1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
75 #define MODULE_PARAM_PREFIX "rcutree."
77 /* Data structures. */
78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
82 #ifdef CONFIG_RCU_NOCB_CPU
83 .cblist.flags = SEGCBLIST_RCU_CORE,
86 static struct rcu_state rcu_state = {
87 .level = { &rcu_state.node[0] },
88 .gp_state = RCU_GP_IDLE,
89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
97 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
98 rcu_sr_normal_gp_cleanup_work),
101 /* Dump rcu_node combining tree at boot to verify correct setup. */
102 static bool dump_tree;
103 module_param(dump_tree, bool, 0444);
104 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
105 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
106 #ifndef CONFIG_PREEMPT_RT
107 module_param(use_softirq, bool, 0444);
109 /* Control rcu_node-tree auto-balancing at boot time. */
110 static bool rcu_fanout_exact;
111 module_param(rcu_fanout_exact, bool, 0444);
112 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
113 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
114 module_param(rcu_fanout_leaf, int, 0444);
115 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
116 /* Number of rcu_nodes at specified level. */
117 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
118 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121 * The rcu_scheduler_active variable is initialized to the value
122 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
123 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
124 * RCU can assume that there is but one task, allowing RCU to (for example)
125 * optimize synchronize_rcu() to a simple barrier(). When this variable
126 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
127 * to detect real grace periods. This variable is also used to suppress
128 * boot-time false positives from lockdep-RCU error checking. Finally, it
129 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
130 * is fully initialized, including all of its kthreads having been spawned.
132 int rcu_scheduler_active __read_mostly;
133 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
136 * The rcu_scheduler_fully_active variable transitions from zero to one
137 * during the early_initcall() processing, which is after the scheduler
138 * is capable of creating new tasks. So RCU processing (for example,
139 * creating tasks for RCU priority boosting) must be delayed until after
140 * rcu_scheduler_fully_active transitions from zero to one. We also
141 * currently delay invocation of any RCU callbacks until after this point.
143 * It might later prove better for people registering RCU callbacks during
144 * early boot to take responsibility for these callbacks, but one step at
147 static int rcu_scheduler_fully_active __read_mostly;
149 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
150 unsigned long gps, unsigned long flags);
151 static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
152 static void invoke_rcu_core(void);
153 static void rcu_report_exp_rdp(struct rcu_data *rdp);
154 static void sync_sched_exp_online_cleanup(int cpu);
155 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
156 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
157 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
158 static bool rcu_init_invoked(void);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
163 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
164 * real-time priority(enabling/disabling) is controlled by
165 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 module_param(kthread_prio, int, 0444);
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 static int gp_preinit_delay;
173 module_param(gp_preinit_delay, int, 0444);
174 static int gp_init_delay;
175 module_param(gp_init_delay, int, 0444);
176 static int gp_cleanup_delay;
177 module_param(gp_cleanup_delay, int, 0444);
179 // Add delay to rcu_read_unlock() for strict grace periods.
180 static int rcu_unlock_delay;
181 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
182 module_param(rcu_unlock_delay, int, 0444);
186 * This rcu parameter is runtime-read-only. It reflects
187 * a minimum allowed number of objects which can be cached
188 * per-CPU. Object size is equal to one page. This value
189 * can be changed at boot time.
191 static int rcu_min_cached_objs = 5;
192 module_param(rcu_min_cached_objs, int, 0444);
194 // A page shrinker can ask for pages to be freed to make them
195 // available for other parts of the system. This usually happens
196 // under low memory conditions, and in that case we should also
197 // defer page-cache filling for a short time period.
199 // The default value is 5 seconds, which is long enough to reduce
200 // interference with the shrinker while it asks other systems to
201 // drain their caches.
202 static int rcu_delay_page_cache_fill_msec = 5000;
203 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
205 /* Retrieve RCU kthreads priority for rcutorture */
206 int rcu_get_gp_kthreads_prio(void)
210 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
213 * Number of grace periods between delays, normalized by the duration of
214 * the delay. The longer the delay, the more the grace periods between
215 * each delay. The reason for this normalization is that it means that,
216 * for non-zero delays, the overall slowdown of grace periods is constant
217 * regardless of the duration of the delay. This arrangement balances
218 * the need for long delays to increase some race probabilities with the
219 * need for fast grace periods to increase other race probabilities.
221 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
224 * Return true if an RCU grace period is in progress. The READ_ONCE()s
225 * permit this function to be invoked without holding the root rcu_node
226 * structure's ->lock, but of course results can be subject to change.
228 static int rcu_gp_in_progress(void)
230 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
234 * Return the number of callbacks queued on the specified CPU.
235 * Handles both the nocbs and normal cases.
237 static long rcu_get_n_cbs_cpu(int cpu)
239 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
241 if (rcu_segcblist_is_enabled(&rdp->cblist))
242 return rcu_segcblist_n_cbs(&rdp->cblist);
247 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
249 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
250 * This is a special-purpose function to be used in the softirq
251 * infrastructure and perhaps the occasional long-running softirq
254 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
255 * equivalent to momentarily completely enabling preemption. For
256 * example, given this code::
258 * local_bh_disable();
260 * rcu_softirq_qs(); // A
261 * do_something_else();
262 * local_bh_enable(); // B
264 * A call to synchronize_rcu() that began concurrently with the
265 * call to do_something() would be guaranteed to wait only until
266 * execution reached statement A. Without that rcu_softirq_qs(),
267 * that same synchronize_rcu() would instead be guaranteed to wait
268 * until execution reached statement B.
270 void rcu_softirq_qs(void)
272 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
273 lock_is_held(&rcu_lock_map) ||
274 lock_is_held(&rcu_sched_lock_map),
275 "Illegal rcu_softirq_qs() in RCU read-side critical section");
277 rcu_preempt_deferred_qs(current);
278 rcu_tasks_qs(current, false);
282 * Reset the current CPU's ->dynticks counter to indicate that the
283 * newly onlined CPU is no longer in an extended quiescent state.
284 * This will either leave the counter unchanged, or increment it
285 * to the next non-quiescent value.
287 * The non-atomic test/increment sequence works because the upper bits
288 * of the ->dynticks counter are manipulated only by the corresponding CPU,
289 * or when the corresponding CPU is offline.
291 static void rcu_dynticks_eqs_online(void)
293 if (ct_dynticks() & RCU_DYNTICKS_IDX)
295 ct_state_inc(RCU_DYNTICKS_IDX);
299 * Snapshot the ->dynticks counter with full ordering so as to allow
300 * stable comparison of this counter with past and future snapshots.
302 static int rcu_dynticks_snap(int cpu)
304 smp_mb(); // Fundamental RCU ordering guarantee.
305 return ct_dynticks_cpu_acquire(cpu);
309 * Return true if the snapshot returned from rcu_dynticks_snap()
310 * indicates that RCU is in an extended quiescent state.
312 static bool rcu_dynticks_in_eqs(int snap)
314 return !(snap & RCU_DYNTICKS_IDX);
318 * Return true if the CPU corresponding to the specified rcu_data
319 * structure has spent some time in an extended quiescent state since
320 * rcu_dynticks_snap() returned the specified snapshot.
322 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
324 return snap != rcu_dynticks_snap(rdp->cpu);
328 * Return true if the referenced integer is zero while the specified
329 * CPU remains within a single extended quiescent state.
331 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
335 // If not quiescent, force back to earlier extended quiescent state.
336 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
337 smp_rmb(); // Order ->dynticks and *vp reads.
339 return false; // Non-zero, so report failure;
340 smp_rmb(); // Order *vp read and ->dynticks re-read.
342 // If still in the same extended quiescent state, we are good!
343 return snap == ct_dynticks_cpu(cpu);
347 * Let the RCU core know that this CPU has gone through the scheduler,
348 * which is a quiescent state. This is called when the need for a
349 * quiescent state is urgent, so we burn an atomic operation and full
350 * memory barriers to let the RCU core know about it, regardless of what
351 * this CPU might (or might not) do in the near future.
353 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
355 * The caller must have disabled interrupts and must not be idle.
357 notrace void rcu_momentary_dyntick_idle(void)
361 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
362 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
363 /* It is illegal to call this from idle state. */
364 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
365 rcu_preempt_deferred_qs(current);
367 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
370 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
372 * If the current CPU is idle and running at a first-level (not nested)
373 * interrupt, or directly, from idle, return true.
375 * The caller must have at least disabled IRQs.
377 static int rcu_is_cpu_rrupt_from_idle(void)
382 * Usually called from the tick; but also used from smp_function_call()
383 * for expedited grace periods. This latter can result in running from
384 * the idle task, instead of an actual IPI.
386 lockdep_assert_irqs_disabled();
388 /* Check for counter underflows */
389 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
390 "RCU dynticks_nesting counter underflow!");
391 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
392 "RCU dynticks_nmi_nesting counter underflow/zero!");
394 /* Are we at first interrupt nesting level? */
395 nesting = ct_dynticks_nmi_nesting();
400 * If we're not in an interrupt, we must be in the idle task!
402 WARN_ON_ONCE(!nesting && !is_idle_task(current));
404 /* Does CPU appear to be idle from an RCU standpoint? */
405 return ct_dynticks_nesting() == 0;
408 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
409 // Maximum callbacks per rcu_do_batch ...
410 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
411 static long blimit = DEFAULT_RCU_BLIMIT;
412 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
413 static long qhimark = DEFAULT_RCU_QHIMARK;
414 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
415 static long qlowmark = DEFAULT_RCU_QLOMARK;
416 #define DEFAULT_RCU_QOVLD_MULT 2
417 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
418 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
419 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
421 module_param(blimit, long, 0444);
422 module_param(qhimark, long, 0444);
423 module_param(qlowmark, long, 0444);
424 module_param(qovld, long, 0444);
426 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
427 static ulong jiffies_till_next_fqs = ULONG_MAX;
428 static bool rcu_kick_kthreads;
429 static int rcu_divisor = 7;
430 module_param(rcu_divisor, int, 0644);
432 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
433 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
434 module_param(rcu_resched_ns, long, 0644);
437 * How long the grace period must be before we start recruiting
438 * quiescent-state help from rcu_note_context_switch().
440 static ulong jiffies_till_sched_qs = ULONG_MAX;
441 module_param(jiffies_till_sched_qs, ulong, 0444);
442 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
443 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
446 * Make sure that we give the grace-period kthread time to detect any
447 * idle CPUs before taking active measures to force quiescent states.
448 * However, don't go below 100 milliseconds, adjusted upwards for really
451 static void adjust_jiffies_till_sched_qs(void)
455 /* If jiffies_till_sched_qs was specified, respect the request. */
456 if (jiffies_till_sched_qs != ULONG_MAX) {
457 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
460 /* Otherwise, set to third fqs scan, but bound below on large system. */
461 j = READ_ONCE(jiffies_till_first_fqs) +
462 2 * READ_ONCE(jiffies_till_next_fqs);
463 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
464 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
465 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
466 WRITE_ONCE(jiffies_to_sched_qs, j);
469 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
472 int ret = kstrtoul(val, 0, &j);
475 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
476 adjust_jiffies_till_sched_qs();
481 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
484 int ret = kstrtoul(val, 0, &j);
487 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
488 adjust_jiffies_till_sched_qs();
493 static const struct kernel_param_ops first_fqs_jiffies_ops = {
494 .set = param_set_first_fqs_jiffies,
495 .get = param_get_ulong,
498 static const struct kernel_param_ops next_fqs_jiffies_ops = {
499 .set = param_set_next_fqs_jiffies,
500 .get = param_get_ulong,
503 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
504 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
505 module_param(rcu_kick_kthreads, bool, 0644);
507 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
508 static int rcu_pending(int user);
511 * Return the number of RCU GPs completed thus far for debug & stats.
513 unsigned long rcu_get_gp_seq(void)
515 return READ_ONCE(rcu_state.gp_seq);
517 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
520 * Return the number of RCU expedited batches completed thus far for
521 * debug & stats. Odd numbers mean that a batch is in progress, even
522 * numbers mean idle. The value returned will thus be roughly double
523 * the cumulative batches since boot.
525 unsigned long rcu_exp_batches_completed(void)
527 return rcu_state.expedited_sequence;
529 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
532 * Return the root node of the rcu_state structure.
534 static struct rcu_node *rcu_get_root(void)
536 return &rcu_state.node[0];
540 * Send along grace-period-related data for rcutorture diagnostics.
542 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
544 *flags = READ_ONCE(rcu_state.gp_flags);
545 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
551 * An empty function that will trigger a reschedule on
552 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
554 static void late_wakeup_func(struct irq_work *work)
558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
559 IRQ_WORK_INIT(late_wakeup_func);
564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
567 * In these cases the late RCU wake ups aren't supported in the resched loops and our
568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
569 * get re-enabled again.
571 noinstr void rcu_irq_work_resched(void)
573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
581 instrumentation_begin();
582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
583 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
585 instrumentation_end();
587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
589 #ifdef CONFIG_PROVE_RCU
591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
593 void rcu_irq_exit_check_preempt(void)
595 lockdep_assert_irqs_disabled();
597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
598 "RCU dynticks_nesting counter underflow/zero!");
599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
601 "Bad RCU dynticks_nmi_nesting counter\n");
602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
603 "RCU in extended quiescent state!");
605 #endif /* #ifdef CONFIG_PROVE_RCU */
607 #ifdef CONFIG_NO_HZ_FULL
609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
611 * The scheduler tick is not normally enabled when CPUs enter the kernel
612 * from nohz_full userspace execution. After all, nohz_full userspace
613 * execution is an RCU quiescent state and the time executing in the kernel
614 * is quite short. Except of course when it isn't. And it is not hard to
615 * cause a large system to spend tens of seconds or even minutes looping
616 * in the kernel, which can cause a number of problems, include RCU CPU
619 * Therefore, if a nohz_full CPU fails to report a quiescent state
620 * in a timely manner, the RCU grace-period kthread sets that CPU's
621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
622 * exception will invoke this function, which will turn on the scheduler
623 * tick, which will enable RCU to detect that CPU's quiescent states,
624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
625 * The tick will be disabled once a quiescent state is reported for
628 * Of course, in carefully tuned systems, there might never be an
629 * interrupt or exception. In that case, the RCU grace-period kthread
630 * will eventually cause one to happen. However, in less carefully
631 * controlled environments, this function allows RCU to get what it
632 * needs without creating otherwise useless interruptions.
634 void __rcu_irq_enter_check_tick(void)
636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638 // If we're here from NMI there's nothing to do.
642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
645 if (!tick_nohz_full_cpu(rdp->cpu) ||
646 !READ_ONCE(rdp->rcu_urgent_qs) ||
647 READ_ONCE(rdp->rcu_forced_tick)) {
648 // RCU doesn't need nohz_full help from this CPU, or it is
649 // already getting that help.
653 // We get here only when not in an extended quiescent state and
654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
655 // already watching and (2) The fact that we are in an interrupt
656 // handler and that the rcu_node lock is an irq-disabled lock
657 // prevents self-deadlock. So we can safely recheck under the lock.
658 // Note that the nohz_full state currently cannot change.
659 raw_spin_lock_rcu_node(rdp->mynode);
660 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
661 // A nohz_full CPU is in the kernel and RCU needs a
662 // quiescent state. Turn on the tick!
663 WRITE_ONCE(rdp->rcu_forced_tick, true);
664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
666 raw_spin_unlock_rcu_node(rdp->mynode);
668 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
669 #endif /* CONFIG_NO_HZ_FULL */
672 * Check to see if any future non-offloaded RCU-related work will need
673 * to be done by the current CPU, even if none need be done immediately,
674 * returning 1 if so. This function is part of the RCU implementation;
675 * it is -not- an exported member of the RCU API. This is used by
676 * the idle-entry code to figure out whether it is safe to disable the
677 * scheduler-clock interrupt.
679 * Just check whether or not this CPU has non-offloaded RCU callbacks
682 int rcu_needs_cpu(void)
684 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
685 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
689 * If any sort of urgency was applied to the current CPU (for example,
690 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
691 * to get to a quiescent state, disable it.
693 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
695 raw_lockdep_assert_held_rcu_node(rdp->mynode);
696 WRITE_ONCE(rdp->rcu_urgent_qs, false);
697 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
698 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
699 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
700 WRITE_ONCE(rdp->rcu_forced_tick, false);
705 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
707 * Return @true if RCU is watching the running CPU and @false otherwise.
708 * An @true return means that this CPU can safely enter RCU read-side
711 * Although calls to rcu_is_watching() from most parts of the kernel
712 * will return @true, there are important exceptions. For example, if the
713 * current CPU is deep within its idle loop, in kernel entry/exit code,
714 * or offline, rcu_is_watching() will return @false.
716 * Make notrace because it can be called by the internal functions of
717 * ftrace, and making this notrace removes unnecessary recursion calls.
719 notrace bool rcu_is_watching(void)
723 preempt_disable_notrace();
724 ret = !rcu_dynticks_curr_cpu_in_eqs();
725 preempt_enable_notrace();
728 EXPORT_SYMBOL_GPL(rcu_is_watching);
731 * If a holdout task is actually running, request an urgent quiescent
732 * state from its CPU. This is unsynchronized, so migrations can cause
733 * the request to go to the wrong CPU. Which is OK, all that will happen
734 * is that the CPU's next context switch will be a bit slower and next
735 * time around this task will generate another request.
737 void rcu_request_urgent_qs_task(struct task_struct *t)
744 return; /* This task is not running on that CPU. */
745 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
749 * When trying to report a quiescent state on behalf of some other CPU,
750 * it is our responsibility to check for and handle potential overflow
751 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
752 * After all, the CPU might be in deep idle state, and thus executing no
755 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
757 raw_lockdep_assert_held_rcu_node(rnp);
758 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
760 WRITE_ONCE(rdp->gpwrap, true);
761 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
762 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
766 * Snapshot the specified CPU's dynticks counter so that we can later
767 * credit them with an implicit quiescent state. Return 1 if this CPU
768 * is in dynticks idle mode, which is an extended quiescent state.
