1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
37 * DOC: memblock overview
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
78 * Once memblock is setup the memory can be allocated using one of the
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
152 #define memblock_dbg(fmt, ...) \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
164 bool __init_memblock memblock_has_mirror(void)
166 return system_has_some_mirror;
169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
177 return *size = min(*size, PHYS_ADDR_MAX - base);
181 * Address comparison utilities
183 unsigned long __init_memblock
184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
187 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 phys_addr_t base, phys_addr_t size)
195 memblock_cap_size(base, &size);
197 for (i = 0; i < type->cnt; i++)
198 if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 type->regions[i].size))
201 return i < type->cnt;
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
206 * @start: start of candidate range
207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208 * %MEMBLOCK_ALLOC_ACCESSIBLE
209 * @size: size of free area to find
210 * @align: alignment of free area to find
211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212 * @flags: pick from blocks based on memory attributes
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
217 * Found address on success, 0 on failure.
219 static phys_addr_t __init_memblock
220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 phys_addr_t size, phys_addr_t align, int nid,
222 enum memblock_flags flags)
224 phys_addr_t this_start, this_end, cand;
227 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 this_start = clamp(this_start, start, end);
229 this_end = clamp(this_end, start, end);
231 cand = round_up(this_start, align);
232 if (cand < this_end && this_end - cand >= size)
240 * __memblock_find_range_top_down - find free area utility, in top-down
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243 * %MEMBLOCK_ALLOC_ACCESSIBLE
244 * @size: size of free area to find
245 * @align: alignment of free area to find
246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247 * @flags: pick from blocks based on memory attributes
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
252 * Found address on success, 0 on failure.
254 static phys_addr_t __init_memblock
255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 phys_addr_t size, phys_addr_t align, int nid,
257 enum memblock_flags flags)
259 phys_addr_t this_start, this_end, cand;
262 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
264 this_start = clamp(this_start, start, end);
265 this_end = clamp(this_end, start, end);
270 cand = round_down(this_end - size, align);
271 if (cand >= this_start)
279 * memblock_find_in_range_node - find free area in given range and node
280 * @size: size of free area to find
281 * @align: alignment of free area to find
282 * @start: start of candidate range
283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284 * %MEMBLOCK_ALLOC_ACCESSIBLE
285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286 * @flags: pick from blocks based on memory attributes
288 * Find @size free area aligned to @align in the specified range and node.
291 * Found address on success, 0 on failure.
293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 phys_addr_t align, phys_addr_t start,
295 phys_addr_t end, int nid,
296 enum memblock_flags flags)
299 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 end = memblock.current_limit;
303 /* avoid allocating the first page */
304 start = max_t(phys_addr_t, start, PAGE_SIZE);
305 end = max(start, end);
307 if (memblock_bottom_up())
308 return __memblock_find_range_bottom_up(start, end, size, align,
311 return __memblock_find_range_top_down(start, end, size, align,
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 * %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
323 * Find @size free area aligned to @align in the specified range.
326 * Found address on success, 0 on failure.
328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 phys_addr_t end, phys_addr_t size,
333 enum memblock_flags flags = choose_memblock_flags();
336 ret = memblock_find_in_range_node(size, align, start, end,
337 NUMA_NO_NODE, flags);
339 if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
342 flags &= ~MEMBLOCK_MIRROR;
349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
351 type->total_size -= type->regions[r].size;
352 memmove(&type->regions[r], &type->regions[r + 1],
353 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
356 /* Special case for empty arrays */
357 if (type->cnt == 0) {
358 WARN_ON(type->total_size != 0);
360 type->regions[0].base = 0;
361 type->regions[0].size = 0;
362 type->regions[0].flags = 0;
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
369 * memblock_discard - discard memory and reserved arrays if they were allocated
371 void __init memblock_discard(void)
373 phys_addr_t addr, size;
375 if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 addr = __pa(memblock.reserved.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.reserved.max);
379 if (memblock_reserved_in_slab)
380 kfree(memblock.reserved.regions);
382 memblock_free_late(addr, size);
385 if (memblock.memory.regions != memblock_memory_init_regions) {
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 if (memblock_memory_in_slab)
390 kfree(memblock.memory.regions);
392 memblock_free_late(addr, size);
395 memblock_memory = NULL;
400 * memblock_double_array - double the size of the memblock regions array
401 * @type: memblock type of the regions array being doubled
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
405 * Double the size of the @type regions array. If memblock is being used to
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
412 * 0 on success, -1 on failure.
414 static int __init_memblock memblock_double_array(struct memblock_type *type,
415 phys_addr_t new_area_start,
416 phys_addr_t new_area_size)
418 struct memblock_region *new_array, *old_array;
419 phys_addr_t old_alloc_size, new_alloc_size;
420 phys_addr_t old_size, new_size, addr, new_end;
421 int use_slab = slab_is_available();
424 /* We don't allow resizing until we know about the reserved regions
425 * of memory that aren't suitable for allocation
427 if (!memblock_can_resize)
428 panic("memblock: cannot resize %s array\n", type->name);
430 /* Calculate new doubled size */
431 old_size = type->max * sizeof(struct memblock_region);
432 new_size = old_size << 1;
434 * We need to allocated new one align to PAGE_SIZE,
435 * so we can free them completely later.
