         atomic_inc(&fs_info->open_ioctl_trans);
4011
4012         ret = -ENOMEM;
4013         trans = btrfs_start_ioctl_transaction(root);
4014         if (IS_ERR(trans))
4015                 goto out_drop;
4016
4017         file->private_data = trans;
4018         return 0;
4019
4020 out_drop:
4021         atomic_dec(&fs_info->open_ioctl_trans);
4022         mnt_drop_write_file(file);
4023 out:
4024         return ret;
4025 }
4026
4027 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4028 {
4029         struct inode *inode = file_inode(file);
4030         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4031         struct btrfs_root *root = BTRFS_I(inode)->root;
4032         struct btrfs_root *new_root;
4033         struct btrfs_dir_item *di;
4034         struct btrfs_trans_handle *trans;
4035         struct btrfs_path *path;
4036         struct btrfs_key location;
4037         struct btrfs_disk_key disk_key;
4038         u64 objectid = 0;
4039         u64 dir_id;
4040         int ret;
4041
4042         if (!capable(CAP_SYS_ADMIN))
4043                 return -EPERM;
4044
4045         ret = mnt_want_write_file(file);
4046         if (ret)
4047                 return ret;
4048
4049         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4050                 ret = -EFAULT;
4051                 goto out;
4052         }
4053
4054         if (!objectid)
4055                 objectid = BTRFS_FS_TREE_OBJECTID;
4056
4057         location.objectid = objectid;
4058         location.type = BTRFS_ROOT_ITEM_KEY;
4059         location.offset = (u64)-1;
4060
4061         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4062         if (IS_ERR(new_root)) {
4063                 ret = PTR_ERR(new_root);
4064                 goto out;
4065         }
4066
4067         path = btrfs_alloc_path();
4068         if (!path) {
4069                 ret = -ENOMEM;
4070                 goto out;
4071         }
4072         path->leave_spinning = 1;
4073
4074         trans = btrfs_start_transaction(root, 1);
4075         if (IS_ERR(trans)) {
4076                 btrfs_free_path(path);
4077                 ret = PTR_ERR(trans);
4078                 goto out;
4079         }
4080
4081         dir_id = btrfs_super_root_dir(fs_info->super_copy);
4082         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4083                                    dir_id, "default", 7, 1);
4084         if (IS_ERR_OR_NULL(di)) {
4085                 btrfs_free_path(path);
4086                 btrfs_end_transaction(trans);
4087                 btrfs_err(fs_info,
4088                           "Umm, you don't have the default diritem, this isn't going to work");
4089                 ret = -ENOENT;
4090                 goto out;
4091         }
4092
4093         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4094         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4095         btrfs_mark_buffer_dirty(path->nodes[0]);
4096         btrfs_free_path(path);
4097
4098         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4099         btrfs_end_transaction(trans);
4100 out:
4101         mnt_drop_write_file(file);
4102         return ret;
4103 }
4104
4105 void btrfs_get_block_group_info(struct list_head *groups_list,
4106                                 struct btrfs_ioctl_space_info *space)
4107 {
4108         struct btrfs_block_group_cache *block_group;
4109
4110         space->total_bytes = 0;
4111         space->used_bytes = 0;
4112         space->flags = 0;
4113         list_for_each_entry(block_group, groups_list, list) {
4114                 space->flags = block_group->flags;
4115                 space->total_bytes += block_group->key.offset;
4116                 space->used_bytes +=
4117                         btrfs_block_group_used(&block_group->item);
4118         }
4119 }
4120
4121 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4122                                    void __user *arg)
4123 {
4124         struct btrfs_ioctl_space_args space_args;
4125         struct btrfs_ioctl_space_info space;
4126         struct btrfs_ioctl_space_info *dest;
4127         struct btrfs_ioctl_space_info *dest_orig;
4128         struct btrfs_ioctl_space_info __user *user_dest;
4129         struct btrfs_space_info *info;
4130         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4131                        BTRFS_BLOCK_GROUP_SYSTEM,
4132                        BTRFS_BLOCK_GROUP_METADATA,
4133                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4134         int num_types = 4;
4135         int alloc_size;
4136         int ret = 0;
4137         u64 slot_count = 0;
4138         int i, c;
4139
4140         if (copy_from_user(&space_args,
4141                            (struct btrfs_ioctl_space_args __user *)arg,
4142                            sizeof(space_args)))
4143                 return -EFAULT;
4144
4145         for (i = 0; i < num_types; i++) {
4146                 struct btrfs_space_info *tmp;
4147
4148                 info = NULL;
4149                 rcu_read_lock();
4150                 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4151                                         list) {
4152                         if (tmp->flags == types[i]) {
4153                                 info = tmp;
4154                                 break;
4155                         }
4156                 }
4157                 rcu_read_unlock();
4158
4159                 if (!info)
4160                         continue;
4161
4162                 down_read(&info->groups_sem);
4163                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4164                         if (!list_empty(&info->block_groups[c]))
4165                                 slot_count++;
4166                 }
4167                 up_read(&info->groups_sem);
4168         }
4169
4170         /*
4171          * Global block reserve, exported as a space_info
4172          */
4173         slot_count++;
4174
4175         /* space_slots == 0 means they are asking for a count */
4176         if (space_args.space_slots == 0) {
4177                 space_args.total_spaces = slot_count;
4178                 goto out;
4179         }
4180
4181         slot_count = min_t(u64, space_args.space_slots, slot_count);
4182
4183         alloc_size = sizeof(*dest) * slot_count;
4184
4185         /* we generally have at most 6 or so space infos, one for each raid
4186          * level.  So, a whole page should be more than enough for everyone
4187          */
4188         if (alloc_size > PAGE_SIZE)
4189                 return -ENOMEM;
4190
4191         space_args.total_spaces = 0;
4192         dest = kmalloc(alloc_size, GFP_KERNEL);
4193         if (!dest)
4194                 return -ENOMEM;
4195         dest_orig = dest;
4196
4197         /* now we have a buffer to copy into */
4198         for (i = 0; i < num_types; i++) {
4199                 struct btrfs_space_info *tmp;
4200
4201                 if (!slot_count)
4202                         break;
4203
4204                 info = NULL;
4205                 rcu_read_lock();
4206                 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4207                                         list) {
4208                         if (tmp->flags == types[i]) {
4209                                 info = tmp;
4210                                 break;
4211                         }
4212                 }
4213                 rcu_read_unlock();
4214
4215                 if (!info)
4216                         continue;
4217                 down_read(&info->groups_sem);
4218                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4219                         if (!list_empty(&info->block_groups[c])) {
4220                                 btrfs_get_block_group_info(
4221                                         &info->block_groups[c], &space);
4222                                 memcpy(dest, &space, sizeof(space));
4223                                 dest++;
4224                                 space_args.total_spaces++;
4225                                 slot_count--;
4226                         }
4227                         if (!slot_count)
4228                                 break;
4229                 }
4230                 up_read(&info->groups_sem);
4231         }
4232
4233         /*
4234          * Add global block reserve
4235          */
4236         if (slot_count) {
4237                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4238
4239                 spin_lock(&block_rsv->lock);
4240                 space.total_bytes = block_rsv->size;
4241                 space.used_bytes = block_rsv->size - block_rsv->reserved;
4242                 spin_unlock(&block_rsv->lock);
4243                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4244                 memcpy(dest, &space, sizeof(space));
4245                 space_args.total_spaces++;
4246         }
4247
4248         user_dest = (struct btrfs_ioctl_space_info __user *)
4249                 (arg + sizeof(struct btrfs_ioctl_space_args));
4250
4251         if (copy_to_user(user_dest, dest_orig, alloc_size))
4252                 ret = -EFAULT;
4253
4254         kfree(dest_orig);
4255 out:
4256         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4257                 ret = -EFAULT;
4258
4259         return ret;
4260 }
4261
4262 /*
4263  * there are many ways the trans_start and trans_end ioctls can lead
4264  * to deadlocks.  They should only be used by applications that
4265  * basically own the machine, and have a very in depth understanding
4266  * of all the possible deadlocks and enospc problems.