770 static int dyntick_save_progress_counter(struct rcu_data *rdp)
772 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
773 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
774 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
775 rcu_gpnum_ovf(rdp->mynode, rdp);
782 * Returns positive if the specified CPU has passed through a quiescent state
783 * by virtue of being in or having passed through an dynticks idle state since
784 * the last call to dyntick_save_progress_counter() for this same CPU, or by
785 * virtue of having been offline.
787 * Returns negative if the specified CPU needs a force resched.
789 * Returns zero otherwise.
791 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
795 struct rcu_node *rnp = rdp->mynode;
798 * If the CPU passed through or entered a dynticks idle phase with
799 * no active irq/NMI handlers, then we can safely pretend that the CPU
800 * already acknowledged the request to pass through a quiescent
801 * state. Either way, that CPU cannot possibly be in an RCU
802 * read-side critical section that started before the beginning
803 * of the current RCU grace period.
805 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
806 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
807 rcu_gpnum_ovf(rnp, rdp);
812 * Complain if a CPU that is considered to be offline from RCU's
813 * perspective has not yet reported a quiescent state. After all,
814 * the offline CPU should have reported a quiescent state during
815 * the CPU-offline process, or, failing that, by rcu_gp_init()
816 * if it ran concurrently with either the CPU going offline or the
817 * last task on a leaf rcu_node structure exiting its RCU read-side
818 * critical section while all CPUs corresponding to that structure
819 * are offline. This added warning detects bugs in any of these
822 * The rcu_node structure's ->lock is held here, which excludes
823 * the relevant portions the CPU-hotplug code, the grace-period
824 * initialization code, and the rcu_read_unlock() code paths.
826 * For more detail, please refer to the "Hotplug CPU" section
827 * of RCU's Requirements documentation.
829 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
830 struct rcu_node *rnp1;
832 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
833 __func__, rnp->grplo, rnp->grphi, rnp->level,
834 (long)rnp->gp_seq, (long)rnp->completedqs);
835 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
836 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
837 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
838 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
839 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
840 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
841 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
842 return 1; /* Break things loose after complaining. */
846 * A CPU running for an extended time within the kernel can
847 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
848 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
849 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
850 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
851 * variable are safe because the assignments are repeated if this
852 * CPU failed to pass through a quiescent state. This code
853 * also checks .jiffies_resched in case jiffies_to_sched_qs
856 jtsq = READ_ONCE(jiffies_to_sched_qs);
857 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
858 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
859 time_after(jiffies, rcu_state.jiffies_resched) ||
861 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
862 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
863 smp_store_release(&rdp->rcu_urgent_qs, true);
864 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
865 WRITE_ONCE(rdp->rcu_urgent_qs, true);
869 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
870 * The above code handles this, but only for straight cond_resched().
871 * And some in-kernel loops check need_resched() before calling
872 * cond_resched(), which defeats the above code for CPUs that are
873 * running in-kernel with scheduling-clock interrupts disabled.
874 * So hit them over the head with the resched_cpu() hammer!
876 if (tick_nohz_full_cpu(rdp->cpu) &&
877 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
879 WRITE_ONCE(rdp->rcu_urgent_qs, true);
880 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
885 * If more than halfway to RCU CPU stall-warning time, invoke
886 * resched_cpu() more frequently to try to loosen things up a bit.
887 * Also check to see if the CPU is getting hammered with interrupts,
888 * but only once per grace period, just to keep the IPIs down to
891 if (time_after(jiffies, rcu_state.jiffies_resched)) {
892 if (time_after(jiffies,
893 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
894 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
897 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
898 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
899 (rnp->ffmask & rdp->grpmask)) {
900 rdp->rcu_iw_pending = true;
901 rdp->rcu_iw_gp_seq = rnp->gp_seq;
902 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
905 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
907 struct rcu_snap_record *rsrp;
908 struct kernel_cpustat *kcsp;
910 kcsp = &kcpustat_cpu(cpu);
912 rsrp = &rdp->snap_record;
913 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
914 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
915 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
916 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
917 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
918 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
919 rsrp->jiffies = jiffies;
920 rsrp->gp_seq = rdp->gp_seq;
927 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
928 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
929 unsigned long gp_seq_req, const char *s)
931 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
932 gp_seq_req, rnp->level,
933 rnp->grplo, rnp->grphi, s);
937 * rcu_start_this_gp - Request the start of a particular grace period
938 * @rnp_start: The leaf node of the CPU from which to start.
939 * @rdp: The rcu_data corresponding to the CPU from which to start.
940 * @gp_seq_req: The gp_seq of the grace period to start.
942 * Start the specified grace period, as needed to handle newly arrived
943 * callbacks. The required future grace periods are recorded in each
944 * rcu_node structure's ->gp_seq_needed field. Returns true if there
945 * is reason to awaken the grace-period kthread.
947 * The caller must hold the specified rcu_node structure's ->lock, which
948 * is why the caller is responsible for waking the grace-period kthread.
950 * Returns true if the GP thread needs to be awakened else false.
952 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
953 unsigned long gp_seq_req)
956 struct rcu_node *rnp;
959 * Use funnel locking to either acquire the root rcu_node
960 * structure's lock or bail out if the need for this grace period
961 * has already been recorded -- or if that grace period has in
962 * fact already started. If there is already a grace period in
963 * progress in a non-leaf node, no recording is needed because the
964 * end of the grace period will scan the leaf rcu_node structures.
965 * Note that rnp_start->lock must not be released.
967 raw_lockdep_assert_held_rcu_node(rnp_start);
968 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
969 for (rnp = rnp_start; 1; rnp = rnp->parent) {
970 if (rnp != rnp_start)
971 raw_spin_lock_rcu_node(rnp);
972 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
973 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
975 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
976 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
980 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
981 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
983 * We just marked the leaf or internal node, and a
984 * grace period is in progress, which means that
985 * rcu_gp_cleanup() will see the marking. Bail to
988 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
992 if (rnp != rnp_start && rnp->parent != NULL)
993 raw_spin_unlock_rcu_node(rnp);
995 break; /* At root, and perhaps also leaf. */
998 /* If GP already in progress, just leave, otherwise start one. */
999 if (rcu_gp_in_progress()) {
1000 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1003 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1004 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1005 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1006 if (!READ_ONCE(rcu_state.gp_kthread)) {
1007 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1010 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1011 ret = true; /* Caller must wake GP kthread. */
1013 /* Push furthest requested GP to leaf node and rcu_data structure. */
1014 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1015 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1016 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1018 if (rnp != rnp_start)
1019 raw_spin_unlock_rcu_node(rnp);
1024 * Clean up any old requests for the just-ended grace period. Also return
1025 * whether any additional grace periods have been requested.
1027 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1030 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1032 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1034 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1035 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1036 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1040 static void swake_up_one_online_ipi(void *arg)
1042 struct swait_queue_head *wqh = arg;
1047 static void swake_up_one_online(struct swait_queue_head *wqh)
1049 int cpu = get_cpu();
1052 * If called from rcutree_report_cpu_starting(), wake up
1053 * is dangerous that late in the CPU-down hotplug process. The
1054 * scheduler might queue an ignored hrtimer. Defer the wake up
1055 * to an online CPU instead.
1057 if (unlikely(cpu_is_offline(cpu))) {
1060 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1063 smp_call_function_single(target, swake_up_one_online_ipi,
1073 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1074 * interrupt or softirq handler, in which case we just might immediately
1075 * sleep upon return, resulting in a grace-period hang), and don't bother
1076 * awakening when there is nothing for the grace-period kthread to do
1077 * (as in several CPUs raced to awaken, we lost), and finally don't try
1078 * to awaken a kthread that has not yet been created. If all those checks
1079 * are passed, track some debug information and awaken.
1081 * So why do the self-wakeup when in an interrupt or softirq handler
1082 * in the grace-period kthread's context? Because the kthread might have
1083 * been interrupted just as it was going to sleep, and just after the final
1084 * pre-sleep check of the awaken condition. In this case, a wakeup really
1085 * is required, and is therefore supplied.
1087 static void rcu_gp_kthread_wake(void)
1089 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1091 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1092 !READ_ONCE(rcu_state.gp_flags) || !t)
1094 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1095 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1096 swake_up_one_online(&rcu_state.gp_wq);
1100 * If there is room, assign a ->gp_seq number to any callbacks on this
1101 * CPU that have not already been assigned. Also accelerate any callbacks
1102 * that were previously assigned a ->gp_seq number that has since proven
1103 * to be too conservative, which can happen if callbacks get assigned a
1104 * ->gp_seq number while RCU is idle, but with reference to a non-root
1105 * rcu_node structure. This function is idempotent, so it does not hurt
1106 * to call it repeatedly. Returns an flag saying that we should awaken
1107 * the RCU grace-period kthread.
1109 * The caller must hold rnp->lock with interrupts disabled.
1111 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1113 unsigned long gp_seq_req;
1116 rcu_lockdep_assert_cblist_protected(rdp);
1117 raw_lockdep_assert_held_rcu_node(rnp);
1119 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1120 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1123 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1126 * Callbacks are often registered with incomplete grace-period
1127 * information. Something about the fact that getting exact
1128 * information requires acquiring a global lock... RCU therefore
1129 * makes a conservative estimate of the grace period number at which
1130 * a given callback will become ready to invoke. The following
1131 * code checks this estimate and improves it when possible, thus
1132 * accelerating callback invocation to an earlier grace-period
1135 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1136 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1137 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1139 /* Trace depending on how much we were able to accelerate. */
1140 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1141 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1143 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1145 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1151 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1152 * rcu_node structure's ->lock be held. It consults the cached value
1153 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1154 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1155 * while holding the leaf rcu_node structure's ->lock.
1157 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1158 struct rcu_data *rdp)
1163 rcu_lockdep_assert_cblist_protected(rdp);
1164 c = rcu_seq_snap(&rcu_state.gp_seq);
1165 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1166 /* Old request still live, so mark recent callbacks. */
1167 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1170 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1171 needwake = rcu_accelerate_cbs(rnp, rdp);
1172 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1174 rcu_gp_kthread_wake();
1178 * Move any callbacks whose grace period has completed to the
1179 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1180 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1181 * sublist. This function is idempotent, so it does not hurt to
1182 * invoke it repeatedly. As long as it is not invoked -too- often...
1183 * Returns true if the RCU grace-period kthread needs to be awakened.
1185 * The caller must hold rnp->lock with interrupts disabled.
1187 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1189 rcu_lockdep_assert_cblist_protected(rdp);
1190 raw_lockdep_assert_held_rcu_node(rnp);
1192 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1193 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1197 * Find all callbacks whose ->gp_seq numbers indicate that they
1198 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1200 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1202 /* Classify any remaining callbacks. */
1203 return rcu_accelerate_cbs(rnp, rdp);
1207 * Move and classify callbacks, but only if doing so won't require
1208 * that the RCU grace-period kthread be awakened.
1210 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1211 struct rcu_data *rdp)
1213 rcu_lockdep_assert_cblist_protected(rdp);
1214 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1216 // The grace period cannot end while we hold the rcu_node lock.
1217 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1218 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1219 raw_spin_unlock_rcu_node(rnp);
1223 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1224 * quiescent state. This is intended to be invoked when the CPU notices
1225 * a new grace period.
1227 static void rcu_strict_gp_check_qs(void)
1229 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1236 * Update CPU-local rcu_data state to record the beginnings and ends of
1237 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1238 * structure corresponding to the current CPU, and must have irqs disabled.
1239 * Returns true if the grace-period kthread needs to be awakened.
1241 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1245 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1247 raw_lockdep_assert_held_rcu_node(rnp);
1249 if (rdp->gp_seq == rnp->gp_seq)
1250 return false; /* Nothing to do. */
1252 /* Handle the ends of any preceding grace periods first. */
1253 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1254 unlikely(READ_ONCE(rdp->gpwrap))) {
1256 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1257 rdp->core_needs_qs = false;
1258 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1261 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1262 if (rdp->core_needs_qs)
1263 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1266 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1267 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1268 unlikely(READ_ONCE(rdp->gpwrap))) {
1270 * If the current grace period is waiting for this CPU,
1271 * set up to detect a quiescent state, otherwise don't
1272 * go looking for one.
1274 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1275 need_qs = !!(rnp->qsmask & rdp->grpmask);
1276 rdp->cpu_no_qs.b.norm = need_qs;
1277 rdp->core_needs_qs = need_qs;
1278 zero_cpu_stall_ticks(rdp);
1280 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1281 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1282 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1283 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1284 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1285 WRITE_ONCE(rdp->gpwrap, false);
1286 rcu_gpnum_ovf(rnp, rdp);
1290 static void note_gp_changes(struct rcu_data *rdp)
1292 unsigned long flags;
1294 struct rcu_node *rnp;
1296 local_irq_save(flags);
1298 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1299 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1300 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1301 local_irq_restore(flags);
1304 needwake = __note_gp_changes(rnp, rdp);
1305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1306 rcu_strict_gp_check_qs();
1308 rcu_gp_kthread_wake();
1311 static atomic_t *rcu_gp_slow_suppress;
1313 /* Register a counter to suppress debugging grace-period delays. */
1314 void rcu_gp_slow_register(atomic_t *rgssp)
1316 WARN_ON_ONCE(rcu_gp_slow_suppress);
1318 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1320 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1322 /* Unregister a counter, with NULL for not caring which. */
1323 void rcu_gp_slow_unregister(atomic_t *rgssp)
1325 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1327 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1329 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1331 static bool rcu_gp_slow_is_suppressed(void)
1333 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1335 return rgssp && atomic_read(rgssp);
1338 static void rcu_gp_slow(int delay)
1340 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1341 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1342 schedule_timeout_idle(delay);
1345 static unsigned long sleep_duration;
1347 /* Allow rcutorture to stall the grace-period kthread. */
1348 void rcu_gp_set_torture_wait(int duration)
1350 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1351 WRITE_ONCE(sleep_duration, duration);
1353 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1355 /* Actually implement the aforementioned wait. */
1356 static void rcu_gp_torture_wait(void)
1358 unsigned long duration;
1360 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1362 duration = xchg(&sleep_duration, 0UL);
1364 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1365 schedule_timeout_idle(duration);
1366 pr_alert("%s: Wait complete\n", __func__);
1371 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1374 static void rcu_strict_gp_boundary(void *unused)
1379 // Make the polled API aware of the beginning of a grace period.
1380 static void rcu_poll_gp_seq_start(unsigned long *snap)
1382 struct rcu_node *rnp = rcu_get_root();
1384 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1385 raw_lockdep_assert_held_rcu_node(rnp);
1387 // If RCU was idle, note beginning of GP.
1388 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1389 rcu_seq_start(&rcu_state.gp_seq_polled);
1391 // Either way, record current state.
1392 *snap = rcu_state.gp_seq_polled;
1395 // Make the polled API aware of the end of a grace period.
1396 static void rcu_poll_gp_seq_end(unsigned long *snap)
1398 struct rcu_node *rnp = rcu_get_root();
1400 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1401 raw_lockdep_assert_held_rcu_node(rnp);
1403 // If the previously noted GP is still in effect, record the
1404 // end of that GP. Either way, zero counter to avoid counter-wrap
1406 if (*snap && *snap == rcu_state.gp_seq_polled) {
1407 rcu_seq_end(&rcu_state.gp_seq_polled);
1408 rcu_state.gp_seq_polled_snap = 0;
1409 rcu_state.gp_seq_polled_exp_snap = 0;
1415 // Make the polled API aware of the beginning of a grace period, but
1416 // where caller does not hold the root rcu_node structure's lock.
1417 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1419 unsigned long flags;
1420 struct rcu_node *rnp = rcu_get_root();
1422 if (rcu_init_invoked()) {
1423 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1424 lockdep_assert_irqs_enabled();
1425 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1427 rcu_poll_gp_seq_start(snap);
1428 if (rcu_init_invoked())
1429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1432 // Make the polled API aware of the end of a grace period, but where
1433 // caller does not hold the root rcu_node structure's lock.
1434 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1436 unsigned long flags;
1437 struct rcu_node *rnp = rcu_get_root();
1439 if (rcu_init_invoked()) {
1440 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1441 lockdep_assert_irqs_enabled();
1442 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1444 rcu_poll_gp_seq_end(snap);
1445 if (rcu_init_invoked())
1446 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 * There is a single llist, which is used for handling
1451 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1452 * Within this llist, there are two tail pointers:
1454 * wait tail: Tracks the set of nodes, which need to
1455 * wait for the current GP to complete.
1456 * done tail: Tracks the set of nodes, for which grace
1457 * period has elapsed. These nodes processing
1458 * will be done as part of the cleanup work
1459 * execution by a kworker.
1461 * At every grace period init, a new wait node is added
1462 * to the llist. This wait node is used as wait tail
1463 * for this new grace period. Given that there are a fixed
1464 * number of wait nodes, if all wait nodes are in use
1465 * (which can happen when kworker callback processing
1466 * is delayed) and additional grace period is requested.
1467 * This means, a system is slow in processing callbacks.
1469 * TODO: If a slow processing is detected, a first node
1470 * in the llist should be used as a wait-tail for this
1471 * grace period, therefore users which should wait due
1472 * to a slow process are handled by _this_ grace period
1475 * Below is an illustration of how the done and wait
1476 * tail pointers move from one set of rcu_synchronize nodes
1477 * to the other, as grace periods start and finish and
1478 * nodes are processed by kworker.