437 old_alloc_size = PAGE_ALIGN(old_size);
438 new_alloc_size = PAGE_ALIGN(new_size);
440 /* Retrieve the slab flag */
441 if (type == &memblock.memory)
442 in_slab = &memblock_memory_in_slab;
444 in_slab = &memblock_reserved_in_slab;
446 /* Try to find some space for it */
448 new_array = kmalloc(new_size, GFP_KERNEL);
449 addr = new_array ? __pa(new_array) : 0;
451 /* only exclude range when trying to double reserved.regions */
452 if (type != &memblock.reserved)
453 new_area_start = new_area_size = 0;
455 addr = memblock_find_in_range(new_area_start + new_area_size,
456 memblock.current_limit,
457 new_alloc_size, PAGE_SIZE);
458 if (!addr && new_area_size)
459 addr = memblock_find_in_range(0,
460 min(new_area_start, memblock.current_limit),
461 new_alloc_size, PAGE_SIZE);
463 new_array = addr ? __va(addr) : NULL;
466 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467 type->name, type->max, type->max * 2);
471 new_end = addr + new_size - 1;
472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473 type->name, type->max * 2, &addr, &new_end);
476 * Found space, we now need to move the array over before we add the
477 * reserved region since it may be our reserved array itself that is
480 memcpy(new_array, type->regions, old_size);
481 memset(new_array + type->max, 0, old_size);
482 old_array = type->regions;
483 type->regions = new_array;
486 /* Free old array. We needn't free it if the array is the static one */
489 else if (old_array != memblock_memory_init_regions &&
490 old_array != memblock_reserved_init_regions)
491 memblock_free(old_array, old_alloc_size);
494 * Reserve the new array if that comes from the memblock. Otherwise, we
498 BUG_ON(memblock_reserve(addr, new_alloc_size));
500 /* Update slab flag */
507 * memblock_merge_regions - merge neighboring compatible regions
508 * @type: memblock type to scan
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
513 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514 unsigned long start_rgn,
515 unsigned long end_rgn)
520 end_rgn = min(end_rgn, type->cnt - 1);
521 while (i < end_rgn) {
522 struct memblock_region *this = &type->regions[i];
523 struct memblock_region *next = &type->regions[i + 1];
525 if (this->base + this->size != next->base ||
526 memblock_get_region_node(this) !=
527 memblock_get_region_node(next) ||
528 this->flags != next->flags) {
529 BUG_ON(this->base + this->size > next->base);
534 this->size += next->size;
535 /* move forward from next + 1, index of which is i + 2 */
536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
543 * memblock_insert_region - insert new memblock region
544 * @type: memblock type to insert into
545 * @idx: index for the insertion point
546 * @base: base address of the new region
547 * @size: size of the new region
548 * @nid: node id of the new region
549 * @flags: flags of the new region
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
554 static void __init_memblock memblock_insert_region(struct memblock_type *type,
555 int idx, phys_addr_t base,
558 enum memblock_flags flags)
560 struct memblock_region *rgn = &type->regions[idx];
562 BUG_ON(type->cnt >= type->max);
563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
567 memblock_set_region_node(rgn, nid);
569 type->total_size += size;
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
580 * Add new memblock region [@base, @base + @size) into @type. The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
582 * existing regions. @type is guaranteed to be minimal (all neighbouring
583 * compatible regions are merged) after the addition.
586 * 0 on success, -errno on failure.
588 static int __init_memblock memblock_add_range(struct memblock_type *type,
589 phys_addr_t base, phys_addr_t size,
590 int nid, enum memblock_flags flags)
593 phys_addr_t obase = base;
594 phys_addr_t end = base + memblock_cap_size(base, &size);
595 int idx, nr_new, start_rgn = -1, end_rgn;
596 struct memblock_region *rgn;
601 /* special case for empty array */
602 if (type->regions[0].size == 0) {
603 WARN_ON(type->cnt != 1 || type->total_size);
604 type->regions[0].base = base;
605 type->regions[0].size = size;
606 type->regions[0].flags = flags;
607 memblock_set_region_node(&type->regions[0], nid);
608 type->total_size = size;
613 * The worst case is when new range overlaps all existing regions,
614 * then we'll need type->cnt + 1 empty regions in @type. So if
615 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616 * that there is enough empty regions in @type, and we can insert
619 if (type->cnt * 2 + 1 <= type->max)
624 * The following is executed twice. Once with %false @insert and
625 * then with %true. The first counts the number of regions needed
626 * to accommodate the new area. The second actually inserts them.
631 for_each_memblock_type(idx, type, rgn) {
632 phys_addr_t rbase = rgn->base;
633 phys_addr_t rend = rbase + rgn->size;
640 * @rgn overlaps. If it separates the lower part of new
641 * area, insert that portion.
645 WARN_ON(nid != memblock_get_region_node(rgn));
647 WARN_ON(flags != rgn->flags);
653 memblock_insert_region(type, idx++, base,
658 /* area below @rend is dealt with, forget about it */
659 base = min(rend, end);
662 /* insert the remaining portion */
669 memblock_insert_region(type, idx, base, end - base,
678 * If this was the first round, resize array and repeat for actual
679 * insertions; otherwise, merge and return.
682 while (type->cnt + nr_new > type->max)
683 if (memblock_double_array(type, obase, size) < 0)
688 memblock_merge_regions(type, start_rgn, end_rgn);
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
700 * Add new memblock region [@base, @base + @size) to the "memory"
701 * type. See memblock_add_range() description for mode details
704 * 0 on success, -errno on failure.
706 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707 int nid, enum memblock_flags flags)
709 phys_addr_t end = base + size - 1;
711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712 &base, &end, nid, flags, (void *)_RET_IP_);
714 return memblock_add_range(&memblock.memory, base, size, nid, flags);
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
722 * Add new memblock region [@base, @base + @size) to the "memory"
723 * type. See memblock_add_range() description for mode details
726 * 0 on success, -errno on failure.