4267  */
4268 long btrfs_ioctl_trans_end(struct file *file)
4269 {
4270         struct inode *inode = file_inode(file);
4271         struct btrfs_root *root = BTRFS_I(inode)->root;
4272         struct btrfs_trans_handle *trans;
4273
4274         trans = file->private_data;
4275         if (!trans)
4276                 return -EINVAL;
4277         file->private_data = NULL;
4278
4279         btrfs_end_transaction(trans);
4280
4281         atomic_dec(&root->fs_info->open_ioctl_trans);
4282
4283         mnt_drop_write_file(file);
4284         return 0;
4285 }
4286
4287 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4288                                             void __user *argp)
4289 {
4290         struct btrfs_trans_handle *trans;
4291         u64 transid;
4292         int ret;
4293
4294         trans = btrfs_attach_transaction_barrier(root);
4295         if (IS_ERR(trans)) {
4296                 if (PTR_ERR(trans) != -ENOENT)
4297                         return PTR_ERR(trans);
4298
4299                 /* No running transaction, don't bother */
4300                 transid = root->fs_info->last_trans_committed;
4301                 goto out;
4302         }
4303         transid = trans->transid;
4304         ret = btrfs_commit_transaction_async(trans, 0);
4305         if (ret) {
4306                 btrfs_end_transaction(trans);
4307                 return ret;
4308         }
4309 out:
4310         if (argp)
4311                 if (copy_to_user(argp, &transid, sizeof(transid)))
4312                         return -EFAULT;
4313         return 0;
4314 }
4315
4316 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4317                                            void __user *argp)
4318 {
4319         u64 transid;
4320
4321         if (argp) {
4322                 if (copy_from_user(&transid, argp, sizeof(transid)))
4323                         return -EFAULT;
4324         } else {
4325                 transid = 0;  /* current trans */
4326         }
4327         return btrfs_wait_for_commit(fs_info, transid);
4328 }
4329
4330 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4331 {
4332         struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4333         struct btrfs_ioctl_scrub_args *sa;
4334         int ret;
4335
4336         if (!capable(CAP_SYS_ADMIN))
4337                 return -EPERM;
4338
4339         sa = memdup_user(arg, sizeof(*sa));
4340         if (IS_ERR(sa))
4341                 return PTR_ERR(sa);
4342
4343         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4344                 ret = mnt_want_write_file(file);
4345                 if (ret)
4346                         goto out;
4347         }
4348
4349         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4350                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4351                               0);
4352
4353         if (copy_to_user(arg, sa, sizeof(*sa)))
4354                 ret = -EFAULT;
4355
4356         if (!(sa->flags & BTRFS_SCRUB_READONLY))
4357                 mnt_drop_write_file(file);
4358 out:
4359         kfree(sa);
4360         return ret;
4361 }
4362
4363 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4364 {
4365         if (!capable(CAP_SYS_ADMIN))
4366                 return -EPERM;
4367
4368         return btrfs_scrub_cancel(fs_info);
4369 }
4370
4371 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4372                                        void __user *arg)
4373 {
4374         struct btrfs_ioctl_scrub_args *sa;
4375         int ret;
4376
4377         if (!capable(CAP_SYS_ADMIN))
4378                 return -EPERM;
4379
4380         sa = memdup_user(arg, sizeof(*sa));
4381         if (IS_ERR(sa))
4382                 return PTR_ERR(sa);
4383
4384         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4385
4386         if (copy_to_user(arg, sa, sizeof(*sa)))
4387                 ret = -EFAULT;
4388
4389         kfree(sa);
4390         return ret;
4391 }
4392
4393 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4394                                       void __user *arg)
4395 {
4396         struct btrfs_ioctl_get_dev_stats *sa;
4397         int ret;
4398
4399         sa = memdup_user(arg, sizeof(*sa));
4400         if (IS_ERR(sa))
4401                 return PTR_ERR(sa);
4402
4403         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4404                 kfree(sa);
4405                 return -EPERM;
4406         }
4407
4408         ret = btrfs_get_dev_stats(fs_info, sa);
4409
4410         if (copy_to_user(arg, sa, sizeof(*sa)))
4411                 ret = -EFAULT;
4412
4413         kfree(sa);
4414         return ret;
4415 }
4416
4417 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4418                                     void __user *arg)
4419 {
4420         struct btrfs_ioctl_dev_replace_args *p;
4421         int ret;
4422
4423         if (!capable(CAP_SYS_ADMIN))
4424                 return -EPERM;
4425
4426         p = memdup_user(arg, sizeof(*p));
4427         if (IS_ERR(p))
4428                 return PTR_ERR(p);
4429
4430         switch (p->cmd) {
4431         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4432                 if (fs_info->sb->s_flags & MS_RDONLY) {
4433                         ret = -EROFS;
4434                         goto out;
4435                 }
4436                 if (atomic_xchg(
4437                         &fs_info->mutually_exclusive_operation_running, 1)) {
4438                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4439                 } else {
4440                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4441                         atomic_set(
4442                          &fs_info->mutually_exclusive_operation_running, 0);
4443                 }
4444                 break;
4445         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4446                 btrfs_dev_replace_status(fs_info, p);
4447                 ret = 0;
4448                 break;
4449         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4450                 ret = btrfs_dev_replace_cancel(fs_info, p);
4451                 break;
4452         default:
4453                 ret = -EINVAL;
4454                 break;
4455         }
4456
4457         if (copy_to_user(arg, p, sizeof(*p)))
4458                 ret = -EFAULT;
4459 out:
4460         kfree(p);
4461         return ret;
4462 }
4463
4464 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4465 {
4466         int ret = 0;
4467         int i;
4468         u64 rel_ptr;
4469         int size;
4470         struct btrfs_ioctl_ino_path_args *ipa = NULL;
4471         struct inode_fs_paths *ipath = NULL;
4472         struct btrfs_path *path;
4473
4474         if (!capable(CAP_DAC_READ_SEARCH))
4475                 return -EPERM;
4476
4477         path = btrfs_alloc_path();
4478         if (!path) {
4479                 ret = -ENOMEM;
4480                 goto out;
4481         }
4482
4483         ipa = memdup_user(arg, sizeof(*ipa));
4484         if (IS_ERR(ipa)) {
4485                 ret = PTR_ERR(ipa);
4486                 ipa = NULL;
4487                 goto out;
4488         }
4489
4490         size = min_t(u32, ipa->size, 4096);
4491         ipath = init_ipath(size, root, path);