1481 * a. Initial llist callbacks list:
1483 * +----------+ +--------+ +-------+
1485 * | head |---------> | cb2 |--------->| cb1 |
1487 * +----------+ +--------+ +-------+
1497 * +----------+ +--------+ +--------+ +-------+
1499 * | head ------> wait |------> cb2 |------> | cb1 |
1500 * | | | head1 | | | | |
1501 * +----------+ +--------+ +--------+ +-------+
1507 * WAIT_TAIL == DONE_TAIL
1513 * +----------+ +--------+ +--------+ +-------+
1515 * | head ------> wait |------> cb2 |------> | cb1 |
1516 * | | | head1 | | | | |
1517 * +----------+ +--------+ +--------+ +-------+
1521 * d. New callbacks and GP2 start:
1523 * WAIT TAIL DONE TAIL
1527 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1528 * | | | | | | | | | | | | | |
1529 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1530 * | | | head2| | | | | |head1| | | | |
1531 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1535 * e. GP2 completion:
1537 * WAIT_TAIL == DONE_TAIL
1542 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1543 * | | | | | | | | | | | | | |
1544 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1545 * | | | head2| | | | | |head1| | | | |
1546 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1549 * While the llist state transitions from d to e, a kworker
1550 * can start executing rcu_sr_normal_gp_cleanup_work() and
1551 * can observe either the old done tail (@c) or the new
1552 * done tail (@e). So, done tail updates and reads need
1553 * to use the rel-acq semantics. If the concurrent kworker
1554 * observes the old done tail, the newly queued work
1555 * execution will process the updated done tail. If the
1556 * concurrent kworker observes the new done tail, then
1557 * the newly queued work will skip processing the done
1558 * tail, as workqueue semantics guarantees that the new
1559 * work is executed only after the previous one completes.
1561 * f. kworker callbacks processing complete:
1568 * +----------+ +--------+
1570 * | head ------> wait |
1572 * +----------+ +--------+
1575 static bool rcu_sr_is_wait_head(struct llist_node *node)
1577 return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1578 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1581 static struct llist_node *rcu_sr_get_wait_head(void)
1583 struct sr_wait_node *sr_wn;
1586 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1587 sr_wn = &(rcu_state.srs_wait_nodes)[i];
1589 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1590 return &sr_wn->node;
1596 static void rcu_sr_put_wait_head(struct llist_node *node)
1598 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1600 atomic_set_release(&sr_wn->inuse, 0);
1603 /* Disabled by default. */
1604 static int rcu_normal_wake_from_gp;
1605 module_param(rcu_normal_wake_from_gp, int, 0644);
1606 static struct workqueue_struct *sync_wq;
1608 static void rcu_sr_normal_complete(struct llist_node *node)
1610 struct rcu_synchronize *rs = container_of(
1611 (struct rcu_head *) node, struct rcu_synchronize, head);
1612 unsigned long oldstate = (unsigned long) rs->head.func;
1614 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1615 !poll_state_synchronize_rcu(oldstate),
1616 "A full grace period is not passed yet: %lu",
1617 rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
1620 complete(&rs->completion);
1623 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1625 struct llist_node *done, *rcu, *next, *head;
1628 * This work execution can potentially execute
1629 * while a new done tail is being updated by
1630 * grace period kthread in rcu_sr_normal_gp_cleanup().
1631 * So, read and updates of done tail need to
1632 * follow acq-rel semantics.
1634 * Given that wq semantics guarantees that a single work
1635 * cannot execute concurrently by multiple kworkers,
1636 * the done tail list manipulations are protected here.
1638 done = smp_load_acquire(&rcu_state.srs_done_tail);
1642 WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1647 * The dummy node, which is pointed to by the
1648 * done tail which is acq-read above is not removed
1649 * here. This allows lockless additions of new
1650 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1651 * while the cleanup work executes. The dummy
1652 * nodes is removed, in next round of cleanup
1655 llist_for_each_safe(rcu, next, head) {
1656 if (!rcu_sr_is_wait_head(rcu)) {
1657 rcu_sr_normal_complete(rcu);
1661 rcu_sr_put_wait_head(rcu);
1666 * Helper function for rcu_gp_cleanup().
1668 static void rcu_sr_normal_gp_cleanup(void)
1670 struct llist_node *wait_tail, *next, *rcu;
1673 wait_tail = rcu_state.srs_wait_tail;
1674 if (wait_tail == NULL)
1677 rcu_state.srs_wait_tail = NULL;
1678 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1679 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1682 * Process (a) and (d) cases. See an illustration.
1684 llist_for_each_safe(rcu, next, wait_tail->next) {
1685 if (rcu_sr_is_wait_head(rcu))
1688 rcu_sr_normal_complete(rcu);
1689 // It can be last, update a next on this step.
1690 wait_tail->next = next;
1692 if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1696 // concurrent sr_normal_gp_cleanup work might observe this update.
1697 smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1698 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1701 * We schedule a work in order to perform a final processing
1702 * of outstanding users(if still left) and releasing wait-heads
1703 * added by rcu_sr_normal_gp_init() call.
1705 queue_work(sync_wq, &rcu_state.srs_cleanup_work);
1709 * Helper function for rcu_gp_init().
1711 static bool rcu_sr_normal_gp_init(void)
1713 struct llist_node *first;
1714 struct llist_node *wait_head;
1715 bool start_new_poll = false;
1717 first = READ_ONCE(rcu_state.srs_next.first);
1718 if (!first || rcu_sr_is_wait_head(first))
1719 return start_new_poll;
1721 wait_head = rcu_sr_get_wait_head();
1723 // Kick another GP to retry.
1724 start_new_poll = true;
1725 return start_new_poll;
1728 /* Inject a wait-dummy-node. */
1729 llist_add(wait_head, &rcu_state.srs_next);
1732 * A waiting list of rcu_synchronize nodes should be empty on
1733 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1734 * rolls it over. If not, it is a BUG, warn a user.
1736 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1737 rcu_state.srs_wait_tail = wait_head;
1738 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1740 return start_new_poll;
1743 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1745 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1749 * Initialize a new grace period. Return false if no grace period required.
1751 static noinline_for_stack bool rcu_gp_init(void)
1753 unsigned long flags;
1754 unsigned long oldmask;
1756 struct rcu_data *rdp;
1757 struct rcu_node *rnp = rcu_get_root();
1758 bool start_new_poll;
1760 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761 raw_spin_lock_irq_rcu_node(rnp);
1762 if (!rcu_state.gp_flags) {
1763 /* Spurious wakeup, tell caller to go back to sleep. */
1764 raw_spin_unlock_irq_rcu_node(rnp);
1767 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1769 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1771 * Grace period already in progress, don't start another.
1772 * Not supposed to be able to happen.
1774 raw_spin_unlock_irq_rcu_node(rnp);
1778 /* Advance to a new grace period and initialize state. */
1779 record_gp_stall_check_time();
1780 /* Record GP times before starting GP, hence rcu_seq_start(). */
1781 rcu_seq_start(&rcu_state.gp_seq);
1782 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1783 start_new_poll = rcu_sr_normal_gp_init();
1784 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1785 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1786 raw_spin_unlock_irq_rcu_node(rnp);
1789 * The "start_new_poll" is set to true, only when this GP is not able
1790 * to handle anything and there are outstanding users. It happens when
1791 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1792 * separator to the llist, because there were no left any dummy-nodes.
1794 * Number of dummy-nodes is fixed, it could be that we are run out of
1795 * them, if so we start a new pool request to repeat a try. It is rare
1796 * and it means that a system is doing a slow processing of callbacks.
1799 (void) start_poll_synchronize_rcu();
1802 * Apply per-leaf buffered online and offline operations to
1803 * the rcu_node tree. Note that this new grace period need not
1804 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1805 * offlining path, when combined with checks in this function,
1806 * will handle CPUs that are currently going offline or that will
1807 * go offline later. Please also refer to "Hotplug CPU" section
1808 * of RCU's Requirements documentation.
1810 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1811 /* Exclude CPU hotplug operations. */
1812 rcu_for_each_leaf_node(rnp) {
1813 local_irq_save(flags);
1814 arch_spin_lock(&rcu_state.ofl_lock);
1815 raw_spin_lock_rcu_node(rnp);
1816 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1817 !rnp->wait_blkd_tasks) {
1818 /* Nothing to do on this leaf rcu_node structure. */
1819 raw_spin_unlock_rcu_node(rnp);
1820 arch_spin_unlock(&rcu_state.ofl_lock);
1821 local_irq_restore(flags);
1825 /* Record old state, apply changes to ->qsmaskinit field. */
1826 oldmask = rnp->qsmaskinit;
1827 rnp->qsmaskinit = rnp->qsmaskinitnext;
1829 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1830 if (!oldmask != !rnp->qsmaskinit) {
1831 if (!oldmask) { /* First online CPU for rcu_node. */
1832 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1833 rcu_init_new_rnp(rnp);
1834 } else if (rcu_preempt_has_tasks(rnp)) {
1835 rnp->wait_blkd_tasks = true; /* blocked tasks */
1836 } else { /* Last offline CPU and can propagate. */
1837 rcu_cleanup_dead_rnp(rnp);
1842 * If all waited-on tasks from prior grace period are
1843 * done, and if all this rcu_node structure's CPUs are
1844 * still offline, propagate up the rcu_node tree and
1845 * clear ->wait_blkd_tasks. Otherwise, if one of this
1846 * rcu_node structure's CPUs has since come back online,
1847 * simply clear ->wait_blkd_tasks.
1849 if (rnp->wait_blkd_tasks &&
1850 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1851 rnp->wait_blkd_tasks = false;
1852 if (!rnp->qsmaskinit)
1853 rcu_cleanup_dead_rnp(rnp);
1856 raw_spin_unlock_rcu_node(rnp);
1857 arch_spin_unlock(&rcu_state.ofl_lock);
1858 local_irq_restore(flags);
1860 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1863 * Set the quiescent-state-needed bits in all the rcu_node
1864 * structures for all currently online CPUs in breadth-first
1865 * order, starting from the root rcu_node structure, relying on the
1866 * layout of the tree within the rcu_state.node[] array. Note that
1867 * other CPUs will access only the leaves of the hierarchy, thus
1868 * seeing that no grace period is in progress, at least until the
1869 * corresponding leaf node has been initialized.
1871 * The grace period cannot complete until the initialization
1872 * process finishes, because this kthread handles both.
1874 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1875 rcu_for_each_node_breadth_first(rnp) {
1876 rcu_gp_slow(gp_init_delay);
1877 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1878 rdp = this_cpu_ptr(&rcu_data);
1879 rcu_preempt_check_blocked_tasks(rnp);
1880 rnp->qsmask = rnp->qsmaskinit;
1881 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1882 if (rnp == rdp->mynode)
1883 (void)__note_gp_changes(rnp, rdp);
1884 rcu_preempt_boost_start_gp(rnp);
1885 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1886 rnp->level, rnp->grplo,
1887 rnp->grphi, rnp->qsmask);
1888 /* Quiescent states for tasks on any now-offline CPUs. */
1889 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1890 rnp->rcu_gp_init_mask = mask;
1891 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1894 raw_spin_unlock_irq_rcu_node(rnp);
1895 cond_resched_tasks_rcu_qs();
1896 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1899 // If strict, make all CPUs aware of new grace period.
1900 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1901 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1907 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1910 static bool rcu_gp_fqs_check_wake(int *gfp)
1912 struct rcu_node *rnp = rcu_get_root();
1914 // If under overload conditions, force an immediate FQS scan.
1915 if (*gfp & RCU_GP_FLAG_OVLD)
1918 // Someone like call_rcu() requested a force-quiescent-state scan.
1919 *gfp = READ_ONCE(rcu_state.gp_flags);
1920 if (*gfp & RCU_GP_FLAG_FQS)
1923 // The current grace period has completed.
1924 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1931 * Do one round of quiescent-state forcing.
1933 static void rcu_gp_fqs(bool first_time)
1935 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1936 struct rcu_node *rnp = rcu_get_root();
1938 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1939 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1941 WARN_ON_ONCE(nr_fqs > 3);
1942 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1945 WRITE_ONCE(rcu_state.jiffies_stall,
1946 jiffies + rcu_jiffies_till_stall_check());
1948 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1952 /* Collect dyntick-idle snapshots. */
1953 force_qs_rnp(dyntick_save_progress_counter);
1955 /* Handle dyntick-idle and offline CPUs. */
1956 force_qs_rnp(rcu_implicit_dynticks_qs);
1958 /* Clear flag to prevent immediate re-entry. */
1959 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1960 raw_spin_lock_irq_rcu_node(rnp);
1961 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
1962 raw_spin_unlock_irq_rcu_node(rnp);
1967 * Loop doing repeated quiescent-state forcing until the grace period ends.
1969 static noinline_for_stack void rcu_gp_fqs_loop(void)
1971 bool first_gp_fqs = true;
1975 struct rcu_node *rnp = rcu_get_root();
1977 j = READ_ONCE(jiffies_till_first_fqs);
1978 if (rcu_state.cbovld)
1979 gf = RCU_GP_FLAG_OVLD;
1982 if (rcu_state.cbovld) {
1987 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1988 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1990 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1991 * update; required for stall checks.
1994 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1995 jiffies + (j ? 3 * j : 2));
1997 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1999 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2000 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2001 rcu_gp_fqs_check_wake(&gf), j);
2002 rcu_gp_torture_wait();
2003 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2004 /* Locking provides needed memory barriers. */
2006 * Exit the loop if the root rcu_node structure indicates that the grace period
2007 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
2008 * is required only for single-node rcu_node trees because readers blocking
2009 * the current grace period are queued only on leaf rcu_node structures.
2010 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2011 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2012 * the corresponding leaf nodes have passed through their quiescent state.
2014 if (!READ_ONCE(rnp->qsmask) &&
2015 !rcu_preempt_blocked_readers_cgp(rnp))
2017 /* If time for quiescent-state forcing, do it. */
2018 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2019 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2020 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2022 rcu_gp_fqs(first_gp_fqs);
2025 first_gp_fqs = false;
2026 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2028 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2030 cond_resched_tasks_rcu_qs();
2031 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2032 ret = 0; /* Force full wait till next FQS. */
2033 j = READ_ONCE(jiffies_till_next_fqs);
2035 /* Deal with stray signal. */
2036 cond_resched_tasks_rcu_qs();
2037 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2038 WARN_ON(signal_pending(current));
2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2041 ret = 1; /* Keep old FQS timing. */
2043 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2046 j = rcu_state.jiffies_force_qs - j;
2053 * Clean up after the old grace period.
2055 static noinline void rcu_gp_cleanup(void)
2058 bool needgp = false;
2059 unsigned long gp_duration;
2060 unsigned long new_gp_seq;
2062 struct rcu_data *rdp;
2063 struct rcu_node *rnp = rcu_get_root();
2064 struct swait_queue_head *sq;
2066 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2067 raw_spin_lock_irq_rcu_node(rnp);
2068 rcu_state.gp_end = jiffies;
2069 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2070 if (gp_duration > rcu_state.gp_max)
2071 rcu_state.gp_max = gp_duration;
2074 * We know the grace period is complete, but to everyone else
2075 * it appears to still be ongoing. But it is also the case
2076 * that to everyone else it looks like there is nothing that
2077 * they can do to advance the grace period. It is therefore
2078 * safe for us to drop the lock in order to mark the grace
2079 * period as completed in all of the rcu_node structures.
2081 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2082 raw_spin_unlock_irq_rcu_node(rnp);
2085 * Propagate new ->gp_seq value to rcu_node structures so that
2086 * other CPUs don't have to wait until the start of the next grace
2087 * period to process their callbacks. This also avoids some nasty
2088 * RCU grace-period initialization races by forcing the end of
2089 * the current grace period to be completely recorded in all of
2090 * the rcu_node structures before the beginning of the next grace
2091 * period is recorded in any of the rcu_node structures.
2093 new_gp_seq = rcu_state.gp_seq;
2094 rcu_seq_end(&new_gp_seq);
2095 rcu_for_each_node_breadth_first(rnp) {
2096 raw_spin_lock_irq_rcu_node(rnp);
2097 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2098 dump_blkd_tasks(rnp, 10);
2099 WARN_ON_ONCE(rnp->qsmask);
2100 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2102 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2103 rdp = this_cpu_ptr(&rcu_data);
2104 if (rnp == rdp->mynode)
2105 needgp = __note_gp_changes(rnp, rdp) || needgp;
2106 /* smp_mb() provided by prior unlock-lock pair. */
2107 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2108 // Reset overload indication for CPUs no longer overloaded
2109 if (rcu_is_leaf_node(rnp))
2110 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2111 rdp = per_cpu_ptr(&rcu_data, cpu);
2112 check_cb_ovld_locked(rdp, rnp);
2114 sq = rcu_nocb_gp_get(rnp);
2115 raw_spin_unlock_irq_rcu_node(rnp);
2116 rcu_nocb_gp_cleanup(sq);
2117 cond_resched_tasks_rcu_qs();
2118 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2119 rcu_gp_slow(gp_cleanup_delay);
2121 rnp = rcu_get_root();
2122 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2124 /* Declare grace period done, trace first to use old GP number. */
2125 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2126 rcu_seq_end(&rcu_state.gp_seq);
2127 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2128 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2129 /* Check for GP requests since above loop. */
2130 rdp = this_cpu_ptr(&rcu_data);
2131 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2132 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2133 TPS("CleanupMore"));
2136 /* Advance CBs to reduce false positives below. */
2137 offloaded = rcu_rdp_is_offloaded(rdp);
2138 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2140 // We get here if a grace period was needed (“needgp”)
2141 // and the above call to rcu_accelerate_cbs() did not set
2142 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2143 // the need for another grace period). The purpose
2144 // of the “offloaded” check is to avoid invoking
2145 // rcu_accelerate_cbs() on an offloaded CPU because we do not
2146 // hold the ->nocb_lock needed to safely access an offloaded
2147 // ->cblist. We do not want to acquire that lock because
2148 // it can be heavily contended during callback floods.
2150 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2151 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2152 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2155 // We get here either if there is no need for an
2156 // additional grace period or if rcu_accelerate_cbs() has
2157 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
2158 // So all we need to do is to clear all of the other
2161 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2163 raw_spin_unlock_irq_rcu_node(rnp);
2165 // Make synchronize_rcu() users aware of the end of old grace period.
2166 rcu_sr_normal_gp_cleanup();
2168 // If strict, make all CPUs aware of the end of the old grace period.
2169 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2170 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2174 * Body of kthread that handles grace periods.