728 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
730 phys_addr_t end = base + size - 1;
732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733 &base, &end, (void *)_RET_IP_);
735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
739 * memblock_validate_numa_coverage - check if amount of memory with
740 * no node ID assigned is less than a threshold
741 * @threshold_bytes: maximal number of pages that can have unassigned node
744 * A buggy firmware may report memory that does not belong to any node.
745 * Check if amount of such memory is below @threshold_bytes.
747 * Return: true on success, false on failure.
749 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
751 unsigned long nr_pages = 0;
752 unsigned long start_pfn, end_pfn, mem_size_mb;
755 /* calculate lose page */
756 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757 if (!numa_valid_node(nid))
758 nr_pages += end_pfn - start_pfn;
761 if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
762 mem_size_mb = memblock_phys_mem_size() >> 20;
763 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
773 * memblock_isolate_range - isolate given range into disjoint memblocks
774 * @type: memblock type to isolate range for
775 * @base: base of range to isolate
776 * @size: size of range to isolate
777 * @start_rgn: out parameter for the start of isolated region
778 * @end_rgn: out parameter for the end of isolated region
780 * Walk @type and ensure that regions don't cross the boundaries defined by
781 * [@base, @base + @size). Crossing regions are split at the boundaries,
782 * which may create at most two more regions. The index of the first
783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
786 * 0 on success, -errno on failure.
788 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789 phys_addr_t base, phys_addr_t size,
790 int *start_rgn, int *end_rgn)
792 phys_addr_t end = base + memblock_cap_size(base, &size);
794 struct memblock_region *rgn;
796 *start_rgn = *end_rgn = 0;
801 /* we'll create at most two more regions */
802 while (type->cnt + 2 > type->max)
803 if (memblock_double_array(type, base, size) < 0)
806 for_each_memblock_type(idx, type, rgn) {
807 phys_addr_t rbase = rgn->base;
808 phys_addr_t rend = rbase + rgn->size;
817 * @rgn intersects from below. Split and continue
818 * to process the next region - the new top half.
821 rgn->size -= base - rbase;
822 type->total_size -= base - rbase;
823 memblock_insert_region(type, idx, rbase, base - rbase,
824 memblock_get_region_node(rgn),
826 } else if (rend > end) {
828 * @rgn intersects from above. Split and redo the
829 * current region - the new bottom half.
832 rgn->size -= end - rbase;
833 type->total_size -= end - rbase;
834 memblock_insert_region(type, idx--, rbase, end - rbase,
835 memblock_get_region_node(rgn),
838 /* @rgn is fully contained, record it */
848 static int __init_memblock memblock_remove_range(struct memblock_type *type,
849 phys_addr_t base, phys_addr_t size)
851 int start_rgn, end_rgn;
854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858 for (i = end_rgn - 1; i >= start_rgn; i--)
859 memblock_remove_region(type, i);
863 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
865 phys_addr_t end = base + size - 1;
867 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868 &base, &end, (void *)_RET_IP_);
870 return memblock_remove_range(&memblock.memory, base, size);
874 * memblock_free - free boot memory allocation
875 * @ptr: starting address of the boot memory allocation
876 * @size: size of the boot memory block in bytes
878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
879 * The freeing memory will not be released to the buddy allocator.
881 void __init_memblock memblock_free(void *ptr, size_t size)
884 memblock_phys_free(__pa(ptr), size);
888 * memblock_phys_free - free boot memory block
889 * @base: phys starting address of the boot memory block
890 * @size: size of the boot memory block in bytes
892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893 * The freeing memory will not be released to the buddy allocator.
895 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
897 phys_addr_t end = base + size - 1;
899 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900 &base, &end, (void *)_RET_IP_);
902 kmemleak_free_part_phys(base, size);
903 return memblock_remove_range(&memblock.reserved, base, size);
906 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
908 phys_addr_t end = base + size - 1;
910 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911 &base, &end, (void *)_RET_IP_);
913 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
916 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
917 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
919 phys_addr_t end = base + size - 1;
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
924 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
929 * memblock_setclr_flag - set or clear flag for a memory region
930 * @type: memblock type to set/clear flag for
931 * @base: base address of the region
932 * @size: size of the region
933 * @set: set or clear the flag
934 * @flag: the flag to update
936 * This function isolates region [@base, @base + @size), and sets/clears flag
938 * Return: 0 on success, -errno on failure.
940 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
941 phys_addr_t base, phys_addr_t size, int set, int flag)
943 int i, ret, start_rgn, end_rgn;
945 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
949 for (i = start_rgn; i < end_rgn; i++) {
950 struct memblock_region *r = &type->regions[i];
958 memblock_merge_regions(type, start_rgn, end_rgn);
963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964 * @base: the base phys addr of the region
965 * @size: the size of the region
967 * Return: 0 on success, -errno on failure.
969 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
971 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976 * @base: the base phys addr of the region
977 * @size: the size of the region
979 * Return: 0 on success, -errno on failure.
981 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
983 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988 * @base: the base phys addr of the region
989 * @size: the size of the region
991 * Return: 0 on success, -errno on failure.
993 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
995 if (!mirrored_kernelcore)
998 system_has_some_mirror = true;
1000 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1016 * Return: 0 on success, -errno on failure.
1018 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1020 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1028 * Return: 0 on success, -errno on failure.
1030 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1032 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1045 * Return: 0 on success, -errno on failure.
