1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
33 struct xhci_segment *seg;
37 seg = kzalloc(sizeof *seg, flags);
41 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
48 seg->bounce_buf = kzalloc(max_packet, flags);
49 if (!seg->bounce_buf) {
50 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 kfree(seg->bounce_buf);
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
79 struct xhci_segment *seg;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
87 xhci_segment_free(xhci, first);
91 * Make the prev segment point to the next segment.
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
131 struct xhci_segment *next;
133 if (!ring || !first || !last)
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
172 * Caveats for the radix tree:
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
195 ret = radix_tree_maybe_preload(mem_flags);
198 ret = radix_tree_insert(trb_address_map,
200 radix_tree_preload_end();
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
225 if (WARN_ON_ONCE(trb_address_map == NULL))
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
237 } while (seg != first_seg);
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
249 } while (seg != first_seg);
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 struct xhci_segment *seg;
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
261 seg = ring->first_seg;
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 } while (seg != ring->first_seg);
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
280 trace_xhci_ring_free(ring);
282 if (ring->first_seg) {
283 if (ring->type == TYPE_STREAM)
284 xhci_remove_stream_mapping(ring);
285 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 unsigned int cycle_state)
294 /* The ring is empty, so the enqueue pointer == dequeue pointer */
295 ring->enqueue = ring->first_seg->trbs;
296 ring->enq_seg = ring->first_seg;
297 ring->dequeue = ring->enqueue;
298 ring->deq_seg = ring->first_seg;
299 /* The ring is initialized to 0. The producer must write 1 to the cycle
300 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
301 * compare CCS to the cycle bit to check ownership, so CCS = 1.
303 * New rings are initialized with cycle state equal to 1; if we are
304 * handling ring expansion, set the cycle state equal to the old ring.
306 ring->cycle_state = cycle_state;
309 * Each segment has a link TRB, and leave an extra TRB for SW
312 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 struct xhci_segment **first, struct xhci_segment **last,
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
321 struct xhci_segment *prev;
323 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
329 while (num_segs > 0) {
330 struct xhci_segment *next;
332 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
337 xhci_segment_free(xhci, prev);
342 xhci_link_segments(xhci, prev, next, type);
347 xhci_link_segments(xhci, prev, *first, type);
354 * Create a new ring with zero or more segments.
356 * Link each segment together into a ring.
357 * Set the end flag and the cycle toggle bit on the last segment.
358 * See section 4.9.1 and figures 15 and 16.
360 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 unsigned int num_segs, unsigned int cycle_state,
362 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
364 struct xhci_ring *ring;
367 ring = kzalloc(sizeof *(ring), flags);
371 ring->num_segs = num_segs;
372 ring->bounce_buf_len = max_packet;
373 INIT_LIST_HEAD(&ring->td_list);
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type,
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
390 xhci_initialize_ring_info(ring, cycle_state);
391 trace_xhci_ring_alloc(ring);
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 struct xhci_virt_device *virt_dev,
401 unsigned int ep_index)
403 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 virt_dev->eps[ep_index].ring = NULL;
408 * Expand an existing ring.
409 * Allocate a new ring which has same segment numbers and link the two rings.
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 unsigned int num_trbs, gfp_t flags)
414 struct xhci_segment *first;
415 struct xhci_segment *last;
416 unsigned int num_segs;
417 unsigned int num_segs_needed;
420 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 (TRBS_PER_SEGMENT - 1);
423 /* Allocate number of segments we needed, or double the ring size */
424 num_segs = ring->num_segs > num_segs_needed ?
