1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *victim_entry_slab;
28 static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
31 static int gc_thread_func(void *data)
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
38 struct f2fs_gc_control gc_control = {
39 .victim_segno = NULL_SEGNO,
40 .should_migrate_blocks = false,
41 .err_gc_skipped = false };
43 wait_ms = gc_th->min_sleep_time;
47 bool sync_mode, foreground = false;
49 wait_event_freezable_timeout(*wq,
50 kthread_should_stop() ||
51 waitqueue_active(fggc_wq) ||
53 msecs_to_jiffies(wait_ms));
55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
58 /* give it a try one time */
60 gc_th->gc_wake = false;
62 if (f2fs_readonly(sbi->sb)) {
63 stat_other_skip_bggc_count(sbi);
66 if (kthread_should_stop())
69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 increase_sleep_time(gc_th, &wait_ms);
71 stat_other_skip_bggc_count(sbi);
75 if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 f2fs_stop_checkpoint(sbi, false,
77 STOP_CP_REASON_FAULT_INJECT);
79 if (!sb_start_write_trylock(sbi->sb)) {
80 stat_other_skip_bggc_count(sbi);
85 * [GC triggering condition]
86 * 0. GC is not conducted currently.
87 * 1. There are enough dirty segments.
88 * 2. IO subsystem is idle by checking the # of writeback pages.
89 * 3. IO subsystem is idle by checking the # of requests in
90 * bdev's request list.
92 * Note) We have to avoid triggering GCs frequently.
93 * Because it is possible that some segments can be
94 * invalidated soon after by user update or deletion.
95 * So, I'd like to wait some time to collect dirty segments.
97 if (sbi->gc_mode == GC_URGENT_HIGH ||
98 sbi->gc_mode == GC_URGENT_MID) {
99 wait_ms = gc_th->urgent_sleep_time;
100 f2fs_down_write(&sbi->gc_lock);
105 f2fs_down_write(&sbi->gc_lock);
107 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
108 stat_other_skip_bggc_count(sbi);
112 if (!is_idle(sbi, GC_TIME)) {
113 increase_sleep_time(gc_th, &wait_ms);
114 f2fs_up_write(&sbi->gc_lock);
115 stat_io_skip_bggc_count(sbi);
119 if (has_enough_invalid_blocks(sbi))
120 decrease_sleep_time(gc_th, &wait_ms);
122 increase_sleep_time(gc_th, &wait_ms);
124 stat_inc_gc_call_count(sbi, foreground ?
125 FOREGROUND : BACKGROUND);
127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
129 /* foreground GC was been triggered via f2fs_balance_fs() */
133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
134 gc_control.no_bg_gc = foreground;
135 gc_control.nr_free_secs = foreground ? 1 : 0;
137 /* if return value is not zero, no victim was selected */
138 if (f2fs_gc(sbi, &gc_control)) {
139 /* don't bother wait_ms by foreground gc */
141 wait_ms = gc_th->no_gc_sleep_time;
143 /* reset wait_ms to default sleep time */
144 if (wait_ms == gc_th->no_gc_sleep_time)
145 wait_ms = gc_th->min_sleep_time;
149 wake_up_all(&gc_th->fggc_wq);
151 trace_f2fs_background_gc(sbi->sb, wait_ms,
152 prefree_segments(sbi), free_segments(sbi));
154 /* balancing f2fs's metadata periodically */
155 f2fs_balance_fs_bg(sbi, true);
157 if (sbi->gc_mode != GC_NORMAL) {
158 spin_lock(&sbi->gc_remaining_trials_lock);
159 if (sbi->gc_remaining_trials) {
160 sbi->gc_remaining_trials--;
161 if (!sbi->gc_remaining_trials)
162 sbi->gc_mode = GC_NORMAL;
164 spin_unlock(&sbi->gc_remaining_trials_lock);
166 sb_end_write(sbi->sb);
168 } while (!kthread_should_stop());
172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
174 struct f2fs_gc_kthread *gc_th;
175 dev_t dev = sbi->sb->s_bdev->bd_dev;
177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
186 gc_th->gc_wake = false;
188 sbi->gc_thread = gc_th;
189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
190 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
193 if (IS_ERR(gc_th->f2fs_gc_task)) {
194 int err = PTR_ERR(gc_th->f2fs_gc_task);
197 sbi->gc_thread = NULL;
204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
210 kthread_stop(gc_th->f2fs_gc_task);
211 wake_up_all(&gc_th->fggc_wq);
213 sbi->gc_thread = NULL;
216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
220 if (gc_type == BG_GC) {
221 if (sbi->am.atgc_enabled)
229 switch (sbi->gc_mode) {
245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
246 int type, struct victim_sel_policy *p)
248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
250 if (p->alloc_mode == SSR) {
251 p->gc_mode = GC_GREEDY;
252 p->dirty_bitmap = dirty_i->dirty_segmap[type];
253 p->max_search = dirty_i->nr_dirty[type];
255 } else if (p->alloc_mode == AT_SSR) {
256 p->gc_mode = GC_GREEDY;
257 p->dirty_bitmap = dirty_i->dirty_segmap[type];
258 p->max_search = dirty_i->nr_dirty[type];
261 p->gc_mode = select_gc_type(sbi, gc_type);
262 p->ofs_unit = SEGS_PER_SEC(sbi);
263 if (__is_large_section(sbi)) {
264 p->dirty_bitmap = dirty_i->dirty_secmap;
265 p->max_search = count_bits(p->dirty_bitmap,
268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
269 p->max_search = dirty_i->nr_dirty[DIRTY];
274 * adjust candidates range, should select all dirty segments for
275 * foreground GC and urgent GC cases.