1047 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1049 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050 MEMBLOCK_RSRV_NOINIT);
1053 static bool should_skip_region(struct memblock_type *type,
1054 struct memblock_region *m,
1057 int m_nid = memblock_get_region_node(m);
1059 /* we never skip regions when iterating memblock.reserved or physmem */
1060 if (type != memblock_memory)
1063 /* only memory regions are associated with nodes, check it */
1064 if (numa_valid_node(nid) && nid != m_nid)
1067 /* skip hotpluggable memory regions if needed */
1068 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069 !(flags & MEMBLOCK_HOTPLUG))
1072 /* if we want mirror memory skip non-mirror memory regions */
1073 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1076 /* skip nomap memory unless we were asked for it explicitly */
1077 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1080 /* skip driver-managed memory unless we were asked for it explicitly */
1081 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration. The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b. For example, if type_b regions
1102 * look like the following,
1104 * 0:[0-16), 1:[32-48), 2:[128-130)
1106 * The upper 32bit indexes the following regions.
1108 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1113 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114 struct memblock_type *type_a,
1115 struct memblock_type *type_b, phys_addr_t *out_start,
1116 phys_addr_t *out_end, int *out_nid)
1118 int idx_a = *idx & 0xffffffff;
1119 int idx_b = *idx >> 32;
1121 for (; idx_a < type_a->cnt; idx_a++) {
1122 struct memblock_region *m = &type_a->regions[idx_a];
1124 phys_addr_t m_start = m->base;
1125 phys_addr_t m_end = m->base + m->size;
1126 int m_nid = memblock_get_region_node(m);
1128 if (should_skip_region(type_a, m, nid, flags))
1133 *out_start = m_start;
1139 *idx = (u32)idx_a | (u64)idx_b << 32;
1143 /* scan areas before each reservation */
1144 for (; idx_b < type_b->cnt + 1; idx_b++) {
1145 struct memblock_region *r;
1146 phys_addr_t r_start;
1149 r = &type_b->regions[idx_b];
1150 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1151 r_end = idx_b < type_b->cnt ?
1152 r->base : PHYS_ADDR_MAX;
1155 * if idx_b advanced past idx_a,
1156 * break out to advance idx_a
1158 if (r_start >= m_end)
1160 /* if the two regions intersect, we're done */
1161 if (m_start < r_end) {
1164 max(m_start, r_start);
1166 *out_end = min(m_end, r_end);
1170 * The region which ends first is
1171 * advanced for the next iteration.
1177 *idx = (u32)idx_a | (u64)idx_b << 32;
1183 /* signal end of iteration */
1188 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1190 * @idx: pointer to u64 loop variable
1191 * @nid: node selector, %NUMA_NO_NODE for all nodes
1192 * @flags: pick from blocks based on memory attributes
1193 * @type_a: pointer to memblock_type from where the range is taken
1194 * @type_b: pointer to memblock_type which excludes memory from being taken
1195 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1196 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1197 * @out_nid: ptr to int for nid of the range, can be %NULL
1199 * Finds the next range from type_a which is not marked as unsuitable
1202 * Reverse of __next_mem_range().
1204 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1205 enum memblock_flags flags,
1206 struct memblock_type *type_a,
1207 struct memblock_type *type_b,
1208 phys_addr_t *out_start,
1209 phys_addr_t *out_end, int *out_nid)
1211 int idx_a = *idx & 0xffffffff;
1212 int idx_b = *idx >> 32;
1214 if (*idx == (u64)ULLONG_MAX) {
1215 idx_a = type_a->cnt - 1;
1217 idx_b = type_b->cnt;
1222 for (; idx_a >= 0; idx_a--) {
1223 struct memblock_region *m = &type_a->regions[idx_a];
1225 phys_addr_t m_start = m->base;
1226 phys_addr_t m_end = m->base + m->size;
1227 int m_nid = memblock_get_region_node(m);
1229 if (should_skip_region(type_a, m, nid, flags))
1234 *out_start = m_start;
1240 *idx = (u32)idx_a | (u64)idx_b << 32;
1244 /* scan areas before each reservation */
1245 for (; idx_b >= 0; idx_b--) {
1246 struct memblock_region *r;
1247 phys_addr_t r_start;
1250 r = &type_b->regions[idx_b];
1251 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1252 r_end = idx_b < type_b->cnt ?
1253 r->base : PHYS_ADDR_MAX;
1255 * if idx_b advanced past idx_a,
1256 * break out to advance idx_a
1259 if (r_end <= m_start)
1261 /* if the two regions intersect, we're done */
1262 if (m_end > r_start) {
1264 *out_start = max(m_start, r_start);
1266 *out_end = min(m_end, r_end);
1269 if (m_start >= r_start)
1273 *idx = (u32)idx_a | (u64)idx_b << 32;
1278 /* signal end of iteration */
1283 * Common iterator interface used to define for_each_mem_pfn_range().
1285 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1286 unsigned long *out_start_pfn,
1287 unsigned long *out_end_pfn, int *out_nid)
1289 struct memblock_type *type = &memblock.memory;
1290 struct memblock_region *r;
1293 while (++*idx < type->cnt) {
1294 r = &type->regions[*idx];
1295 r_nid = memblock_get_region_node(r);
1297 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1299 if (!numa_valid_node(nid) || nid == r_nid)
1302 if (*idx >= type->cnt) {
1308 *out_start_pfn = PFN_UP(r->base);
1310 *out_end_pfn = PFN_DOWN(r->base + r->size);
1316 * memblock_set_node - set node ID on memblock regions
1317 * @base: base of area to set node ID for
1318 * @size: size of area to set node ID for
1319 * @type: memblock type to set node ID for
1320 * @nid: node ID to set
1322 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1323 * Regions which cross the area boundaries are split as necessary.