4492         if (IS_ERR(ipath)) {
4493                 ret = PTR_ERR(ipath);
4494                 ipath = NULL;
4495                 goto out;
4496         }
4497
4498         ret = paths_from_inode(ipa->inum, ipath);
4499         if (ret < 0)
4500                 goto out;
4501
4502         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4503                 rel_ptr = ipath->fspath->val[i] -
4504                           (u64)(unsigned long)ipath->fspath->val;
4505                 ipath->fspath->val[i] = rel_ptr;
4506         }
4507
4508         ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4509                            (void *)(unsigned long)ipath->fspath, size);
4510         if (ret) {
4511                 ret = -EFAULT;
4512                 goto out;
4513         }
4514
4515 out:
4516         btrfs_free_path(path);
4517         free_ipath(ipath);
4518         kfree(ipa);
4519
4520         return ret;
4521 }
4522
4523 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4524 {
4525         struct btrfs_data_container *inodes = ctx;
4526         const size_t c = 3 * sizeof(u64);
4527
4528         if (inodes->bytes_left >= c) {
4529                 inodes->bytes_left -= c;
4530                 inodes->val[inodes->elem_cnt] = inum;
4531                 inodes->val[inodes->elem_cnt + 1] = offset;
4532                 inodes->val[inodes->elem_cnt + 2] = root;
4533                 inodes->elem_cnt += 3;
4534         } else {
4535                 inodes->bytes_missing += c - inodes->bytes_left;
4536                 inodes->bytes_left = 0;
4537                 inodes->elem_missed += 3;
4538         }
4539
4540         return 0;
4541 }
4542
4543 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4544                                         void __user *arg)
4545 {
4546         int ret = 0;
4547         int size;
4548         struct btrfs_ioctl_logical_ino_args *loi;
4549         struct btrfs_data_container *inodes = NULL;
4550         struct btrfs_path *path = NULL;
4551
4552         if (!capable(CAP_SYS_ADMIN))
4553                 return -EPERM;
4554
4555         loi = memdup_user(arg, sizeof(*loi));
4556         if (IS_ERR(loi))
4557                 return PTR_ERR(loi);
4558
4559         path = btrfs_alloc_path();
4560         if (!path) {
4561                 ret = -ENOMEM;
4562                 goto out;
4563         }
4564
4565         size = min_t(u32, loi->size, SZ_64K);
4566         inodes = init_data_container(size);
4567         if (IS_ERR(inodes)) {
4568                 ret = PTR_ERR(inodes);
4569                 inodes = NULL;
4570                 goto out;
4571         }
4572
4573         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4574                                           build_ino_list, inodes);
4575         if (ret == -EINVAL)
4576                 ret = -ENOENT;
4577         if (ret < 0)
4578                 goto out;
4579
4580         ret = copy_to_user((void *)(unsigned long)loi->inodes,
4581                            (void *)(unsigned long)inodes, size);
4582         if (ret)
4583                 ret = -EFAULT;
4584
4585 out:
4586         btrfs_free_path(path);
4587         vfree(inodes);
4588         kfree(loi);
4589
4590         return ret;
4591 }
4592
4593 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4594                                struct btrfs_ioctl_balance_args *bargs)
4595 {
4596         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4597
4598         bargs->flags = bctl->flags;
4599
4600         if (atomic_read(&fs_info->balance_running))
4601                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4602         if (atomic_read(&fs_info->balance_pause_req))
4603                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4604         if (atomic_read(&fs_info->balance_cancel_req))
4605                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4606
4607         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4608         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4609         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4610
4611         if (lock) {
4612                 spin_lock(&fs_info->balance_lock);
4613                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4614                 spin_unlock(&fs_info->balance_lock);
4615         } else {
4616                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4617         }
4618 }
4619
4620 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4621 {
4622         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4623         struct btrfs_fs_info *fs_info = root->fs_info;
4624         struct btrfs_ioctl_balance_args *bargs;
4625         struct btrfs_balance_control *bctl;
4626         bool need_unlock; /* for mut. excl. ops lock */
4627         int ret;
4628
4629         if (!capable(CAP_SYS_ADMIN))
4630                 return -EPERM;
4631
4632         ret = mnt_want_write_file(file);
4633         if (ret)
4634                 return ret;
4635
4636 again:
4637         if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4638                 mutex_lock(&fs_info->volume_mutex);
4639                 mutex_lock(&fs_info->balance_mutex);
4640                 need_unlock = true;
4641                 goto locked;
4642         }
4643
4644         /*
4645          * mut. excl. ops lock is locked.  Three possibilities:
4646          *   (1) some other op is running
4647          *   (2) balance is running
4648          *   (3) balance is paused -- special case (think resume)
4649          */
4650         mutex_lock(&fs_info->balance_mutex);
4651         if (fs_info->balance_ctl) {
4652                 /* this is either (2) or (3) */
4653                 if (!atomic_read(&fs_info->balance_running)) {
4654                         mutex_unlock(&fs_info->balance_mutex);
4655                         if (!mutex_trylock(&fs_info->volume_mutex))
4656                                 goto again;
4657                         mutex_lock(&fs_info->balance_mutex);
4658
4659                         if (fs_info->balance_ctl &&
4660                             !atomic_read(&fs_info->balance_running)) {
4661                                 /* this is (3) */
4662                                 need_unlock = false;
4663                                 goto locked;
4664                         }
4665
4666                         mutex_unlock(&fs_info->balance_mutex);
4667                         mutex_unlock(&fs_info->volume_mutex);
4668                         goto again;
4669                 } else {
4670                         /* this is (2) */
4671                         mutex_unlock(&fs_info->balance_mutex);
4672                         ret = -EINPROGRESS;
4673                         goto out;
4674                 }
4675         } else {
4676                 /* this is (1) */
4677                 mutex_unlock(&fs_info->balance_mutex);
4678                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4679                 goto out;
4680         }
4681
4682 locked:
4683         BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4684
4685         if (arg) {
4686                 bargs = memdup_user(arg, sizeof(*bargs));
4687                 if (IS_ERR(bargs)) {
