4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
11 * Copyright 2002 MontaVista Software Inc.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
74 #define PFX "ipmi_si: "
76 /* Measure times between events in the driver. */
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC 10000
81 #define SI_USEC_PER_JIFFY (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
93 SI_ENABLE_INTERRUPTS1,
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
97 /* FIXME - add watchdog stuff. */
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG 2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106 SI_KCS, SI_SMIC, SI_BT
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 "ACPI", "SMBIOS", "PCI",
112 "device-tree", "default" };
114 #define DEVICE_NAME "ipmi_si"
116 static struct platform_driver ipmi_driver;
119 * Indexes into stats[] in smi_info below.
121 enum si_stat_indexes {
123 * Number of times the driver requested a timer while an operation
126 SI_STAT_short_timeouts = 0,
129 * Number of times the driver requested a timer while nothing was in
132 SI_STAT_long_timeouts,
134 /* Number of times the interface was idle while being polled. */
137 /* Number of interrupts the driver handled. */
140 /* Number of time the driver got an ATTN from the hardware. */
143 /* Number of times the driver requested flags from the hardware. */
144 SI_STAT_flag_fetches,
146 /* Number of times the hardware didn't follow the state machine. */
149 /* Number of completed messages. */
150 SI_STAT_complete_transactions,
152 /* Number of IPMI events received from the hardware. */
155 /* Number of watchdog pretimeouts. */
156 SI_STAT_watchdog_pretimeouts,
158 /* Number of asynchronous messages received. */
159 SI_STAT_incoming_messages,
162 /* This *must* remain last, add new values above this. */
169 struct si_sm_data *si_sm;
170 struct si_sm_handlers *handlers;
171 enum si_type si_type;
173 struct list_head xmit_msgs;
174 struct list_head hp_xmit_msgs;
175 struct ipmi_smi_msg *curr_msg;
176 enum si_intf_state si_state;
179 * Used to handle the various types of I/O that can occur with
183 int (*io_setup)(struct smi_info *info);
184 void (*io_cleanup)(struct smi_info *info);
185 int (*irq_setup)(struct smi_info *info);
186 void (*irq_cleanup)(struct smi_info *info);
187 unsigned int io_size;
188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 void (*addr_source_cleanup)(struct smi_info *info);
190 void *addr_source_data;
193 * Per-OEM handler, called from handle_flags(). Returns 1
194 * when handle_flags() needs to be re-run or 0 indicating it
195 * set si_state itself.
197 int (*oem_data_avail_handler)(struct smi_info *smi_info);
200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 * is set to hold the flags until we are done handling everything
204 #define RECEIVE_MSG_AVAIL 0x01
205 #define EVENT_MSG_BUFFER_FULL 0x02
206 #define WDT_PRE_TIMEOUT_INT 0x08
207 #define OEM0_DATA_AVAIL 0x20
208 #define OEM1_DATA_AVAIL 0x40
209 #define OEM2_DATA_AVAIL 0x80
210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
213 unsigned char msg_flags;
215 /* Does the BMC have an event buffer? */
216 char has_event_buffer;
219 * If set to true, this will request events the next time the
220 * state machine is idle.
225 * If true, run the state machine to completion on every send
226 * call. Generally used after a panic to make sure stuff goes
229 int run_to_completion;
231 /* The I/O port of an SI interface. */
235 * The space between start addresses of the two ports. For
236 * instance, if the first port is 0xca2 and the spacing is 4, then
237 * the second port is 0xca6.
239 unsigned int spacing;
241 /* zero if no irq; */
244 /* The timer for this si. */
245 struct timer_list si_timer;
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
250 /* Used to gracefully stop the timer without race conditions. */
251 atomic_t stop_operation;
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
259 int interrupt_disabled;
261 /* From the get device id response... */
262 struct ipmi_device_id device_id;
264 /* Driver model stuff. */
266 struct platform_device *pdev;
269 * True if we allocated the device, false if it came from
270 * someplace else (like PCI).
274 /* Slave address, could be reported from DMI. */
275 unsigned char slave_addr;
277 /* Counters and things for the proc filesystem. */
278 atomic_t stats[SI_NUM_STATS];
280 struct task_struct *thread;
282 struct list_head link;
283 union ipmi_smi_info_union addr_info;
286 #define smi_inc_stat(smi, stat) \
287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291 #define SI_MAX_PARMS 4
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
296 static int pci_registered;
299 static int pnp_registered;
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
305 static int unload_when_empty = 1;
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
315 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 struct ipmi_smi_msg *msg)
321 /* Deliver the message to the upper layer. */
322 ipmi_smi_msg_received(smi_info->intf, msg);
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
327 struct ipmi_smi_msg *msg = smi_info->curr_msg;
329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 cCode = IPMI_ERR_UNSPECIFIED;
331 /* else use it as is */
333 /* Make it a response */
334 msg->rsp[0] = msg->data[0] | 4;
335 msg->rsp[1] = msg->data[1];
339 smi_info->curr_msg = NULL;
340 deliver_recv_msg(smi_info, msg);
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
346 struct list_head *entry = NULL;
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 entry = smi_info->hp_xmit_msgs.next;
354 } else if (!list_empty(&(smi_info->xmit_msgs))) {
355 entry = smi_info->xmit_msgs.next;
359 smi_info->curr_msg = NULL;
365 smi_info->curr_msg = list_entry(entry,
370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 err = atomic_notifier_call_chain(&xaction_notifier_list,
374 if (err & NOTIFY_STOP_MASK) {
375 rv = SI_SM_CALL_WITHOUT_DELAY;
378 err = smi_info->handlers->start_transaction(
380 smi_info->curr_msg->data,
381 smi_info->curr_msg->data_size);
383 return_hosed_msg(smi_info, err);
385 rv = SI_SM_CALL_WITHOUT_DELAY;
391 static void start_enable_irq(struct smi_info *smi_info)
393 unsigned char msg[2];
396 * If we are enabling interrupts, we have to tell the
399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
406 static void start_disable_irq(struct smi_info *smi_info)
408 unsigned char msg[2];
410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
417 static void start_clear_flags(struct smi_info *smi_info)
419 unsigned char msg[3];
421 /* Make sure the watchdog pre-timeout flag is not set at startup. */
422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 msg[2] = WDT_PRE_TIMEOUT_INT;
426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 smi_info->si_state = SI_CLEARING_FLAGS;
431 * When we have a situtaion where we run out of memory and cannot
432 * allocate messages, we just leave them in the BMC and run the system
433 * polled until we can allocate some memory. Once we have some
434 * memory, we will re-enable the interrupt.
436 static inline void disable_si_irq(struct smi_info *smi_info)
438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 start_disable_irq(smi_info);
440 smi_info->interrupt_disabled = 1;
441 if (!atomic_read(&smi_info->stop_operation))
442 mod_timer(&smi_info->si_timer,
443 jiffies + SI_TIMEOUT_JIFFIES);
447 static inline void enable_si_irq(struct smi_info *smi_info)
449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 start_enable_irq(smi_info);
451 smi_info->interrupt_disabled = 0;
455 static void handle_flags(struct smi_info *smi_info)
458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info, watchdog_pretimeouts);
462 start_clear_flags(smi_info);
463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 /* Messages available. */
467 smi_info->curr_msg = ipmi_alloc_smi_msg();
468 if (!smi_info->curr_msg) {
469 disable_si_irq(smi_info);
470 smi_info->si_state = SI_NORMAL;
473 enable_si_irq(smi_info);
475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 smi_info->curr_msg->data_size = 2;
479 smi_info->handlers->start_transaction(
481 smi_info->curr_msg->data,
482 smi_info->curr_msg->data_size);
483 smi_info->si_state = SI_GETTING_MESSAGES;
484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 /* Events available. */
486 smi_info->curr_msg = ipmi_alloc_smi_msg();
487 if (!smi_info->curr_msg) {
488 disable_si_irq(smi_info);
489 smi_info->si_state = SI_NORMAL;
492 enable_si_irq(smi_info);
494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 smi_info->curr_msg->data_size = 2;
498 smi_info->handlers->start_transaction(
500 smi_info->curr_msg->data,
501 smi_info->curr_msg->data_size);
502 smi_info->si_state = SI_GETTING_EVENTS;
503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 smi_info->oem_data_avail_handler) {
505 if (smi_info->oem_data_avail_handler(smi_info))
508 smi_info->si_state = SI_NORMAL;
511 static void handle_transaction_done(struct smi_info *smi_info)
513 struct ipmi_smi_msg *msg;
518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
520 switch (smi_info->si_state) {
522 if (!smi_info->curr_msg)
525 smi_info->curr_msg->rsp_size
526 = smi_info->handlers->get_result(
528 smi_info->curr_msg->rsp,
529 IPMI_MAX_MSG_LENGTH);
532 * Do this here becase deliver_recv_msg() releases the
533 * lock, and a new message can be put in during the
534 * time the lock is released.
536 msg = smi_info->curr_msg;
537 smi_info->curr_msg = NULL;
538 deliver_recv_msg(smi_info, msg);
541 case SI_GETTING_FLAGS:
543 unsigned char msg[4];
546 /* We got the flags from the SMI, now handle them. */
547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
549 /* Error fetching flags, just give up for now. */
550 smi_info->si_state = SI_NORMAL;
551 } else if (len < 4) {
553 * Hmm, no flags. That's technically illegal, but
554 * don't use uninitialized data.