2176 static int __noreturn rcu_gp_kthread(void *unused)
2178 rcu_bind_gp_kthread();
2181 /* Handle grace-period start. */
2183 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2185 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2186 swait_event_idle_exclusive(rcu_state.gp_wq,
2187 READ_ONCE(rcu_state.gp_flags) &
2189 rcu_gp_torture_wait();
2190 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2191 /* Locking provides needed memory barrier. */
2194 cond_resched_tasks_rcu_qs();
2195 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2196 WARN_ON(signal_pending(current));
2197 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2201 /* Handle quiescent-state forcing. */
2204 /* Handle grace-period end. */
2205 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2207 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2212 * Report a full set of quiescent states to the rcu_state data structure.
2213 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2214 * another grace period is required. Whether we wake the grace-period
2215 * kthread or it awakens itself for the next round of quiescent-state
2216 * forcing, that kthread will clean up after the just-completed grace
2217 * period. Note that the caller must hold rnp->lock, which is released
2220 static void rcu_report_qs_rsp(unsigned long flags)
2221 __releases(rcu_get_root()->lock)
2223 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2224 WARN_ON_ONCE(!rcu_gp_in_progress());
2225 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2226 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2227 rcu_gp_kthread_wake();
2231 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2232 * Allows quiescent states for a group of CPUs to be reported at one go
2233 * to the specified rcu_node structure, though all the CPUs in the group
2234 * must be represented by the same rcu_node structure (which need not be a
2235 * leaf rcu_node structure, though it often will be). The gps parameter
2236 * is the grace-period snapshot, which means that the quiescent states
2237 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2238 * must be held upon entry, and it is released before return.
2240 * As a special case, if mask is zero, the bit-already-cleared check is
2241 * disabled. This allows propagating quiescent state due to resumed tasks
2242 * during grace-period initialization.
2244 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2245 unsigned long gps, unsigned long flags)
2246 __releases(rnp->lock)
2248 unsigned long oldmask = 0;
2249 struct rcu_node *rnp_c;
2251 raw_lockdep_assert_held_rcu_node(rnp);
2253 /* Walk up the rcu_node hierarchy. */
2255 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2258 * Our bit has already been cleared, or the
2259 * relevant grace period is already over, so done.
2261 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2264 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2265 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2266 rcu_preempt_blocked_readers_cgp(rnp));
2267 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2268 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2269 mask, rnp->qsmask, rnp->level,
2270 rnp->grplo, rnp->grphi,
2272 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2274 /* Other bits still set at this level, so done. */
2275 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2278 rnp->completedqs = rnp->gp_seq;
2279 mask = rnp->grpmask;
2280 if (rnp->parent == NULL) {
2282 /* No more levels. Exit loop holding root lock. */
2286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2289 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2290 oldmask = READ_ONCE(rnp_c->qsmask);
2294 * Get here if we are the last CPU to pass through a quiescent
2295 * state for this grace period. Invoke rcu_report_qs_rsp()
2296 * to clean up and start the next grace period if one is needed.
2298 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2302 * Record a quiescent state for all tasks that were previously queued
2303 * on the specified rcu_node structure and that were blocking the current
2304 * RCU grace period. The caller must hold the corresponding rnp->lock with
2305 * irqs disabled, and this lock is released upon return, but irqs remain
2308 static void __maybe_unused
2309 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2310 __releases(rnp->lock)
2314 struct rcu_node *rnp_p;
2316 raw_lockdep_assert_held_rcu_node(rnp);
2317 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2318 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2320 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2321 return; /* Still need more quiescent states! */
2324 rnp->completedqs = rnp->gp_seq;
2325 rnp_p = rnp->parent;
2326 if (rnp_p == NULL) {
2328 * Only one rcu_node structure in the tree, so don't
2329 * try to report up to its nonexistent parent!
2331 rcu_report_qs_rsp(flags);
2335 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2337 mask = rnp->grpmask;
2338 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2339 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2340 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2344 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2345 * structure. This must be called from the specified CPU.
2348 rcu_report_qs_rdp(struct rcu_data *rdp)
2350 unsigned long flags;
2352 bool needacc = false;
2353 struct rcu_node *rnp;
2355 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2357 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2358 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2362 * The grace period in which this quiescent state was
2363 * recorded has ended, so don't report it upwards.
2364 * We will instead need a new quiescent state that lies
2365 * within the current grace period.
2367 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2371 mask = rdp->grpmask;
2372 rdp->core_needs_qs = false;
2373 if ((rnp->qsmask & mask) == 0) {
2374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2377 * This GP can't end until cpu checks in, so all of our
2378 * callbacks can be processed during the next GP.
2380 * NOCB kthreads have their own way to deal with that...
2382 if (!rcu_rdp_is_offloaded(rdp)) {
2384 * The current GP has not yet ended, so it
2385 * should not be possible for rcu_accelerate_cbs()
2386 * to return true. So complain, but don't awaken.
2388 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2389 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2391 * ...but NOCB kthreads may miss or delay callbacks acceleration
2392 * if in the middle of a (de-)offloading process.
2397 rcu_disable_urgency_upon_qs(rdp);
2398 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2399 /* ^^^ Released rnp->lock */
2402 rcu_nocb_lock_irqsave(rdp, flags);
2403 rcu_accelerate_cbs_unlocked(rnp, rdp);
2404 rcu_nocb_unlock_irqrestore(rdp, flags);
2410 * Check to see if there is a new grace period of which this CPU
2411 * is not yet aware, and if so, set up local rcu_data state for it.
2412 * Otherwise, see if this CPU has just passed through its first
2413 * quiescent state for this grace period, and record that fact if so.
2416 rcu_check_quiescent_state(struct rcu_data *rdp)
2418 /* Check for grace-period ends and beginnings. */
2419 note_gp_changes(rdp);
2422 * Does this CPU still need to do its part for current grace period?
2423 * If no, return and let the other CPUs do their part as well.
2425 if (!rdp->core_needs_qs)
2429 * Was there a quiescent state since the beginning of the grace
2430 * period? If no, then exit and wait for the next call.
2432 if (rdp->cpu_no_qs.b.norm)
2436 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2439 rcu_report_qs_rdp(rdp);
2442 /* Return true if callback-invocation time limit exceeded. */
2443 static bool rcu_do_batch_check_time(long count, long tlimit,
2444 bool jlimit_check, unsigned long jlimit)
2446 // Invoke local_clock() only once per 32 consecutive callbacks.
2447 return unlikely(tlimit) &&
2448 (!likely(count & 31) ||
2449 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2450 jlimit_check && time_after(jiffies, jlimit))) &&
2451 local_clock() >= tlimit;
2455 * Invoke any RCU callbacks that have made it to the end of their grace
2456 * period. Throttle as specified by rdp->blimit.
2458 static void rcu_do_batch(struct rcu_data *rdp)
2463 bool __maybe_unused empty;
2464 unsigned long flags;
2465 unsigned long jlimit;
2466 bool jlimit_check = false;
2468 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2469 struct rcu_head *rhp;
2472 /* If no callbacks are ready, just return. */
2473 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2474 trace_rcu_batch_start(rcu_state.name,
2475 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2476 trace_rcu_batch_end(rcu_state.name, 0,
2477 !rcu_segcblist_empty(&rdp->cblist),
2478 need_resched(), is_idle_task(current),
2479 rcu_is_callbacks_kthread(rdp));
2484 * Extract the list of ready callbacks, disabling IRQs to prevent
2485 * races with call_rcu() from interrupt handlers. Leave the
2486 * callback counts, as rcu_barrier() needs to be conservative.
2488 * Callbacks execution is fully ordered against preceding grace period
2489 * completion (materialized by rnp->gp_seq update) thanks to the
2490 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2491 * advancing. In NOCB mode this ordering is then further relayed through
2492 * the nocb locking that protects both callbacks advancing and extraction.
2494 rcu_nocb_lock_irqsave(rdp, flags);
2495 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2496 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2497 div = READ_ONCE(rcu_divisor);
2498 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2499 bl = max(rdp->blimit, pending >> div);
2500 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2501 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2502 const long npj = NSEC_PER_SEC / HZ;
2503 long rrn = READ_ONCE(rcu_resched_ns);
2505 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2506 tlimit = local_clock() + rrn;
2507 jlimit = jiffies + (rrn + npj + 1) / npj;
2508 jlimit_check = true;
2510 trace_rcu_batch_start(rcu_state.name,
2511 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2512 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2513 if (rcu_rdp_is_offloaded(rdp))
2514 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2516 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2517 rcu_nocb_unlock_irqrestore(rdp, flags);
2519 /* Invoke callbacks. */
2520 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2521 rhp = rcu_cblist_dequeue(&rcl);
2523 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2527 debug_rcu_head_unqueue(rhp);
2529 rcu_lock_acquire(&rcu_callback_map);
2530 trace_rcu_invoke_callback(rcu_state.name, rhp);
2533 debug_rcu_head_callback(rhp);
2534 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2537 rcu_lock_release(&rcu_callback_map);
2540 * Stop only if limit reached and CPU has something to do.
2542 if (in_serving_softirq()) {
2543 if (count >= bl && (need_resched() || !is_idle_task(current)))
2546 * Make sure we don't spend too much time here and deprive other
2547 * softirq vectors of CPU cycles.
2549 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2552 // In rcuc/rcuoc context, so no worries about
2553 // depriving other softirq vectors of CPU cycles.
2555 lockdep_assert_irqs_enabled();
2556 cond_resched_tasks_rcu_qs();
2557 lockdep_assert_irqs_enabled();
2559 // But rcuc kthreads can delay quiescent-state
2560 // reporting, so check time limits for them.
2561 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2562 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2563 rdp->rcu_cpu_has_work = 1;
2569 rcu_nocb_lock_irqsave(rdp, flags);
2570 rdp->n_cbs_invoked += count;
2571 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2572 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2574 /* Update counts and requeue any remaining callbacks. */
2575 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2576 rcu_segcblist_add_len(&rdp->cblist, -count);
2578 /* Reinstate batch limit if we have worked down the excess. */
2579 count = rcu_segcblist_n_cbs(&rdp->cblist);
2580 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2581 rdp->blimit = blimit;
2583 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2584 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2585 rdp->qlen_last_fqs_check = 0;
2586 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2587 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2588 rdp->qlen_last_fqs_check = count;
2591 * The following usually indicates a double call_rcu(). To track
2592 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2594 empty = rcu_segcblist_empty(&rdp->cblist);
2595 WARN_ON_ONCE(count == 0 && !empty);
2596 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2597 count != 0 && empty);
2598 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2599 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2601 rcu_nocb_unlock_irqrestore(rdp, flags);
2603 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2607 * This function is invoked from each scheduling-clock interrupt,
2608 * and checks to see if this CPU is in a non-context-switch quiescent
2609 * state, for example, user mode or idle loop. It also schedules RCU
2610 * core processing. If the current grace period has gone on too long,
2611 * it will ask the scheduler to manufacture a context switch for the sole
2612 * purpose of providing the needed quiescent state.
2614 void rcu_sched_clock_irq(int user)
2618 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2620 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2621 __this_cpu_write(rcu_data.last_sched_clock, j);
2623 trace_rcu_utilization(TPS("Start scheduler-tick"));
2624 lockdep_assert_irqs_disabled();
2625 raw_cpu_inc(rcu_data.ticks_this_gp);
2626 /* The load-acquire pairs with the store-release setting to true. */
2627 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2628 /* Idle and userspace execution already are quiescent states. */
2629 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2630 set_tsk_need_resched(current);
2631 set_preempt_need_resched();
2633 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2635 rcu_flavor_sched_clock_irq(user);
2636 if (rcu_pending(user))
2638 if (user || rcu_is_cpu_rrupt_from_idle())
2639 rcu_note_voluntary_context_switch(current);
2640 lockdep_assert_irqs_disabled();
2642 trace_rcu_utilization(TPS("End scheduler-tick"));
2646 * Scan the leaf rcu_node structures. For each structure on which all
2647 * CPUs have reported a quiescent state and on which there are tasks
2648 * blocking the current grace period, initiate RCU priority boosting.
2649 * Otherwise, invoke the specified function to check dyntick state for
2650 * each CPU that has not yet reported a quiescent state.
2652 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2655 unsigned long flags;
2656 struct rcu_node *rnp;
2658 rcu_state.cbovld = rcu_state.cbovldnext;
2659 rcu_state.cbovldnext = false;
2660 rcu_for_each_leaf_node(rnp) {
2661 unsigned long mask = 0;
2662 unsigned long rsmask = 0;
2664 cond_resched_tasks_rcu_qs();
2665 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2666 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2667 if (rnp->qsmask == 0) {
2668 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2670 * No point in scanning bits because they
2671 * are all zero. But we might need to
2672 * priority-boost blocked readers.
2674 rcu_initiate_boost(rnp, flags);
2675 /* rcu_initiate_boost() releases rnp->lock */
2678 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2681 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2682 struct rcu_data *rdp;
2685 rdp = per_cpu_ptr(&rcu_data, cpu);
2688 mask |= rdp->grpmask;
2689 rcu_disable_urgency_upon_qs(rdp);
2692 rsmask |= rdp->grpmask;
2695 /* Idle/offline CPUs, report (releases rnp->lock). */
2696 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2698 /* Nothing to do here, so just drop the lock. */
2699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2702 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2708 * Force quiescent states on reluctant CPUs, and also detect which
2709 * CPUs are in dyntick-idle mode.
2711 void rcu_force_quiescent_state(void)
2713 unsigned long flags;
2715 struct rcu_node *rnp;
2716 struct rcu_node *rnp_old = NULL;
2718 if (!rcu_gp_in_progress())
2720 /* Funnel through hierarchy to reduce memory contention. */
2721 rnp = raw_cpu_read(rcu_data.mynode);
2722 for (; rnp != NULL; rnp = rnp->parent) {
2723 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2724 !raw_spin_trylock(&rnp->fqslock);
2725 if (rnp_old != NULL)
2726 raw_spin_unlock(&rnp_old->fqslock);
2731 /* rnp_old == rcu_get_root(), rnp == NULL. */
2733 /* Reached the root of the rcu_node tree, acquire lock. */
2734 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2735 raw_spin_unlock(&rnp_old->fqslock);
2736 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2737 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2738 return; /* Someone beat us to it. */
2740 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2741 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2742 rcu_gp_kthread_wake();
2744 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2746 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2748 static void strict_work_handler(struct work_struct *work)
2754 /* Perform RCU core processing work for the current CPU. */
2755 static __latent_entropy void rcu_core(void)
2757 unsigned long flags;
2758 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2759 struct rcu_node *rnp = rdp->mynode;
2761 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2762 * Therefore this function can race with concurrent NOCB (de-)offloading
2763 * on this CPU and the below condition must be considered volatile.
2764 * However if we race with:
2766 * _ Offloading: In the worst case we accelerate or process callbacks
2767 * concurrently with NOCB kthreads. We are guaranteed to
2768 * call rcu_nocb_lock() if that happens.
2770 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2771 * processing. This is fine because the early stage
2772 * of deoffloading invokes rcu_core() after setting
2773 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2774 * what could have been dismissed without the need to wait
2775 * for the next rcu_pending() check in the next jiffy.
2777 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2779 if (cpu_is_offline(smp_processor_id()))
2781 trace_rcu_utilization(TPS("Start RCU core"));
2782 WARN_ON_ONCE(!rdp->beenonline);
2784 /* Report any deferred quiescent states if preemption enabled. */
2785 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2786 rcu_preempt_deferred_qs(current);
2787 } else if (rcu_preempt_need_deferred_qs(current)) {
2788 set_tsk_need_resched(current);
2789 set_preempt_need_resched();
2792 /* Update RCU state based on any recent quiescent states. */
2793 rcu_check_quiescent_state(rdp);
2795 /* No grace period and unregistered callbacks? */
2796 if (!rcu_gp_in_progress() &&
2797 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2798 rcu_nocb_lock_irqsave(rdp, flags);
2799 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2800 rcu_accelerate_cbs_unlocked(rnp, rdp);
2801 rcu_nocb_unlock_irqrestore(rdp, flags);
2804 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2806 /* If there are callbacks ready, invoke them. */
2807 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2808 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2810 /* Re-invoke RCU core processing if there are callbacks remaining. */
2811 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2815 /* Do any needed deferred wakeups of rcuo kthreads. */
2816 do_nocb_deferred_wakeup(rdp);
2817 trace_rcu_utilization(TPS("End RCU core"));
2819 // If strict GPs, schedule an RCU reader in a clean environment.
2820 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2821 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2824 static void rcu_core_si(struct softirq_action *h)
2829 static void rcu_wake_cond(struct task_struct *t, int status)
2832 * If the thread is yielding, only wake it when this
2833 * is invoked from idle
2835 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2839 static void invoke_rcu_core_kthread(void)
2841 struct task_struct *t;
2842 unsigned long flags;
2844 local_irq_save(flags);
2845 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2846 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2847 if (t != NULL && t != current)
2848 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2849 local_irq_restore(flags);
2853 * Wake up this CPU's rcuc kthread to do RCU core processing.
2855 static void invoke_rcu_core(void)
2857 if (!cpu_online(smp_processor_id()))
2860 raise_softirq(RCU_SOFTIRQ);
2862 invoke_rcu_core_kthread();
2865 static void rcu_cpu_kthread_park(unsigned int cpu)
2867 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2870 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2872 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2876 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2877 * the RCU softirq used in configurations of RCU that do not support RCU
2878 * priority boosting.
2880 static void rcu_cpu_kthread(unsigned int cpu)
2882 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2883 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2884 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2887 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2888 for (spincnt = 0; spincnt < 10; spincnt++) {
2889 WRITE_ONCE(*j, jiffies);
2891 *statusp = RCU_KTHREAD_RUNNING;
2892 local_irq_disable();
2894 WRITE_ONCE(*workp, 0);
2899 if (!READ_ONCE(*workp)) {
2900 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2901 *statusp = RCU_KTHREAD_WAITING;
2905 *statusp = RCU_KTHREAD_YIELDING;
2906 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2907 schedule_timeout_idle(2);
2908 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2909 *statusp = RCU_KTHREAD_WAITING;
2910 WRITE_ONCE(*j, jiffies);
2913 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2914 .store = &rcu_data.rcu_cpu_kthread_task,
2915 .thread_should_run = rcu_cpu_kthread_should_run,
2916 .thread_fn = rcu_cpu_kthread,
2917 .thread_comm = "rcuc/%u",
2918 .setup = rcu_cpu_kthread_setup,
2919 .park = rcu_cpu_kthread_park,
2923 * Spawn per-CPU RCU core processing kthreads.