277 if (gc_type != FG_GC &&
278 (sbi->gc_mode != GC_URGENT_HIGH) &&
279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
280 p->max_search > sbi->max_victim_search)
281 p->max_search = sbi->max_victim_search;
283 /* let's select beginning hot/small space first. */
284 if (f2fs_need_rand_seg(sbi))
285 p->offset = get_random_u32_below(MAIN_SECS(sbi) *
287 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
294 struct victim_sel_policy *p)
296 /* SSR allocates in a segment unit */
297 if (p->alloc_mode == SSR)
298 return BLKS_PER_SEG(sbi);
299 else if (p->alloc_mode == AT_SSR)
303 if (p->gc_mode == GC_GREEDY)
304 return SEGS_TO_BLKS(sbi, 2 * p->ofs_unit);
305 else if (p->gc_mode == GC_CB)
307 else if (p->gc_mode == GC_AT)
309 else /* No other gc_mode */
313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
319 * If the gc_type is FG_GC, we can select victim segments
320 * selected by background GC before.
321 * Those segments guarantee they have small valid blocks.
323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
324 if (sec_usage_check(sbi, secno))
326 clear_bit(secno, dirty_i->victim_secmap);
327 return GET_SEG_FROM_SEC(sbi, secno);
332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
334 struct sit_info *sit_i = SIT_I(sbi);
335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
337 unsigned long long mtime = 0;
338 unsigned int vblocks;
339 unsigned char age = 0;
342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
344 for (i = 0; i < usable_segs_per_sec; i++)
345 mtime += get_seg_entry(sbi, start + i)->mtime;
346 vblocks = get_valid_blocks(sbi, segno, true);
348 mtime = div_u64(mtime, usable_segs_per_sec);
349 vblocks = div_u64(vblocks, usable_segs_per_sec);
351 u = BLKS_TO_SEGS(sbi, vblocks * 100);
353 /* Handle if the system time has changed by the user */
354 if (mtime < sit_i->min_mtime)
355 sit_i->min_mtime = mtime;
356 if (mtime > sit_i->max_mtime)
357 sit_i->max_mtime = mtime;
358 if (sit_i->max_mtime != sit_i->min_mtime)
359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
360 sit_i->max_mtime - sit_i->min_mtime);
362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
366 unsigned int segno, struct victim_sel_policy *p)
368 if (p->alloc_mode == SSR)
369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
371 /* alloc_mode == LFS */
372 if (p->gc_mode == GC_GREEDY)
373 return get_valid_blocks(sbi, segno, true);
374 else if (p->gc_mode == GC_CB)
375 return get_cb_cost(sbi, segno);
381 static unsigned int count_bits(const unsigned long *addr,
382 unsigned int offset, unsigned int len)
384 unsigned int end = offset + len, sum = 0;
386 while (offset < end) {
387 if (test_bit(offset++, addr))
393 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
394 struct rb_root_cached *root)
396 #ifdef CONFIG_F2FS_CHECK_FS
397 struct rb_node *cur = rb_first_cached(root), *next;
398 struct victim_entry *cur_ve, *next_ve;
405 cur_ve = rb_entry(cur, struct victim_entry, rb_node);
406 next_ve = rb_entry(next, struct victim_entry, rb_node);
408 if (cur_ve->mtime > next_ve->mtime) {
409 f2fs_info(sbi, "broken victim_rbtree, "
410 "cur_mtime(%llu) next_mtime(%llu)",
411 cur_ve->mtime, next_ve->mtime);
420 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
421 unsigned long long mtime)
423 struct atgc_management *am = &sbi->am;
424 struct rb_node *node = am->root.rb_root.rb_node;
425 struct victim_entry *ve = NULL;
428 ve = rb_entry(node, struct victim_entry, rb_node);
430 if (mtime < ve->mtime)
431 node = node->rb_left;
433 node = node->rb_right;
438 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
439 unsigned long long mtime, unsigned int segno)
441 struct atgc_management *am = &sbi->am;
442 struct victim_entry *ve;
444 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL);
449 list_add_tail(&ve->list, &am->victim_list);
455 static void __insert_victim_entry(struct f2fs_sb_info *sbi,
456 unsigned long long mtime, unsigned int segno)
458 struct atgc_management *am = &sbi->am;
459 struct rb_root_cached *root = &am->root;
460 struct rb_node **p = &root->rb_root.rb_node;
461 struct rb_node *parent = NULL;
462 struct victim_entry *ve;
463 bool left_most = true;
465 /* look up rb tree to find parent node */
468 ve = rb_entry(parent, struct victim_entry, rb_node);
470 if (mtime < ve->mtime) {
478 ve = __create_victim_entry(sbi, mtime, segno);
480 rb_link_node(&ve->rb_node, parent, p);
481 rb_insert_color_cached(&ve->rb_node, root, left_most);
484 static void add_victim_entry(struct f2fs_sb_info *sbi,
485 struct victim_sel_policy *p, unsigned int segno)
487 struct sit_info *sit_i = SIT_I(sbi);
488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
490 unsigned long long mtime = 0;
493 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
494 if (p->gc_mode == GC_AT &&
495 get_valid_blocks(sbi, segno, true) == 0)
499 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
500 mtime += get_seg_entry(sbi, start + i)->mtime;
501 mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
503 /* Handle if the system time has changed by the user */
504 if (mtime < sit_i->min_mtime)
505 sit_i->min_mtime = mtime;
506 if (mtime > sit_i->max_mtime)
507 sit_i->max_mtime = mtime;
508 if (mtime < sit_i->dirty_min_mtime)
509 sit_i->dirty_min_mtime = mtime;
510 if (mtime > sit_i->dirty_max_mtime)
511 sit_i->dirty_max_mtime = mtime;
513 /* don't choose young section as candidate */
514 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
517 __insert_victim_entry(sbi, mtime, segno);
520 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
521 struct victim_sel_policy *p)
523 struct sit_info *sit_i = SIT_I(sbi);
524 struct atgc_management *am = &sbi->am;
525 struct rb_root_cached *root = &am->root;
526 struct rb_node *node;
527 struct victim_entry *ve;
528 unsigned long long total_time;
529 unsigned long long age, u, accu;
530 unsigned long long max_mtime = sit_i->dirty_max_mtime;
531 unsigned long long min_mtime = sit_i->dirty_min_mtime;
532 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
533 unsigned int vblocks;
534 unsigned int dirty_threshold = max(am->max_candidate_count,
535 am->candidate_ratio *
536 am->victim_count / 100);
537 unsigned int age_weight = am->age_weight;
539 unsigned int iter = 0;
541 if (max_mtime < min_mtime)
545 total_time = max_mtime - min_mtime;
547 accu = div64_u64(ULLONG_MAX, total_time);
548 accu = min_t(unsigned long long, div_u64(accu, 100),
549 DEFAULT_ACCURACY_CLASS);
551 node = rb_first_cached(root);
553 ve = rb_entry_safe(node, struct victim_entry, rb_node);