1326 * 0 on success, -errno on failure.
1328 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1329 struct memblock_type *type, int nid)
1332 int start_rgn, end_rgn;
1335 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1339 for (i = start_rgn; i < end_rgn; i++)
1340 memblock_set_region_node(&type->regions[i], nid);
1342 memblock_merge_regions(type, start_rgn, end_rgn);
1347 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1349 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1351 * @idx: pointer to u64 loop variable
1352 * @zone: zone in which all of the memory blocks reside
1353 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1354 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1356 * This function is meant to be a zone/pfn specific wrapper for the
1357 * for_each_mem_range type iterators. Specifically they are used in the
1358 * deferred memory init routines and as such we were duplicating much of
1359 * this logic throughout the code. So instead of having it in multiple
1360 * locations it seemed like it would make more sense to centralize this to
1361 * one new iterator that does everything they need.
1363 void __init_memblock
1364 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1365 unsigned long *out_spfn, unsigned long *out_epfn)
1367 int zone_nid = zone_to_nid(zone);
1368 phys_addr_t spa, epa;
1370 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1371 &memblock.memory, &memblock.reserved,
1374 while (*idx != U64_MAX) {
1375 unsigned long epfn = PFN_DOWN(epa);
1376 unsigned long spfn = PFN_UP(spa);
1379 * Verify the end is at least past the start of the zone and
1380 * that we have at least one PFN to initialize.
1382 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1383 /* if we went too far just stop searching */
1384 if (zone_end_pfn(zone) <= spfn) {
1390 *out_spfn = max(zone->zone_start_pfn, spfn);
1392 *out_epfn = min(zone_end_pfn(zone), epfn);
1397 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1398 &memblock.memory, &memblock.reserved,
1402 /* signal end of iteration */
1404 *out_spfn = ULONG_MAX;
1409 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1412 * memblock_alloc_range_nid - allocate boot memory block
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @start: the lower bound of the memory region to allocate (phys address)
1416 * @end: the upper bound of the memory region to allocate (phys address)
1417 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1418 * @exact_nid: control the allocation fall back to other nodes
1420 * The allocation is performed from memory region limited by
1421 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1423 * If the specified node can not hold the requested memory and @exact_nid
1424 * is false, the allocation falls back to any node in the system.
1426 * For systems with memory mirroring, the allocation is attempted first
1427 * from the regions with mirroring enabled and then retried from any
1430 * In addition, function using kmemleak_alloc_phys for allocated boot
1431 * memory block, it is never reported as leaks.
1434 * Physical address of allocated memory block on success, %0 on failure.
1436 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1437 phys_addr_t align, phys_addr_t start,
1438 phys_addr_t end, int nid,
1441 enum memblock_flags flags = choose_memblock_flags();
1445 /* Can't use WARNs this early in boot on powerpc */
1447 align = SMP_CACHE_BYTES;
1451 found = memblock_find_in_range_node(size, align, start, end, nid,
1453 if (found && !memblock_reserve(found, size))
1456 if (numa_valid_node(nid) && !exact_nid) {
1457 found = memblock_find_in_range_node(size, align, start,
1460 if (found && !memblock_reserve(found, size))
1464 if (flags & MEMBLOCK_MIRROR) {
1465 flags &= ~MEMBLOCK_MIRROR;
1466 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1475 * Skip kmemleak for those places like kasan_init() and
1476 * early_pgtable_alloc() due to high volume.
1478 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1480 * Memblock allocated blocks are never reported as
1481 * leaks. This is because many of these blocks are
1482 * only referred via the physical address which is
1483 * not looked up by kmemleak.
1485 kmemleak_alloc_phys(found, size, 0);
1488 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1489 * require memory to be accepted before it can be used by the
1492 * Accept the memory of the allocated buffer.
1494 accept_memory(found, found + size);
1500 * memblock_phys_alloc_range - allocate a memory block inside specified range
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @start: the lower bound of the memory region to allocate (physical address)
1504 * @end: the upper bound of the memory region to allocate (physical address)
1506 * Allocate @size bytes in the between @start and @end.
1508 * Return: physical address of the allocated memory block on success,
1511 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1516 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1517 __func__, (u64)size, (u64)align, &start, &end,
1519 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1524 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1525 * @size: size of memory block to be allocated in bytes
1526 * @align: alignment of the region and block's size
1527 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1529 * Allocates memory block from the specified NUMA node. If the node
1530 * has no available memory, attempts to allocated from any node in the
1533 * Return: physical address of the allocated memory block on success,
1536 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1538 return memblock_alloc_range_nid(size, align, 0,
1539 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1543 * memblock_alloc_internal - allocate boot memory block
1544 * @size: size of memory block to be allocated in bytes
1545 * @align: alignment of the region and block's size
1546 * @min_addr: the lower bound of the memory region to allocate (phys address)
1547 * @max_addr: the upper bound of the memory region to allocate (phys address)
1548 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1549 * @exact_nid: control the allocation fall back to other nodes
1551 * Allocates memory block using memblock_alloc_range_nid() and
1552 * converts the returned physical address to virtual.
1554 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1555 * will fall back to memory below @min_addr. Other constraints, such
1556 * as node and mirrored memory will be handled again in
1557 * memblock_alloc_range_nid().
1560 * Virtual address of allocated memory block on success, NULL on failure.