2925 static int __init rcu_spawn_core_kthreads(void)
2929 for_each_possible_cpu(cpu)
2930 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2933 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2934 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2938 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2940 rcu_segcblist_enqueue(&rdp->cblist, head);
2941 if (__is_kvfree_rcu_offset((unsigned long)func))
2942 trace_rcu_kvfree_callback(rcu_state.name, head,
2943 (unsigned long)func,
2944 rcu_segcblist_n_cbs(&rdp->cblist));
2946 trace_rcu_callback(rcu_state.name, head,
2947 rcu_segcblist_n_cbs(&rdp->cblist));
2948 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2952 * Handle any core-RCU processing required by a call_rcu() invocation.
2954 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2955 rcu_callback_t func, unsigned long flags)
2957 rcutree_enqueue(rdp, head, func);
2959 * If called from an extended quiescent state, invoke the RCU
2960 * core in order to force a re-evaluation of RCU's idleness.
2962 if (!rcu_is_watching())
2965 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2966 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2970 * Force the grace period if too many callbacks or too long waiting.
2971 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2972 * if some other CPU has recently done so. Also, don't bother
2973 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2974 * is the only one waiting for a grace period to complete.
2976 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2977 rdp->qlen_last_fqs_check + qhimark)) {
2979 /* Are we ignoring a completed grace period? */
2980 note_gp_changes(rdp);
2982 /* Start a new grace period if one not already started. */
2983 if (!rcu_gp_in_progress()) {
2984 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2986 /* Give the grace period a kick. */
2987 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2988 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2989 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2990 rcu_force_quiescent_state();
2991 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2992 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2998 * RCU callback function to leak a callback.
3000 static void rcu_leak_callback(struct rcu_head *rhp)
3005 * Check and if necessary update the leaf rcu_node structure's
3006 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3007 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
3008 * structure's ->lock.
3010 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3012 raw_lockdep_assert_held_rcu_node(rnp);
3013 if (qovld_calc <= 0)
3014 return; // Early boot and wildcard value set.
3015 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3016 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3018 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3022 * Check and if necessary update the leaf rcu_node structure's
3023 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3024 * number of queued RCU callbacks. No locks need be held, but the
3025 * caller must have disabled interrupts.
3027 * Note that this function ignores the possibility that there are a lot
3028 * of callbacks all of which have already seen the end of their respective
3029 * grace periods. This omission is due to the need for no-CBs CPUs to
3030 * be holding ->nocb_lock to do this check, which is too heavy for a
3031 * common-case operation.
3033 static void check_cb_ovld(struct rcu_data *rdp)
3035 struct rcu_node *const rnp = rdp->mynode;
3037 if (qovld_calc <= 0 ||
3038 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3039 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3040 return; // Early boot wildcard value or already set correctly.
3041 raw_spin_lock_rcu_node(rnp);
3042 check_cb_ovld_locked(rdp, rnp);
3043 raw_spin_unlock_rcu_node(rnp);
3047 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3049 static atomic_t doublefrees;
3050 unsigned long flags;
3052 struct rcu_data *rdp;
3054 /* Misaligned rcu_head! */
3055 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3057 if (debug_rcu_head_queue(head)) {
3059 * Probable double call_rcu(), so leak the callback.
3060 * Use rcu:rcu_callback trace event to find the previous
3061 * time callback was passed to call_rcu().
3063 if (atomic_inc_return(&doublefrees) < 4) {
3064 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
3067 WRITE_ONCE(head->func, rcu_leak_callback);
3072 kasan_record_aux_stack_noalloc(head);
3073 local_irq_save(flags);
3074 rdp = this_cpu_ptr(&rcu_data);
3075 lazy = lazy_in && !rcu_async_should_hurry();
3077 /* Add the callback to our list. */
3078 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3079 // This can trigger due to call_rcu() from offline CPU:
3080 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3081 WARN_ON_ONCE(!rcu_is_watching());
3082 // Very early boot, before rcu_init(). Initialize if needed
3083 // and then drop through to queue the callback.
3084 if (rcu_segcblist_empty(&rdp->cblist))
3085 rcu_segcblist_init(&rdp->cblist);
3090 if (unlikely(rcu_rdp_is_offloaded(rdp)))
3091 call_rcu_nocb(rdp, head, func, flags, lazy);
3093 call_rcu_core(rdp, head, func, flags);
3094 local_irq_restore(flags);
3097 #ifdef CONFIG_RCU_LAZY
3098 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3099 module_param(enable_rcu_lazy, bool, 0444);
3102 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3103 * flush all lazy callbacks (including the new one) to the main ->cblist while
3106 * @head: structure to be used for queueing the RCU updates.
3107 * @func: actual callback function to be invoked after the grace period
3109 * The callback function will be invoked some time after a full grace
3110 * period elapses, in other words after all pre-existing RCU read-side
3111 * critical sections have completed.
3113 * Use this API instead of call_rcu() if you don't want the callback to be
3114 * invoked after very long periods of time, which can happen on systems without
3115 * memory pressure and on systems which are lightly loaded or mostly idle.
3116 * This function will cause callbacks to be invoked sooner than later at the
3117 * expense of extra power. Other than that, this function is identical to, and
3118 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3119 * ordering and other functionality.
3121 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3123 __call_rcu_common(head, func, false);
3125 EXPORT_SYMBOL_GPL(call_rcu_hurry);
3127 #define enable_rcu_lazy false
3131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3132 * By default the callbacks are 'lazy' and are kept hidden from the main
3133 * ->cblist to prevent starting of grace periods too soon.
3134 * If you desire grace periods to start very soon, use call_rcu_hurry().
3136 * @head: structure to be used for queueing the RCU updates.
3137 * @func: actual callback function to be invoked after the grace period
3139 * The callback function will be invoked some time after a full grace
3140 * period elapses, in other words after all pre-existing RCU read-side
3141 * critical sections have completed. However, the callback function
3142 * might well execute concurrently with RCU read-side critical sections
3143 * that started after call_rcu() was invoked.
3145 * RCU read-side critical sections are delimited by rcu_read_lock()
3146 * and rcu_read_unlock(), and may be nested. In addition, but only in
3147 * v5.0 and later, regions of code across which interrupts, preemption,
3148 * or softirqs have been disabled also serve as RCU read-side critical
3149 * sections. This includes hardware interrupt handlers, softirq handlers,
3152 * Note that all CPUs must agree that the grace period extended beyond
3153 * all pre-existing RCU read-side critical section. On systems with more
3154 * than one CPU, this means that when "func()" is invoked, each CPU is
3155 * guaranteed to have executed a full memory barrier since the end of its
3156 * last RCU read-side critical section whose beginning preceded the call
3157 * to call_rcu(). It also means that each CPU executing an RCU read-side
3158 * critical section that continues beyond the start of "func()" must have
3159 * executed a memory barrier after the call_rcu() but before the beginning
3160 * of that RCU read-side critical section. Note that these guarantees
3161 * include CPUs that are offline, idle, or executing in user mode, as
3162 * well as CPUs that are executing in the kernel.
3164 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3165 * resulting RCU callback function "func()", then both CPU A and CPU B are
3166 * guaranteed to execute a full memory barrier during the time interval
3167 * between the call to call_rcu() and the invocation of "func()" -- even
3168 * if CPU A and CPU B are the same CPU (but again only if the system has
3169 * more than one CPU).
3171 * Implementation of these memory-ordering guarantees is described here:
3172 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3174 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3176 __call_rcu_common(head, func, enable_rcu_lazy);
3178 EXPORT_SYMBOL_GPL(call_rcu);
3180 /* Maximum number of jiffies to wait before draining a batch. */
3181 #define KFREE_DRAIN_JIFFIES (5 * HZ)
3182 #define KFREE_N_BATCHES 2
3183 #define FREE_N_CHANNELS 2
3186 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3187 * @list: List node. All blocks are linked between each other
3188 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
3189 * @nr_records: Number of active pointers in the array
3190 * @records: Array of the kvfree_rcu() pointers
3192 struct kvfree_rcu_bulk_data {
3193 struct list_head list;
3194 struct rcu_gp_oldstate gp_snap;
3195 unsigned long nr_records;
3200 * This macro defines how many entries the "records" array
3201 * will contain. It is based on the fact that the size of
3202 * kvfree_rcu_bulk_data structure becomes exactly one page.
3204 #define KVFREE_BULK_MAX_ENTR \
3205 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3208 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3209 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3210 * @head_free: List of kfree_rcu() objects waiting for a grace period
3211 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
3212 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3213 * @krcp: Pointer to @kfree_rcu_cpu structure
3216 struct kfree_rcu_cpu_work {
3217 struct rcu_work rcu_work;
3218 struct rcu_head *head_free;
3219 struct rcu_gp_oldstate head_free_gp_snap;
3220 struct list_head bulk_head_free[FREE_N_CHANNELS];
3221 struct kfree_rcu_cpu *krcp;
3225 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3226 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3227 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
3228 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3229 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3230 * @lock: Synchronize access to this structure
3231 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3232 * @initialized: The @rcu_work fields have been initialized
3233 * @head_count: Number of objects in rcu_head singular list
3234 * @bulk_count: Number of objects in bulk-list
3236 * A simple cache list that contains objects for reuse purpose.
3237 * In order to save some per-cpu space the list is singular.
3238 * Even though it is lockless an access has to be protected by the
3240 * @page_cache_work: A work to refill the cache when it is empty
3241 * @backoff_page_cache_fill: Delay cache refills
3242 * @work_in_progress: Indicates that page_cache_work is running
3243 * @hrtimer: A hrtimer for scheduling a page_cache_work
3244 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3246 * This is a per-CPU structure. The reason that it is not included in
3247 * the rcu_data structure is to permit this code to be extracted from
3248 * the RCU files. Such extraction could allow further optimization of
3249 * the interactions with the slab allocators.
3251 struct kfree_rcu_cpu {
3252 // Objects queued on a linked list
3253 // through their rcu_head structures.
3254 struct rcu_head *head;
3255 unsigned long head_gp_snap;
3256 atomic_t head_count;
3258 // Objects queued on a bulk-list.
3259 struct list_head bulk_head[FREE_N_CHANNELS];
3260 atomic_t bulk_count[FREE_N_CHANNELS];
3262 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3263 raw_spinlock_t lock;
3264 struct delayed_work monitor_work;
3267 struct delayed_work page_cache_work;
3268 atomic_t backoff_page_cache_fill;
3269 atomic_t work_in_progress;
3270 struct hrtimer hrtimer;
3272 struct llist_head bkvcache;
3276 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3277 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3280 static __always_inline void
3281 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3283 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3286 for (i = 0; i < bhead->nr_records; i++)
3287 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3291 static inline struct kfree_rcu_cpu *
3292 krc_this_cpu_lock(unsigned long *flags)
3294 struct kfree_rcu_cpu *krcp;
3296 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3297 krcp = this_cpu_ptr(&krc);
3298 raw_spin_lock(&krcp->lock);
3304 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3306 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3309 static inline struct kvfree_rcu_bulk_data *
3310 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3312 if (!krcp->nr_bkv_objs)
3315 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3316 return (struct kvfree_rcu_bulk_data *)
3317 llist_del_first(&krcp->bkvcache);
3321 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3322 struct kvfree_rcu_bulk_data *bnode)
3325 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3328 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3329 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3334 drain_page_cache(struct kfree_rcu_cpu *krcp)
3336 unsigned long flags;
3337 struct llist_node *page_list, *pos, *n;
3340 if (!rcu_min_cached_objs)
3343 raw_spin_lock_irqsave(&krcp->lock, flags);
3344 page_list = llist_del_all(&krcp->bkvcache);
3345 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3346 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3348 llist_for_each_safe(pos, n, page_list) {
3349 free_page((unsigned long)pos);
3357 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3358 struct kvfree_rcu_bulk_data *bnode, int idx)
3360 unsigned long flags;
3363 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3364 debug_rcu_bhead_unqueue(bnode);
3365 rcu_lock_acquire(&rcu_callback_map);
3366 if (idx == 0) { // kmalloc() / kfree().
3367 trace_rcu_invoke_kfree_bulk_callback(
3368 rcu_state.name, bnode->nr_records,
3371 kfree_bulk(bnode->nr_records, bnode->records);
3372 } else { // vmalloc() / vfree().
3373 for (i = 0; i < bnode->nr_records; i++) {
3374 trace_rcu_invoke_kvfree_callback(
3375 rcu_state.name, bnode->records[i], 0);
3377 vfree(bnode->records[i]);
3380 rcu_lock_release(&rcu_callback_map);
3383 raw_spin_lock_irqsave(&krcp->lock, flags);
3384 if (put_cached_bnode(krcp, bnode))
3386 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3389 free_page((unsigned long) bnode);
3391 cond_resched_tasks_rcu_qs();
3395 kvfree_rcu_list(struct rcu_head *head)
3397 struct rcu_head *next;
3399 for (; head; head = next) {
3400 void *ptr = (void *) head->func;
3401 unsigned long offset = (void *) head - ptr;
3404 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3405 rcu_lock_acquire(&rcu_callback_map);
3406 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3408 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3411 rcu_lock_release(&rcu_callback_map);
3412 cond_resched_tasks_rcu_qs();
3417 * This function is invoked in workqueue context after a grace period.
3418 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3420 static void kfree_rcu_work(struct work_struct *work)
3422 unsigned long flags;
3423 struct kvfree_rcu_bulk_data *bnode, *n;
3424 struct list_head bulk_head[FREE_N_CHANNELS];
3425 struct rcu_head *head;
3426 struct kfree_rcu_cpu *krcp;
3427 struct kfree_rcu_cpu_work *krwp;
3428 struct rcu_gp_oldstate head_gp_snap;
3431 krwp = container_of(to_rcu_work(work),
3432 struct kfree_rcu_cpu_work, rcu_work);
3435 raw_spin_lock_irqsave(&krcp->lock, flags);
3436 // Channels 1 and 2.
3437 for (i = 0; i < FREE_N_CHANNELS; i++)
3438 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3441 head = krwp->head_free;
3442 krwp->head_free = NULL;
3443 head_gp_snap = krwp->head_free_gp_snap;
3444 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3446 // Handle the first two channels.
3447 for (i = 0; i < FREE_N_CHANNELS; i++) {
3448 // Start from the tail page, so a GP is likely passed for it.
3449 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3450 kvfree_rcu_bulk(krcp, bnode, i);
3454 * This is used when the "bulk" path can not be used for the
3455 * double-argument of kvfree_rcu(). This happens when the
3456 * page-cache is empty, which means that objects are instead
3457 * queued on a linked list through their rcu_head structures.
3458 * This list is named "Channel 3".
3460 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3461 kvfree_rcu_list(head);
3465 need_offload_krc(struct kfree_rcu_cpu *krcp)
3469 for (i = 0; i < FREE_N_CHANNELS; i++)
3470 if (!list_empty(&krcp->bulk_head[i]))
3473 return !!READ_ONCE(krcp->head);
3477 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3481 for (i = 0; i < FREE_N_CHANNELS; i++)
3482 if (!list_empty(&krwp->bulk_head_free[i]))
3485 return !!krwp->head_free;
3488 static int krc_count(struct kfree_rcu_cpu *krcp)
3490 int sum = atomic_read(&krcp->head_count);
3493 for (i = 0; i < FREE_N_CHANNELS; i++)
3494 sum += atomic_read(&krcp->bulk_count[i]);
3500 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3502 long delay, delay_left;
3504 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3505 if (delayed_work_pending(&krcp->monitor_work)) {
3506 delay_left = krcp->monitor_work.timer.expires - jiffies;
3507 if (delay < delay_left)
3508 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3511 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3515 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3517 struct list_head bulk_ready[FREE_N_CHANNELS];
3518 struct kvfree_rcu_bulk_data *bnode, *n;
3519 struct rcu_head *head_ready = NULL;
3520 unsigned long flags;
3523 raw_spin_lock_irqsave(&krcp->lock, flags);
3524 for (i = 0; i < FREE_N_CHANNELS; i++) {
3525 INIT_LIST_HEAD(&bulk_ready[i]);
3527 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3528 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3531 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3532 list_move(&bnode->list, &bulk_ready[i]);
3536 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3537 head_ready = krcp->head;
3538 atomic_set(&krcp->head_count, 0);
3539 WRITE_ONCE(krcp->head, NULL);
3541 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3543 for (i = 0; i < FREE_N_CHANNELS; i++) {
3544 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3545 kvfree_rcu_bulk(krcp, bnode, i);
3549 kvfree_rcu_list(head_ready);
3553 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3555 static void kfree_rcu_monitor(struct work_struct *work)
3557 struct kfree_rcu_cpu *krcp = container_of(work,
3558 struct kfree_rcu_cpu, monitor_work.work);
3559 unsigned long flags;
3562 // Drain ready for reclaim.
3563 kvfree_rcu_drain_ready(krcp);
3565 raw_spin_lock_irqsave(&krcp->lock, flags);
3567 // Attempt to start a new batch.
3568 for (i = 0; i < KFREE_N_BATCHES; i++) {
3569 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3571 // Try to detach bulk_head or head and attach it, only when
3572 // all channels are free. Any channel is not free means at krwp
3573 // there is on-going rcu work to handle krwp's free business.
3574 if (need_wait_for_krwp_work(krwp))
3577 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3578 if (need_offload_krc(krcp)) {
3579 // Channel 1 corresponds to the SLAB-pointer bulk path.
3580 // Channel 2 corresponds to vmalloc-pointer bulk path.