557 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
560 /* age = 10000 * x% * 60 */
561 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
564 vblocks = get_valid_blocks(sbi, ve->segno, true);
565 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
567 /* u = 10000 * x% * 40 */
568 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
571 f2fs_bug_on(sbi, age + u >= UINT_MAX);
573 cost = UINT_MAX - (age + u);
576 if (cost < p->min_cost ||
577 (cost == p->min_cost && age > p->oldest_age)) {
580 p->min_segno = ve->segno;
583 if (iter < dirty_threshold) {
584 node = rb_next(node);
590 * select candidates around source section in range of
591 * [target - dirty_threshold, target + dirty_threshold]
593 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
594 struct victim_sel_policy *p)
596 struct sit_info *sit_i = SIT_I(sbi);
597 struct atgc_management *am = &sbi->am;
598 struct victim_entry *ve;
599 unsigned long long age;
600 unsigned long long max_mtime = sit_i->dirty_max_mtime;
601 unsigned long long min_mtime = sit_i->dirty_min_mtime;
602 unsigned int vblocks;
603 unsigned int dirty_threshold = max(am->max_candidate_count,
604 am->candidate_ratio *
605 am->victim_count / 100);
606 unsigned int cost, iter;
609 if (max_mtime < min_mtime)
614 ve = __lookup_victim_entry(sbi, p->age);
622 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
625 age = max_mtime - ve->mtime;
627 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
628 f2fs_bug_on(sbi, !vblocks);
631 if (vblocks == BLKS_PER_SEG(sbi))
636 age = max_mtime - abs(p->age - age);
637 cost = UINT_MAX - vblocks;
639 if (cost < p->min_cost ||
640 (cost == p->min_cost && age > p->oldest_age)) {
643 p->min_segno = ve->segno;
646 if (iter < dirty_threshold) {
647 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
648 rb_next(&ve->rb_node),
649 struct victim_entry, rb_node);
657 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
658 struct victim_sel_policy *p)
660 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
662 if (p->gc_mode == GC_AT)
663 atgc_lookup_victim(sbi, p);
664 else if (p->alloc_mode == AT_SSR)
665 atssr_lookup_victim(sbi, p);
670 static void release_victim_entry(struct f2fs_sb_info *sbi)
672 struct atgc_management *am = &sbi->am;
673 struct victim_entry *ve, *tmp;
675 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
677 kmem_cache_free(victim_entry_slab, ve);
681 am->root = RB_ROOT_CACHED;
683 f2fs_bug_on(sbi, am->victim_count);
684 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
687 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
690 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
692 if (!dirty_i->enable_pin_section)
694 if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
695 dirty_i->pinned_secmap_cnt++;
699 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
701 return dirty_i->pinned_secmap_cnt;
704 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
707 return dirty_i->enable_pin_section &&
708 f2fs_pinned_section_exists(dirty_i) &&
709 test_bit(secno, dirty_i->pinned_secmap);
712 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
714 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
716 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
717 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
718 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
720 DIRTY_I(sbi)->enable_pin_section = enable;
723 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
726 if (!f2fs_is_pinned_file(inode))
728 if (gc_type != FG_GC)
730 if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
731 f2fs_pin_file_control(inode, true);
736 * This function is called from two paths.
737 * One is garbage collection and the other is SSR segment selection.
738 * When it is called during GC, it just gets a victim segment
739 * and it does not remove it from dirty seglist.
740 * When it is called from SSR segment selection, it finds a segment
741 * which has minimum valid blocks and removes it from dirty seglist.
743 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
744 int gc_type, int type, char alloc_mode,
745 unsigned long long age)
747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
748 struct sit_info *sm = SIT_I(sbi);
749 struct victim_sel_policy p;
750 unsigned int secno, last_victim;
751 unsigned int last_segment;
752 unsigned int nsearched;
756 mutex_lock(&dirty_i->seglist_lock);
757 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
759 p.alloc_mode = alloc_mode;
761 p.age_threshold = sbi->am.age_threshold;
764 select_policy(sbi, gc_type, type, &p);
765 p.min_segno = NULL_SEGNO;
767 p.min_cost = get_max_cost(sbi, &p);
769 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
773 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
775 if (*result != NULL_SEGNO) {
776 if (!get_valid_blocks(sbi, *result, false)) {
781 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
784 p.min_segno = *result;
789 if (p.max_search == 0)
792 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
793 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
794 p.min_segno = sbi->next_victim_seg[BG_GC];
795 *result = p.min_segno;
796 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
799 if (gc_type == FG_GC &&
800 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
801 p.min_segno = sbi->next_victim_seg[FG_GC];
802 *result = p.min_segno;
803 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
808 last_victim = sm->last_victim[p.gc_mode];
809 if (p.alloc_mode == LFS && gc_type == FG_GC) {
810 p.min_segno = check_bg_victims(sbi);
811 if (p.min_segno != NULL_SEGNO)
816 unsigned long cost, *dirty_bitmap;
817 unsigned int unit_no, segno;
819 dirty_bitmap = p.dirty_bitmap;
820 unit_no = find_next_bit(dirty_bitmap,
821 last_segment / p.ofs_unit,
822 p.offset / p.ofs_unit);
823 segno = unit_no * p.ofs_unit;
824 if (segno >= last_segment) {
825 if (sm->last_victim[p.gc_mode]) {
827 sm->last_victim[p.gc_mode];
828 sm->last_victim[p.gc_mode] = 0;
835 p.offset = segno + p.ofs_unit;
838 #ifdef CONFIG_F2FS_CHECK_FS
840 * skip selecting the invalid segno (that is failed due to block
841 * validity check failure during GC) to avoid endless GC loop in
844 if (test_bit(segno, sm->invalid_segmap))
848 secno = GET_SEC_FROM_SEG(sbi, segno);
850 if (sec_usage_check(sbi, secno))
853 /* Don't touch checkpointed data */
854 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
855 if (p.alloc_mode == LFS) {
857 * LFS is set to find source section during GC.