1562 static void * __init memblock_alloc_internal(
1563 phys_addr_t size, phys_addr_t align,
1564 phys_addr_t min_addr, phys_addr_t max_addr,
1565 int nid, bool exact_nid)
1570 * Detect any accidental use of these APIs after slab is ready, as at
1571 * this moment memblock may be deinitialized already and its
1572 * internal data may be destroyed (after execution of memblock_free_all)
1574 if (WARN_ON_ONCE(slab_is_available()))
1575 return kzalloc_node(size, GFP_NOWAIT, nid);
1577 if (max_addr > memblock.current_limit)
1578 max_addr = memblock.current_limit;
1580 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583 /* retry allocation without lower limit */
1584 if (!alloc && min_addr)
1585 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1591 return phys_to_virt(alloc);
1595 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1596 * without zeroing memory
1597 * @size: size of memory block to be allocated in bytes
1598 * @align: alignment of the region and block's size
1599 * @min_addr: the lower bound of the memory region from where the allocation
1600 * is preferred (phys address)
1601 * @max_addr: the upper bound of the memory region from where the allocation
1602 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1603 * allocate only from memory limited by memblock.current_limit value
1604 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1606 * Public function, provides additional debug information (including caller
1607 * info), if enabled. Does not zero allocated memory.
1610 * Virtual address of allocated memory block on success, NULL on failure.
1612 void * __init memblock_alloc_exact_nid_raw(
1613 phys_addr_t size, phys_addr_t align,
1614 phys_addr_t min_addr, phys_addr_t max_addr,
1617 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1618 __func__, (u64)size, (u64)align, nid, &min_addr,
1619 &max_addr, (void *)_RET_IP_);
1621 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1626 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1627 * memory and without panicking
1628 * @size: size of memory block to be allocated in bytes
1629 * @align: alignment of the region and block's size
1630 * @min_addr: the lower bound of the memory region from where the allocation
1631 * is preferred (phys address)
1632 * @max_addr: the upper bound of the memory region from where the allocation
1633 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1634 * allocate only from memory limited by memblock.current_limit value
1635 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1637 * Public function, provides additional debug information (including caller
1638 * info), if enabled. Does not zero allocated memory, does not panic if request
1639 * cannot be satisfied.
1642 * Virtual address of allocated memory block on success, NULL on failure.
1644 void * __init memblock_alloc_try_nid_raw(
1645 phys_addr_t size, phys_addr_t align,
1646 phys_addr_t min_addr, phys_addr_t max_addr,
1649 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1650 __func__, (u64)size, (u64)align, nid, &min_addr,
1651 &max_addr, (void *)_RET_IP_);
1653 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1658 * memblock_alloc_try_nid - allocate boot memory block
1659 * @size: size of memory block to be allocated in bytes
1660 * @align: alignment of the region and block's size
1661 * @min_addr: the lower bound of the memory region from where the allocation
1662 * is preferred (phys address)
1663 * @max_addr: the upper bound of the memory region from where the allocation
1664 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1665 * allocate only from memory limited by memblock.current_limit value
1666 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1668 * Public function, provides additional debug information (including caller
1669 * info), if enabled. This function zeroes the allocated memory.
1672 * Virtual address of allocated memory block on success, NULL on failure.
1674 void * __init memblock_alloc_try_nid(
1675 phys_addr_t size, phys_addr_t align,
1676 phys_addr_t min_addr, phys_addr_t max_addr,
1681 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1682 __func__, (u64)size, (u64)align, nid, &min_addr,
1683 &max_addr, (void *)_RET_IP_);
1684 ptr = memblock_alloc_internal(size, align,
1685 min_addr, max_addr, nid, false);
1687 memset(ptr, 0, size);
1693 * memblock_free_late - free pages directly to buddy allocator
1694 * @base: phys starting address of the boot memory block
1695 * @size: size of the boot memory block in bytes
1697 * This is only useful when the memblock allocator has already been torn
1698 * down, but we are still initializing the system. Pages are released directly
1699 * to the buddy allocator.