556 smi_info->si_state = SI_NORMAL;
558 smi_info->msg_flags = msg[3];
559 handle_flags(smi_info);
564 case SI_CLEARING_FLAGS:
565 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
567 unsigned char msg[3];
569 /* We cleared the flags. */
570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
572 /* Error clearing flags */
573 dev_warn(smi_info->dev,
574 "Error clearing flags: %2.2x\n", msg[2]);
576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 start_enable_irq(smi_info);
579 smi_info->si_state = SI_NORMAL;
583 case SI_GETTING_EVENTS:
585 smi_info->curr_msg->rsp_size
586 = smi_info->handlers->get_result(
588 smi_info->curr_msg->rsp,
589 IPMI_MAX_MSG_LENGTH);
592 * Do this here becase deliver_recv_msg() releases the
593 * lock, and a new message can be put in during the
594 * time the lock is released.
596 msg = smi_info->curr_msg;
597 smi_info->curr_msg = NULL;
598 if (msg->rsp[2] != 0) {
599 /* Error getting event, probably done. */
602 /* Take off the event flag. */
603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 handle_flags(smi_info);
606 smi_inc_stat(smi_info, events);
609 * Do this before we deliver the message
610 * because delivering the message releases the
611 * lock and something else can mess with the
614 handle_flags(smi_info);
616 deliver_recv_msg(smi_info, msg);
621 case SI_GETTING_MESSAGES:
623 smi_info->curr_msg->rsp_size
624 = smi_info->handlers->get_result(
626 smi_info->curr_msg->rsp,
627 IPMI_MAX_MSG_LENGTH);
630 * Do this here becase deliver_recv_msg() releases the
631 * lock, and a new message can be put in during the
632 * time the lock is released.
634 msg = smi_info->curr_msg;
635 smi_info->curr_msg = NULL;
636 if (msg->rsp[2] != 0) {
637 /* Error getting event, probably done. */
640 /* Take off the msg flag. */
641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 handle_flags(smi_info);
644 smi_inc_stat(smi_info, incoming_messages);
647 * Do this before we deliver the message
648 * because delivering the message releases the
649 * lock and something else can mess with the
652 handle_flags(smi_info);
654 deliver_recv_msg(smi_info, msg);
659 case SI_ENABLE_INTERRUPTS1:
661 unsigned char msg[4];
663 /* We got the flags from the SMI, now handle them. */
664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
666 dev_warn(smi_info->dev,
667 "Couldn't get irq info: %x.\n", msg[2]);
668 dev_warn(smi_info->dev,
669 "Maybe ok, but ipmi might run very slowly.\n");
670 smi_info->si_state = SI_NORMAL;
672 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
673 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
675 IPMI_BMC_RCV_MSG_INTR |
676 IPMI_BMC_EVT_MSG_INTR);
677 smi_info->handlers->start_transaction(
678 smi_info->si_sm, msg, 3);
679 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
684 case SI_ENABLE_INTERRUPTS2:
686 unsigned char msg[4];
688 /* We got the flags from the SMI, now handle them. */
689 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
691 dev_warn(smi_info->dev,
692 "Couldn't set irq info: %x.\n", msg[2]);
693 dev_warn(smi_info->dev,
694 "Maybe ok, but ipmi might run very slowly.\n");
696 smi_info->interrupt_disabled = 0;
697 smi_info->si_state = SI_NORMAL;
701 case SI_DISABLE_INTERRUPTS1:
703 unsigned char msg[4];
705 /* We got the flags from the SMI, now handle them. */
706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 dev_warn(smi_info->dev, "Could not disable interrupts"
710 smi_info->si_state = SI_NORMAL;
712 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
713 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
715 ~(IPMI_BMC_RCV_MSG_INTR |
716 IPMI_BMC_EVT_MSG_INTR));
717 smi_info->handlers->start_transaction(
718 smi_info->si_sm, msg, 3);
719 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
724 case SI_DISABLE_INTERRUPTS2:
726 unsigned char msg[4];
728 /* We got the flags from the SMI, now handle them. */
729 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
731 dev_warn(smi_info->dev, "Could not disable interrupts"
734 smi_info->si_state = SI_NORMAL;
741 * Called on timeouts and events. Timeouts should pass the elapsed
742 * time, interrupts should pass in zero. Must be called with
743 * si_lock held and interrupts disabled.
745 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748 enum si_sm_result si_sm_result;
752 * There used to be a loop here that waited a little while
753 * (around 25us) before giving up. That turned out to be
754 * pointless, the minimum delays I was seeing were in the 300us
755 * range, which is far too long to wait in an interrupt. So
756 * we just run until the state machine tells us something
757 * happened or it needs a delay.
759 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
761 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
764 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
765 smi_inc_stat(smi_info, complete_transactions);
767 handle_transaction_done(smi_info);
768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769 } else if (si_sm_result == SI_SM_HOSED) {
770 smi_inc_stat(smi_info, hosed_count);
773 * Do the before return_hosed_msg, because that
776 smi_info->si_state = SI_NORMAL;
777 if (smi_info->curr_msg != NULL) {
779 * If we were handling a user message, format
780 * a response to send to the upper layer to
781 * tell it about the error.
783 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789 * We prefer handling attn over new messages. But don't do
790 * this if there is not yet an upper layer to handle anything.
792 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
793 unsigned char msg[2];
795 smi_inc_stat(smi_info, attentions);
798 * Got a attn, send down a get message flags to see
799 * what's causing it. It would be better to handle
800 * this in the upper layer, but due to the way
801 * interrupts work with the SMI, that's not really
804 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
805 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
807 smi_info->handlers->start_transaction(
808 smi_info->si_sm, msg, 2);
809 smi_info->si_state = SI_GETTING_FLAGS;
813 /* If we are currently idle, try to start the next message. */
814 if (si_sm_result == SI_SM_IDLE) {
815 smi_inc_stat(smi_info, idles);
817 si_sm_result = start_next_msg(smi_info);
818 if (si_sm_result != SI_SM_IDLE)
822 if ((si_sm_result == SI_SM_IDLE)
823 && (atomic_read(&smi_info->req_events))) {
825 * We are idle and the upper layer requested that I fetch
828 atomic_set(&smi_info->req_events, 0);
830 smi_info->curr_msg = ipmi_alloc_smi_msg();
831 if (!smi_info->curr_msg)
834 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
835 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
836 smi_info->curr_msg->data_size = 2;
838 smi_info->handlers->start_transaction(
840 smi_info->curr_msg->data,
841 smi_info->curr_msg->data_size);
842 smi_info->si_state = SI_GETTING_EVENTS;
849 static void sender(void *send_info,
850 struct ipmi_smi_msg *msg,
853 struct smi_info *smi_info = send_info;
854 enum si_sm_result result;
860 if (atomic_read(&smi_info->stop_operation)) {
861 msg->rsp[0] = msg->data[0] | 4;
862 msg->rsp[1] = msg->data[1];
863 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
865 deliver_recv_msg(smi_info, msg);
871 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
874 if (smi_info->run_to_completion) {
876 * If we are running to completion, then throw it in
877 * the list and run transactions until everything is
878 * clear. Priority doesn't matter here.
882 * Run to completion means we are single-threaded, no
885 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
887 result = smi_event_handler(smi_info, 0);
888 while (result != SI_SM_IDLE) {
889 udelay(SI_SHORT_TIMEOUT_USEC);
890 result = smi_event_handler(smi_info,
891 SI_SHORT_TIMEOUT_USEC);
896 spin_lock_irqsave(&smi_info->si_lock, flags);
898 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
900 list_add_tail(&msg->link, &smi_info->xmit_msgs);
902 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
904 * last_timeout_jiffies is updated here to avoid
905 * smi_timeout() handler passing very large time_diff
906 * value to smi_event_handler() that causes
907 * the send command to abort.
909 smi_info->last_timeout_jiffies = jiffies;
911 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
913 if (smi_info->thread)
914 wake_up_process(smi_info->thread);
916 start_next_msg(smi_info);
917 smi_event_handler(smi_info, 0);
919 spin_unlock_irqrestore(&smi_info->si_lock, flags);
922 static void set_run_to_completion(void *send_info, int i_run_to_completion)
924 struct smi_info *smi_info = send_info;
925 enum si_sm_result result;
927 smi_info->run_to_completion = i_run_to_completion;
928 if (i_run_to_completion) {
929 result = smi_event_handler(smi_info, 0);
930 while (result != SI_SM_IDLE) {
931 udelay(SI_SHORT_TIMEOUT_USEC);
932 result = smi_event_handler(smi_info,
933 SI_SHORT_TIMEOUT_USEC);
939 * Use -1 in the nsec value of the busy waiting timespec to tell that
940 * we are spinning in kipmid looking for something and not delaying
943 static inline void ipmi_si_set_not_busy(struct timespec *ts)
947 static inline int ipmi_si_is_busy(struct timespec *ts)
949 return ts->tv_nsec != -1;
952 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
953 const struct smi_info *smi_info,
954 struct timespec *busy_until)
956 unsigned int max_busy_us = 0;
958 if (smi_info->intf_num < num_max_busy_us)
959 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
960 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
961 ipmi_si_set_not_busy(busy_until);
962 else if (!ipmi_si_is_busy(busy_until)) {
963 getnstimeofday(busy_until);
964 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
967 getnstimeofday(&now);
968 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
969 ipmi_si_set_not_busy(busy_until);
978 * A busy-waiting loop for speeding up IPMI operation.