858 * The victim should have no checkpointed data.
860 if (get_ckpt_valid_blocks(sbi, segno, true))
864 * SSR | AT_SSR are set to find target segment
865 * for writes which can be full by checkpointed
866 * and newly written blocks.
868 if (!f2fs_segment_has_free_slot(sbi, segno))
873 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
876 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
880 add_victim_entry(sbi, &p, segno);
884 cost = get_gc_cost(sbi, segno, &p);
886 if (p.min_cost > cost) {
891 if (nsearched >= p.max_search) {
892 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
893 sm->last_victim[p.gc_mode] =
894 last_victim + p.ofs_unit;
896 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
897 sm->last_victim[p.gc_mode] %=
898 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
903 /* get victim for GC_AT/AT_SSR */
905 lookup_victim_by_age(sbi, &p);
906 release_victim_entry(sbi);
909 if (is_atgc && p.min_segno == NULL_SEGNO &&
910 sm->elapsed_time < p.age_threshold) {
915 if (p.min_segno != NULL_SEGNO) {
917 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
919 if (p.alloc_mode == LFS) {
920 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
921 if (gc_type == FG_GC)
922 sbi->cur_victim_sec = secno;
924 set_bit(secno, dirty_i->victim_secmap);
930 if (p.min_segno != NULL_SEGNO)
931 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
933 prefree_segments(sbi), free_segments(sbi));
934 mutex_unlock(&dirty_i->seglist_lock);
939 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
941 struct inode_entry *ie;
943 ie = radix_tree_lookup(&gc_list->iroot, ino);
949 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
951 struct inode_entry *new_ie;
953 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
957 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
958 GFP_NOFS, true, NULL);
959 new_ie->inode = inode;
961 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
962 list_add_tail(&new_ie->list, &gc_list->ilist);
965 static void put_gc_inode(struct gc_inode_list *gc_list)
967 struct inode_entry *ie, *next_ie;
969 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
970 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
973 kmem_cache_free(f2fs_inode_entry_slab, ie);
977 static int check_valid_map(struct f2fs_sb_info *sbi,
978 unsigned int segno, int offset)
980 struct sit_info *sit_i = SIT_I(sbi);
981 struct seg_entry *sentry;
984 down_read(&sit_i->sentry_lock);
985 sentry = get_seg_entry(sbi, segno);
986 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
987 up_read(&sit_i->sentry_lock);
992 * This function compares node address got in summary with that in NAT.
993 * On validity, copy that node with cold status, otherwise (invalid node)
996 static int gc_node_segment(struct f2fs_sb_info *sbi,
997 struct f2fs_summary *sum, unsigned int segno, int gc_type)
999 struct f2fs_summary *entry;
1003 bool fggc = (gc_type == FG_GC);
1005 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1007 start_addr = START_BLOCK(sbi, segno);
1012 if (fggc && phase == 2)
1013 atomic_inc(&sbi->wb_sync_req[NODE]);
1015 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1016 nid_t nid = le32_to_cpu(entry->nid);
1017 struct page *node_page;
1018 struct node_info ni;
1021 /* stop BG_GC if there is not enough free sections. */
1022 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1025 if (check_valid_map(sbi, segno, off) == 0)
1029 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1035 f2fs_ra_node_page(sbi, nid);
1040 node_page = f2fs_get_node_page(sbi, nid);
1041 if (IS_ERR(node_page))
1044 /* block may become invalid during f2fs_get_node_page */
1045 if (check_valid_map(sbi, segno, off) == 0) {
1046 f2fs_put_page(node_page, 1);
1050 if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1051 f2fs_put_page(node_page, 1);
1055 if (ni.blk_addr != start_addr + off) {
1056 f2fs_put_page(node_page, 1);
1060 err = f2fs_move_node_page(node_page, gc_type);
1061 if (!err && gc_type == FG_GC)
1063 stat_inc_node_blk_count(sbi, 1, gc_type);
1070 atomic_dec(&sbi->wb_sync_req[NODE]);
1075 * Calculate start block index indicating the given node offset.