4688                         ret = PTR_ERR(bargs);
4689                         goto out_unlock;
4690                 }
4691
4692                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4693                         if (!fs_info->balance_ctl) {
4694                                 ret = -ENOTCONN;
4695                                 goto out_bargs;
4696                         }
4697
4698                         bctl = fs_info->balance_ctl;
4699                         spin_lock(&fs_info->balance_lock);
4700                         bctl->flags |= BTRFS_BALANCE_RESUME;
4701                         spin_unlock(&fs_info->balance_lock);
4702
4703                         goto do_balance;
4704                 }
4705         } else {
4706                 bargs = NULL;
4707         }
4708
4709         if (fs_info->balance_ctl) {
4710                 ret = -EINPROGRESS;
4711                 goto out_bargs;
4712         }
4713
4714         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4715         if (!bctl) {
4716                 ret = -ENOMEM;
4717                 goto out_bargs;
4718         }
4719
4720         bctl->fs_info = fs_info;
4721         if (arg) {
4722                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4723                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4724                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4725
4726                 bctl->flags = bargs->flags;
4727         } else {
4728                 /* balance everything - no filters */
4729                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4730         }
4731
4732         if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4733                 ret = -EINVAL;
4734                 goto out_bctl;
4735         }
4736
4737 do_balance:
4738         /*
4739          * Ownership of bctl and mutually_exclusive_operation_running
4740          * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4741          * or, if restriper was paused all the way until unmount, in
4742          * free_fs_info.  mutually_exclusive_operation_running is
4743          * cleared in __cancel_balance.
4744          */
4745         need_unlock = false;
4746
4747         ret = btrfs_balance(bctl, bargs);
4748         bctl = NULL;
4749
4750         if (arg) {
4751                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752                         ret = -EFAULT;
4753         }
4754
4755 out_bctl:
4756         kfree(bctl);
4757 out_bargs:
4758         kfree(bargs);
4759 out_unlock:
4760         mutex_unlock(&fs_info->balance_mutex);
4761         mutex_unlock(&fs_info->volume_mutex);
4762         if (need_unlock)
4763                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4764 out:
4765         mnt_drop_write_file(file);
4766         return ret;
4767 }
4768
4769 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4770 {
4771         if (!capable(CAP_SYS_ADMIN))
4772                 return -EPERM;
4773
4774         switch (cmd) {
4775         case BTRFS_BALANCE_CTL_PAUSE:
4776                 return btrfs_pause_balance(fs_info);
4777         case BTRFS_BALANCE_CTL_CANCEL:
4778                 return btrfs_cancel_balance(fs_info);
4779         }
4780
4781         return -EINVAL;
4782 }
4783
4784 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4785                                          void __user *arg)
4786 {
4787         struct btrfs_ioctl_balance_args *bargs;
4788         int ret = 0;
4789
4790         if (!capable(CAP_SYS_ADMIN))
4791                 return -EPERM;
4792
4793         mutex_lock(&fs_info->balance_mutex);
4794         if (!fs_info->balance_ctl) {
4795                 ret = -ENOTCONN;
4796                 goto out;
4797         }
4798
4799         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4800         if (!bargs) {
4801                 ret = -ENOMEM;
4802                 goto out;
4803         }
4804
4805         update_ioctl_balance_args(fs_info, 1, bargs);
4806
4807         if (copy_to_user(arg, bargs, sizeof(*bargs)))
4808                 ret = -EFAULT;
4809
4810         kfree(bargs);
4811 out:
4812         mutex_unlock(&fs_info->balance_mutex);
4813         return ret;
4814 }
4815
4816 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4817 {
4818         struct inode *inode = file_inode(file);
4819         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4820         struct btrfs_ioctl_quota_ctl_args *sa;
4821         struct btrfs_trans_handle *trans = NULL;
4822         int ret;
4823         int err;
4824
4825         if (!capable(CAP_SYS_ADMIN))
4826                 return -EPERM;
4827
4828         ret = mnt_want_write_file(file);
4829         if (ret)
4830                 return ret;
4831
4832         sa = memdup_user(arg, sizeof(*sa));
4833         if (IS_ERR(sa)) {
4834                 ret = PTR_ERR(sa);
4835                 goto drop_write;
4836         }
4837
4838         down_write(&fs_info->subvol_sem);
4839         trans = btrfs_start_transaction(fs_info->tree_root, 2);
4840         if (IS_ERR(trans)) {
4841                 ret = PTR_ERR(trans);
4842                 goto out;
4843         }
4844
4845         switch (sa->cmd) {
4846         case BTRFS_QUOTA_CTL_ENABLE:
4847                 ret = btrfs_quota_enable(trans, fs_info);
4848                 break;
4849         case BTRFS_QUOTA_CTL_DISABLE:
4850                 ret = btrfs_quota_disable(trans, fs_info);
4851                 break;
4852         default:
4853                 ret = -EINVAL;
4854                 break;
4855         }
4856
4857         err = btrfs_commit_transaction(trans);
4858         if (err && !ret)
4859                 ret = err;
4860 out:
4861         kfree(sa);
4862         up_write(&fs_info->subvol_sem);
4863 drop_write:
4864         mnt_drop_write_file(file);
4865         return ret;
4866 }
4867
4868 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4869 {
4870         struct inode *inode = file_inode(file);
4871         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4872         struct btrfs_root *root = BTRFS_I(inode)->root;
4873         struct btrfs_ioctl_qgroup_assign_args *sa;
4874         struct btrfs_trans_handle *trans;
4875         int ret;
4876         int err;
4877
4878         if (!capable(CAP_SYS_ADMIN))
4879                 return -EPERM;
4880
4881         ret = mnt_want_write_file(file);
4882         if (ret)
4883                 return ret;
4884
4885         sa = memdup_user(arg, sizeof(*sa));
4886         if (IS_ERR(sa)) {
4887                 ret = PTR_ERR(sa);
4888                 goto drop_write;
4889         }
4890
4891         trans = btrfs_join_transaction(root);
4892         if (IS_ERR(trans)) {
4893                 ret = PTR_ERR(trans);
4894                 goto out;
4895         }
4896
4897         /* FIXME: check if the IDs really exist */
4898         if (sa->assign) {
4899                 ret = btrfs_add_qgroup_relation(trans, fs_info,
4900                                                 sa->src, sa->dst);
4901         } else {
4902                 ret = btrfs_del_qgroup_relation(trans, fs_info,
4903                                                 sa->src, sa->dst);
4904         }
4905
4906         /* update qgroup status and info */
4907         err = btrfs_run_qgroups(trans, fs_info);