980 * Lousy hardware makes this hard. This is only enabled for systems
981 * that are not BT and do not have interrupts. It starts spinning
982 * when an operation is complete or until max_busy tells it to stop
983 * (if that is enabled). See the paragraph on kimid_max_busy_us in
984 * Documentation/IPMI.txt for details.
986 static int ipmi_thread(void *data)
988 struct smi_info *smi_info = data;
990 enum si_sm_result smi_result;
991 struct timespec busy_until;
993 ipmi_si_set_not_busy(&busy_until);
994 set_user_nice(current, 19);
995 while (!kthread_should_stop()) {
998 spin_lock_irqsave(&(smi_info->si_lock), flags);
999 smi_result = smi_event_handler(smi_info, 0);
1000 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1003 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1005 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1007 else if (smi_result == SI_SM_IDLE)
1008 schedule_timeout_interruptible(100);
1010 schedule_timeout_interruptible(1);
1016 static void poll(void *send_info)
1018 struct smi_info *smi_info = send_info;
1019 unsigned long flags = 0;
1020 int run_to_completion = smi_info->run_to_completion;
1023 * Make sure there is some delay in the poll loop so we can
1024 * drive time forward and timeout things.
1027 if (!run_to_completion)
1028 spin_lock_irqsave(&smi_info->si_lock, flags);
1029 smi_event_handler(smi_info, 10);
1030 if (!run_to_completion)
1031 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1034 static void request_events(void *send_info)
1036 struct smi_info *smi_info = send_info;
1038 if (atomic_read(&smi_info->stop_operation) ||
1039 !smi_info->has_event_buffer)
1042 atomic_set(&smi_info->req_events, 1);
1045 static int initialized;
1047 static void smi_timeout(unsigned long data)
1049 struct smi_info *smi_info = (struct smi_info *) data;
1050 enum si_sm_result smi_result;
1051 unsigned long flags;
1052 unsigned long jiffies_now;
1059 spin_lock_irqsave(&(smi_info->si_lock), flags);
1061 do_gettimeofday(&t);
1062 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1064 jiffies_now = jiffies;
1065 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1066 * SI_USEC_PER_JIFFY);
1067 smi_result = smi_event_handler(smi_info, time_diff);
1069 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1071 smi_info->last_timeout_jiffies = jiffies_now;
1073 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1074 /* Running with interrupts, only do long timeouts. */
1075 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1076 smi_inc_stat(smi_info, long_timeouts);
1081 * If the state machine asks for a short delay, then shorten
1082 * the timer timeout.
1084 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1085 smi_inc_stat(smi_info, short_timeouts);
1086 timeout = jiffies + 1;
1088 smi_inc_stat(smi_info, long_timeouts);
1089 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 if (smi_result != SI_SM_IDLE)
1094 mod_timer(&(smi_info->si_timer), timeout);
1097 static irqreturn_t si_irq_handler(int irq, void *data)
1099 struct smi_info *smi_info = data;
1100 unsigned long flags;
1105 spin_lock_irqsave(&(smi_info->si_lock), flags);
1107 smi_inc_stat(smi_info, interrupts);
1110 do_gettimeofday(&t);
1111 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1113 smi_event_handler(smi_info, 0);
1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1118 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1120 struct smi_info *smi_info = data;
1121 /* We need to clear the IRQ flag for the BT interface. */
1122 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125 return si_irq_handler(irq, data);
1128 static int smi_start_processing(void *send_info,
1131 struct smi_info *new_smi = send_info;
1134 new_smi->intf = intf;
1136 /* Try to claim any interrupts. */
1137 if (new_smi->irq_setup)
1138 new_smi->irq_setup(new_smi);
1140 /* Set up the timer that drives the interface. */
1141 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1142 new_smi->last_timeout_jiffies = jiffies;
1143 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1146 * Check if the user forcefully enabled the daemon.
1148 if (new_smi->intf_num < num_force_kipmid)
1149 enable = force_kipmid[new_smi->intf_num];
1151 * The BT interface is efficient enough to not need a thread,
1152 * and there is no need for a thread if we have interrupts.
1154 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1158 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1159 "kipmi%d", new_smi->intf_num);
1160 if (IS_ERR(new_smi->thread)) {
1161 dev_notice(new_smi->dev, "Could not start"
1162 " kernel thread due to error %ld, only using"
1163 " timers to drive the interface\n",
1164 PTR_ERR(new_smi->thread));
1165 new_smi->thread = NULL;
1172 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1174 struct smi_info *smi = send_info;
1176 data->addr_src = smi->addr_source;
1177 data->dev = smi->dev;
1178 data->addr_info = smi->addr_info;
1179 get_device(smi->dev);
1184 static void set_maintenance_mode(void *send_info, int enable)
1186 struct smi_info *smi_info = send_info;
1189 atomic_set(&smi_info->req_events, 0);
1192 static struct ipmi_smi_handlers handlers = {
1193 .owner = THIS_MODULE,
1194 .start_processing = smi_start_processing,
1195 .get_smi_info = get_smi_info,
1197 .request_events = request_events,
1198 .set_maintenance_mode = set_maintenance_mode,
1199 .set_run_to_completion = set_run_to_completion,
1204 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1205 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1208 static LIST_HEAD(smi_infos);
1209 static DEFINE_MUTEX(smi_infos_lock);
1210 static int smi_num; /* Used to sequence the SMIs */
1212 #define DEFAULT_REGSPACING 1
1213 #define DEFAULT_REGSIZE 1
1216 static bool si_tryacpi = 1;
1219 static bool si_trydmi = 1;
1221 static bool si_tryplatform = 1;
1223 static bool si_trypci = 1;
1225 static bool si_trydefaults = 1;
1226 static char *si_type[SI_MAX_PARMS];
1227 #define MAX_SI_TYPE_STR 30
1228 static char si_type_str[MAX_SI_TYPE_STR];
1229 static unsigned long addrs[SI_MAX_PARMS];
1230 static unsigned int num_addrs;
1231 static unsigned int ports[SI_MAX_PARMS];
1232 static unsigned int num_ports;
1233 static int irqs[SI_MAX_PARMS];
1234 static unsigned int num_irqs;
1235 static int regspacings[SI_MAX_PARMS];
1236 static unsigned int num_regspacings;
1237 static int regsizes[SI_MAX_PARMS];
1238 static unsigned int num_regsizes;
1239 static int regshifts[SI_MAX_PARMS];
1240 static unsigned int num_regshifts;
1241 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1242 static unsigned int num_slave_addrs;
1244 #define IPMI_IO_ADDR_SPACE 0
1245 #define IPMI_MEM_ADDR_SPACE 1
1246 static char *addr_space_to_str[] = { "i/o", "mem" };
1248 static int hotmod_handler(const char *val, struct kernel_param *kp);
1250 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1251 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1252 " Documentation/IPMI.txt in the kernel sources for the"
1256 module_param_named(tryacpi, si_tryacpi, bool, 0);
1257 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1258 " default scan of the interfaces identified via ACPI");
1261 module_param_named(trydmi, si_trydmi, bool, 0);
1262 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1263 " default scan of the interfaces identified via DMI");
1265 module_param_named(tryplatform, si_tryplatform, bool, 0);
1266 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1267 " default scan of the interfaces identified via platform"
1268 " interfaces like openfirmware");
1270 module_param_named(trypci, si_trypci, bool, 0);
1271 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1272 " default scan of the interfaces identified via pci");
1274 module_param_named(trydefaults, si_trydefaults, bool, 0);
1275 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1276 " default scan of the KCS and SMIC interface at the standard"
1278 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1279 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1280 " interface separated by commas. The types are 'kcs',"
1281 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1282 " the first interface to kcs and the second to bt");
1283 module_param_array(addrs, ulong, &num_addrs, 0);
1284 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1285 " addresses separated by commas. Only use if an interface"
1286 " is in memory. Otherwise, set it to zero or leave"
1288 module_param_array(ports, uint, &num_ports, 0);
1289 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1290 " addresses separated by commas. Only use if an interface"
1291 " is a port. Otherwise, set it to zero or leave"
1293 module_param_array(irqs, int, &num_irqs, 0);
1294 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1295 " addresses separated by commas. Only use if an interface"
1296 " has an interrupt. Otherwise, set it to zero or leave"
1298 module_param_array(regspacings, int, &num_regspacings, 0);
1299 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1300 " and each successive register used by the interface. For"
1301 " instance, if the start address is 0xca2 and the spacing"
1302 " is 2, then the second address is at 0xca4. Defaults"
1304 module_param_array(regsizes, int, &num_regsizes, 0);
1305 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1306 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1307 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1308 " the 8-bit IPMI register has to be read from a larger"
1310 module_param_array(regshifts, int, &num_regshifts, 0);