1076 * Be careful, caller should give this node offset only indicating direct node
1077 * blocks. If any node offsets, which point the other types of node blocks such
1078 * as indirect or double indirect node blocks, are given, it must be a caller's
1081 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1083 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1089 if (node_ofs <= 2) {
1090 bidx = node_ofs - 1;
1091 } else if (node_ofs <= indirect_blks) {
1092 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1094 bidx = node_ofs - 2 - dec;
1096 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1098 bidx = node_ofs - 5 - dec;
1100 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1103 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1104 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1106 struct page *node_page;
1108 unsigned int ofs_in_node, max_addrs, base;
1109 block_t source_blkaddr;
1111 nid = le32_to_cpu(sum->nid);
1112 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1114 node_page = f2fs_get_node_page(sbi, nid);
1115 if (IS_ERR(node_page))
1118 if (f2fs_get_node_info(sbi, nid, dni, false)) {
1119 f2fs_put_page(node_page, 1);
1123 if (sum->version != dni->version) {
1124 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1126 set_sbi_flag(sbi, SBI_NEED_FSCK);
1129 if (f2fs_check_nid_range(sbi, dni->ino)) {
1130 f2fs_put_page(node_page, 1);
1134 if (IS_INODE(node_page)) {
1135 base = offset_in_addr(F2FS_INODE(node_page));
1136 max_addrs = DEF_ADDRS_PER_INODE;
1139 max_addrs = DEF_ADDRS_PER_BLOCK;
1142 if (base + ofs_in_node >= max_addrs) {
1143 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1144 base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1145 f2fs_put_page(node_page, 1);
1149 *nofs = ofs_of_node(node_page);
1150 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1151 f2fs_put_page(node_page, 1);
1153 if (source_blkaddr != blkaddr) {
1154 #ifdef CONFIG_F2FS_CHECK_FS
1155 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1156 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1158 if (unlikely(check_valid_map(sbi, segno, offset))) {
1159 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1160 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1161 blkaddr, source_blkaddr, segno);
1162 set_sbi_flag(sbi, SBI_NEED_FSCK);
1171 static int ra_data_block(struct inode *inode, pgoff_t index)
1173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 struct address_space *mapping = inode->i_mapping;
1175 struct dnode_of_data dn;
1177 struct f2fs_io_info fio = {
1179 .ino = inode->i_ino,
1184 .encrypted_page = NULL,
1189 page = f2fs_grab_cache_page(mapping, index, true);
1193 if (f2fs_lookup_read_extent_cache_block(inode, index,
1194 &dn.data_blkaddr)) {
1195 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1196 DATA_GENERIC_ENHANCE_READ))) {
1197 err = -EFSCORRUPTED;
1203 set_new_dnode(&dn, inode, NULL, NULL, 0);
1204 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1207 f2fs_put_dnode(&dn);
1209 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1213 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1214 DATA_GENERIC_ENHANCE))) {
1215 err = -EFSCORRUPTED;
1221 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1224 * don't cache encrypted data into meta inode until previous dirty
1225 * data were writebacked to avoid racing between GC and flush.
1227 f2fs_wait_on_page_writeback(page, DATA, true, true);
1229 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1231 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1233 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1234 if (!fio.encrypted_page) {
1239 err = f2fs_submit_page_bio(&fio);
1241 goto put_encrypted_page;
1242 f2fs_put_page(fio.encrypted_page, 0);
1243 f2fs_put_page(page, 1);
1245 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1246 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1250 f2fs_put_page(fio.encrypted_page, 1);
1252 f2fs_put_page(page, 1);
1257 * Move data block via META_MAPPING while keeping locked data page.
1258 * This can be used to move blocks, aka LBAs, directly on disk.
1260 static int move_data_block(struct inode *inode, block_t bidx,
1261 int gc_type, unsigned int segno, int off)
1263 struct f2fs_io_info fio = {
1264 .sbi = F2FS_I_SB(inode),
1265 .ino = inode->i_ino,
1270 .encrypted_page = NULL,
1273 struct dnode_of_data dn;
1274 struct f2fs_summary sum;
1275 struct node_info ni;
1276 struct page *page, *mpage;
1279 bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1280 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1281 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1282 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1284 /* do not read out */
1285 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1289 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1294 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1298 set_new_dnode(&dn, inode, NULL, NULL, 0);
1299 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1303 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1304 ClearPageUptodate(page);
1310 * don't cache encrypted data into meta inode until previous dirty
1311 * data were writebacked to avoid racing between GC and flush.
1313 f2fs_wait_on_page_writeback(page, DATA, true, true);
1315 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1317 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1323 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1326 f2fs_down_write(&fio.sbi->io_order_lock);
1328 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1329 fio.old_blkaddr, false);
1335 fio.encrypted_page = mpage;
1337 /* read source block in mpage */
1338 if (!PageUptodate(mpage)) {
1339 err = f2fs_submit_page_bio(&fio);
1341 f2fs_put_page(mpage, 1);
1345 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1347 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1351 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1352 !PageUptodate(mpage))) {
1354 f2fs_put_page(mpage, 1);
1359 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1361 /* allocate block address */
1362 err = f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1365 f2fs_put_page(mpage, 1);
1366 /* filesystem should shutdown, no need to recovery block */
1370 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1371 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1372 if (!fio.encrypted_page) {
1374 f2fs_put_page(mpage, 1);
1378 /* write target block */
1379 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1380 memcpy(page_address(fio.encrypted_page),
1381 page_address(mpage), PAGE_SIZE);
1382 f2fs_put_page(mpage, 1);
1384 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr);
1386 set_page_dirty(fio.encrypted_page);
1387 if (clear_page_dirty_for_io(fio.encrypted_page))
1388 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1390 set_page_writeback(fio.encrypted_page);
1392 fio.op = REQ_OP_WRITE;
1393 fio.op_flags = REQ_SYNC;
1394 fio.new_blkaddr = newaddr;
1395 f2fs_submit_page_write(&fio);
1397 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1399 f2fs_update_data_blkaddr(&dn, newaddr);
1400 set_inode_flag(inode, FI_APPEND_WRITE);
1402 f2fs_put_page(fio.encrypted_page, 1);
1405 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1409 f2fs_up_write(&fio.sbi->io_order_lock);
1411 f2fs_put_dnode(&dn);
1413 f2fs_put_page(page, 1);
1417 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1418 unsigned int segno, int off)
1423 page = f2fs_get_lock_data_page(inode, bidx, true);
1425 return PTR_ERR(page);
1427 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1432 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1436 if (gc_type == BG_GC) {
1437 if (folio_test_writeback(page_folio(page))) {
1441 set_page_dirty(page);
1442 set_page_private_gcing(page);
1444 struct f2fs_io_info fio = {
1445 .sbi = F2FS_I_SB(inode),
1446 .ino = inode->i_ino,
1450 .op_flags = REQ_SYNC,
1451 .old_blkaddr = NULL_ADDR,
1453 .encrypted_page = NULL,
1454 .need_lock = LOCK_REQ,
1455 .io_type = FS_GC_DATA_IO,
1457 bool is_dirty = PageDirty(page);
1460 f2fs_wait_on_page_writeback(page, DATA, true, true);
1462 set_page_dirty(page);
1463 if (clear_page_dirty_for_io(page)) {
1464 inode_dec_dirty_pages(inode);
1465 f2fs_remove_dirty_inode(inode);
1468 set_page_private_gcing(page);
1470 err = f2fs_do_write_data_page(&fio);
1472 clear_page_private_gcing(page);
1473 if (err == -ENOMEM) {
1474 memalloc_retry_wait(GFP_NOFS);
1478 set_page_dirty(page);
1482 f2fs_put_page(page, 1);
1487 * This function tries to get parent node of victim data block, and identifies
1488 * data block validity. If the block is valid, copy that with cold status and
1489 * modify parent node.