3581 for (j = 0; j < FREE_N_CHANNELS; j++) {
3582 if (list_empty(&krwp->bulk_head_free[j])) {
3583 atomic_set(&krcp->bulk_count[j], 0);
3584 list_replace_init(&krcp->bulk_head[j],
3585 &krwp->bulk_head_free[j]);
3589 // Channel 3 corresponds to both SLAB and vmalloc
3590 // objects queued on the linked list.
3591 if (!krwp->head_free) {
3592 krwp->head_free = krcp->head;
3593 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3594 atomic_set(&krcp->head_count, 0);
3595 WRITE_ONCE(krcp->head, NULL);
3598 // One work is per one batch, so there are three
3599 // "free channels", the batch can handle. It can
3600 // be that the work is in the pending state when
3601 // channels have been detached following by each
3603 queue_rcu_work(system_wq, &krwp->rcu_work);
3607 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3609 // If there is nothing to detach, it means that our job is
3610 // successfully done here. In case of having at least one
3611 // of the channels that is still busy we should rearm the
3612 // work to repeat an attempt. Because previous batches are
3613 // still in progress.
3614 if (need_offload_krc(krcp))
3615 schedule_delayed_monitor_work(krcp);
3618 static enum hrtimer_restart
3619 schedule_page_work_fn(struct hrtimer *t)
3621 struct kfree_rcu_cpu *krcp =
3622 container_of(t, struct kfree_rcu_cpu, hrtimer);
3624 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3625 return HRTIMER_NORESTART;
3628 static void fill_page_cache_func(struct work_struct *work)
3630 struct kvfree_rcu_bulk_data *bnode;
3631 struct kfree_rcu_cpu *krcp =
3632 container_of(work, struct kfree_rcu_cpu,
3633 page_cache_work.work);
3634 unsigned long flags;
3639 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3640 1 : rcu_min_cached_objs;
3642 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3643 bnode = (struct kvfree_rcu_bulk_data *)
3644 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3649 raw_spin_lock_irqsave(&krcp->lock, flags);
3650 pushed = put_cached_bnode(krcp, bnode);
3651 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3654 free_page((unsigned long) bnode);
3659 atomic_set(&krcp->work_in_progress, 0);
3660 atomic_set(&krcp->backoff_page_cache_fill, 0);
3664 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3666 // If cache disabled, bail out.
3667 if (!rcu_min_cached_objs)
3670 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3671 !atomic_xchg(&krcp->work_in_progress, 1)) {
3672 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3673 queue_delayed_work(system_wq,
3674 &krcp->page_cache_work,
3675 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3677 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3678 krcp->hrtimer.function = schedule_page_work_fn;
3679 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3684 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3685 // state specified by flags. If can_alloc is true, the caller must
3686 // be schedulable and not be holding any locks or mutexes that might be
3687 // acquired by the memory allocator or anything that it might invoke.
3688 // Returns true if ptr was successfully recorded, else the caller must
3691 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3692 unsigned long *flags, void *ptr, bool can_alloc)
3694 struct kvfree_rcu_bulk_data *bnode;
3697 *krcp = krc_this_cpu_lock(flags);
3698 if (unlikely(!(*krcp)->initialized))
3701 idx = !!is_vmalloc_addr(ptr);
3702 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3703 struct kvfree_rcu_bulk_data, list);
3705 /* Check if a new block is required. */
3706 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3707 bnode = get_cached_bnode(*krcp);
3708 if (!bnode && can_alloc) {
3709 krc_this_cpu_unlock(*krcp, *flags);
3711 // __GFP_NORETRY - allows a light-weight direct reclaim
3712 // what is OK from minimizing of fallback hitting point of
3713 // view. Apart of that it forbids any OOM invoking what is
3714 // also beneficial since we are about to release memory soon.
3716 // __GFP_NOMEMALLOC - prevents from consuming of all the
3717 // memory reserves. Please note we have a fallback path.
3719 // __GFP_NOWARN - it is supposed that an allocation can
3720 // be failed under low memory or high memory pressure
3722 bnode = (struct kvfree_rcu_bulk_data *)
3723 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3724 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3730 // Initialize the new block and attach it.
3731 bnode->nr_records = 0;
3732 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3735 // Finally insert and update the GP for this page.
3736 bnode->records[bnode->nr_records++] = ptr;
3737 get_state_synchronize_rcu_full(&bnode->gp_snap);
3738 atomic_inc(&(*krcp)->bulk_count[idx]);
3744 * Queue a request for lazy invocation of the appropriate free routine
3745 * after a grace period. Please note that three paths are maintained,
3746 * two for the common case using arrays of pointers and a third one that
3747 * is used only when the main paths cannot be used, for example, due to
3750 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3751 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3752 * be free'd in workqueue context. This allows us to: batch requests together to
3753 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3755 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3757 unsigned long flags;
3758 struct kfree_rcu_cpu *krcp;
3762 * Please note there is a limitation for the head-less
3763 * variant, that is why there is a clear rule for such
3764 * objects: it can be used from might_sleep() context
3765 * only. For other places please embed an rcu_head to
3771 // Queue the object but don't yet schedule the batch.
3772 if (debug_rcu_head_queue(ptr)) {
3773 // Probable double kfree_rcu(), just leak.
3774 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3777 // Mark as success and leave.
3781 kasan_record_aux_stack_noalloc(ptr);
3782 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3784 run_page_cache_worker(krcp);
3787 // Inline if kvfree_rcu(one_arg) call.
3791 head->next = krcp->head;
3792 WRITE_ONCE(krcp->head, head);
3793 atomic_inc(&krcp->head_count);
3795 // Take a snapshot for this krcp.
3796 krcp->head_gp_snap = get_state_synchronize_rcu();
3801 * The kvfree_rcu() caller considers the pointer freed at this point
3802 * and likely removes any references to it. Since the actual slab
3803 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3804 * this object (no scanning or false positives reporting).
3806 kmemleak_ignore(ptr);
3808 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3809 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3810 schedule_delayed_monitor_work(krcp);
3813 krc_this_cpu_unlock(krcp, flags);
3816 * Inline kvfree() after synchronize_rcu(). We can do
3817 * it from might_sleep() context only, so the current
3818 * CPU can pass the QS state.
3821 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3826 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3828 static unsigned long
3829 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3832 unsigned long count = 0;
3834 /* Snapshot count of all CPUs */
3835 for_each_possible_cpu(cpu) {
3836 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3838 count += krc_count(krcp);
3839 count += READ_ONCE(krcp->nr_bkv_objs);
3840 atomic_set(&krcp->backoff_page_cache_fill, 1);
3843 return count == 0 ? SHRINK_EMPTY : count;
3846 static unsigned long
3847 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3851 for_each_possible_cpu(cpu) {
3853 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3855 count = krc_count(krcp);
3856 count += drain_page_cache(krcp);
3857 kfree_rcu_monitor(&krcp->monitor_work.work);
3859 sc->nr_to_scan -= count;
3862 if (sc->nr_to_scan <= 0)
3866 return freed == 0 ? SHRINK_STOP : freed;
3869 void __init kfree_rcu_scheduler_running(void)
3873 for_each_possible_cpu(cpu) {
3874 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3876 if (need_offload_krc(krcp))
3877 schedule_delayed_monitor_work(krcp);
3882 * During early boot, any blocking grace-period wait automatically
3883 * implies a grace period.
3885 * Later on, this could in theory be the case for kernels built with
3886 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3887 * is not a common case. Furthermore, this optimization would cause
3888 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3889 * grace-period optimization is ignored once the scheduler is running.
3891 static int rcu_blocking_is_gp(void)
3893 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3901 * Helper function for the synchronize_rcu() API.
3903 static void synchronize_rcu_normal(void)
3905 struct rcu_synchronize rs;
3907 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
3909 if (!READ_ONCE(rcu_normal_wake_from_gp)) {
3910 wait_rcu_gp(call_rcu_hurry);
3911 goto trace_complete_out;
3914 init_rcu_head_on_stack(&rs.head);
3915 init_completion(&rs.completion);
3918 * This code might be preempted, therefore take a GP
3919 * snapshot before adding a request.
3921 if (IS_ENABLED(CONFIG_PROVE_RCU))
3922 rs.head.func = (void *) get_state_synchronize_rcu();
3924 rcu_sr_normal_add_req(&rs);
3926 /* Kick a GP and start waiting. */
3927 (void) start_poll_synchronize_rcu();
3929 /* Now we can wait. */
3930 wait_for_completion(&rs.completion);
3931 destroy_rcu_head_on_stack(&rs.head);
3934 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
3938 * synchronize_rcu - wait until a grace period has elapsed.
3940 * Control will return to the caller some time after a full grace
3941 * period has elapsed, in other words after all currently executing RCU
3942 * read-side critical sections have completed. Note, however, that
3943 * upon return from synchronize_rcu(), the caller might well be executing
3944 * concurrently with new RCU read-side critical sections that began while
3945 * synchronize_rcu() was waiting.
3947 * RCU read-side critical sections are delimited by rcu_read_lock()
3948 * and rcu_read_unlock(), and may be nested. In addition, but only in
3949 * v5.0 and later, regions of code across which interrupts, preemption,
3950 * or softirqs have been disabled also serve as RCU read-side critical
3951 * sections. This includes hardware interrupt handlers, softirq handlers,
3954 * Note that this guarantee implies further memory-ordering guarantees.
3955 * On systems with more than one CPU, when synchronize_rcu() returns,
3956 * each CPU is guaranteed to have executed a full memory barrier since
3957 * the end of its last RCU read-side critical section whose beginning
3958 * preceded the call to synchronize_rcu(). In addition, each CPU having
3959 * an RCU read-side critical section that extends beyond the return from
3960 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3961 * after the beginning of synchronize_rcu() and before the beginning of
3962 * that RCU read-side critical section. Note that these guarantees include
3963 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3964 * that are executing in the kernel.
3966 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3967 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3968 * to have executed a full memory barrier during the execution of
3969 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3970 * again only if the system has more than one CPU).
3972 * Implementation of these memory-ordering guarantees is described here:
3973 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3975 void synchronize_rcu(void)
3977 unsigned long flags;
3978 struct rcu_node *rnp;
3980 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3981 lock_is_held(&rcu_lock_map) ||
3982 lock_is_held(&rcu_sched_lock_map),
3983 "Illegal synchronize_rcu() in RCU read-side critical section");
3984 if (!rcu_blocking_is_gp()) {
3985 if (rcu_gp_is_expedited())
3986 synchronize_rcu_expedited();
3988 synchronize_rcu_normal();
3992 // Context allows vacuous grace periods.
3993 // Note well that this code runs with !PREEMPT && !SMP.
3994 // In addition, all code that advances grace periods runs at
3995 // process level. Therefore, this normal GP overlaps with other
3996 // normal GPs only by being fully nested within them, which allows
3997 // reuse of ->gp_seq_polled_snap.
3998 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3999 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
4001 // Update the normal grace-period counters to record
4002 // this grace period, but only those used by the boot CPU.
4003 // The rcu_scheduler_starting() will take care of the rest of
4005 local_irq_save(flags);
4006 WARN_ON_ONCE(num_online_cpus() > 1);
4007 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
4008 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
4009 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4010 local_irq_restore(flags);
4012 EXPORT_SYMBOL_GPL(synchronize_rcu);
4015 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
4016 * @rgosp: Place to put state cookie
4018 * Stores into @rgosp a value that will always be treated by functions
4019 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
4020 * has already completed.
4022 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4024 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
4025 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
4027 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
4030 * get_state_synchronize_rcu - Snapshot current RCU state
4032 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4033 * or poll_state_synchronize_rcu() to determine whether or not a full
4034 * grace period has elapsed in the meantime.
4036 unsigned long get_state_synchronize_rcu(void)
4039 * Any prior manipulation of RCU-protected data must happen
4040 * before the load from ->gp_seq.
4043 return rcu_seq_snap(&rcu_state.gp_seq_polled);
4045 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
4048 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
4049 * @rgosp: location to place combined normal/expedited grace-period state
4051 * Places the normal and expedited grace-period states in @rgosp. This
4052 * state value can be passed to a later call to cond_synchronize_rcu_full()
4053 * or poll_state_synchronize_rcu_full() to determine whether or not a
4054 * grace period (whether normal or expedited) has elapsed in the meantime.
4055 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
4056 * long, but is guaranteed to see all grace periods. In contrast, the
4057 * combined state occupies less memory, but can sometimes fail to take
4058 * grace periods into account.
4060 * This does not guarantee that the needed grace period will actually
4063 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4065 struct rcu_node *rnp = rcu_get_root();
4068 * Any prior manipulation of RCU-protected data must happen
4069 * before the loads from ->gp_seq and ->expedited_sequence.
4072 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
4073 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
4075 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
4078 * Helper function for start_poll_synchronize_rcu() and
4079 * start_poll_synchronize_rcu_full().
4081 static void start_poll_synchronize_rcu_common(void)
4083 unsigned long flags;
4085 struct rcu_data *rdp;
4086 struct rcu_node *rnp;
4088 lockdep_assert_irqs_enabled();
4089 local_irq_save(flags);
4090 rdp = this_cpu_ptr(&rcu_data);
4092 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
4093 // Note it is possible for a grace period to have elapsed between
4094 // the above call to get_state_synchronize_rcu() and the below call
4095 // to rcu_seq_snap. This is OK, the worst that happens is that we
4096 // get a grace period that no one needed. These accesses are ordered
4097 // by smp_mb(), and we are accessing them in the opposite order
4098 // from which they are updated at grace-period start, as required.
4099 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
4100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4102 rcu_gp_kthread_wake();
4106 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
4108 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4109 * or poll_state_synchronize_rcu() to determine whether or not a full
4110 * grace period has elapsed in the meantime. If the needed grace period
4111 * is not already slated to start, notifies RCU core of the need for that
4114 * Interrupts must be enabled for the case where it is necessary to awaken
4115 * the grace-period kthread.
4117 unsigned long start_poll_synchronize_rcu(void)
4119 unsigned long gp_seq = get_state_synchronize_rcu();
4121 start_poll_synchronize_rcu_common();
4124 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
4127 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
4128 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4130 * Places the normal and expedited grace-period states in *@rgos. This
4131 * state value can be passed to a later call to cond_synchronize_rcu_full()
4132 * or poll_state_synchronize_rcu_full() to determine whether or not a
4133 * grace period (whether normal or expedited) has elapsed in the meantime.
4134 * If the needed grace period is not already slated to start, notifies
4135 * RCU core of the need for that grace period.
4137 * Interrupts must be enabled for the case where it is necessary to awaken
4138 * the grace-period kthread.
4140 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4142 get_state_synchronize_rcu_full(rgosp);
4144 start_poll_synchronize_rcu_common();
4146 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
4149 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
4150 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
4152 * If a full RCU grace period has elapsed since the earlier call from
4153 * which @oldstate was obtained, return @true, otherwise return @false.
4154 * If @false is returned, it is the caller's responsibility to invoke this
4155 * function later on until it does return @true. Alternatively, the caller
4156 * can explicitly wait for a grace period, for example, by passing @oldstate
4157 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
4158 * on the one hand or by directly invoking either synchronize_rcu() or
4159 * synchronize_rcu_expedited() on the other.
4161 * Yes, this function does not take counter wrap into account.
4162 * But counter wrap is harmless. If the counter wraps, we have waited for
4163 * more than a billion grace periods (and way more on a 64-bit system!).
4164 * Those needing to keep old state values for very long time periods
4165 * (many hours even on 32-bit systems) should check them occasionally and
4166 * either refresh them or set a flag indicating that the grace period has
4167 * completed. Alternatively, they can use get_completed_synchronize_rcu()
4168 * to get a guaranteed-completed grace-period state.
4170 * In addition, because oldstate compresses the grace-period state for
4171 * both normal and expedited grace periods into a single unsigned long,
4172 * it can miss a grace period when synchronize_rcu() runs concurrently
4173 * with synchronize_rcu_expedited(). If this is unacceptable, please
4174 * instead use the _full() variant of these polling APIs.
4176 * This function provides the same memory-ordering guarantees that
4177 * would be provided by a synchronize_rcu() that was invoked at the call
4178 * to the function that provided @oldstate, and that returned at the end
4181 bool poll_state_synchronize_rcu(unsigned long oldstate)
4183 if (oldstate == RCU_GET_STATE_COMPLETED ||
4184 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
4185 smp_mb(); /* Ensure GP ends before subsequent accesses. */
4190 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
4193 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
4194 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4196 * If a full RCU grace period has elapsed since the earlier call from
4197 * which *rgosp was obtained, return @true, otherwise return @false.
4198 * If @false is returned, it is the caller's responsibility to invoke this
4199 * function later on until it does return @true. Alternatively, the caller
4200 * can explicitly wait for a grace period, for example, by passing @rgosp
4201 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
4203 * Yes, this function does not take counter wrap into account.
4204 * But counter wrap is harmless. If the counter wraps, we have waited
4205 * for more than a billion grace periods (and way more on a 64-bit
4206 * system!). Those needing to keep rcu_gp_oldstate values for very
4207 * long time periods (many hours even on 32-bit systems) should check
4208 * them occasionally and either refresh them or set a flag indicating
4209 * that the grace period has completed. Alternatively, they can use
4210 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
4211 * grace-period state.
4213 * This function provides the same memory-ordering guarantees that would
4214 * be provided by a synchronize_rcu() that was invoked at the call to
4215 * the function that provided @rgosp, and that returned at the end of this
4216 * function. And this guarantee requires that the root rcu_node structure's
4217 * ->gp_seq field be checked instead of that of the rcu_state structure.
4218 * The problem is that the just-ending grace-period's callbacks can be
4219 * invoked between the time that the root rcu_node structure's ->gp_seq
4220 * field is updated and the time that the rcu_state structure's ->gp_seq
4221 * field is updated. Therefore, if a single synchronize_rcu() is to
4222 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
4223 * then the root rcu_node structure is the one that needs to be polled.