1311 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1312 " IPMI register, in bits. For instance, if the data"
1313 " is read from a 32-bit word and the IPMI data is in"
1314 " bit 8-15, then the shift would be 8");
1315 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1316 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1317 " the controller. Normally this is 0x20, but can be"
1318 " overridden by this parm. This is an array indexed"
1319 " by interface number.");
1320 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1321 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1322 " disabled(0). Normally the IPMI driver auto-detects"
1323 " this, but the value may be overridden by this parm.");
1324 module_param(unload_when_empty, int, 0);
1325 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1326 " specified or found, default is 1. Setting to 0"
1327 " is useful for hot add of devices using hotmod.");
1328 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1329 MODULE_PARM_DESC(kipmid_max_busy_us,
1330 "Max time (in microseconds) to busy-wait for IPMI data before"
1331 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1332 " if kipmid is using up a lot of CPU time.");
1335 static void std_irq_cleanup(struct smi_info *info)
1337 if (info->si_type == SI_BT)
1338 /* Disable the interrupt in the BT interface. */
1339 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1340 free_irq(info->irq, info);
1343 static int std_irq_setup(struct smi_info *info)
1350 if (info->si_type == SI_BT) {
1351 rv = request_irq(info->irq,
1353 IRQF_SHARED | IRQF_DISABLED,
1357 /* Enable the interrupt in the BT interface. */
1358 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1359 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1361 rv = request_irq(info->irq,
1363 IRQF_SHARED | IRQF_DISABLED,
1367 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1368 " running polled\n",
1369 DEVICE_NAME, info->irq);
1372 info->irq_cleanup = std_irq_cleanup;
1373 dev_info(info->dev, "Using irq %d\n", info->irq);
1379 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1381 unsigned int addr = io->addr_data;
1383 return inb(addr + (offset * io->regspacing));
1386 static void port_outb(struct si_sm_io *io, unsigned int offset,
1389 unsigned int addr = io->addr_data;
1391 outb(b, addr + (offset * io->regspacing));
1394 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1396 unsigned int addr = io->addr_data;
1398 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1401 static void port_outw(struct si_sm_io *io, unsigned int offset,
1404 unsigned int addr = io->addr_data;
1406 outw(b << io->regshift, addr + (offset * io->regspacing));
1409 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1411 unsigned int addr = io->addr_data;
1413 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1416 static void port_outl(struct si_sm_io *io, unsigned int offset,
1419 unsigned int addr = io->addr_data;
1421 outl(b << io->regshift, addr+(offset * io->regspacing));
1424 static void port_cleanup(struct smi_info *info)
1426 unsigned int addr = info->io.addr_data;
1430 for (idx = 0; idx < info->io_size; idx++)
1431 release_region(addr + idx * info->io.regspacing,
1436 static int port_setup(struct smi_info *info)
1438 unsigned int addr = info->io.addr_data;
1444 info->io_cleanup = port_cleanup;
1447 * Figure out the actual inb/inw/inl/etc routine to use based
1448 * upon the register size.
1450 switch (info->io.regsize) {
1452 info->io.inputb = port_inb;
1453 info->io.outputb = port_outb;
1456 info->io.inputb = port_inw;
1457 info->io.outputb = port_outw;
1460 info->io.inputb = port_inl;
1461 info->io.outputb = port_outl;
1464 dev_warn(info->dev, "Invalid register size: %d\n",
1470 * Some BIOSes reserve disjoint I/O regions in their ACPI
1471 * tables. This causes problems when trying to register the
1472 * entire I/O region. Therefore we must register each I/O
1475 for (idx = 0; idx < info->io_size; idx++) {
1476 if (request_region(addr + idx * info->io.regspacing,
1477 info->io.regsize, DEVICE_NAME) == NULL) {
1478 /* Undo allocations */
1480 release_region(addr + idx * info->io.regspacing,
1489 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1491 return readb((io->addr)+(offset * io->regspacing));
1494 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1497 writeb(b, (io->addr)+(offset * io->regspacing));
1500 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1502 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1506 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1509 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1512 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1514 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1518 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1521 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1525 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1527 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1531 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1534 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1538 static void mem_cleanup(struct smi_info *info)
1540 unsigned long addr = info->io.addr_data;
1543 if (info->io.addr) {
1544 iounmap(info->io.addr);
1546 mapsize = ((info->io_size * info->io.regspacing)
1547 - (info->io.regspacing - info->io.regsize));
1549 release_mem_region(addr, mapsize);
1553 static int mem_setup(struct smi_info *info)
1555 unsigned long addr = info->io.addr_data;
1561 info->io_cleanup = mem_cleanup;
1564 * Figure out the actual readb/readw/readl/etc routine to use based
1565 * upon the register size.
1567 switch (info->io.regsize) {
1569 info->io.inputb = intf_mem_inb;
1570 info->io.outputb = intf_mem_outb;
1573 info->io.inputb = intf_mem_inw;
1574 info->io.outputb = intf_mem_outw;
1577 info->io.inputb = intf_mem_inl;
1578 info->io.outputb = intf_mem_outl;
1582 info->io.inputb = mem_inq;
1583 info->io.outputb = mem_outq;
1587 dev_warn(info->dev, "Invalid register size: %d\n",
1593 * Calculate the total amount of memory to claim. This is an
1594 * unusual looking calculation, but it avoids claiming any
1595 * more memory than it has to. It will claim everything
1596 * between the first address to the end of the last full
1599 mapsize = ((info->io_size * info->io.regspacing)
1600 - (info->io.regspacing - info->io.regsize));
1602 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1605 info->io.addr = ioremap(addr, mapsize);
1606 if (info->io.addr == NULL) {
1607 release_mem_region(addr, mapsize);
1614 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1615 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1623 enum hotmod_op { HM_ADD, HM_REMOVE };
1624 struct hotmod_vals {
1628 static struct hotmod_vals hotmod_ops[] = {
1630 { "remove", HM_REMOVE },
1633 static struct hotmod_vals hotmod_si[] = {
1635 { "smic", SI_SMIC },
1639 static struct hotmod_vals hotmod_as[] = {
1640 { "mem", IPMI_MEM_ADDR_SPACE },
1641 { "i/o", IPMI_IO_ADDR_SPACE },
1645 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1650 s = strchr(*curr, ',');
1652 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1657 for (i = 0; hotmod_ops[i].name; i++) {
1658 if (strcmp(*curr, v[i].name) == 0) {
1665 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1669 static int check_hotmod_int_op(const char *curr, const char *option,
1670 const char *name, int *val)
1674 if (strcmp(curr, name) == 0) {
1676 printk(KERN_WARNING PFX
1677 "No option given for '%s'\n",
1681 *val = simple_strtoul(option, &n, 0);
1682 if ((*n != '\0') || (*option == '\0')) {
1683 printk(KERN_WARNING PFX
1684 "Bad option given for '%s'\n",
1693 static struct smi_info *smi_info_alloc(void)
1695 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1698 spin_lock_init(&info->si_lock);
1702 static int hotmod_handler(const char *val, struct kernel_param *kp)
1704 char *str = kstrdup(val, GFP_KERNEL);
1706 char *next, *curr, *s, *n, *o;
1708 enum si_type si_type;
1718 struct smi_info *info;
1723 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1726 while ((ival >= 0) && isspace(str[ival])) {
1731 for (curr = str; curr; curr = next) {
1736 ipmb = 0; /* Choose the default if not specified */
1738 next = strchr(curr, ':');
1744 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1749 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1754 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1758 s = strchr(curr, ',');
1763 addr = simple_strtoul(curr, &n, 0);
1764 if ((*n != '\0') || (*curr == '\0')) {
1765 printk(KERN_WARNING PFX "Invalid hotmod address"
1772 s = strchr(curr, ',');
1777 o = strchr(curr, '=');
1782 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1787 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1792 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1797 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1802 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1809 printk(KERN_WARNING PFX
1810 "Invalid hotmod option '%s'\n",
1816 info = smi_info_alloc();
1822 info->addr_source = SI_HOTMOD;
1823 info->si_type = si_type;
1824 info->io.addr_data = addr;
1825 info->io.addr_type = addr_space;
1826 if (addr_space == IPMI_MEM_ADDR_SPACE)
1827 info->io_setup = mem_setup;
1829 info->io_setup = port_setup;
1831 info->io.addr = NULL;
1832 info->io.regspacing = regspacing;
1833 if (!info->io.regspacing)
1834 info->io.regspacing = DEFAULT_REGSPACING;
1835 info->io.regsize = regsize;
1836 if (!info->io.regsize)
1837 info->io.regsize = DEFAULT_REGSPACING;