1490 * If the parent node is not valid or the data block address is different,
1491 * the victim data block is ignored.
1493 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1494 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1497 struct super_block *sb = sbi->sb;
1498 struct f2fs_summary *entry;
1503 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1505 start_addr = START_BLOCK(sbi, segno);
1510 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1511 struct page *data_page;
1512 struct inode *inode;
1513 struct node_info dni; /* dnode info for the data */
1514 unsigned int ofs_in_node, nofs;
1516 nid_t nid = le32_to_cpu(entry->nid);
1519 * stop BG_GC if there is not enough free sections.
1520 * Or, stop GC if the segment becomes fully valid caused by
1521 * race condition along with SSR block allocation.
1523 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1524 (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1525 CAP_BLKS_PER_SEC(sbi)))
1528 if (check_valid_map(sbi, segno, off) == 0)
1532 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1538 f2fs_ra_node_page(sbi, nid);
1542 /* Get an inode by ino with checking validity */
1543 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1547 f2fs_ra_node_page(sbi, dni.ino);
1551 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1556 inode = f2fs_iget(sb, dni.ino);
1560 if (is_bad_inode(inode) ||
1561 special_file(inode->i_mode)) {
1566 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1567 if (err == -EAGAIN) {
1572 if (!f2fs_down_write_trylock(
1573 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1575 sbi->skipped_gc_rwsem++;
1579 start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1582 if (f2fs_post_read_required(inode)) {
1583 int err = ra_data_block(inode, start_bidx);
1585 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1590 add_gc_inode(gc_list, inode);
1594 data_page = f2fs_get_read_data_page(inode, start_bidx,
1595 REQ_RAHEAD, true, NULL);
1596 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1597 if (IS_ERR(data_page)) {
1602 f2fs_put_page(data_page, 0);
1603 add_gc_inode(gc_list, inode);
1608 inode = find_gc_inode(gc_list, dni.ino);
1610 struct f2fs_inode_info *fi = F2FS_I(inode);
1611 bool locked = false;
1614 if (S_ISREG(inode->i_mode)) {
1615 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) {
1616 sbi->skipped_gc_rwsem++;
1619 if (!f2fs_down_write_trylock(
1620 &fi->i_gc_rwsem[READ])) {
1621 sbi->skipped_gc_rwsem++;
1622 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1627 /* wait for all inflight aio data */
1628 inode_dio_wait(inode);
1631 start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1633 if (f2fs_post_read_required(inode))
1634 err = move_data_block(inode, start_bidx,
1635 gc_type, segno, off);
1637 err = move_data_page(inode, start_bidx, gc_type,
1640 if (!err && (gc_type == FG_GC ||
1641 f2fs_post_read_required(inode)))
1645 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1646 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1649 stat_inc_data_blk_count(sbi, 1, gc_type);
1659 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1662 struct sit_info *sit_i = SIT_I(sbi);
1665 down_write(&sit_i->sentry_lock);
1666 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, LFS, 0);
1667 up_write(&sit_i->sentry_lock);
1671 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1672 unsigned int start_segno,
1673 struct gc_inode_list *gc_list, int gc_type,
1676 struct page *sum_page;
1677 struct f2fs_summary_block *sum;
1678 struct blk_plug plug;
1679 unsigned int segno = start_segno;
1680 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi);
1681 int seg_freed = 0, migrated = 0;
1682 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1683 SUM_TYPE_DATA : SUM_TYPE_NODE;
1684 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1687 if (__is_large_section(sbi))
1688 end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi));
1691 * zone-capacity can be less than zone-size in zoned devices,
1692 * resulting in less than expected usable segments in the zone,
1693 * calculate the end segno in the zone which can be garbage collected
1695 if (f2fs_sb_has_blkzoned(sbi))
1696 end_segno -= SEGS_PER_SEC(sbi) -
1697 f2fs_usable_segs_in_sec(sbi, segno);
1699 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1701 /* readahead multi ssa blocks those have contiguous address */
1702 if (__is_large_section(sbi))
1703 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1704 end_segno - segno, META_SSA, true);
1706 /* reference all summary page */
1707 while (segno < end_segno) {
1708 sum_page = f2fs_get_sum_page(sbi, segno++);
1709 if (IS_ERR(sum_page)) {
1710 int err = PTR_ERR(sum_page);
1712 end_segno = segno - 1;
1713 for (segno = start_segno; segno < end_segno; segno++) {
1714 sum_page = find_get_page(META_MAPPING(sbi),
1715 GET_SUM_BLOCK(sbi, segno));
1716 f2fs_put_page(sum_page, 0);
1717 f2fs_put_page(sum_page, 0);
1721 unlock_page(sum_page);
1724 blk_start_plug(&plug);
1726 for (segno = start_segno; segno < end_segno; segno++) {
1728 /* find segment summary of victim */
1729 sum_page = find_get_page(META_MAPPING(sbi),
1730 GET_SUM_BLOCK(sbi, segno));
1731 f2fs_put_page(sum_page, 0);
1733 if (get_valid_blocks(sbi, segno, false) == 0)
1735 if (gc_type == BG_GC && __is_large_section(sbi) &&
1736 migrated >= sbi->migration_granularity)
1738 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1741 sum = page_address(sum_page);
1742 if (type != GET_SUM_TYPE((&sum->footer))) {
1743 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1744 segno, type, GET_SUM_TYPE((&sum->footer)));
1745 set_sbi_flag(sbi, SBI_NEED_FSCK);
1746 f2fs_stop_checkpoint(sbi, false,
1747 STOP_CP_REASON_CORRUPTED_SUMMARY);
1752 * this is to avoid deadlock:
1753 * - lock_page(sum_page) - f2fs_replace_block
1754 * - check_valid_map() - down_write(sentry_lock)
1755 * - down_read(sentry_lock) - change_curseg()
1756 * - lock_page(sum_page)
1758 if (type == SUM_TYPE_NODE)
1759 submitted += gc_node_segment(sbi, sum->entries, segno,
1762 submitted += gc_data_segment(sbi, sum->entries, gc_list,
1766 stat_inc_gc_seg_count(sbi, data_type, gc_type);