1701 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1703 phys_addr_t cursor, end;
1705 end = base + size - 1;
1706 memblock_dbg("%s: [%pa-%pa] %pS\n",
1707 __func__, &base, &end, (void *)_RET_IP_);
1708 kmemleak_free_part_phys(base, size);
1709 cursor = PFN_UP(base);
1710 end = PFN_DOWN(base + size);
1712 for (; cursor < end; cursor++) {
1713 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1714 totalram_pages_inc();
1719 * Remaining API functions
1722 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1724 return memblock.memory.total_size;
1727 phys_addr_t __init_memblock memblock_reserved_size(void)
1729 return memblock.reserved.total_size;
1732 /* lowest address */
1733 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1735 return memblock.memory.regions[0].base;
1738 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1740 int idx = memblock.memory.cnt - 1;
1742 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1745 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1747 phys_addr_t max_addr = PHYS_ADDR_MAX;
1748 struct memblock_region *r;
1751 * translate the memory @limit size into the max address within one of
1752 * the memory memblock regions, if the @limit exceeds the total size
1753 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1755 for_each_mem_region(r) {
1756 if (limit <= r->size) {
1757 max_addr = r->base + limit;
1766 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1768 phys_addr_t max_addr;
1773 max_addr = __find_max_addr(limit);
1775 /* @limit exceeds the total size of the memory, do nothing */
1776 if (max_addr == PHYS_ADDR_MAX)
1779 /* truncate both memory and reserved regions */
1780 memblock_remove_range(&memblock.memory, max_addr,
1782 memblock_remove_range(&memblock.reserved, max_addr,
1786 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1788 int start_rgn, end_rgn;
1794 if (!memblock_memory->total_size) {
1795 pr_warn("%s: No memory registered yet\n", __func__);
1799 ret = memblock_isolate_range(&memblock.memory, base, size,
1800 &start_rgn, &end_rgn);
1804 /* remove all the MAP regions */
1805 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1806 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1807 memblock_remove_region(&memblock.memory, i);
1809 for (i = start_rgn - 1; i >= 0; i--)
1810 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1811 memblock_remove_region(&memblock.memory, i);
1813 /* truncate the reserved regions */
1814 memblock_remove_range(&memblock.reserved, 0, base);
1815 memblock_remove_range(&memblock.reserved,
1816 base + size, PHYS_ADDR_MAX);
1819 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1821 phys_addr_t max_addr;
1826 max_addr = __find_max_addr(limit);
1828 /* @limit exceeds the total size of the memory, do nothing */
1829 if (max_addr == PHYS_ADDR_MAX)
1832 memblock_cap_memory_range(0, max_addr);
1835 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1837 unsigned int left = 0, right = type->cnt;
1840 unsigned int mid = (right + left) / 2;
1842 if (addr < type->regions[mid].base)
1844 else if (addr >= (type->regions[mid].base +
1845 type->regions[mid].size))
1849 } while (left < right);
1853 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1855 return memblock_search(&memblock.reserved, addr) != -1;
1858 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1860 return memblock_search(&memblock.memory, addr) != -1;
1863 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1865 int i = memblock_search(&memblock.memory, addr);
1869 return !memblock_is_nomap(&memblock.memory.regions[i]);
1872 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1873 unsigned long *start_pfn, unsigned long *end_pfn)
1875 struct memblock_type *type = &memblock.memory;
1876 int mid = memblock_search(type, PFN_PHYS(pfn));
1879 return NUMA_NO_NODE;
1881 *start_pfn = PFN_DOWN(type->regions[mid].base);
1882 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1884 return memblock_get_region_node(&type->regions[mid]);
1888 * memblock_is_region_memory - check if a region is a subset of memory
1889 * @base: base of region to check
1890 * @size: size of region to check
1892 * Check if the region [@base, @base + @size) is a subset of a memory block.
1895 * 0 if false, non-zero if true
1897 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1899 int idx = memblock_search(&memblock.memory, base);
1900 phys_addr_t end = base + memblock_cap_size(base, &size);
1904 return (memblock.memory.regions[idx].base +
1905 memblock.memory.regions[idx].size) >= end;
1909 * memblock_is_region_reserved - check if a region intersects reserved memory
1910 * @base: base of region to check
1911 * @size: size of region to check
1913 * Check if the region [@base, @base + @size) intersects a reserved
1917 * True if they intersect, false if not.
1919 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1921 return memblock_overlaps_region(&memblock.reserved, base, size);
1924 void __init_memblock memblock_trim_memory(phys_addr_t align)
1926 phys_addr_t start, end, orig_start, orig_end;
1927 struct memblock_region *r;
1929 for_each_mem_region(r) {
1930 orig_start = r->base;
1931 orig_end = r->base + r->size;
1932 start = round_up(orig_start, align);
1933 end = round_down(orig_end, align);
1935 if (start == orig_start && end == orig_end)
1940 r->size = end - start;
1942 memblock_remove_region(&memblock.memory,
1943 r - memblock.memory.regions);
1949 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1951 memblock.current_limit = limit;
1954 phys_addr_t __init_memblock memblock_get_current_limit(void)
1956 return memblock.current_limit;
1959 static void __init_memblock memblock_dump(struct memblock_type *type)
1961 phys_addr_t base, end, size;
1962 enum memblock_flags flags;
1964 struct memblock_region *rgn;
1966 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1968 for_each_memblock_type(idx, type, rgn) {
1969 char nid_buf[32] = "";
1973 end = base + size - 1;
1976 if (numa_valid_node(memblock_get_region_node(rgn)))
1977 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1978 memblock_get_region_node(rgn));
1980 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1981 type->name, idx, &base, &end, &size, nid_buf, flags);
1985 static void __init_memblock __memblock_dump_all(void)
1987 pr_info("MEMBLOCK configuration:\n");
1988 pr_info(" memory size = %pa reserved size = %pa\n",
1989 &memblock.memory.total_size,
1990 &memblock.reserved.total_size);
1992 memblock_dump(&memblock.memory);
1993 memblock_dump(&memblock.reserved);
1994 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1995 memblock_dump(&physmem);
1999 void __init_memblock memblock_dump_all(void)
2002 __memblock_dump_all();
2005 void __init memblock_allow_resize(void)
2007 memblock_can_resize = 1;
2010 static int __init early_memblock(char *p)
2012 if (p && strstr(p, "debug"))
2016 early_param("memblock", early_memblock);
2018 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2020 struct page *start_pg, *end_pg;
2021 phys_addr_t pg, pgend;
2024 * Convert start_pfn/end_pfn to a struct page pointer.
2026 start_pg = pfn_to_page(start_pfn - 1) + 1;
2027 end_pg = pfn_to_page(end_pfn - 1) + 1;
2030 * Convert to physical addresses, and round start upwards and end
2033 pg = PAGE_ALIGN(__pa(start_pg));
2034 pgend = __pa(end_pg) & PAGE_MASK;
2037 * If there are free pages between these, free the section of the
2041 memblock_phys_free(pg, pgend - pg);
2045 * The mem_map array can get very big. Free the unused area of the memory map.