4908         if (err < 0)
4909                 btrfs_handle_fs_error(fs_info, err,
4910                                       "failed to update qgroup status and info");
4911         err = btrfs_end_transaction(trans);
4912         if (err && !ret)
4913                 ret = err;
4914
4915 out:
4916         kfree(sa);
4917 drop_write:
4918         mnt_drop_write_file(file);
4919         return ret;
4920 }
4921
4922 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4923 {
4924         struct inode *inode = file_inode(file);
4925         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4926         struct btrfs_root *root = BTRFS_I(inode)->root;
4927         struct btrfs_ioctl_qgroup_create_args *sa;
4928         struct btrfs_trans_handle *trans;
4929         int ret;
4930         int err;
4931
4932         if (!capable(CAP_SYS_ADMIN))
4933                 return -EPERM;
4934
4935         ret = mnt_want_write_file(file);
4936         if (ret)
4937                 return ret;
4938
4939         sa = memdup_user(arg, sizeof(*sa));
4940         if (IS_ERR(sa)) {
4941                 ret = PTR_ERR(sa);
4942                 goto drop_write;
4943         }
4944
4945         if (!sa->qgroupid) {
4946                 ret = -EINVAL;
4947                 goto out;
4948         }
4949
4950         trans = btrfs_join_transaction(root);
4951         if (IS_ERR(trans)) {
4952                 ret = PTR_ERR(trans);
4953                 goto out;
4954         }
4955
4956         /* FIXME: check if the IDs really exist */
4957         if (sa->create) {
4958                 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4959         } else {
4960                 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4961         }
4962
4963         err = btrfs_end_transaction(trans);
4964         if (err && !ret)
4965                 ret = err;
4966
4967 out:
4968         kfree(sa);
4969 drop_write:
4970         mnt_drop_write_file(file);
4971         return ret;
4972 }
4973
4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4975 {
4976         struct inode *inode = file_inode(file);
4977         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4978         struct btrfs_root *root = BTRFS_I(inode)->root;
4979         struct btrfs_ioctl_qgroup_limit_args *sa;
4980         struct btrfs_trans_handle *trans;
4981         int ret;
4982         int err;
4983         u64 qgroupid;
4984
4985         if (!capable(CAP_SYS_ADMIN))
4986                 return -EPERM;
4987
4988         ret = mnt_want_write_file(file);
4989         if (ret)
4990                 return ret;
4991
4992         sa = memdup_user(arg, sizeof(*sa));
4993         if (IS_ERR(sa)) {
4994                 ret = PTR_ERR(sa);
4995                 goto drop_write;
4996         }
4997
4998         trans = btrfs_join_transaction(root);
4999         if (IS_ERR(trans)) {
5000                 ret = PTR_ERR(trans);
5001                 goto out;
5002         }
5003
5004         qgroupid = sa->qgroupid;
5005         if (!qgroupid) {
5006                 /* take the current subvol as qgroup */
5007                 qgroupid = root->root_key.objectid;
5008         }
5009
5010         /* FIXME: check if the IDs really exist */
5011         ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5012
5013         err = btrfs_end_transaction(trans);
5014         if (err && !ret)
5015                 ret = err;
5016
5017 out:
5018         kfree(sa);
5019 drop_write:
5020         mnt_drop_write_file(file);
5021         return ret;
5022 }
5023
5024 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5025 {
5026         struct inode *inode = file_inode(file);
5027         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5028         struct btrfs_ioctl_quota_rescan_args *qsa;
5029         int ret;
5030
5031         if (!capable(CAP_SYS_ADMIN))
5032                 return -EPERM;
5033
5034         ret = mnt_want_write_file(file);
5035         if (ret)
5036                 return ret;
5037
5038         qsa = memdup_user(arg, sizeof(*qsa));
5039         if (IS_ERR(qsa)) {
5040                 ret = PTR_ERR(qsa);
5041                 goto drop_write;
5042         }
5043
5044         if (qsa->flags) {
5045                 ret = -EINVAL;
5046                 goto out;
5047         }
5048
5049         ret = btrfs_qgroup_rescan(fs_info);
5050
5051 out:
5052         kfree(qsa);
5053 drop_write:
5054         mnt_drop_write_file(file);
5055         return ret;
5056 }
5057
5058 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5059 {
5060         struct inode *inode = file_inode(file);
5061         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5062         struct btrfs_ioctl_quota_rescan_args *qsa;
5063         int ret = 0;
5064
5065         if (!capable(CAP_SYS_ADMIN))
5066                 return -EPERM;
5067
5068         qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5069         if (!qsa)
5070                 return -ENOMEM;
5071
5072         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5073                 qsa->flags = 1;
5074                 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5075         }
5076
5077         if (copy_to_user(arg, qsa, sizeof(*qsa)))
5078                 ret = -EFAULT;
5079
5080         kfree(qsa);
5081         return ret;
5082 }
5083
5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5085 {
5086         struct inode *inode = file_inode(file);
5087         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5088
5089         if (!capable(CAP_SYS_ADMIN))
5090                 return -EPERM;
5091
5092         return btrfs_qgroup_wait_for_completion(fs_info, true);
5093 }
5094
5095 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5096                                             struct btrfs_ioctl_received_subvol_args *sa)
5097 {
5098         struct inode *inode = file_inode(file);
5099         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5100         struct btrfs_root *root = BTRFS_I(inode)->root;
5101         struct btrfs_root_item *root_item = &root->root_item;
5102         struct btrfs_trans_handle *trans;
5103         struct timespec ct = current_time(inode);
5104         int ret = 0;
5105         int received_uuid_changed;
5106
5107         if (!inode_owner_or_capable(inode))
5108                 return -EPERM;
5109
5110         ret = mnt_want_write_file(file);
5111         if (ret < 0)
5112                 return ret;
5113
5114         down_write(&fs_info->subvol_sem);
5115
5116         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5117                 ret = -EINVAL;
5118                 goto out;
5119         }
5120
5121         if (btrfs_root_readonly(root)) {
5122                 ret = -EROFS;
5123                 goto out;
5124         }
5125
5126         /*
5127          * 1 - root item
5128          * 2 - uuid items (received uuid + subvol uuid)
5129          */
5130         trans = btrfs_start_transaction(root, 3);
5131         if (IS_ERR(trans)) {
5132                 ret = PTR_ERR(trans);
5133                 trans = NULL;
5134                 goto out;
5135         }
5136
5137         sa->rtransid = trans->transid;
5138         sa->rtime.sec = ct.tv_sec;
5139         sa->rtime.nsec = ct.tv_nsec;
5140