425 ring->num_segs : num_segs_needed;
427 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 num_segs, ring->cycle_state, ring->type,
429 ring->bounce_buf_len, flags);
433 if (ring->type == TYPE_STREAM)
434 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 ring, first, last, flags);
437 struct xhci_segment *next;
440 xhci_segment_free(xhci, first);
448 xhci_link_rings(xhci, ring, first, last, num_segs);
449 trace_xhci_ring_expansion(ring);
450 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 "ring expansion succeed, now has %d segments",
457 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 int type, gfp_t flags)
460 struct xhci_container_ctx *ctx;
462 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
465 ctx = kzalloc(sizeof(*ctx), flags);
470 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 if (type == XHCI_CTX_TYPE_INPUT)
472 ctx->size += CTX_SIZE(xhci->hcc_params);
474 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
482 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 struct xhci_container_ctx *ctx)
487 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 struct xhci_container_ctx *ctx)
494 if (ctx->type != XHCI_CTX_TYPE_INPUT)
497 return (struct xhci_input_control_ctx *)ctx->bytes;
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 struct xhci_container_ctx *ctx)
503 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 return (struct xhci_slot_ctx *)ctx->bytes;
506 return (struct xhci_slot_ctx *)
507 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 struct xhci_container_ctx *ctx,
512 unsigned int ep_index)
514 /* increment ep index by offset of start of ep ctx array */
516 if (ctx->type == XHCI_CTX_TYPE_INPUT)
519 return (struct xhci_ep_ctx *)
520 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
524 /***************** Streams structures manipulation *************************/
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 unsigned int num_stream_ctxs,
528 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
530 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
533 if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 dma_free_coherent(dev, size,
536 else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 return dma_pool_free(xhci->small_streams_pool,
540 return dma_pool_free(xhci->medium_streams_pool,
545 * The stream context array for each endpoint with bulk streams enabled can
546 * vary in size, based on:
547 * - how many streams the endpoint supports,
548 * - the maximum primary stream array size the host controller supports,
549 * - and how many streams the device driver asks for.
551 * The stream context array must be a power of 2, and can be as small as
552 * 64 bytes or as large as 1MB.
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 unsigned int num_stream_ctxs, dma_addr_t *dma,
558 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
561 if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 return dma_alloc_coherent(dev, size,
564 else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 return dma_pool_alloc(xhci->small_streams_pool,
568 return dma_pool_alloc(xhci->medium_streams_pool,
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 struct xhci_virt_ep *ep,
576 if (ep->ep_state & EP_HAS_STREAMS)
577 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 address >> TRB_SEGMENT_SHIFT);
582 struct xhci_ring *xhci_stream_id_to_ring(
583 struct xhci_virt_device *dev,
584 unsigned int ep_index,
585 unsigned int stream_id)
587 struct xhci_virt_ep *ep = &dev->eps[ep_index];
591 if (!ep->stream_info)
594 if (stream_id > ep->stream_info->num_streams)
596 return ep->stream_info->stream_rings[stream_id];
600 * Change an endpoint's internal structure so it supports stream IDs. The
601 * number of requested streams includes stream 0, which cannot be used by device
604 * The number of stream contexts in the stream context array may be bigger than
605 * the number of streams the driver wants to use. This is because the number of
606 * stream context array entries must be a power of two.
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 unsigned int num_stream_ctxs,
610 unsigned int num_streams,
611 unsigned int max_packet, gfp_t mem_flags)
613 struct xhci_stream_info *stream_info;
615 struct xhci_ring *cur_ring;
619 xhci_dbg(xhci, "Allocating %u streams and %u "
620 "stream context array entries.\n",
621 num_streams, num_stream_ctxs);
622 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
626 xhci->cmd_ring_reserved_trbs++;
628 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
632 stream_info->num_streams = num_streams;
633 stream_info->num_stream_ctxs = num_stream_ctxs;
635 /* Initialize the array of virtual pointers to stream rings. */
636 stream_info->stream_rings = kzalloc(
637 sizeof(struct xhci_ring *)*num_streams,
639 if (!stream_info->stream_rings)
642 /* Initialize the array of DMA addresses for stream rings for the HW. */
643 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 num_stream_ctxs, &stream_info->ctx_array_dma,
646 if (!stream_info->stream_ctx_array)
648 memset(stream_info->stream_ctx_array, 0,
649 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
651 /* Allocate everything needed to free the stream rings later */
652 stream_info->free_streams_command =
653 xhci_alloc_command(xhci, true, true, mem_flags);
654 if (!stream_info->free_streams_command)
657 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
659 /* Allocate rings for all the streams that the driver will use,
660 * and add their segment DMA addresses to the radix tree.
661 * Stream 0 is reserved.
664 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 stream_info->stream_rings[cur_stream] =
666 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
668 cur_ring = stream_info->stream_rings[cur_stream];
671 cur_ring->stream_id = cur_stream;
672 cur_ring->trb_address_map = &stream_info->trb_address_map;
673 /* Set deq ptr, cycle bit, and stream context type */
674 addr = cur_ring->first_seg->dma |
675 SCT_FOR_CTX(SCT_PRI_TR) |
676 cur_ring->cycle_state;
677 stream_info->stream_ctx_array[cur_stream].stream_ring =
679 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 cur_stream, (unsigned long long) addr);
682 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
684 xhci_ring_free(xhci, cur_ring);
685 stream_info->stream_rings[cur_stream] = NULL;
689 /* Leave the other unused stream ring pointers in the stream context
690 * array initialized to zero. This will cause the xHC to give us an
691 * error if the device asks for a stream ID we don't have setup (if it
692 * was any other way, the host controller would assume the ring is
693 * "empty" and wait forever for data to be queued to that stream ID).