1838 info->io.regshift = regshift;
1841 info->irq_setup = std_irq_setup;
1842 info->slave_addr = ipmb;
1844 if (!add_smi(info)) {
1845 if (try_smi_init(info))
1846 cleanup_one_si(info);
1852 struct smi_info *e, *tmp_e;
1854 mutex_lock(&smi_infos_lock);
1855 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1856 if (e->io.addr_type != addr_space)
1858 if (e->si_type != si_type)
1860 if (e->io.addr_data == addr)
1863 mutex_unlock(&smi_infos_lock);
1872 static int hardcode_find_bmc(void)
1876 struct smi_info *info;
1878 for (i = 0; i < SI_MAX_PARMS; i++) {
1879 if (!ports[i] && !addrs[i])
1882 info = smi_info_alloc();
1886 info->addr_source = SI_HARDCODED;
1887 printk(KERN_INFO PFX "probing via hardcoded address\n");
1889 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1890 info->si_type = SI_KCS;
1891 } else if (strcmp(si_type[i], "smic") == 0) {
1892 info->si_type = SI_SMIC;
1893 } else if (strcmp(si_type[i], "bt") == 0) {
1894 info->si_type = SI_BT;
1896 printk(KERN_WARNING PFX "Interface type specified "
1897 "for interface %d, was invalid: %s\n",
1905 info->io_setup = port_setup;
1906 info->io.addr_data = ports[i];
1907 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1908 } else if (addrs[i]) {
1910 info->io_setup = mem_setup;
1911 info->io.addr_data = addrs[i];
1912 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1914 printk(KERN_WARNING PFX "Interface type specified "
1915 "for interface %d, but port and address were "
1916 "not set or set to zero.\n", i);
1921 info->io.addr = NULL;
1922 info->io.regspacing = regspacings[i];
1923 if (!info->io.regspacing)
1924 info->io.regspacing = DEFAULT_REGSPACING;
1925 info->io.regsize = regsizes[i];
1926 if (!info->io.regsize)
1927 info->io.regsize = DEFAULT_REGSPACING;
1928 info->io.regshift = regshifts[i];
1929 info->irq = irqs[i];
1931 info->irq_setup = std_irq_setup;
1932 info->slave_addr = slave_addrs[i];
1934 if (!add_smi(info)) {
1935 if (try_smi_init(info))
1936 cleanup_one_si(info);
1947 #include <linux/acpi.h>
1950 * Once we get an ACPI failure, we don't try any more, because we go
1951 * through the tables sequentially. Once we don't find a table, there
1954 static int acpi_failure;
1956 /* For GPE-type interrupts. */
1957 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1958 u32 gpe_number, void *context)
1960 struct smi_info *smi_info = context;
1961 unsigned long flags;
1966 spin_lock_irqsave(&(smi_info->si_lock), flags);
1968 smi_inc_stat(smi_info, interrupts);
1971 do_gettimeofday(&t);
1972 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1974 smi_event_handler(smi_info, 0);
1975 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1977 return ACPI_INTERRUPT_HANDLED;
1980 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1985 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1988 static int acpi_gpe_irq_setup(struct smi_info *info)
1995 /* FIXME - is level triggered right? */
1996 status = acpi_install_gpe_handler(NULL,
1998 ACPI_GPE_LEVEL_TRIGGERED,
2001 if (status != AE_OK) {
2002 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2003 " running polled\n", DEVICE_NAME, info->irq);
2007 info->irq_cleanup = acpi_gpe_irq_cleanup;
2008 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2015 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2026 s8 CreatorRevision[4];
2029 s16 SpecificationRevision;
2032 * Bit 0 - SCI interrupt supported
2033 * Bit 1 - I/O APIC/SAPIC
2038 * If bit 0 of InterruptType is set, then this is the SCI
2039 * interrupt in the GPEx_STS register.
2046 * If bit 1 of InterruptType is set, then this is the I/O
2047 * APIC/SAPIC interrupt.
2049 u32 GlobalSystemInterrupt;
2051 /* The actual register address. */
2052 struct acpi_generic_address addr;
2056 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2059 static int try_init_spmi(struct SPMITable *spmi)
2061 struct smi_info *info;
2063 if (spmi->IPMIlegacy != 1) {
2064 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2068 info = smi_info_alloc();
2070 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2074 info->addr_source = SI_SPMI;
2075 printk(KERN_INFO PFX "probing via SPMI\n");
2077 /* Figure out the interface type. */
2078 switch (spmi->InterfaceType) {
2080 info->si_type = SI_KCS;
2083 info->si_type = SI_SMIC;
2086 info->si_type = SI_BT;
2089 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2090 spmi->InterfaceType);
2095 if (spmi->InterruptType & 1) {
2096 /* We've got a GPE interrupt. */
2097 info->irq = spmi->GPE;
2098 info->irq_setup = acpi_gpe_irq_setup;
2099 } else if (spmi->InterruptType & 2) {
2100 /* We've got an APIC/SAPIC interrupt. */
2101 info->irq = spmi->GlobalSystemInterrupt;
2102 info->irq_setup = std_irq_setup;
2104 /* Use the default interrupt setting. */
2106 info->irq_setup = NULL;
2109 if (spmi->addr.bit_width) {
2110 /* A (hopefully) properly formed register bit width. */
2111 info->io.regspacing = spmi->addr.bit_width / 8;
2113 info->io.regspacing = DEFAULT_REGSPACING;
2115 info->io.regsize = info->io.regspacing;
2116 info->io.regshift = spmi->addr.bit_offset;
2118 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2119 info->io_setup = mem_setup;
2120 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2121 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2122 info->io_setup = port_setup;
2123 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2126 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2129 info->io.addr_data = spmi->addr.address;
2131 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2132 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2133 info->io.addr_data, info->io.regsize, info->io.regspacing,
2142 static void spmi_find_bmc(void)
2145 struct SPMITable *spmi;
2154 for (i = 0; ; i++) {
2155 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2156 (struct acpi_table_header **)&spmi);
2157 if (status != AE_OK)
2160 try_init_spmi(spmi);
2164 static int ipmi_pnp_probe(struct pnp_dev *dev,
2165 const struct pnp_device_id *dev_id)
2167 struct acpi_device *acpi_dev;
2168 struct smi_info *info;
2169 struct resource *res, *res_second;
2172 unsigned long long tmp;
2174 acpi_dev = pnp_acpi_device(dev);
2178 info = smi_info_alloc();
2182 info->addr_source = SI_ACPI;
2183 printk(KERN_INFO PFX "probing via ACPI\n");
2185 handle = acpi_dev->handle;
2186 info->addr_info.acpi_info.acpi_handle = handle;
2188 /* _IFT tells us the interface type: KCS, BT, etc */
2189 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2190 if (ACPI_FAILURE(status))
2195 info->si_type = SI_KCS;
2198 info->si_type = SI_SMIC;
2201 info->si_type = SI_BT;
2204 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2208 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2210 info->io_setup = port_setup;
2211 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2213 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2215 info->io_setup = mem_setup;
2216 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2220 dev_err(&dev->dev, "no I/O or memory address\n");
2223 info->io.addr_data = res->start;
2225 info->io.regspacing = DEFAULT_REGSPACING;
2226 res_second = pnp_get_resource(dev,
2227 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2228 IORESOURCE_IO : IORESOURCE_MEM,
2231 if (res_second->start > info->io.addr_data)
2232 info->io.regspacing = res_second->start - info->io.addr_data;
2234 info->io.regsize = DEFAULT_REGSPACING;
2235 info->io.regshift = 0;
2237 /* If _GPE exists, use it; otherwise use standard interrupts */
2238 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2239 if (ACPI_SUCCESS(status)) {
2241 info->irq_setup = acpi_gpe_irq_setup;
2242 } else if (pnp_irq_valid(dev, 0)) {
2243 info->irq = pnp_irq(dev, 0);
2244 info->irq_setup = std_irq_setup;
2247 info->dev = &dev->dev;
2248 pnp_set_drvdata(dev, info);
2250 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2251 res, info->io.regsize, info->io.regspacing,
2264 static void ipmi_pnp_remove(struct pnp_dev *dev)
2266 struct smi_info *info = pnp_get_drvdata(dev);
2268 cleanup_one_si(info);
2271 static const struct pnp_device_id pnp_dev_table[] = {
2276 static struct pnp_driver ipmi_pnp_driver = {
2277 .name = DEVICE_NAME,
2278 .probe = ipmi_pnp_probe,
2279 .remove = ipmi_pnp_remove,
2280 .id_table = pnp_dev_table,
2285 struct dmi_ipmi_data {
2288 unsigned long base_addr;
2294 static int decode_dmi(const struct dmi_header *dm,
2295 struct dmi_ipmi_data *dmi)
2297 const u8 *data = (const u8 *)dm;
2298 unsigned long base_addr;
2300 u8 len = dm->length;
2302 dmi->type = data[4];
2304 memcpy(&base_addr, data+8, sizeof(unsigned long));
2306 if (base_addr & 1) {
2308 base_addr &= 0xFFFE;
2309 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2312 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2314 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2316 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2318 dmi->irq = data[0x11];
2320 /* The top two bits of byte 0x10 hold the register spacing. */
2321 reg_spacing = (data[0x10] & 0xC0) >> 6;
2322 switch (reg_spacing) {
2323 case 0x00: /* Byte boundaries */
2326 case 0x01: /* 32-bit boundaries */
2329 case 0x02: /* 16-byte boundaries */
2333 /* Some other interface, just ignore it. */
2339 * Note that technically, the lower bit of the base
2340 * address should be 1 if the address is I/O and 0 if
2341 * the address is in memory. So many systems get that
2342 * wrong (and all that I have seen are I/O) so we just
2343 * ignore that bit and assume I/O. Systems that use
2344 * memory should use the newer spec, anyway.