2047 static void __init free_unused_memmap(void)
2049 unsigned long start, end, prev_end = 0;
2052 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2053 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2057 * This relies on each bank being in address order.
2058 * The banks are sorted previously in bootmem_init().
2060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2061 #ifdef CONFIG_SPARSEMEM
2063 * Take care not to free memmap entries that don't exist
2064 * due to SPARSEMEM sections which aren't present.
2066 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2069 * Align down here since many operations in VM subsystem
2070 * presume that there are no holes in the memory map inside
2073 start = pageblock_start_pfn(start);
2076 * If we had a previous bank, and there is a space
2077 * between the current bank and the previous, free it.
2079 if (prev_end && prev_end < start)
2080 free_memmap(prev_end, start);
2083 * Align up here since many operations in VM subsystem
2084 * presume that there are no holes in the memory map inside
2087 prev_end = pageblock_align(end);
2090 #ifdef CONFIG_SPARSEMEM
2091 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2092 prev_end = pageblock_align(end);
2093 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2098 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2102 while (start < end) {
2104 * Free the pages in the largest chunks alignment allows.
2106 * __ffs() behaviour is undefined for 0. start == 0 is
2107 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2111 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2113 order = MAX_PAGE_ORDER;
2115 while (start + (1UL << order) > end)
2118 memblock_free_pages(pfn_to_page(start), start, order);
2120 start += (1UL << order);
2124 static unsigned long __init __free_memory_core(phys_addr_t start,
2127 unsigned long start_pfn = PFN_UP(start);
2128 unsigned long end_pfn = min_t(unsigned long,
2129 PFN_DOWN(end), max_low_pfn);
2131 if (start_pfn >= end_pfn)
2134 __free_pages_memory(start_pfn, end_pfn);
2136 return end_pfn - start_pfn;
2139 static void __init memmap_init_reserved_pages(void)
2141 struct memblock_region *region;
2142 phys_addr_t start, end;
2146 * set nid on all reserved pages and also treat struct
2147 * pages for the NOMAP regions as PageReserved
2149 for_each_mem_region(region) {
2150 nid = memblock_get_region_node(region);
2151 start = region->base;
2152 end = start + region->size;
2154 if (memblock_is_nomap(region))
2155 reserve_bootmem_region(start, end, nid);
2157 memblock_set_node(start, end, &memblock.reserved, nid);
2161 * initialize struct pages for reserved regions that don't have
2162 * the MEMBLOCK_RSRV_NOINIT flag set
2164 for_each_reserved_mem_region(region) {
2165 if (!memblock_is_reserved_noinit(region)) {
2166 nid = memblock_get_region_node(region);
2167 start = region->base;
2168 end = start + region->size;
2170 if (!numa_valid_node(nid))
2171 nid = early_pfn_to_nid(PFN_DOWN(start));
2173 reserve_bootmem_region(start, end, nid);
2178 static unsigned long __init free_low_memory_core_early(void)
2180 unsigned long count = 0;
2181 phys_addr_t start, end;
2184 memblock_clear_hotplug(0, -1);
2186 memmap_init_reserved_pages();
2189 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2190 * because in some case like Node0 doesn't have RAM installed
2191 * low ram will be on Node1
2193 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2195 count += __free_memory_core(start, end);
2200 static int reset_managed_pages_done __initdata;
2202 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2206 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2207 atomic_long_set(&z->managed_pages, 0);
2210 void __init reset_all_zones_managed_pages(void)
2212 struct pglist_data *pgdat;
2214 if (reset_managed_pages_done)
2217 for_each_online_pgdat(pgdat)
2218 reset_node_managed_pages(pgdat);
2220 reset_managed_pages_done = 1;
2224 * memblock_free_all - release free pages to the buddy allocator
2226 void __init memblock_free_all(void)
2228 unsigned long pages;
2230 free_unused_memmap();
2231 reset_all_zones_managed_pages();
2233 pages = free_low_memory_core_early();
2234 totalram_pages_add(pages);
2237 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2238 static const char * const flagname[] = {
2239 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2240 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2241 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2242 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2243 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2246 static int memblock_debug_show(struct seq_file *m, void *private)
2248 struct memblock_type *type = m->private;
2249 struct memblock_region *reg;
2251 unsigned int count = ARRAY_SIZE(flagname);
2254 for (i = 0; i < type->cnt; i++) {
2255 reg = &type->regions[i];
2256 end = reg->base + reg->size - 1;
2257 nid = memblock_get_region_node(reg);
2259 seq_printf(m, "%4d: ", i);
2260 seq_printf(m, "%pa..%pa ", ®->base, &end);
2261 if (numa_valid_node(nid))
2262 seq_printf(m, "%4d ", nid);
2264 seq_printf(m, "%4c ", 'x');
2266 for (j = 0; j < count; j++) {
2267 if (reg->flags & (1U << j)) {
2268 seq_printf(m, "%s\n", flagname[j]);
2273 seq_printf(m, "%s\n", "UNKNOWN");
2275 seq_printf(m, "%s\n", "NONE");
2280 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2282 static int __init memblock_init_debugfs(void)
2284 struct dentry *root = debugfs_create_dir("memblock", NULL);
2286 debugfs_create_file("memory", 0444, root,
2287 &memblock.memory, &memblock_debug_fops);
2288 debugfs_create_file("reserved", 0444, root,
2289 &memblock.reserved, &memblock_debug_fops);
2290 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2291 debugfs_create_file("physmem", 0444, root, &physmem,
2292 &memblock_debug_fops);
2297 __initcall(memblock_init_debugfs);
2299 #endif /* CONFIG_DEBUG_FS */