4225 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4227 struct rcu_node *rnp = rcu_get_root();
4229 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
4230 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
4231 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
4232 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
4233 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
4234 smp_mb(); /* Ensure GP ends before subsequent accesses. */
4239 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
4242 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
4243 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
4245 * If a full RCU grace period has elapsed since the earlier call to
4246 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
4247 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
4249 * Yes, this function does not take counter wrap into account.
4250 * But counter wrap is harmless. If the counter wraps, we have waited for
4251 * more than 2 billion grace periods (and way more on a 64-bit system!),
4252 * so waiting for a couple of additional grace periods should be just fine.
4254 * This function provides the same memory-ordering guarantees that
4255 * would be provided by a synchronize_rcu() that was invoked at the call
4256 * to the function that provided @oldstate and that returned at the end
4259 void cond_synchronize_rcu(unsigned long oldstate)
4261 if (!poll_state_synchronize_rcu(oldstate))
4264 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
4267 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
4268 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
4270 * If a full RCU grace period has elapsed since the call to
4271 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
4272 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
4273 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
4274 * for a full grace period.
4276 * Yes, this function does not take counter wrap into account.
4277 * But counter wrap is harmless. If the counter wraps, we have waited for
4278 * more than 2 billion grace periods (and way more on a 64-bit system!),
4279 * so waiting for a couple of additional grace periods should be just fine.
4281 * This function provides the same memory-ordering guarantees that
4282 * would be provided by a synchronize_rcu() that was invoked at the call
4283 * to the function that provided @rgosp and that returned at the end of
4286 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4288 if (!poll_state_synchronize_rcu_full(rgosp))
4291 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
4294 * Check to see if there is any immediate RCU-related work to be done by
4295 * the current CPU, returning 1 if so and zero otherwise. The checks are
4296 * in order of increasing expense: checks that can be carried out against
4297 * CPU-local state are performed first. However, we must check for CPU
4298 * stalls first, else we might not get a chance.
4300 static int rcu_pending(int user)
4302 bool gp_in_progress;
4303 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4304 struct rcu_node *rnp = rdp->mynode;
4306 lockdep_assert_irqs_disabled();
4308 /* Check for CPU stalls, if enabled. */
4309 check_cpu_stall(rdp);
4311 /* Does this CPU need a deferred NOCB wakeup? */
4312 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
4315 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
4316 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
4319 /* Is the RCU core waiting for a quiescent state from this CPU? */
4320 gp_in_progress = rcu_gp_in_progress();
4321 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
4324 /* Does this CPU have callbacks ready to invoke? */
4325 if (!rcu_rdp_is_offloaded(rdp) &&
4326 rcu_segcblist_ready_cbs(&rdp->cblist))
4329 /* Has RCU gone idle with this CPU needing another grace period? */
4330 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
4331 !rcu_rdp_is_offloaded(rdp) &&
4332 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4335 /* Have RCU grace period completed or started? */
4336 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4337 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4345 * Helper function for rcu_barrier() tracing. If tracing is disabled,
4346 * the compiler is expected to optimize this away.
4348 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4350 trace_rcu_barrier(rcu_state.name, s, cpu,
4351 atomic_read(&rcu_state.barrier_cpu_count), done);
4355 * RCU callback function for rcu_barrier(). If we are last, wake
4356 * up the task executing rcu_barrier().
4358 * Note that the value of rcu_state.barrier_sequence must be captured
4359 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
4360 * other CPUs might count the value down to zero before this CPU gets
4361 * around to invoking rcu_barrier_trace(), which might result in bogus
4362 * data from the next instance of rcu_barrier().
4364 static void rcu_barrier_callback(struct rcu_head *rhp)
4366 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4368 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4369 rcu_barrier_trace(TPS("LastCB"), -1, s);
4370 complete(&rcu_state.barrier_completion);
4372 rcu_barrier_trace(TPS("CB"), -1, s);
4377 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4379 static void rcu_barrier_entrain(struct rcu_data *rdp)
4381 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4382 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4383 bool wake_nocb = false;
4384 bool was_alldone = false;
4386 lockdep_assert_held(&rcu_state.barrier_lock);
4387 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4389 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4390 rdp->barrier_head.func = rcu_barrier_callback;
4391 debug_rcu_head_queue(&rdp->barrier_head);
4394 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4395 * queue. This way we don't wait for bypass timer that can reach seconds
4396 * if it's fully lazy.
4398 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4399 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4400 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4401 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4402 atomic_inc(&rcu_state.barrier_cpu_count);
4404 debug_rcu_head_unqueue(&rdp->barrier_head);
4405 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4407 rcu_nocb_unlock(rdp);
4409 wake_nocb_gp(rdp, false);
4410 smp_store_release(&rdp->barrier_seq_snap, gseq);
4414 * Called with preemption disabled, and from cross-cpu IRQ context.
4416 static void rcu_barrier_handler(void *cpu_in)
4418 uintptr_t cpu = (uintptr_t)cpu_in;
4419 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4421 lockdep_assert_irqs_disabled();
4422 WARN_ON_ONCE(cpu != rdp->cpu);
4423 WARN_ON_ONCE(cpu != smp_processor_id());
4424 raw_spin_lock(&rcu_state.barrier_lock);
4425 rcu_barrier_entrain(rdp);
4426 raw_spin_unlock(&rcu_state.barrier_lock);
4430 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4432 * Note that this primitive does not necessarily wait for an RCU grace period
4433 * to complete. For example, if there are no RCU callbacks queued anywhere
4434 * in the system, then rcu_barrier() is within its rights to return
4435 * immediately, without waiting for anything, much less an RCU grace period.
4437 void rcu_barrier(void)
4440 unsigned long flags;
4442 struct rcu_data *rdp;
4443 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4445 rcu_barrier_trace(TPS("Begin"), -1, s);
4447 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4448 mutex_lock(&rcu_state.barrier_mutex);
4450 /* Did someone else do our work for us? */
4451 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4452 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4453 smp_mb(); /* caller's subsequent code after above check. */
4454 mutex_unlock(&rcu_state.barrier_mutex);
4458 /* Mark the start of the barrier operation. */
4459 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4460 rcu_seq_start(&rcu_state.barrier_sequence);
4461 gseq = rcu_state.barrier_sequence;
4462 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4465 * Initialize the count to two rather than to zero in order
4466 * to avoid a too-soon return to zero in case of an immediate
4467 * invocation of the just-enqueued callback (or preemption of
4468 * this task). Exclude CPU-hotplug operations to ensure that no
4469 * offline non-offloaded CPU has callbacks queued.
4471 init_completion(&rcu_state.barrier_completion);
4472 atomic_set(&rcu_state.barrier_cpu_count, 2);
4473 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4476 * Force each CPU with callbacks to register a new callback.
4477 * When that callback is invoked, we will know that all of the
4478 * corresponding CPU's preceding callbacks have been invoked.
4480 for_each_possible_cpu(cpu) {
4481 rdp = per_cpu_ptr(&rcu_data, cpu);
4483 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4485 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4486 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4487 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4488 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4489 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4492 if (!rcu_rdp_cpu_online(rdp)) {
4493 rcu_barrier_entrain(rdp);
4494 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4495 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4496 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4499 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4500 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4501 schedule_timeout_uninterruptible(1);
4504 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4505 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4509 * Now that we have an rcu_barrier_callback() callback on each
4510 * CPU, and thus each counted, remove the initial count.
4512 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4513 complete(&rcu_state.barrier_completion);
4515 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4516 wait_for_completion(&rcu_state.barrier_completion);
4518 /* Mark the end of the barrier operation. */
4519 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4520 rcu_seq_end(&rcu_state.barrier_sequence);
4521 gseq = rcu_state.barrier_sequence;
4522 for_each_possible_cpu(cpu) {
4523 rdp = per_cpu_ptr(&rcu_data, cpu);
4525 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4528 /* Other rcu_barrier() invocations can now safely proceed. */
4529 mutex_unlock(&rcu_state.barrier_mutex);
4531 EXPORT_SYMBOL_GPL(rcu_barrier);
4533 static unsigned long rcu_barrier_last_throttle;
4536 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4538 * This can be thought of as guard rails around rcu_barrier() that
4539 * permits unrestricted userspace use, at least assuming the hardware's
4540 * try_cmpxchg() is robust. There will be at most one call per second to
4541 * rcu_barrier() system-wide from use of this function, which means that
4542 * callers might needlessly wait a second or three.
4544 * This is intended for use by test suites to avoid OOM by flushing RCU
4545 * callbacks from the previous test before starting the next. See the
4546 * rcutree.do_rcu_barrier module parameter for more information.
4548 * Why not simply make rcu_barrier() more scalable? That might be
4549 * the eventual endpoint, but let's keep it simple for the time being.
4550 * Note that the module parameter infrastructure serializes calls to a
4551 * given .set() function, but should concurrent .set() invocation ever be
4552 * possible, we are ready!
4554 static void rcu_barrier_throttled(void)
4556 unsigned long j = jiffies;
4557 unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4558 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4560 while (time_in_range(j, old, old + HZ / 16) ||
4561 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4562 schedule_timeout_idle(HZ / 16);
4563 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4564 smp_mb(); /* caller's subsequent code after above check. */
4568 old = READ_ONCE(rcu_barrier_last_throttle);
4574 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4575 * request arrives. We insist on a true value to allow for possible
4578 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4583 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4585 ret = kstrtobool(val, &b);
4587 atomic_inc((atomic_t *)kp->arg);
4588 rcu_barrier_throttled();
4589 atomic_dec((atomic_t *)kp->arg);
4595 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4597 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4599 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4602 static const struct kernel_param_ops do_rcu_barrier_ops = {
4603 .set = param_set_do_rcu_barrier,
4604 .get = param_get_do_rcu_barrier,
4606 static atomic_t do_rcu_barrier;
4607 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4610 * Compute the mask of online CPUs for the specified rcu_node structure.
4611 * This will not be stable unless the rcu_node structure's ->lock is
4612 * held, but the bit corresponding to the current CPU will be stable
4615 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4617 return READ_ONCE(rnp->qsmaskinitnext);
4621 * Is the CPU corresponding to the specified rcu_data structure online
4622 * from RCU's perspective? This perspective is given by that structure's
4623 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4625 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4627 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4630 bool rcu_cpu_online(int cpu)
4632 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4634 return rcu_rdp_cpu_online(rdp);
4637 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4640 * Is the current CPU online as far as RCU is concerned?
4642 * Disable preemption to avoid false positives that could otherwise
4643 * happen due to the current CPU number being sampled, this task being
4644 * preempted, its old CPU being taken offline, resuming on some other CPU,
4645 * then determining that its old CPU is now offline.
4647 * Disable checking if in an NMI handler because we cannot safely
4648 * report errors from NMI handlers anyway. In addition, it is OK to use
4649 * RCU on an offline processor during initial boot, hence the check for
4650 * rcu_scheduler_fully_active.
4652 bool rcu_lockdep_current_cpu_online(void)
4654 struct rcu_data *rdp;
4657 if (in_nmi() || !rcu_scheduler_fully_active)
4659 preempt_disable_notrace();
4660 rdp = this_cpu_ptr(&rcu_data);
4662 * Strictly, we care here about the case where the current CPU is
4663 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4664 * not being up to date. So arch_spin_is_locked() might have a
4665 * false positive if it's held by some *other* CPU, but that's
4666 * OK because that just means a false *negative* on the warning.
4668 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4670 preempt_enable_notrace();
4673 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4675 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4677 // Has rcu_init() been invoked? This is used (for example) to determine
4678 // whether spinlocks may be acquired safely.
4679 static bool rcu_init_invoked(void)
4681 return !!READ_ONCE(rcu_state.n_online_cpus);
4685 * All CPUs for the specified rcu_node structure have gone offline,
4686 * and all tasks that were preempted within an RCU read-side critical
4687 * section while running on one of those CPUs have since exited their RCU
4688 * read-side critical section. Some other CPU is reporting this fact with
4689 * the specified rcu_node structure's ->lock held and interrupts disabled.
4690 * This function therefore goes up the tree of rcu_node structures,
4691 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4692 * the leaf rcu_node structure's ->qsmaskinit field has already been
4695 * This function does check that the specified rcu_node structure has
4696 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4697 * prematurely. That said, invoking it after the fact will cost you
4698 * a needless lock acquisition. So once it has done its work, don't
4701 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4704 struct rcu_node *rnp = rnp_leaf;
4706 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4707 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4708 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4709 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4712 mask = rnp->grpmask;
4716 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4717 rnp->qsmaskinit &= ~mask;
4718 /* Between grace periods, so better already be zero! */
4719 WARN_ON_ONCE(rnp->qsmask);
4720 if (rnp->qsmaskinit) {
4721 raw_spin_unlock_rcu_node(rnp);
4722 /* irqs remain disabled. */
4725 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4730 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4731 * first CPU in a given leaf rcu_node structure coming online. The caller
4732 * must hold the corresponding leaf rcu_node ->lock with interrupts
4735 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4739 struct rcu_node *rnp = rnp_leaf;
4741 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4742 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4744 mask = rnp->grpmask;
4748 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4749 oldmask = rnp->qsmaskinit;
4750 rnp->qsmaskinit |= mask;
4751 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4758 * Do boot-time initialization of a CPU's per-CPU RCU data.
4761 rcu_boot_init_percpu_data(int cpu)
4763 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4764 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4766 /* Set up local state, ensuring consistent view of global state. */
4767 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4768 INIT_WORK(&rdp->strict_work, strict_work_handler);
4769 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4770 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4771 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4772 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4773 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4774 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4775 rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4776 rdp->last_sched_clock = jiffies;
4778 rcu_boot_init_nocb_percpu_data(rdp);
4781 struct kthread_worker *rcu_exp_gp_kworker;
4783 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4785 struct kthread_worker *kworker;
4786 const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4787 struct sched_param param = { .sched_priority = kthread_prio };
4788 int rnp_index = rnp - rcu_get_root();
4790 if (rnp->exp_kworker)
4793 kworker = kthread_create_worker(0, name, rnp_index);
4794 if (IS_ERR_OR_NULL(kworker)) {
4795 pr_err("Failed to create par gp kworker on %d/%d\n",
4796 rnp->grplo, rnp->grphi);
4799 WRITE_ONCE(rnp->exp_kworker, kworker);
4801 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4802 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m);
4805 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4807 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4812 return kworker->task;
4815 static void __init rcu_start_exp_gp_kworker(void)
4817 const char *name = "rcu_exp_gp_kthread_worker";
4818 struct sched_param param = { .sched_priority = kthread_prio };
4820 rcu_exp_gp_kworker = kthread_create_worker(0, name);
4821 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4822 pr_err("Failed to create %s!\n", name);
4823 rcu_exp_gp_kworker = NULL;
4827 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4828 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4831 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4833 if (rcu_scheduler_fully_active) {
4834 mutex_lock(&rnp->kthread_mutex);
4835 rcu_spawn_one_boost_kthread(rnp);
4836 rcu_spawn_exp_par_gp_kworker(rnp);
4837 mutex_unlock(&rnp->kthread_mutex);
4842 * Invoked early in the CPU-online process, when pretty much all services
4843 * are available. The incoming CPU is not present.
4845 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4846 * offline event can be happening at a given time. Note also that we can
4847 * accept some slop in the rsp->gp_seq access due to the fact that this
4848 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4849 * And any offloaded callbacks are being numbered elsewhere.
4851 int rcutree_prepare_cpu(unsigned int cpu)
4853 unsigned long flags;
4854 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4855 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4856 struct rcu_node *rnp = rcu_get_root();
4858 /* Set up local state, ensuring consistent view of global state. */
4859 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4860 rdp->qlen_last_fqs_check = 0;
4861 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4862 rdp->blimit = blimit;
4863 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4864 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4867 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4870 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4871 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4874 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4875 * propagation up the rcu_node tree will happen at the beginning
4876 * of the next grace period.
4879 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4880 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4881 rdp->gp_seq_needed = rdp->gp_seq;
4882 rdp->cpu_no_qs.b.norm = true;
4883 rdp->core_needs_qs = false;
4884 rdp->rcu_iw_pending = false;
4885 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4886 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4887 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4888 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4889 rcu_spawn_rnp_kthreads(rnp);
4890 rcu_spawn_cpu_nocb_kthread(cpu);
4891 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4892 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4898 * Update kthreads affinity during CPU-hotplug changes.
4900 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
4901 * served by the rcu_node in question. The CPU hotplug lock is still
4902 * held, so the value of rnp->qsmaskinit will be stable.
4904 * We don't include outgoingcpu in the affinity set, use -1 if there is
4905 * no outgoing CPU. If there are no CPUs left in the affinity set,
4906 * this function allows the kthread to execute on any CPU.
4908 * Any future concurrent calls are serialized via ->kthread_mutex.
4910 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
4914 struct rcu_data *rdp;
4915 struct rcu_node *rnp;
4916 struct task_struct *task_boost, *task_exp;
4918 rdp = per_cpu_ptr(&rcu_data, cpu);
4921 task_boost = rcu_boost_task(rnp);
4922 task_exp = rcu_exp_par_gp_task(rnp);
4925 * If CPU is the boot one, those tasks are created later from early
4926 * initcall since kthreadd must be created first.
4928 if (!task_boost && !task_exp)
4931 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
4934 mutex_lock(&rnp->kthread_mutex);
4935 mask = rcu_rnp_online_cpus(rnp);
4936 for_each_leaf_node_possible_cpu(rnp, cpu)
4937 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
4939 cpumask_set_cpu(cpu, cm);
4940 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
4941 if (cpumask_empty(cm)) {
4942 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
4943 if (outgoingcpu >= 0)
4944 cpumask_clear_cpu(outgoingcpu, cm);
4948 set_cpus_allowed_ptr(task_exp, cm);
4951 set_cpus_allowed_ptr(task_boost, cm);
4953 mutex_unlock(&rnp->kthread_mutex);
4955 free_cpumask_var(cm);
4959 * Has the specified (known valid) CPU ever been fully online?
4961 bool rcu_cpu_beenfullyonline(int cpu)
4963 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4965 return smp_load_acquire(&rdp->beenonline);
4969 * Near the end of the CPU-online process. Pretty much all services
4970 * enabled, and the CPU is now very much alive.