2346 dmi->base_addr = base_addr & 0xfffe;
2347 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2351 dmi->slave_addr = data[6];
2356 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2358 struct smi_info *info;
2360 info = smi_info_alloc();
2362 printk(KERN_ERR PFX "Could not allocate SI data\n");
2366 info->addr_source = SI_SMBIOS;
2367 printk(KERN_INFO PFX "probing via SMBIOS\n");
2369 switch (ipmi_data->type) {
2370 case 0x01: /* KCS */
2371 info->si_type = SI_KCS;
2373 case 0x02: /* SMIC */
2374 info->si_type = SI_SMIC;
2377 info->si_type = SI_BT;
2384 switch (ipmi_data->addr_space) {
2385 case IPMI_MEM_ADDR_SPACE:
2386 info->io_setup = mem_setup;
2387 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2390 case IPMI_IO_ADDR_SPACE:
2391 info->io_setup = port_setup;
2392 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2397 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2398 ipmi_data->addr_space);
2401 info->io.addr_data = ipmi_data->base_addr;
2403 info->io.regspacing = ipmi_data->offset;
2404 if (!info->io.regspacing)
2405 info->io.regspacing = DEFAULT_REGSPACING;
2406 info->io.regsize = DEFAULT_REGSPACING;
2407 info->io.regshift = 0;
2409 info->slave_addr = ipmi_data->slave_addr;
2411 info->irq = ipmi_data->irq;
2413 info->irq_setup = std_irq_setup;
2415 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2416 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2417 info->io.addr_data, info->io.regsize, info->io.regspacing,
2424 static void dmi_find_bmc(void)
2426 const struct dmi_device *dev = NULL;
2427 struct dmi_ipmi_data data;
2430 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2431 memset(&data, 0, sizeof(data));
2432 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2435 try_init_dmi(&data);
2438 #endif /* CONFIG_DMI */
2442 #define PCI_ERMC_CLASSCODE 0x0C0700
2443 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2444 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2445 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2446 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2447 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2449 #define PCI_HP_VENDOR_ID 0x103C
2450 #define PCI_MMC_DEVICE_ID 0x121A
2451 #define PCI_MMC_ADDR_CW 0x10
2453 static void ipmi_pci_cleanup(struct smi_info *info)
2455 struct pci_dev *pdev = info->addr_source_data;
2457 pci_disable_device(pdev);
2460 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2462 if (info->si_type == SI_KCS) {
2463 unsigned char status;
2466 info->io.regsize = DEFAULT_REGSIZE;
2467 info->io.regshift = 0;
2469 info->handlers = &kcs_smi_handlers;
2471 /* detect 1, 4, 16byte spacing */
2472 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2473 info->io.regspacing = regspacing;
2474 if (info->io_setup(info)) {
2476 "Could not setup I/O space\n");
2477 return DEFAULT_REGSPACING;
2479 /* write invalid cmd */
2480 info->io.outputb(&info->io, 1, 0x10);
2481 /* read status back */
2482 status = info->io.inputb(&info->io, 1);
2483 info->io_cleanup(info);
2489 return DEFAULT_REGSPACING;
2492 static int ipmi_pci_probe(struct pci_dev *pdev,
2493 const struct pci_device_id *ent)
2496 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2497 struct smi_info *info;
2499 info = smi_info_alloc();
2503 info->addr_source = SI_PCI;
2504 dev_info(&pdev->dev, "probing via PCI");
2506 switch (class_type) {
2507 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2508 info->si_type = SI_SMIC;
2511 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2512 info->si_type = SI_KCS;
2515 case PCI_ERMC_CLASSCODE_TYPE_BT:
2516 info->si_type = SI_BT;
2521 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2525 rv = pci_enable_device(pdev);
2527 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2532 info->addr_source_cleanup = ipmi_pci_cleanup;
2533 info->addr_source_data = pdev;
2535 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2536 info->io_setup = port_setup;
2537 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2539 info->io_setup = mem_setup;
2540 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2542 info->io.addr_data = pci_resource_start(pdev, 0);
2544 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2545 info->io.regsize = DEFAULT_REGSIZE;
2546 info->io.regshift = 0;
2548 info->irq = pdev->irq;
2550 info->irq_setup = std_irq_setup;
2552 info->dev = &pdev->dev;
2553 pci_set_drvdata(pdev, info);
2555 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2556 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2567 struct smi_info *info = pci_get_drvdata(pdev);
2568 cleanup_one_si(info);
2571 static struct pci_device_id ipmi_pci_devices[] = {
2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2578 static struct pci_driver ipmi_pci_driver = {
2579 .name = DEVICE_NAME,
2580 .id_table = ipmi_pci_devices,
2581 .probe = ipmi_pci_probe,
2582 .remove = ipmi_pci_remove,
2584 #endif /* CONFIG_PCI */
2586 static struct of_device_id ipmi_match[];
2587 static int ipmi_probe(struct platform_device *dev)
2590 const struct of_device_id *match;
2591 struct smi_info *info;
2592 struct resource resource;
2593 const __be32 *regsize, *regspacing, *regshift;
2594 struct device_node *np = dev->dev.of_node;
2598 dev_info(&dev->dev, "probing via device tree\n");
2600 match = of_match_device(ipmi_match, &dev->dev);
2604 ret = of_address_to_resource(np, 0, &resource);
2606 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2610 regsize = of_get_property(np, "reg-size", &proplen);
2611 if (regsize && proplen != 4) {
2612 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2616 regspacing = of_get_property(np, "reg-spacing", &proplen);
2617 if (regspacing && proplen != 4) {
2618 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2622 regshift = of_get_property(np, "reg-shift", &proplen);
2623 if (regshift && proplen != 4) {
2624 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2628 info = smi_info_alloc();
2632 "could not allocate memory for OF probe\n");
2636 info->si_type = (enum si_type) match->data;
2637 info->addr_source = SI_DEVICETREE;
2638 info->irq_setup = std_irq_setup;
2640 if (resource.flags & IORESOURCE_IO) {
2641 info->io_setup = port_setup;
2642 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2644 info->io_setup = mem_setup;
2645 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2648 info->io.addr_data = resource.start;
2650 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2654 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2655 info->dev = &dev->dev;
2657 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658 info->io.addr_data, info->io.regsize, info->io.regspacing,
2661 dev_set_drvdata(&dev->dev, info);
2663 if (add_smi(info)) {
2671 static int ipmi_remove(struct platform_device *dev)
2674 cleanup_one_si(dev_get_drvdata(&dev->dev));
2679 static struct of_device_id ipmi_match[] =
2681 { .type = "ipmi", .compatible = "ipmi-kcs",
2682 .data = (void *)(unsigned long) SI_KCS },
2683 { .type = "ipmi", .compatible = "ipmi-smic",
2684 .data = (void *)(unsigned long) SI_SMIC },
2685 { .type = "ipmi", .compatible = "ipmi-bt",
2686 .data = (void *)(unsigned long) SI_BT },
2690 static struct platform_driver ipmi_driver = {
2692 .name = DEVICE_NAME,
2693 .owner = THIS_MODULE,
2694 .of_match_table = ipmi_match,
2696 .probe = ipmi_probe,
2697 .remove = ipmi_remove,
2700 static int wait_for_msg_done(struct smi_info *smi_info)
2702 enum si_sm_result smi_result;
2704 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2706 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2707 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2708 schedule_timeout_uninterruptible(1);
2709 smi_result = smi_info->handlers->event(
2710 smi_info->si_sm, 100);
2711 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2712 smi_result = smi_info->handlers->event(
2713 smi_info->si_sm, 0);
2717 if (smi_result == SI_SM_HOSED)
2719 * We couldn't get the state machine to run, so whatever's at
2720 * the port is probably not an IPMI SMI interface.
2727 static int try_get_dev_id(struct smi_info *smi_info)
2729 unsigned char msg[2];
2730 unsigned char *resp;
2731 unsigned long resp_len;
2734 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2739 * Do a Get Device ID command, since it comes back with some
2742 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2743 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2744 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2746 rv = wait_for_msg_done(smi_info);
2750 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751 resp, IPMI_MAX_MSG_LENGTH);
2753 /* Check and record info from the get device id, in case we need it. */
2754 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2761 static int try_enable_event_buffer(struct smi_info *smi_info)
2763 unsigned char msg[3];
2764 unsigned char *resp;
2765 unsigned long resp_len;
2768 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2772 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2773 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2774 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2776 rv = wait_for_msg_done(smi_info);
2778 printk(KERN_WARNING PFX "Error getting response from get"
2779 " global enables command, the event buffer is not"
2784 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2785 resp, IPMI_MAX_MSG_LENGTH);
2788 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2789 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2791 printk(KERN_WARNING PFX "Invalid return from get global"
2792 " enables command, cannot enable the event buffer.\n");
2797 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2798 /* buffer is already enabled, nothing to do. */
2801 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2802 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2803 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2804 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2806 rv = wait_for_msg_done(smi_info);
2808 printk(KERN_WARNING PFX "Error getting response from set"
2809 " global, enables command, the event buffer is not"
2814 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2815 resp, IPMI_MAX_MSG_LENGTH);
2818 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2819 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2820 printk(KERN_WARNING PFX "Invalid return from get global,"
2821 "enables command, not enable the event buffer.\n");
2828 * An error when setting the event buffer bit means
2829 * that the event buffer is not supported.