699 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 cur_ring = stream_info->stream_rings[cur_stream];
702 xhci_ring_free(xhci, cur_ring);
703 stream_info->stream_rings[cur_stream] = NULL;
706 xhci_free_command(xhci, stream_info->free_streams_command);
708 kfree(stream_info->stream_rings);
712 xhci->cmd_ring_reserved_trbs--;
716 * Sets the MaxPStreams field and the Linear Stream Array field.
717 * Sets the dequeue pointer to the stream context array.
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 struct xhci_ep_ctx *ep_ctx,
721 struct xhci_stream_info *stream_info)
723 u32 max_primary_streams;
724 /* MaxPStreams is the number of stream context array entries, not the
725 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
726 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
728 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
730 "Setting number of stream ctx array entries to %u",
731 1 << (max_primary_streams + 1));
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 struct xhci_virt_ep *ep)
747 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
752 /* Frees all stream contexts associated with the endpoint,
754 * Caller should fix the endpoint context streams fields.
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 struct xhci_stream_info *stream_info)
760 struct xhci_ring *cur_ring;
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
767 cur_ring = stream_info->stream_rings[cur_stream];
769 xhci_ring_free(xhci, cur_ring);
770 stream_info->stream_rings[cur_stream] = NULL;
773 xhci_free_command(xhci, stream_info->free_streams_command);
774 xhci->cmd_ring_reserved_trbs--;
775 if (stream_info->stream_ctx_array)
776 xhci_free_stream_ctx(xhci,
777 stream_info->num_stream_ctxs,
778 stream_info->stream_ctx_array,
779 stream_info->ctx_array_dma);
781 kfree(stream_info->stream_rings);
786 /***************** Device context manipulation *************************/
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 struct xhci_virt_ep *ep)
791 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 struct xhci_virt_device *virt_dev,
800 struct list_head *tt_list_head;
801 struct xhci_tt_bw_info *tt_info, *next;
802 bool slot_found = false;
804 /* If the device never made it past the Set Address stage,
805 * it may not have the real_port set correctly.
807 if (virt_dev->real_port == 0 ||
808 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 xhci_dbg(xhci, "Bad real port.\n");
813 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 /* Multi-TT hubs will have more than one entry */
816 if (tt_info->slot_id == slot_id) {
818 list_del(&tt_info->tt_list);
820 } else if (slot_found) {
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 struct xhci_virt_device *virt_dev,
828 struct usb_device *hdev,
829 struct usb_tt *tt, gfp_t mem_flags)
831 struct xhci_tt_bw_info *tt_info;
832 unsigned int num_ports;
838 num_ports = hdev->maxchild;
840 for (i = 0; i < num_ports; i++, tt_info++) {
841 struct xhci_interval_bw_table *bw_table;
843 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
846 INIT_LIST_HEAD(&tt_info->tt_list);
847 list_add(&tt_info->tt_list,
848 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849 tt_info->slot_id = virt_dev->udev->slot_id;
851 tt_info->ttport = i+1;
852 bw_table = &tt_info->bw_table;
853 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865 * Should be called with xhci->lock held if there is any chance the TT lists
866 * will be manipulated by the configure endpoint, allocate device, or update
867 * hub functions while this function is removing the TT entries from the list.
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
871 struct xhci_virt_device *dev;
873 int old_active_eps = 0;
875 /* Slot ID 0 is reserved */
876 if (slot_id == 0 || !xhci->devs[slot_id])
879 dev = xhci->devs[slot_id];
881 trace_xhci_free_virt_device(dev);
883 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
888 old_active_eps = dev->tt_info->active_eps;
890 for (i = 0; i < 31; i++) {
891 if (dev->eps[i].ring)
892 xhci_ring_free(xhci, dev->eps[i].ring);
893 if (dev->eps[i].stream_info)
894 xhci_free_stream_info(xhci,
895 dev->eps[i].stream_info);
896 /* Endpoints on the TT/root port lists should have been removed
897 * when usb_disable_device() was called for the device.
898 * We can't drop them anyway, because the udev might have gone
899 * away by this point, and we can't tell what speed it was.