1767 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1771 if (gc_type == FG_GC &&
1772 get_valid_blocks(sbi, segno, false) == 0)
1775 if (__is_large_section(sbi))
1776 sbi->next_victim_seg[gc_type] =
1777 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1779 f2fs_put_page(sum_page, 0);
1783 f2fs_submit_merged_write(sbi, data_type);
1785 blk_finish_plug(&plug);
1788 stat_inc_gc_sec_count(sbi, data_type, gc_type);
1793 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1795 int gc_type = gc_control->init_gc_type;
1796 unsigned int segno = gc_control->victim_segno;
1797 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1799 struct cp_control cpc;
1800 struct gc_inode_list gc_list = {
1801 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1802 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1804 unsigned int skipped_round = 0, round = 0;
1805 unsigned int upper_secs;
1807 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1808 gc_control->nr_free_secs,
1809 get_pages(sbi, F2FS_DIRTY_NODES),
1810 get_pages(sbi, F2FS_DIRTY_DENTS),
1811 get_pages(sbi, F2FS_DIRTY_IMETA),
1814 reserved_segments(sbi),
1815 prefree_segments(sbi));
1817 cpc.reason = __get_cp_reason(sbi);
1819 sbi->skipped_gc_rwsem = 0;
1820 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1824 if (unlikely(f2fs_cp_error(sbi))) {
1829 /* Let's run FG_GC, if we don't have enough space. */
1830 if (has_not_enough_free_secs(sbi, 0, 0)) {
1834 * For example, if there are many prefree_segments below given
1835 * threshold, we can make them free by checkpoint. Then, we
1836 * secure free segments which doesn't need fggc any more.
1838 if (prefree_segments(sbi)) {
1839 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1840 ret = f2fs_write_checkpoint(sbi, &cpc);
1843 /* Reset due to checkpoint */
1848 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1849 if (gc_type == BG_GC && gc_control->no_bg_gc) {
1854 ret = __get_victim(sbi, &segno, gc_type);
1856 /* allow to search victim from sections has pinned data */
1857 if (ret == -ENODATA && gc_type == FG_GC &&
1858 f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1859 f2fs_unpin_all_sections(sbi, false);
1865 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1866 gc_control->should_migrate_blocks);
1870 total_freed += seg_freed;
1872 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) {
1877 if (gc_type == FG_GC) {
1878 sbi->cur_victim_sec = NULL_SEGNO;
1880 if (has_enough_free_secs(sbi, sec_freed, 0)) {
1881 if (!gc_control->no_bg_gc &&
1882 total_sec_freed < gc_control->nr_free_secs)
1886 if (sbi->skipped_gc_rwsem)
1889 if (skipped_round > MAX_SKIP_GC_COUNT &&
1890 skipped_round * 2 >= round) {
1891 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1892 ret = f2fs_write_checkpoint(sbi, &cpc);
1895 } else if (has_enough_free_secs(sbi, 0, 0)) {
1899 __get_secs_required(sbi, NULL, &upper_secs, NULL);
1902 * Write checkpoint to reclaim prefree segments.
1903 * We need more three extra sections for writer's data/node/dentry.
1905 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1906 prefree_segments(sbi)) {
1907 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1908 ret = f2fs_write_checkpoint(sbi, &cpc);
1911 /* Reset due to checkpoint */
1919 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1920 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1922 if (gc_type == FG_GC)
1923 f2fs_unpin_all_sections(sbi, true);
1925 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed,
1926 get_pages(sbi, F2FS_DIRTY_NODES),
1927 get_pages(sbi, F2FS_DIRTY_DENTS),
1928 get_pages(sbi, F2FS_DIRTY_IMETA),
1931 reserved_segments(sbi),
1932 prefree_segments(sbi));
1934 f2fs_up_write(&sbi->gc_lock);
1936 put_gc_inode(&gc_list);
1938 if (gc_control->err_gc_skipped && !ret)
1939 ret = total_sec_freed ? 0 : -EAGAIN;
1943 int __init f2fs_create_garbage_collection_cache(void)
1945 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1946 sizeof(struct victim_entry));
1947 return victim_entry_slab ? 0 : -ENOMEM;
1950 void f2fs_destroy_garbage_collection_cache(void)
1952 kmem_cache_destroy(victim_entry_slab);
1955 static void init_atgc_management(struct f2fs_sb_info *sbi)
1957 struct atgc_management *am = &sbi->am;
1959 if (test_opt(sbi, ATGC) &&
1960 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1961 am->atgc_enabled = true;
1963 am->root = RB_ROOT_CACHED;
1964 INIT_LIST_HEAD(&am->victim_list);
1965 am->victim_count = 0;
1967 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1968 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1969 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1970 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1973 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1975 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1977 /* give warm/cold data area from slower device */
1978 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1979 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1980 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1982 init_atgc_management(sbi);
1985 int f2fs_gc_range(struct f2fs_sb_info *sbi,
1986 unsigned int start_seg, unsigned int end_seg,
1987 bool dry_run, unsigned int dry_run_sections)
1990 unsigned int gc_secs = dry_run_sections;
1992 if (unlikely(f2fs_cp_error(sbi)))
1995 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) {
1996 struct gc_inode_list gc_list = {
1997 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1998 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
2001 do_garbage_collect(sbi, segno, &gc_list, FG_GC,
2002 dry_run_sections == 0);
2003 put_gc_inode(&gc_list);
2005 if (!dry_run && get_valid_blocks(sbi, segno, true))
2007 if (dry_run && dry_run_sections &&
2008 !get_valid_blocks(sbi, segno, true) && --gc_secs == 0)
2011 if (fatal_signal_pending(current))
2012 return -ERESTARTSYS;
2018 static int free_segment_range(struct f2fs_sb_info *sbi,
2019 unsigned int secs, bool dry_run)
2021 unsigned int next_inuse, start, end;
2022 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2023 int gc_mode, gc_type;
2027 /* Force block allocation for GC */
2028 MAIN_SECS(sbi) -= secs;