5141         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5142                                        BTRFS_UUID_SIZE);
5143         if (received_uuid_changed &&
5144             !btrfs_is_empty_uuid(root_item->received_uuid))
5145                 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5146                                     BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5147                                     root->root_key.objectid);
5148         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5149         btrfs_set_root_stransid(root_item, sa->stransid);
5150         btrfs_set_root_rtransid(root_item, sa->rtransid);
5151         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5152         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5153         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5154         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5155
5156         ret = btrfs_update_root(trans, fs_info->tree_root,
5157                                 &root->root_key, &root->root_item);
5158         if (ret < 0) {
5159                 btrfs_end_transaction(trans);
5160                 goto out;
5161         }
5162         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5163                 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5164                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5165                                           root->root_key.objectid);
5166                 if (ret < 0 && ret != -EEXIST) {
5167                         btrfs_abort_transaction(trans, ret);
5168                         goto out;
5169                 }
5170         }
5171         ret = btrfs_commit_transaction(trans);
5172         if (ret < 0) {
5173                 btrfs_abort_transaction(trans, ret);
5174                 goto out;
5175         }
5176
5177 out:
5178         up_write(&fs_info->subvol_sem);
5179         mnt_drop_write_file(file);
5180         return ret;
5181 }
5182
5183 #ifdef CONFIG_64BIT
5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5185                                                 void __user *arg)
5186 {
5187         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5188         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5189         int ret = 0;
5190
5191         args32 = memdup_user(arg, sizeof(*args32));
5192         if (IS_ERR(args32))
5193                 return PTR_ERR(args32);
5194
5195         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5196         if (!args64) {
5197                 ret = -ENOMEM;
5198                 goto out;
5199         }
5200
5201         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5202         args64->stransid = args32->stransid;
5203         args64->rtransid = args32->rtransid;
5204         args64->stime.sec = args32->stime.sec;
5205         args64->stime.nsec = args32->stime.nsec;
5206         args64->rtime.sec = args32->rtime.sec;
5207         args64->rtime.nsec = args32->rtime.nsec;
5208         args64->flags = args32->flags;
5209
5210         ret = _btrfs_ioctl_set_received_subvol(file, args64);
5211         if (ret)
5212                 goto out;
5213
5214         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5215         args32->stransid = args64->stransid;
5216         args32->rtransid = args64->rtransid;
5217         args32->stime.sec = args64->stime.sec;
5218         args32->stime.nsec = args64->stime.nsec;
5219         args32->rtime.sec = args64->rtime.sec;
5220         args32->rtime.nsec = args64->rtime.nsec;
5221         args32->flags = args64->flags;
5222
5223         ret = copy_to_user(arg, args32, sizeof(*args32));
5224         if (ret)
5225                 ret = -EFAULT;
5226
5227 out:
5228         kfree(args32);
5229         kfree(args64);
5230         return ret;
5231 }
5232 #endif
5233
5234 static long btrfs_ioctl_set_received_subvol(struct file *file,
5235                                             void __user *arg)
5236 {
5237         struct btrfs_ioctl_received_subvol_args *sa = NULL;
5238         int ret = 0;
5239
5240         sa = memdup_user(arg, sizeof(*sa));
5241         if (IS_ERR(sa))
5242                 return PTR_ERR(sa);
5243
5244         ret = _btrfs_ioctl_set_received_subvol(file, sa);
5245
5246         if (ret)
5247                 goto out;
5248
5249         ret = copy_to_user(arg, sa, sizeof(*sa));
5250         if (ret)
5251                 ret = -EFAULT;
5252
5253 out:
5254         kfree(sa);
5255         return ret;
5256 }
5257
5258 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5259 {
5260         struct inode *inode = file_inode(file);
5261         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5262         size_t len;
5263         int ret;
5264         char label[BTRFS_LABEL_SIZE];
5265
5266         spin_lock(&fs_info->super_lock);
5267         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5268         spin_unlock(&fs_info->super_lock);
5269
5270         len = strnlen(label, BTRFS_LABEL_SIZE);
5271
5272         if (len == BTRFS_LABEL_SIZE) {
5273                 btrfs_warn(fs_info,
5274                            "label is too long, return the first %zu bytes",
5275                            --len);
5276         }
5277
5278         ret = copy_to_user(arg, label, len);
5279
5280         return ret ? -EFAULT : 0;
5281 }
5282
5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5284 {
5285         struct inode *inode = file_inode(file);
5286         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5287         struct btrfs_root *root = BTRFS_I(inode)->root;
5288         struct btrfs_super_block *super_block = fs_info->super_copy;
5289         struct btrfs_trans_handle *trans;
5290         char label[BTRFS_LABEL_SIZE];
5291         int ret;
5292
5293         if (!capable(CAP_SYS_ADMIN))
5294                 return -EPERM;
5295
5296         if (copy_from_user(label, arg, sizeof(label)))
5297                 return -EFAULT;
5298
5299         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5300                 btrfs_err(fs_info,
5301                           "unable to set label with more than %d bytes",
5302                           BTRFS_LABEL_SIZE - 1);
5303                 return -EINVAL;
5304         }
5305
5306         ret = mnt_want_write_file(file);
5307         if (ret)
5308                 return ret;
5309
5310         trans = btrfs_start_transaction(root, 0);
5311         if (IS_ERR(trans)) {
5312                 ret = PTR_ERR(trans);
5313                 goto out_unlock;
5314         }
5315
5316         spin_lock(&fs_info->super_lock);
5317         strcpy(super_block->label, label);
5318         spin_unlock(&fs_info->super_lock);
5319         ret = btrfs_commit_transaction(trans);
5320
5321 out_unlock:
5322         mnt_drop_write_file(file);
5323         return ret;
5324 }
5325
5326 #define INIT_FEATURE_FLAGS(suffix) \
5327         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5328           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5329           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5330
5331 int btrfs_ioctl_get_supported_features(void __user *arg)
5332 {
5333         static const struct btrfs_ioctl_feature_flags features[3] = {
5334                 INIT_FEATURE_FLAGS(SUPP),