901 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 xhci_warn(xhci, "Slot %u endpoint %u "
903 "not removed from BW list!\n",
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912 xhci_free_container_ctx(xhci, dev->in_ctx);
914 xhci_free_container_ctx(xhci, dev->out_ctx);
916 kfree(xhci->devs[slot_id]);
917 xhci->devs[slot_id] = NULL;
921 * Free a virt_device structure.
922 * If the virt_device added a tt_info (a hub) and has children pointing to
923 * that tt_info, then free the child first. Recursive.
924 * We can't rely on udev at this point to find child-parent relationships.
926 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
928 struct xhci_virt_device *vdev;
929 struct list_head *tt_list_head;
930 struct xhci_tt_bw_info *tt_info, *next;
933 vdev = xhci->devs[slot_id];
937 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
938 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
939 /* is this a hub device that added a tt_info to the tts list */
940 if (tt_info->slot_id == slot_id) {
941 /* are any devices using this tt_info? */
942 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
943 vdev = xhci->devs[i];
944 if (vdev && (vdev->tt_info == tt_info))
945 xhci_free_virt_devices_depth_first(
950 /* we are now at a leaf device */
951 xhci_debugfs_remove_slot(xhci, slot_id);
952 xhci_free_virt_device(xhci, slot_id);
955 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
956 struct usb_device *udev, gfp_t flags)
958 struct xhci_virt_device *dev;
961 /* Slot ID 0 is reserved */
962 if (slot_id == 0 || xhci->devs[slot_id]) {
963 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
967 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
968 if (!xhci->devs[slot_id])
970 dev = xhci->devs[slot_id];
972 /* Allocate the (output) device context that will be used in the HC. */
973 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
977 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
978 (unsigned long long)dev->out_ctx->dma);
980 /* Allocate the (input) device context for address device command */
981 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
985 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
986 (unsigned long long)dev->in_ctx->dma);
988 /* Initialize the cancellation list and watchdog timers for each ep */
989 for (i = 0; i < 31; i++) {
990 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
991 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
992 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
995 /* Allocate endpoint 0 ring */
996 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
997 if (!dev->eps[0].ring)
1002 /* Point to output device context in dcbaa. */
1003 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1004 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1006 &xhci->dcbaa->dev_context_ptrs[slot_id],
1007 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1009 trace_xhci_alloc_virt_device(dev);
1013 xhci_free_virt_device(xhci, slot_id);
1017 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1018 struct usb_device *udev)
1020 struct xhci_virt_device *virt_dev;
1021 struct xhci_ep_ctx *ep0_ctx;
1022 struct xhci_ring *ep_ring;
1024 virt_dev = xhci->devs[udev->slot_id];
1025 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1026 ep_ring = virt_dev->eps[0].ring;
1028 * FIXME we don't keep track of the dequeue pointer very well after a
1029 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1030 * host to our enqueue pointer. This should only be called after a
1031 * configured device has reset, so all control transfers should have
1032 * been completed or cancelled before the reset.
1034 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1036 | ep_ring->cycle_state);
1040 * The xHCI roothub may have ports of differing speeds in any order in the port
1041 * status registers. xhci->port_array provides an array of the port speed for
1042 * each offset into the port status registers.
1044 * The xHCI hardware wants to know the roothub port number that the USB device
1045 * is attached to (or the roothub port its ancestor hub is attached to). All we
1046 * know is the index of that port under either the USB 2.0 or the USB 3.0
1047 * roothub, but that doesn't give us the real index into the HW port status
1048 * registers. Call xhci_find_raw_port_number() to get real index.