2837 static int smi_type_proc_show(struct seq_file *m, void *v)
2839 struct smi_info *smi = m->private;
2841 return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2844 static int smi_type_proc_open(struct inode *inode, struct file *file)
2846 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2849 static const struct file_operations smi_type_proc_ops = {
2850 .open = smi_type_proc_open,
2852 .llseek = seq_lseek,
2853 .release = single_release,
2856 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2858 struct smi_info *smi = m->private;
2860 seq_printf(m, "interrupts_enabled: %d\n",
2861 smi->irq && !smi->interrupt_disabled);
2862 seq_printf(m, "short_timeouts: %u\n",
2863 smi_get_stat(smi, short_timeouts));
2864 seq_printf(m, "long_timeouts: %u\n",
2865 smi_get_stat(smi, long_timeouts));
2866 seq_printf(m, "idles: %u\n",
2867 smi_get_stat(smi, idles));
2868 seq_printf(m, "interrupts: %u\n",
2869 smi_get_stat(smi, interrupts));
2870 seq_printf(m, "attentions: %u\n",
2871 smi_get_stat(smi, attentions));
2872 seq_printf(m, "flag_fetches: %u\n",
2873 smi_get_stat(smi, flag_fetches));
2874 seq_printf(m, "hosed_count: %u\n",
2875 smi_get_stat(smi, hosed_count));
2876 seq_printf(m, "complete_transactions: %u\n",
2877 smi_get_stat(smi, complete_transactions));
2878 seq_printf(m, "events: %u\n",
2879 smi_get_stat(smi, events));
2880 seq_printf(m, "watchdog_pretimeouts: %u\n",
2881 smi_get_stat(smi, watchdog_pretimeouts));
2882 seq_printf(m, "incoming_messages: %u\n",
2883 smi_get_stat(smi, incoming_messages));
2887 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2889 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2892 static const struct file_operations smi_si_stats_proc_ops = {
2893 .open = smi_si_stats_proc_open,
2895 .llseek = seq_lseek,
2896 .release = single_release,
2899 static int smi_params_proc_show(struct seq_file *m, void *v)
2901 struct smi_info *smi = m->private;
2903 return seq_printf(m,
2904 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2905 si_to_str[smi->si_type],
2906 addr_space_to_str[smi->io.addr_type],
2915 static int smi_params_proc_open(struct inode *inode, struct file *file)
2917 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2920 static const struct file_operations smi_params_proc_ops = {
2921 .open = smi_params_proc_open,
2923 .llseek = seq_lseek,
2924 .release = single_release,
2928 * oem_data_avail_to_receive_msg_avail
2929 * @info - smi_info structure with msg_flags set
2931 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2932 * Returns 1 indicating need to re-run handle_flags().
2934 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2936 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2942 * setup_dell_poweredge_oem_data_handler
2943 * @info - smi_info.device_id must be populated
2945 * Systems that match, but have firmware version < 1.40 may assert
2946 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2947 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2948 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2949 * as RECEIVE_MSG_AVAIL instead.
2951 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2952 * assert the OEM[012] bits, and if it did, the driver would have to
2953 * change to handle that properly, we don't actually check for the
2955 * Device ID = 0x20 BMC on PowerEdge 8G servers
2956 * Device Revision = 0x80
2957 * Firmware Revision1 = 0x01 BMC version 1.40
2958 * Firmware Revision2 = 0x40 BCD encoded
2959 * IPMI Version = 0x51 IPMI 1.5
2960 * Manufacturer ID = A2 02 00 Dell IANA
2962 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2963 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2966 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2967 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2968 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2969 #define DELL_IANA_MFR_ID 0x0002a2
2970 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2972 struct ipmi_device_id *id = &smi_info->device_id;
2973 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2974 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2975 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2976 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2977 smi_info->oem_data_avail_handler =
2978 oem_data_avail_to_receive_msg_avail;
2979 } else if (ipmi_version_major(id) < 1 ||
2980 (ipmi_version_major(id) == 1 &&
2981 ipmi_version_minor(id) < 5)) {
2982 smi_info->oem_data_avail_handler =
2983 oem_data_avail_to_receive_msg_avail;
2988 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2989 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2991 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2993 /* Make it a response */
2994 msg->rsp[0] = msg->data[0] | 4;
2995 msg->rsp[1] = msg->data[1];
2996 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2998 smi_info->curr_msg = NULL;
2999 deliver_recv_msg(smi_info, msg);
3003 * dell_poweredge_bt_xaction_handler
3004 * @info - smi_info.device_id must be populated
3006 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3007 * not respond to a Get SDR command if the length of the data
3008 * requested is exactly 0x3A, which leads to command timeouts and no
3009 * data returned. This intercepts such commands, and causes userspace
3010 * callers to try again with a different-sized buffer, which succeeds.
3013 #define STORAGE_NETFN 0x0A
3014 #define STORAGE_CMD_GET_SDR 0x23
3015 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3016 unsigned long unused,
3019 struct smi_info *smi_info = in;
3020 unsigned char *data = smi_info->curr_msg->data;
3021 unsigned int size = smi_info->curr_msg->data_size;
3023 (data[0]>>2) == STORAGE_NETFN &&
3024 data[1] == STORAGE_CMD_GET_SDR &&
3026 return_hosed_msg_badsize(smi_info);
3032 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3033 .notifier_call = dell_poweredge_bt_xaction_handler,
3037 * setup_dell_poweredge_bt_xaction_handler
3038 * @info - smi_info.device_id must be filled in already
3040 * Fills in smi_info.device_id.start_transaction_pre_hook
3041 * when we know what function to use there.
3044 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3046 struct ipmi_device_id *id = &smi_info->device_id;
3047 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3048 smi_info->si_type == SI_BT)
3049 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3053 * setup_oem_data_handler
3054 * @info - smi_info.device_id must be filled in already
3056 * Fills in smi_info.device_id.oem_data_available_handler
3057 * when we know what function to use there.
3060 static void setup_oem_data_handler(struct smi_info *smi_info)
3062 setup_dell_poweredge_oem_data_handler(smi_info);
3065 static void setup_xaction_handlers(struct smi_info *smi_info)
3067 setup_dell_poweredge_bt_xaction_handler(smi_info);
3070 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3072 if (smi_info->intf) {
3074 * The timer and thread are only running if the
3075 * interface has been started up and registered.
3077 if (smi_info->thread != NULL)
3078 kthread_stop(smi_info->thread);
3079 del_timer_sync(&smi_info->si_timer);
3083 static struct ipmi_default_vals
3089 { .type = SI_KCS, .port = 0xca2 },
3090 { .type = SI_SMIC, .port = 0xca9 },
3091 { .type = SI_BT, .port = 0xe4 },
3095 static void default_find_bmc(void)
3097 struct smi_info *info;
3100 for (i = 0; ; i++) {
3101 if (!ipmi_defaults[i].port)
3104 if (check_legacy_ioport(ipmi_defaults[i].port))
3107 info = smi_info_alloc();
3111 info->addr_source = SI_DEFAULT;
3113 info->si_type = ipmi_defaults[i].type;
3114 info->io_setup = port_setup;
3115 info->io.addr_data = ipmi_defaults[i].port;
3116 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3118 info->io.addr = NULL;
3119 info->io.regspacing = DEFAULT_REGSPACING;
3120 info->io.regsize = DEFAULT_REGSPACING;
3121 info->io.regshift = 0;
3123 if (add_smi(info) == 0) {
3124 if ((try_smi_init(info)) == 0) {
3126 printk(KERN_INFO PFX "Found default %s"
3127 " state machine at %s address 0x%lx\n",
3128 si_to_str[info->si_type],
3129 addr_space_to_str[info->io.addr_type],
3130 info->io.addr_data);
3132 cleanup_one_si(info);
3139 static int is_new_interface(struct smi_info *info)
3143 list_for_each_entry(e, &smi_infos, link) {
3144 if (e->io.addr_type != info->io.addr_type)
3146 if (e->io.addr_data == info->io.addr_data)
3153 static int add_smi(struct smi_info *new_smi)
3157 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3158 ipmi_addr_src_to_str[new_smi->addr_source],
3159 si_to_str[new_smi->si_type]);
3160 mutex_lock(&smi_infos_lock);
3161 if (!is_new_interface(new_smi)) {
3162 printk(KERN_CONT " duplicate interface\n");
3167 printk(KERN_CONT "\n");
3169 /* So we know not to free it unless we have allocated one. */
3170 new_smi->intf = NULL;
3171 new_smi->si_sm = NULL;
3172 new_smi->handlers = NULL;
3174 list_add_tail(&new_smi->link, &smi_infos);
3177 mutex_unlock(&smi_infos_lock);
3181 static int try_smi_init(struct smi_info *new_smi)
3186 printk(KERN_INFO PFX "Trying %s-specified %s state"
3187 " machine at %s address 0x%lx, slave address 0x%x,"
3189 ipmi_addr_src_to_str[new_smi->addr_source],
3190 si_to_str[new_smi->si_type],
3191 addr_space_to_str[new_smi->io.addr_type],
3192 new_smi->io.addr_data,
3193 new_smi->slave_addr, new_smi->irq);
3195 switch (new_smi->si_type) {
3197 new_smi->handlers = &kcs_smi_handlers;
3201 new_smi->handlers = &smic_smi_handlers;
3205 new_smi->handlers = &bt_smi_handlers;
3209 /* No support for anything else yet. */
3214 /* Allocate the state machine's data and initialize it. */
3215 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3216 if (!new_smi->si_sm) {
3218 "Could not allocate state machine memory\n");
3222 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3225 /* Now that we know the I/O size, we can set up the I/O. */
3226 rv = new_smi->io_setup(new_smi);
3228 printk(KERN_ERR PFX "Could not set up I/O space\n");
3232 /* Do low-level detection first. */
3233 if (new_smi->handlers->detect(new_smi->si_sm)) {
3234 if (new_smi->addr_source)
3235 printk(KERN_INFO PFX "Interface detection failed\n");
3241 * Attempt a get device id command. If it fails, we probably
3242 * don't have a BMC here.