2029 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
2030 end = MAIN_SEGS(sbi) - 1;
2032 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2033 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2034 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2035 SIT_I(sbi)->last_victim[gc_mode] = 0;
2037 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2038 if (sbi->next_victim_seg[gc_type] >= start)
2039 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2040 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2042 /* Move out cursegs from the target range */
2043 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) {
2044 err = f2fs_allocate_segment_for_resize(sbi, type, start, end);
2049 /* do GC to move out valid blocks in the range */
2050 err = f2fs_gc_range(sbi, start, end, dry_run, 0);
2054 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2055 err = f2fs_write_checkpoint(sbi, &cpc);
2059 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
2060 if (next_inuse <= end) {
2061 f2fs_err(sbi, "segno %u should be free but still inuse!",
2063 f2fs_bug_on(sbi, 1);
2066 MAIN_SECS(sbi) += secs;
2070 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2072 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2075 int segment_count_main;
2076 long long block_count;
2077 int segs = secs * SEGS_PER_SEC(sbi);
2079 f2fs_down_write(&sbi->sb_lock);
2081 section_count = le32_to_cpu(raw_sb->section_count);
2082 segment_count = le32_to_cpu(raw_sb->segment_count);
2083 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2084 block_count = le64_to_cpu(raw_sb->block_count);
2086 raw_sb->section_count = cpu_to_le32(section_count + secs);
2087 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2088 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2089 raw_sb->block_count = cpu_to_le64(block_count +
2090 (long long)SEGS_TO_BLKS(sbi, segs));
2091 if (f2fs_is_multi_device(sbi)) {
2092 int last_dev = sbi->s_ndevs - 1;
2094 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2096 raw_sb->devs[last_dev].total_segments =
2097 cpu_to_le32(dev_segs + segs);
2100 f2fs_up_write(&sbi->sb_lock);
2103 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2105 int segs = secs * SEGS_PER_SEC(sbi);
2106 long long blks = SEGS_TO_BLKS(sbi, segs);
2107 long long user_block_count =
2108 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2110 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2111 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2112 MAIN_SECS(sbi) += secs;
2113 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2114 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2115 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2117 if (f2fs_is_multi_device(sbi)) {
2118 int last_dev = sbi->s_ndevs - 1;
2120 FDEV(last_dev).total_segments =
2121 (int)FDEV(last_dev).total_segments + segs;
2122 FDEV(last_dev).end_blk =
2123 (long long)FDEV(last_dev).end_blk + blks;
2124 #ifdef CONFIG_BLK_DEV_ZONED
2125 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2126 div_u64(blks, sbi->blocks_per_blkz);
2131 int f2fs_resize_fs(struct file *filp, __u64 block_count)
2133 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2134 __u64 old_block_count, shrunk_blocks;
2135 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2140 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2141 if (block_count > old_block_count)
2144 if (f2fs_is_multi_device(sbi)) {
2145 int last_dev = sbi->s_ndevs - 1;
2146 __u64 last_segs = FDEV(last_dev).total_segments;
2148 if (block_count + SEGS_TO_BLKS(sbi, last_segs) <=
2153 /* new fs size should align to section size */
2154 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2158 if (block_count == old_block_count)
2161 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2162 f2fs_err(sbi, "Should run fsck to repair first.");
2163 return -EFSCORRUPTED;
2166 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2167 f2fs_err(sbi, "Checkpoint should be enabled.");
2171 err = mnt_want_write_file(filp);
2175 shrunk_blocks = old_block_count - block_count;
2176 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2179 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2181 goto out_drop_write;
2184 /* stop CP to protect MAIN_SEC in free_segment_range */
2187 spin_lock(&sbi->stat_lock);
2188 if (shrunk_blocks + valid_user_blocks(sbi) +
2189 sbi->current_reserved_blocks + sbi->unusable_block_count +
2190 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2192 spin_unlock(&sbi->stat_lock);
2197 err = free_segment_range(sbi, secs, true);
2200 f2fs_unlock_op(sbi);
2201 f2fs_up_write(&sbi->gc_lock);
2203 mnt_drop_write_file(filp);
2207 err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2211 if (f2fs_readonly(sbi->sb)) {
2212 err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2218 f2fs_down_write(&sbi->gc_lock);
2219 f2fs_down_write(&sbi->cp_global_sem);
2221 spin_lock(&sbi->stat_lock);
2222 if (shrunk_blocks + valid_user_blocks(sbi) +
2223 sbi->current_reserved_blocks + sbi->unusable_block_count +
2224 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2227 sbi->user_block_count -= shrunk_blocks;
2228 spin_unlock(&sbi->stat_lock);
2232 set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2233 err = free_segment_range(sbi, secs, false);
2237 update_sb_metadata(sbi, -secs);
2239 err = f2fs_commit_super(sbi, false);
2241 update_sb_metadata(sbi, secs);
2245 update_fs_metadata(sbi, -secs);
2246 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2247 set_sbi_flag(sbi, SBI_IS_DIRTY);
2249 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2250 err = f2fs_write_checkpoint(sbi, &cpc);
2252 update_fs_metadata(sbi, secs);
2253 update_sb_metadata(sbi, secs);
2254 f2fs_commit_super(sbi, false);
2257 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2259 set_sbi_flag(sbi, SBI_NEED_FSCK);
2260 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2262 spin_lock(&sbi->stat_lock);
2263 sbi->user_block_count += shrunk_blocks;
2264 spin_unlock(&sbi->stat_lock);
2267 f2fs_up_write(&sbi->cp_global_sem);
2268 f2fs_up_write(&sbi->gc_lock);
2269 thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);