4972 int rcutree_online_cpu(unsigned int cpu)
4974 unsigned long flags;
4975 struct rcu_data *rdp;
4976 struct rcu_node *rnp;
4978 rdp = per_cpu_ptr(&rcu_data, cpu);
4980 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4981 rnp->ffmask |= rdp->grpmask;
4982 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4983 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4984 return 0; /* Too early in boot for scheduler work. */
4985 sync_sched_exp_online_cleanup(cpu);
4986 rcutree_affinity_setting(cpu, -1);
4988 // Stop-machine done, so allow nohz_full to disable tick.
4989 tick_dep_clear(TICK_DEP_BIT_RCU);
4994 * Mark the specified CPU as being online so that subsequent grace periods
4995 * (both expedited and normal) will wait on it. Note that this means that
4996 * incoming CPUs are not allowed to use RCU read-side critical sections
4997 * until this function is called. Failing to observe this restriction
4998 * will result in lockdep splats.
5000 * Note that this function is special in that it is invoked directly
5001 * from the incoming CPU rather than from the cpuhp_step mechanism.
5002 * This is because this function must be invoked at a precise location.
5003 * This incoming CPU must not have enabled interrupts yet.
5005 * This mirrors the effects of rcutree_report_cpu_dead().
5007 void rcutree_report_cpu_starting(unsigned int cpu)
5010 struct rcu_data *rdp;
5011 struct rcu_node *rnp;
5014 lockdep_assert_irqs_disabled();
5015 rdp = per_cpu_ptr(&rcu_data, cpu);
5016 if (rdp->cpu_started)
5018 rdp->cpu_started = true;
5021 mask = rdp->grpmask;
5022 arch_spin_lock(&rcu_state.ofl_lock);
5023 rcu_dynticks_eqs_online();
5024 raw_spin_lock(&rcu_state.barrier_lock);
5025 raw_spin_lock_rcu_node(rnp);
5026 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
5027 raw_spin_unlock(&rcu_state.barrier_lock);
5028 newcpu = !(rnp->expmaskinitnext & mask);
5029 rnp->expmaskinitnext |= mask;
5030 /* Allow lockless access for expedited grace periods. */
5031 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
5032 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
5033 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
5034 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5035 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
5037 /* An incoming CPU should never be blocking a grace period. */
5038 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
5039 /* rcu_report_qs_rnp() *really* wants some flags to restore */
5040 unsigned long flags;
5042 local_irq_save(flags);
5043 rcu_disable_urgency_upon_qs(rdp);
5044 /* Report QS -after- changing ->qsmaskinitnext! */
5045 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5047 raw_spin_unlock_rcu_node(rnp);
5049 arch_spin_unlock(&rcu_state.ofl_lock);
5050 smp_store_release(&rdp->beenonline, true);
5051 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
5055 * The outgoing function has no further need of RCU, so remove it from
5056 * the rcu_node tree's ->qsmaskinitnext bit masks.
5058 * Note that this function is special in that it is invoked directly
5059 * from the outgoing CPU rather than from the cpuhp_step mechanism.
5060 * This is because this function must be invoked at a precise location.
5062 * This mirrors the effect of rcutree_report_cpu_starting().
5064 void rcutree_report_cpu_dead(void)
5066 unsigned long flags;
5068 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5069 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
5072 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
5073 * may introduce a new READ-side while it is actually off the QS masks.
5075 lockdep_assert_irqs_disabled();
5076 // Do any dangling deferred wakeups.
5077 do_nocb_deferred_wakeup(rdp);
5079 rcu_preempt_deferred_qs(current);
5081 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
5082 mask = rdp->grpmask;
5083 arch_spin_lock(&rcu_state.ofl_lock);
5084 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
5085 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5086 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
5087 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
5088 /* Report quiescent state -before- changing ->qsmaskinitnext! */
5089 rcu_disable_urgency_upon_qs(rdp);
5090 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5091 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5093 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
5094 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5095 arch_spin_unlock(&rcu_state.ofl_lock);
5096 rdp->cpu_started = false;
5099 #ifdef CONFIG_HOTPLUG_CPU
5101 * The outgoing CPU has just passed through the dying-idle state, and we
5102 * are being invoked from the CPU that was IPIed to continue the offline
5103 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
5105 void rcutree_migrate_callbacks(int cpu)
5107 unsigned long flags;
5108 struct rcu_data *my_rdp;
5109 struct rcu_node *my_rnp;
5110 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5113 if (rcu_rdp_is_offloaded(rdp) ||
5114 rcu_segcblist_empty(&rdp->cblist))
5115 return; /* No callbacks to migrate. */
5117 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
5118 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
5119 rcu_barrier_entrain(rdp);
5120 my_rdp = this_cpu_ptr(&rcu_data);
5121 my_rnp = my_rdp->mynode;
5122 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
5123 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
5124 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
5125 /* Leverage recent GPs and set GP for new callbacks. */
5126 needwake = rcu_advance_cbs(my_rnp, rdp) ||
5127 rcu_advance_cbs(my_rnp, my_rdp);
5128 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
5129 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
5130 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
5131 rcu_segcblist_disable(&rdp->cblist);
5132 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
5133 check_cb_ovld_locked(my_rdp, my_rnp);
5134 if (rcu_rdp_is_offloaded(my_rdp)) {
5135 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5136 __call_rcu_nocb_wake(my_rdp, true, flags);
5138 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
5139 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5141 local_irq_restore(flags);
5143 rcu_gp_kthread_wake();
5144 lockdep_assert_irqs_enabled();
5145 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
5146 !rcu_segcblist_empty(&rdp->cblist),
5147 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
5148 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
5149 rcu_segcblist_first_cb(&rdp->cblist));
5153 * The CPU has been completely removed, and some other CPU is reporting
5154 * this fact from process context. Do the remainder of the cleanup.
5155 * There can only be one CPU hotplug operation at a time, so no need for
5158 int rcutree_dead_cpu(unsigned int cpu)
5160 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5161 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
5162 // Stop-machine done, so allow nohz_full to disable tick.
5163 tick_dep_clear(TICK_DEP_BIT_RCU);
5168 * Near the end of the offline process. Trace the fact that this CPU
5171 int rcutree_dying_cpu(unsigned int cpu)
5174 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5175 struct rcu_node *rnp = rdp->mynode;
5177 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
5178 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
5179 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
5184 * Near the beginning of the process. The CPU is still very much alive
5185 * with pretty much all services enabled.
5187 int rcutree_offline_cpu(unsigned int cpu)
5189 unsigned long flags;
5190 struct rcu_data *rdp;
5191 struct rcu_node *rnp;
5193 rdp = per_cpu_ptr(&rcu_data, cpu);
5195 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5196 rnp->ffmask &= ~rdp->grpmask;
5197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5199 rcutree_affinity_setting(cpu, cpu);
5201 // nohz_full CPUs need the tick for stop-machine to work quickly
5202 tick_dep_set(TICK_DEP_BIT_RCU);
5205 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
5208 * On non-huge systems, use expedited RCU grace periods to make suspend
5209 * and hibernation run faster.
5211 static int rcu_pm_notify(struct notifier_block *self,
5212 unsigned long action, void *hcpu)
5215 case PM_HIBERNATION_PREPARE:
5216 case PM_SUSPEND_PREPARE:
5220 case PM_POST_HIBERNATION:
5221 case PM_POST_SUSPEND:
5222 rcu_unexpedite_gp();
5232 * Spawn the kthreads that handle RCU's grace periods.
5234 static int __init rcu_spawn_gp_kthread(void)
5236 unsigned long flags;
5237 struct rcu_node *rnp;
5238 struct sched_param sp;
5239 struct task_struct *t;
5240 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5242 rcu_scheduler_fully_active = 1;
5243 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
5244 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
5247 sp.sched_priority = kthread_prio;
5248 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
5250 rnp = rcu_get_root();
5251 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5252 WRITE_ONCE(rcu_state.gp_activity, jiffies);
5253 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5254 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
5255 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
5256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5258 /* This is a pre-SMP initcall, we expect a single CPU */
5259 WARN_ON(num_online_cpus() > 1);
5261 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
5262 * due to rcu_scheduler_fully_active.
5264 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
5265 rcu_spawn_rnp_kthreads(rdp->mynode);
5266 rcu_spawn_core_kthreads();
5267 /* Create kthread worker for expedited GPs */
5268 rcu_start_exp_gp_kworker();
5271 early_initcall(rcu_spawn_gp_kthread);
5274 * This function is invoked towards the end of the scheduler's
5275 * initialization process. Before this is called, the idle task might
5276 * contain synchronous grace-period primitives (during which time, this idle
5277 * task is booting the system, and such primitives are no-ops). After this
5278 * function is called, any synchronous grace-period primitives are run as
5279 * expedited, with the requesting task driving the grace period forward.
5280 * A later core_initcall() rcu_set_runtime_mode() will switch to full
5281 * runtime RCU functionality.
5283 void rcu_scheduler_starting(void)
5285 unsigned long flags;
5286 struct rcu_node *rnp;
5288 WARN_ON(num_online_cpus() != 1);
5289 WARN_ON(nr_context_switches() > 0);
5290 rcu_test_sync_prims();
5292 // Fix up the ->gp_seq counters.
5293 local_irq_save(flags);
5294 rcu_for_each_node_breadth_first(rnp)
5295 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
5296 local_irq_restore(flags);
5298 // Switch out of early boot mode.
5299 rcu_scheduler_active = RCU_SCHEDULER_INIT;
5300 rcu_test_sync_prims();
5304 * Helper function for rcu_init() that initializes the rcu_state structure.
5306 static void __init rcu_init_one(void)
5308 static const char * const buf[] = RCU_NODE_NAME_INIT;
5309 static const char * const fqs[] = RCU_FQS_NAME_INIT;
5310 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
5311 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
5313 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
5317 struct rcu_node *rnp;
5319 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
5321 /* Silence gcc 4.8 false positive about array index out of range. */
5322 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
5323 panic("rcu_init_one: rcu_num_lvls out of range");
5325 /* Initialize the level-tracking arrays. */
5327 for (i = 1; i < rcu_num_lvls; i++)
5328 rcu_state.level[i] =
5329 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
5330 rcu_init_levelspread(levelspread, num_rcu_lvl);
5332 /* Initialize the elements themselves, starting from the leaves. */
5334 for (i = rcu_num_lvls - 1; i >= 0; i--) {
5335 cpustride *= levelspread[i];
5336 rnp = rcu_state.level[i];
5337 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
5338 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
5339 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
5340 &rcu_node_class[i], buf[i]);
5341 raw_spin_lock_init(&rnp->fqslock);
5342 lockdep_set_class_and_name(&rnp->fqslock,
5343 &rcu_fqs_class[i], fqs[i]);
5344 rnp->gp_seq = rcu_state.gp_seq;
5345 rnp->gp_seq_needed = rcu_state.gp_seq;
5346 rnp->completedqs = rcu_state.gp_seq;
5348 rnp->qsmaskinit = 0;
5349 rnp->grplo = j * cpustride;
5350 rnp->grphi = (j + 1) * cpustride - 1;
5351 if (rnp->grphi >= nr_cpu_ids)
5352 rnp->grphi = nr_cpu_ids - 1;
5358 rnp->grpnum = j % levelspread[i - 1];
5359 rnp->grpmask = BIT(rnp->grpnum);
5360 rnp->parent = rcu_state.level[i - 1] +
5361 j / levelspread[i - 1];
5364 INIT_LIST_HEAD(&rnp->blkd_tasks);
5365 rcu_init_one_nocb(rnp);
5366 init_waitqueue_head(&rnp->exp_wq[0]);
5367 init_waitqueue_head(&rnp->exp_wq[1]);
5368 init_waitqueue_head(&rnp->exp_wq[2]);
5369 init_waitqueue_head(&rnp->exp_wq[3]);
5370 spin_lock_init(&rnp->exp_lock);
5371 mutex_init(&rnp->kthread_mutex);
5372 raw_spin_lock_init(&rnp->exp_poll_lock);
5373 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
5374 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
5378 init_swait_queue_head(&rcu_state.gp_wq);
5379 init_swait_queue_head(&rcu_state.expedited_wq);
5380 rnp = rcu_first_leaf_node();
5381 for_each_possible_cpu(i) {
5382 while (i > rnp->grphi)
5384 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5385 rcu_boot_init_percpu_data(i);
5390 * Force priority from the kernel command-line into range.
5392 static void __init sanitize_kthread_prio(void)
5394 int kthread_prio_in = kthread_prio;
5396 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5397 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5399 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5401 else if (kthread_prio < 0)
5403 else if (kthread_prio > 99)
5406 if (kthread_prio != kthread_prio_in)
5407 pr_alert("%s: Limited prio to %d from %d\n",
5408 __func__, kthread_prio, kthread_prio_in);
5412 * Compute the rcu_node tree geometry from kernel parameters. This cannot
5413 * replace the definitions in tree.h because those are needed to size
5414 * the ->node array in the rcu_state structure.
5416 void rcu_init_geometry(void)
5420 static unsigned long old_nr_cpu_ids;
5421 int rcu_capacity[RCU_NUM_LVLS];
5422 static bool initialized;
5426 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5427 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5429 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5433 old_nr_cpu_ids = nr_cpu_ids;
5437 * Initialize any unspecified boot parameters.
5438 * The default values of jiffies_till_first_fqs and
5439 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5440 * value, which is a function of HZ, then adding one for each
5441 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5443 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5444 if (jiffies_till_first_fqs == ULONG_MAX)
5445 jiffies_till_first_fqs = d;
5446 if (jiffies_till_next_fqs == ULONG_MAX)
5447 jiffies_till_next_fqs = d;
5448 adjust_jiffies_till_sched_qs();
5450 /* If the compile-time values are accurate, just leave. */
5451 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5452 nr_cpu_ids == NR_CPUS)
5454 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5455 rcu_fanout_leaf, nr_cpu_ids);
5458 * The boot-time rcu_fanout_leaf parameter must be at least two
5459 * and cannot exceed the number of bits in the rcu_node masks.
5460 * Complain and fall back to the compile-time values if this
5461 * limit is exceeded.
5463 if (rcu_fanout_leaf < 2 ||
5464 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
5465 rcu_fanout_leaf = RCU_FANOUT_LEAF;
5471 * Compute number of nodes that can be handled an rcu_node tree
5472 * with the given number of levels.
5474 rcu_capacity[0] = rcu_fanout_leaf;
5475 for (i = 1; i < RCU_NUM_LVLS; i++)
5476 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5479 * The tree must be able to accommodate the configured number of CPUs.
5480 * If this limit is exceeded, fall back to the compile-time values.
5482 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5483 rcu_fanout_leaf = RCU_FANOUT_LEAF;
5488 /* Calculate the number of levels in the tree. */
5489 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5491 rcu_num_lvls = i + 1;
5493 /* Calculate the number of rcu_nodes at each level of the tree. */
5494 for (i = 0; i < rcu_num_lvls; i++) {
5495 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5496 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5499 /* Calculate the total number of rcu_node structures. */
5501 for (i = 0; i < rcu_num_lvls; i++)
5502 rcu_num_nodes += num_rcu_lvl[i];
5506 * Dump out the structure of the rcu_node combining tree associated
5507 * with the rcu_state structure.
5509 static void __init rcu_dump_rcu_node_tree(void)
5512 struct rcu_node *rnp;
5514 pr_info("rcu_node tree layout dump\n");
5516 rcu_for_each_node_breadth_first(rnp) {
5517 if (rnp->level != level) {
5522 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5527 struct workqueue_struct *rcu_gp_wq;
5529 static void __init kfree_rcu_batch_init(void)
5533 struct shrinker *kfree_rcu_shrinker;
5535 /* Clamp it to [0:100] seconds interval. */
5536 if (rcu_delay_page_cache_fill_msec < 0 ||
5537 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5539 rcu_delay_page_cache_fill_msec =
5540 clamp(rcu_delay_page_cache_fill_msec, 0,
5541 (int) (100 * MSEC_PER_SEC));
5543 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5544 rcu_delay_page_cache_fill_msec);
5547 for_each_possible_cpu(cpu) {
5548 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5550 for (i = 0; i < KFREE_N_BATCHES; i++) {
5551 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5552 krcp->krw_arr[i].krcp = krcp;
5554 for (j = 0; j < FREE_N_CHANNELS; j++)
5555 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5558 for (i = 0; i < FREE_N_CHANNELS; i++)
5559 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5561 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5562 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5563 krcp->initialized = true;
5566 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5567 if (!kfree_rcu_shrinker) {
5568 pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5572 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5573 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5575 shrinker_register(kfree_rcu_shrinker);
5578 void __init rcu_init(void)
5580 int cpu = smp_processor_id();
5582 rcu_early_boot_tests();
5584 kfree_rcu_batch_init();
5585 rcu_bootup_announce();
5586 sanitize_kthread_prio();
5587 rcu_init_geometry();
5590 rcu_dump_rcu_node_tree();
5592 open_softirq(RCU_SOFTIRQ, rcu_core_si);
5595 * We don't need protection against CPU-hotplug here because
5596 * this is called early in boot, before either interrupts
5597 * or the scheduler are operational.
5599 pm_notifier(rcu_pm_notify, 0);
5600 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5601 rcutree_prepare_cpu(cpu);
5602 rcutree_report_cpu_starting(cpu);
5603 rcutree_online_cpu(cpu);
5605 /* Create workqueue for Tree SRCU and for expedited GPs. */
5606 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5607 WARN_ON(!rcu_gp_wq);
5609 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
5612 /* Fill in default value for rcutree.qovld boot parameter. */
5613 /* -After- the rcu_node ->lock fields are initialized! */
5615 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5619 // Kick-start in case any polled grace periods started early.
5620 (void)start_poll_synchronize_rcu_expedited();
5622 rcu_test_sync_prims();
5624 tasks_cblist_init_generic();
5627 #include "tree_stall.h"
5628 #include "tree_exp.h"
5629 #include "tree_nocb.h"
5630 #include "tree_plugin.h"