3244 rv = try_get_dev_id(new_smi);
3246 if (new_smi->addr_source)
3247 printk(KERN_INFO PFX "There appears to be no BMC"
3248 " at this location\n");
3252 setup_oem_data_handler(new_smi);
3253 setup_xaction_handlers(new_smi);
3255 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3256 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3257 new_smi->curr_msg = NULL;
3258 atomic_set(&new_smi->req_events, 0);
3259 new_smi->run_to_completion = 0;
3260 for (i = 0; i < SI_NUM_STATS; i++)
3261 atomic_set(&new_smi->stats[i], 0);
3263 new_smi->interrupt_disabled = 1;
3264 atomic_set(&new_smi->stop_operation, 0);
3265 new_smi->intf_num = smi_num;
3268 rv = try_enable_event_buffer(new_smi);
3270 new_smi->has_event_buffer = 1;
3273 * Start clearing the flags before we enable interrupts or the
3274 * timer to avoid racing with the timer.
3276 start_clear_flags(new_smi);
3277 /* IRQ is defined to be set when non-zero. */
3279 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3281 if (!new_smi->dev) {
3283 * If we don't already have a device from something
3284 * else (like PCI), then register a new one.
3286 new_smi->pdev = platform_device_alloc("ipmi_si",
3288 if (!new_smi->pdev) {
3290 "Unable to allocate platform device\n");
3293 new_smi->dev = &new_smi->pdev->dev;
3294 new_smi->dev->driver = &ipmi_driver.driver;
3296 rv = platform_device_add(new_smi->pdev);
3299 "Unable to register system interface device:"
3304 new_smi->dev_registered = 1;
3307 rv = ipmi_register_smi(&handlers,
3309 &new_smi->device_id,
3312 new_smi->slave_addr);
3314 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3316 goto out_err_stop_timer;
3319 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3323 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3324 goto out_err_stop_timer;
3327 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3328 &smi_si_stats_proc_ops,
3331 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3332 goto out_err_stop_timer;
3335 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3336 &smi_params_proc_ops,
3339 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3340 goto out_err_stop_timer;
3343 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3344 si_to_str[new_smi->si_type]);
3349 atomic_inc(&new_smi->stop_operation);
3350 wait_for_timer_and_thread(new_smi);
3353 new_smi->interrupt_disabled = 1;
3355 if (new_smi->intf) {
3356 ipmi_unregister_smi(new_smi->intf);
3357 new_smi->intf = NULL;
3360 if (new_smi->irq_cleanup) {
3361 new_smi->irq_cleanup(new_smi);
3362 new_smi->irq_cleanup = NULL;
3366 * Wait until we know that we are out of any interrupt
3367 * handlers might have been running before we freed the
3370 synchronize_sched();
3372 if (new_smi->si_sm) {
3373 if (new_smi->handlers)
3374 new_smi->handlers->cleanup(new_smi->si_sm);
3375 kfree(new_smi->si_sm);
3376 new_smi->si_sm = NULL;
3378 if (new_smi->addr_source_cleanup) {
3379 new_smi->addr_source_cleanup(new_smi);
3380 new_smi->addr_source_cleanup = NULL;
3382 if (new_smi->io_cleanup) {
3383 new_smi->io_cleanup(new_smi);
3384 new_smi->io_cleanup = NULL;
3387 if (new_smi->dev_registered) {
3388 platform_device_unregister(new_smi->pdev);
3389 new_smi->dev_registered = 0;
3395 static int init_ipmi_si(void)
3401 enum ipmi_addr_src type = SI_INVALID;
3407 if (si_tryplatform) {
3408 rv = platform_driver_register(&ipmi_driver);
3410 printk(KERN_ERR PFX "Unable to register "
3411 "driver: %d\n", rv);
3416 /* Parse out the si_type string into its components. */
3419 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3421 str = strchr(str, ',');
3431 printk(KERN_INFO "IPMI System Interface driver.\n");
3433 /* If the user gave us a device, they presumably want us to use it */
3434 if (!hardcode_find_bmc())
3439 rv = pci_register_driver(&ipmi_pci_driver);
3441 printk(KERN_ERR PFX "Unable to register "
3442 "PCI driver: %d\n", rv);
3450 pnp_register_driver(&ipmi_pnp_driver);
3465 /* We prefer devices with interrupts, but in the case of a machine
3466 with multiple BMCs we assume that there will be several instances
3467 of a given type so if we succeed in registering a type then also
3468 try to register everything else of the same type */
3470 mutex_lock(&smi_infos_lock);
3471 list_for_each_entry(e, &smi_infos, link) {
3472 /* Try to register a device if it has an IRQ and we either
3473 haven't successfully registered a device yet or this
3474 device has the same type as one we successfully registered */
3475 if (e->irq && (!type || e->addr_source == type)) {
3476 if (!try_smi_init(e)) {
3477 type = e->addr_source;
3482 /* type will only have been set if we successfully registered an si */
3484 mutex_unlock(&smi_infos_lock);
3488 /* Fall back to the preferred device */
3490 list_for_each_entry(e, &smi_infos, link) {
3491 if (!e->irq && (!type || e->addr_source == type)) {
3492 if (!try_smi_init(e)) {
3493 type = e->addr_source;
3497 mutex_unlock(&smi_infos_lock);
3502 if (si_trydefaults) {
3503 mutex_lock(&smi_infos_lock);
3504 if (list_empty(&smi_infos)) {
3505 /* No BMC was found, try defaults. */
3506 mutex_unlock(&smi_infos_lock);
3509 mutex_unlock(&smi_infos_lock);
3512 mutex_lock(&smi_infos_lock);
3513 if (unload_when_empty && list_empty(&smi_infos)) {
3514 mutex_unlock(&smi_infos_lock);
3516 printk(KERN_WARNING PFX
3517 "Unable to find any System Interface(s)\n");
3520 mutex_unlock(&smi_infos_lock);
3524 module_init(init_ipmi_si);
3526 static void cleanup_one_si(struct smi_info *to_clean)
3529 unsigned long flags;
3534 list_del(&to_clean->link);
3536 /* Tell the driver that we are shutting down. */
3537 atomic_inc(&to_clean->stop_operation);
3540 * Make sure the timer and thread are stopped and will not run
3543 wait_for_timer_and_thread(to_clean);
3546 * Timeouts are stopped, now make sure the interrupts are off
3547 * for the device. A little tricky with locks to make sure
3548 * there are no races.
3550 spin_lock_irqsave(&to_clean->si_lock, flags);
3551 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3552 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3554 schedule_timeout_uninterruptible(1);
3555 spin_lock_irqsave(&to_clean->si_lock, flags);
3557 disable_si_irq(to_clean);
3558 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3559 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3561 schedule_timeout_uninterruptible(1);
3564 /* Clean up interrupts and make sure that everything is done. */
3565 if (to_clean->irq_cleanup)
3566 to_clean->irq_cleanup(to_clean);
3567 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3569 schedule_timeout_uninterruptible(1);
3573 rv = ipmi_unregister_smi(to_clean->intf);
3576 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3580 if (to_clean->handlers)
3581 to_clean->handlers->cleanup(to_clean->si_sm);
3583 kfree(to_clean->si_sm);
3585 if (to_clean->addr_source_cleanup)
3586 to_clean->addr_source_cleanup(to_clean);
3587 if (to_clean->io_cleanup)
3588 to_clean->io_cleanup(to_clean);
3590 if (to_clean->dev_registered)
3591 platform_device_unregister(to_clean->pdev);
3596 static void cleanup_ipmi_si(void)
3598 struct smi_info *e, *tmp_e;
3605 pci_unregister_driver(&ipmi_pci_driver);
3609 pnp_unregister_driver(&ipmi_pnp_driver);
3612 platform_driver_unregister(&ipmi_driver);
3614 mutex_lock(&smi_infos_lock);
3615 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3617 mutex_unlock(&smi_infos_lock);
3619 module_exit(cleanup_ipmi_si);
3621 MODULE_LICENSE("GPL");
3623 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3624 " system interfaces.");