1050 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1053 struct usb_device *top_dev;
1054 struct usb_hcd *hcd;
1056 if (udev->speed >= USB_SPEED_SUPER)
1057 hcd = xhci->shared_hcd;
1059 hcd = xhci->main_hcd;
1061 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1062 top_dev = top_dev->parent)
1063 /* Found device below root hub */;
1065 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1068 /* Setup an xHCI virtual device for a Set Address command */
1069 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1071 struct xhci_virt_device *dev;
1072 struct xhci_ep_ctx *ep0_ctx;
1073 struct xhci_slot_ctx *slot_ctx;
1076 struct usb_device *top_dev;
1078 dev = xhci->devs[udev->slot_id];
1079 /* Slot ID 0 is reserved */
1080 if (udev->slot_id == 0 || !dev) {
1081 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1085 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1086 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1088 /* 3) Only the control endpoint is valid - one endpoint context */
1089 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1090 switch (udev->speed) {
1091 case USB_SPEED_SUPER_PLUS:
1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1093 max_packets = MAX_PACKET(512);
1095 case USB_SPEED_SUPER:
1096 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1097 max_packets = MAX_PACKET(512);
1099 case USB_SPEED_HIGH:
1100 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1101 max_packets = MAX_PACKET(64);
1103 /* USB core guesses at a 64-byte max packet first for FS devices */
1104 case USB_SPEED_FULL:
1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1106 max_packets = MAX_PACKET(64);
1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1110 max_packets = MAX_PACKET(8);
1112 case USB_SPEED_WIRELESS:
1113 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1117 /* Speed was set earlier, this shouldn't happen. */
1120 /* Find the root hub port this device is under */
1121 port_num = xhci_find_real_port_number(xhci, udev);
1124 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1125 /* Set the port number in the virtual_device to the faked port number */
1126 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1127 top_dev = top_dev->parent)
1128 /* Found device below root hub */;
1129 dev->fake_port = top_dev->portnum;
1130 dev->real_port = port_num;
1131 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1132 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1134 /* Find the right bandwidth table that this device will be a part of.
1135 * If this is a full speed device attached directly to a root port (or a
1136 * decendent of one), it counts as a primary bandwidth domain, not a
1137 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1138 * will never be created for the HS root hub.
1140 if (!udev->tt || !udev->tt->hub->parent) {
1141 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1143 struct xhci_root_port_bw_info *rh_bw;
1144 struct xhci_tt_bw_info *tt_bw;
1146 rh_bw = &xhci->rh_bw[port_num - 1];
1147 /* Find the right TT. */
1148 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1149 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1152 if (!dev->udev->tt->multi ||
1154 tt_bw->ttport == dev->udev->ttport)) {
1155 dev->bw_table = &tt_bw->bw_table;
1156 dev->tt_info = tt_bw;
1161 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1164 /* Is this a LS/FS device under an external HS hub? */
1165 if (udev->tt && udev->tt->hub->parent) {
1166 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1167 (udev->ttport << 8));
1168 if (udev->tt->multi)
1169 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1171 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1172 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1174 /* Step 4 - ring already allocated */
1176 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1178 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1179 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1182 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1183 dev->eps[0].ring->cycle_state);
1185 trace_xhci_setup_addressable_virt_device(dev);
1187 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1193 * Convert interval expressed as 2^(bInterval - 1) == interval into
1194 * straight exponent value 2^n == interval.
1197 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1198 struct usb_host_endpoint *ep)
1200 unsigned int interval;
1202 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1203 if (interval != ep->desc.bInterval - 1)
1204 dev_warn(&udev->dev,
1205 "ep %#x - rounding interval to %d %sframes\n",
1206 ep->desc.bEndpointAddress,
1208 udev->speed == USB_SPEED_FULL ? "" : "micro");
1210 if (udev->speed == USB_SPEED_FULL) {
1212 * Full speed isoc endpoints specify interval in frames,
1213 * not microframes. We are using microframes everywhere,
1214 * so adjust accordingly.
1216 interval += 3; /* 1 frame = 2^3 uframes */
1223 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1224 * microframes, rounded down to nearest power of 2.
1226 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1227 struct usb_host_endpoint *ep, unsigned int desc_interval,
1228 unsigned int min_exponent, unsigned int max_exponent)
1230 unsigned int interval;
1232 interval = fls(desc_interval) - 1;
1233 interval = clamp_val(interval, min_exponent, max_exponent);
1234 if ((1 << interval) != desc_interval)
1236 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1237 ep->desc.bEndpointAddress,
1244 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1245 struct usb_host_endpoint *ep)
1247 if (ep->desc.bInterval == 0)
1249 return xhci_microframes_to_exponent(udev, ep,
1250 ep->desc.bInterval, 0, 15);
1254 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1255 struct usb_host_endpoint *ep)
1257 return xhci_microframes_to_exponent(udev, ep,
1258 ep->desc.bInterval * 8, 3, 10);
1261 /* Return the polling or NAK interval.