5335                 INIT_FEATURE_FLAGS(SAFE_SET),
5336                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5337         };
5338
5339         if (copy_to_user(arg, &features, sizeof(features)))
5340                 return -EFAULT;
5341
5342         return 0;
5343 }
5344
5345 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5346 {
5347         struct inode *inode = file_inode(file);
5348         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5349         struct btrfs_super_block *super_block = fs_info->super_copy;
5350         struct btrfs_ioctl_feature_flags features;
5351
5352         features.compat_flags = btrfs_super_compat_flags(super_block);
5353         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5354         features.incompat_flags = btrfs_super_incompat_flags(super_block);
5355
5356         if (copy_to_user(arg, &features, sizeof(features)))
5357                 return -EFAULT;
5358
5359         return 0;
5360 }
5361
5362 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5363                               enum btrfs_feature_set set,
5364                               u64 change_mask, u64 flags, u64 supported_flags,
5365                               u64 safe_set, u64 safe_clear)
5366 {
5367         const char *type = btrfs_feature_set_names[set];
5368         char *names;
5369         u64 disallowed, unsupported;
5370         u64 set_mask = flags & change_mask;
5371         u64 clear_mask = ~flags & change_mask;
5372
5373         unsupported = set_mask & ~supported_flags;
5374         if (unsupported) {
5375                 names = btrfs_printable_features(set, unsupported);
5376                 if (names) {
5377                         btrfs_warn(fs_info,
5378                                    "this kernel does not support the %s feature bit%s",
5379                                    names, strchr(names, ',') ? "s" : "");
5380                         kfree(names);
5381                 } else
5382                         btrfs_warn(fs_info,
5383                                    "this kernel does not support %s bits 0x%llx",
5384                                    type, unsupported);
5385                 return -EOPNOTSUPP;
5386         }
5387
5388         disallowed = set_mask & ~safe_set;
5389         if (disallowed) {
5390                 names = btrfs_printable_features(set, disallowed);
5391                 if (names) {
5392                         btrfs_warn(fs_info,
5393                                    "can't set the %s feature bit%s while mounted",
5394                                    names, strchr(names, ',') ? "s" : "");
5395                         kfree(names);
5396                 } else
5397                         btrfs_warn(fs_info,
5398                                    "can't set %s bits 0x%llx while mounted",
5399                                    type, disallowed);
5400                 return -EPERM;
5401         }
5402
5403         disallowed = clear_mask & ~safe_clear;
5404         if (disallowed) {
5405                 names = btrfs_printable_features(set, disallowed);
5406                 if (names) {
5407                         btrfs_warn(fs_info,
5408                                    "can't clear the %s feature bit%s while mounted",
5409                                    names, strchr(names, ',') ? "s" : "");
5410                         kfree(names);
5411                 } else
5412                         btrfs_warn(fs_info,
5413                                    "can't clear %s bits 0x%llx while mounted",
5414                                    type, disallowed);
5415                 return -EPERM;
5416         }
5417
5418         return 0;
5419 }
5420
5421 #define check_feature(fs_info, change_mask, flags, mask_base)   \
5422 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
5423                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
5424                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5425                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5426
5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5428 {
5429         struct inode *inode = file_inode(file);
5430         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5431         struct btrfs_root *root = BTRFS_I(inode)->root;
5432         struct btrfs_super_block *super_block = fs_info->super_copy;
5433         struct btrfs_ioctl_feature_flags flags[2];
5434         struct btrfs_trans_handle *trans;
5435         u64 newflags;
5436         int ret;
5437
5438         if (!capable(CAP_SYS_ADMIN))
5439                 return -EPERM;
5440
5441         if (copy_from_user(flags, arg, sizeof(flags)))
5442                 return -EFAULT;
5443
5444         /* Nothing to do */
5445         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5446             !flags[0].incompat_flags)
5447                 return 0;
5448
5449         ret = check_feature(fs_info, flags[0].compat_flags,
5450                             flags[1].compat_flags, COMPAT);
5451         if (ret)
5452                 return ret;
5453
5454         ret = check_feature(fs_info, flags[0].compat_ro_flags,
5455                             flags[1].compat_ro_flags, COMPAT_RO);
5456         if (ret)
5457                 return ret;
5458
5459         ret = check_feature(fs_info, flags[0].incompat_flags,
5460                             flags[1].incompat_flags, INCOMPAT);
5461         if (ret)
5462                 return ret;
5463
5464         ret = mnt_want_write_file(file);
5465         if (ret)
5466                 return ret;
5467
5468         trans = btrfs_start_transaction(root, 0);
5469         if (IS_ERR(trans)) {
5470                 ret = PTR_ERR(trans);
5471                 goto out_drop_write;
5472         }
5473
5474         spin_lock(&fs_info->super_lock);
5475         newflags = btrfs_super_compat_flags(super_block);
5476         newflags |= flags[0].compat_flags & flags[1].compat_flags;
5477         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5478         btrfs_set_super_compat_flags(super_block, newflags);
5479
5480         newflags = btrfs_super_compat_ro_flags(super_block);
5481         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5482         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5483         btrfs_set_super_compat_ro_flags(super_block, newflags);
5484
5485         newflags = btrfs_super_incompat_flags(super_block);
5486         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5487         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5488         btrfs_set_super_incompat_flags(super_block, newflags);
5489         spin_unlock(&fs_info->super_lock);
5490
5491         ret = btrfs_commit_transaction(trans);
5492 out_drop_write:
5493         mnt_drop_write_file(file);
5494
5495         return ret;
5496 }
5497
5498 long btrfs_ioctl(struct file *file, unsigned int
5499                 cmd, unsigned long arg)
5500 {
5501         struct inode *inode = file_inode(file);
5502         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5503         struct btrfs_root *root = BTRFS_I(inode)->root;
5504         void __user *argp = (void __user *)arg;
5505
5506         switch (cmd) {
5507         case FS_IOC_GETFLAGS:
5508                 return btrfs_ioctl_getflags(file, argp);
5509         case FS_IOC_SETFLAGS:
5510                 return btrfs_ioctl_setflags(file, argp);
5511         case FS_IOC_GETVERSION:
5512                 return btrfs_ioctl_getversion(file, argp);
5513         case FITRIM:
5514                 return btrfs_ioctl_fitrim(file, argp);
5515         case BTRFS_IOC_SNAP_CREATE:
5516                 return btrfs_ioctl_snap_create(file, argp, 0);
5517         case BTRFS_IOC_SNAP_CREATE_V2:
5518                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5519         case BTRFS_IOC_SUBVOL_CREATE:
5520                 return btrfs_ioctl_snap_create(file, argp, 1);
5521         case BTRFS_IOC_SUBVOL_CREATE_V2:
5522                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5523         case BTRFS_IOC_SNAP_DESTROY:
5524                 return btrfs_ioctl_snap_destroy(file, argp);
5525         case BTRFS_IOC_SUBVOL_GETFLAGS:
5526                 return btrfs_ioctl_subvol_getflags(file, argp);
5527         case BTRFS_IOC_SUBVOL_SETFLAGS:
5528                 return btrfs_ioctl_subvol_setflags(file, argp);
5529         case BTRFS_IOC_DEFAULT_SUBVOL:
5530                 return btrfs_ioctl_default_subvol(file, argp);
5531         case BTRFS_IOC_DEFRAG:
5532                 return btrfs_ioctl_defrag(file, NULL);
5533         case BTRFS_IOC_DEFRAG_RANGE:
5534                 return btrfs_ioctl_defrag(file, argp);
5535         case BTRFS_IOC_RESIZE:
5536                 return btrfs_ioctl_resize(file, argp);
5537         case BTRFS_IOC_ADD_DEV:
5538                 return btrfs_ioctl_add_dev(fs_info, argp);
5539         case BTRFS_IOC_RM_DEV:
5540                 return btrfs_ioctl_rm_dev(file, argp);
5541         case BTRFS_IOC_RM_DEV_V2:
5542                 return btrfs_ioctl_rm_dev_v2(file, argp);
5543         case BTRFS_IOC_FS_INFO:
5544                 return btrfs_ioctl_fs_info(fs_info, argp);
5545         case BTRFS_IOC_DEV_INFO:
5546                 return btrfs_ioctl_dev_info(fs_info, argp);
5547         case BTRFS_IOC_BALANCE:
5548                 return btrfs_ioctl_balance(file, NULL);
5549         case BTRFS_IOC_TRANS_START:
5550                 return btrfs_ioctl_trans_start(file);
5551         case BTRFS_IOC_TRANS_END:
5552                 return btrfs_ioctl_trans_end(file);
5553         case BTRFS_IOC_TREE_SEARCH:
5554                 return btrfs_ioctl_tree_search(file, argp);
5555         case BTRFS_IOC_TREE_SEARCH_V2:
5556                 return btrfs_ioctl_tree_search_v2(file, argp);
5557         case BTRFS_IOC_INO_LOOKUP:
5558                 return btrfs_ioctl_ino_lookup(file, argp);
5559         case BTRFS_IOC_INO_PATHS:
5560                 return btrfs_ioctl_ino_to_path(root, argp);
5561         case BTRFS_IOC_LOGICAL_INO:
5562                 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5563         case BTRFS_IOC_SPACE_INFO:
5564                 return btrfs_ioctl_space_info(fs_info, argp);
5565         case BTRFS_IOC_SYNC: {
5566                 int ret;
5567
5568                 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5569                 if (ret)
5570                         return ret;
5571                 ret = btrfs_sync_fs(inode->i_sb, 1);
5572                 /*
5573                  * The transaction thread may want to do more work,
5574                  * namely it pokes the cleaner kthread that will start
5575                  * processing uncleaned subvols.
5576                  */
5577                 wake_up_process(fs_info->transaction_kthread);
5578                 return ret;
5579         }
5580         case BTRFS_IOC_START_SYNC:
5581                 return btrfs_ioctl_start_sync(root, argp);
5582         case BTRFS_IOC_WAIT_SYNC:
5583                 return btrfs_ioctl_wait_sync(fs_info, argp);
5584         case BTRFS_IOC_SCRUB:
5585                 return btrfs_ioctl_scrub(file, argp);
5586         case BTRFS_IOC_SCRUB_CANCEL:
5587                 return btrfs_ioctl_scrub_cancel(fs_info);
5588         case BTRFS_IOC_SCRUB_PROGRESS:
5589                 return btrfs_ioctl_scrub_progress(fs_info, argp);
5590         case BTRFS_IOC_BALANCE_V2:
5591                 return btrfs_ioctl_balance(file, argp);
5592         case BTRFS_IOC_BALANCE_CTL:
5593                 return btrfs_ioctl_balance_ctl(fs_info, arg);
5594         case BTRFS_IOC_BALANCE_PROGRESS:
5595                 return btrfs_ioctl_balance_progress(fs_info, argp);
5596         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5597                 return btrfs_ioctl_set_received_subvol(file, argp);
5598 #ifdef CONFIG_64BIT
5599         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5600                 return btrfs_ioctl_set_received_subvol_32(file, argp);
5601 #endif
5602         case BTRFS_IOC_SEND:
5603                 return btrfs_ioctl_send(file, argp);
5604         case BTRFS_IOC_GET_DEV_STATS:
5605                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5606         case BTRFS_IOC_QUOTA_CTL:
5607                 return btrfs_ioctl_quota_ctl(file, argp);
5608         case BTRFS_IOC_QGROUP_ASSIGN:
5609                 return btrfs_ioctl_qgroup_assign(file, argp);
5610         case BTRFS_IOC_QGROUP_CREATE:
5611                 return btrfs_ioctl_qgroup_create(file, argp);
5612         case BTRFS_IOC_QGROUP_LIMIT:
5613                 return btrfs_ioctl_qgroup_limit(file, argp);
5614         case BTRFS_IOC_QUOTA_RESCAN:
5615                 return btrfs_ioctl_quota_rescan(file, argp);
5616         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5617                 return btrfs_ioctl_quota_rescan_status(file, argp);
5618         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5619                 return btrfs_ioctl_quota_rescan_wait(file, argp);
5620         case BTRFS_IOC_DEV_REPLACE:
5621                 return btrfs_ioctl_dev_replace(fs_info, argp);
5622         case BTRFS_IOC_GET_FSLABEL:
5623                 return btrfs_ioctl_get_fslabel(file, argp);
5624         case BTRFS_IOC_SET_FSLABEL:
5625                 return btrfs_ioctl_set_fslabel(file, argp);
5626         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5627                 return btrfs_ioctl_get_supported_features(argp);
5628         case BTRFS_IOC_GET_FEATURES:
5629                 return btrfs_ioctl_get_features(file, argp);
5630         case BTRFS_IOC_SET_FEATURES:
5631                 return btrfs_ioctl_set_features(file, argp);
5632         }
5633
5634         return -ENOTTY;
5635 }
5636
5637 #ifdef CONFIG_COMPAT
5638 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5639 {
5640         /*
5641          * These all access 32-bit values anyway so no further
5642          * handling is necessary.
5643          */
5644         switch (cmd) {
5645         case FS_IOC32_GETFLAGS:
5646                 cmd = FS_IOC_GETFLAGS;
5647                 break;
5648         case FS_IOC32_SETFLAGS:
5649                 cmd = FS_IOC_SETFLAGS;
5650                 break;
5651         case FS_IOC32_GETVERSION:
5652                 cmd = FS_IOC_GETVERSION;
5653                 break;
5654         }
5655
5656         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5657 }
5658 #endif
This page took 0.357171 seconds and 4 git commands to generate.