1263 * The polling interval is expressed in "microframes". If xHCI's Interval field
1264 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1266 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1269 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1270 struct usb_host_endpoint *ep)
1272 unsigned int interval = 0;
1274 switch (udev->speed) {
1275 case USB_SPEED_HIGH:
1277 if (usb_endpoint_xfer_control(&ep->desc) ||
1278 usb_endpoint_xfer_bulk(&ep->desc)) {
1279 interval = xhci_parse_microframe_interval(udev, ep);
1282 /* Fall through - SS and HS isoc/int have same decoding */
1284 case USB_SPEED_SUPER_PLUS:
1285 case USB_SPEED_SUPER:
1286 if (usb_endpoint_xfer_int(&ep->desc) ||
1287 usb_endpoint_xfer_isoc(&ep->desc)) {
1288 interval = xhci_parse_exponent_interval(udev, ep);
1292 case USB_SPEED_FULL:
1293 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1294 interval = xhci_parse_exponent_interval(udev, ep);
1298 * Fall through for interrupt endpoint interval decoding
1299 * since it uses the same rules as low speed interrupt
1305 if (usb_endpoint_xfer_int(&ep->desc) ||
1306 usb_endpoint_xfer_isoc(&ep->desc)) {
1308 interval = xhci_parse_frame_interval(udev, ep);
1318 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1319 * High speed endpoint descriptors can define "the number of additional
1320 * transaction opportunities per microframe", but that goes in the Max Burst
1321 * endpoint context field.
1323 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1324 struct usb_host_endpoint *ep)
1326 if (udev->speed < USB_SPEED_SUPER ||
1327 !usb_endpoint_xfer_isoc(&ep->desc))
1329 return ep->ss_ep_comp.bmAttributes;
1332 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1333 struct usb_host_endpoint *ep)
1335 /* Super speed and Plus have max burst in ep companion desc */
1336 if (udev->speed >= USB_SPEED_SUPER)
1337 return ep->ss_ep_comp.bMaxBurst;
1339 if (udev->speed == USB_SPEED_HIGH &&
1340 (usb_endpoint_xfer_isoc(&ep->desc) ||
1341 usb_endpoint_xfer_int(&ep->desc)))
1342 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1347 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1351 in = usb_endpoint_dir_in(&ep->desc);
1353 switch (usb_endpoint_type(&ep->desc)) {
1354 case USB_ENDPOINT_XFER_CONTROL:
1356 case USB_ENDPOINT_XFER_BULK:
1357 return in ? BULK_IN_EP : BULK_OUT_EP;
1358 case USB_ENDPOINT_XFER_ISOC:
1359 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1360 case USB_ENDPOINT_XFER_INT:
1361 return in ? INT_IN_EP : INT_OUT_EP;
1366 /* Return the maximum endpoint service interval time (ESIT) payload.
1367 * Basically, this is the maxpacket size, multiplied by the burst size
1370 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1371 struct usb_host_endpoint *ep)
1376 /* Only applies for interrupt or isochronous endpoints */
1377 if (usb_endpoint_xfer_control(&ep->desc) ||
1378 usb_endpoint_xfer_bulk(&ep->desc))
1381 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1382 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1383 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1384 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1385 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1386 else if (udev->speed >= USB_SPEED_SUPER)
1387 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1389 max_packet = usb_endpoint_maxp(&ep->desc);
1390 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1391 /* A 0 in max burst means 1 transfer per ESIT */
1392 return max_packet * max_burst;
1395 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1396 * Drivers will have to call usb_alloc_streams() to do that.
1398 int xhci_endpoint_init(struct xhci_hcd *xhci,
1399 struct xhci_virt_device *virt_dev,
1400 struct usb_device *udev,
1401 struct usb_host_endpoint *ep,
1404 unsigned int ep_index;
1405 struct xhci_ep_ctx *ep_ctx;
1406 struct xhci_ring *ep_ring;
1407 unsigned int max_packet;
1408 enum xhci_ring_type ring_type;
1409 u32 max_esit_payload;
1411 unsigned int max_burst;
1412 unsigned int interval;
1414 unsigned int avg_trb_len;
1415 unsigned int err_count = 0;
1417 ep_index = xhci_get_endpoint_index(&ep->desc);
1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1420 endpoint_type = xhci_get_endpoint_type(ep);
1424 ring_type = usb_endpoint_type(&ep->desc);
1427 * Get values to fill the endpoint context, mostly from ep descriptor.
1428 * The average TRB buffer lengt for bulk endpoints is unclear as we
1429 * have no clue on scatter gather list entry size. For Isoc and Int,
1430 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1432 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1433 interval = xhci_get_endpoint_interval(udev, ep);
1435 /* Periodic endpoint bInterval limit quirk */
1436 if (usb_endpoint_xfer_int(&ep->desc) ||
1437 usb_endpoint_xfer_isoc(&ep->desc)) {
1438 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1439 udev->speed >= USB_SPEED_HIGH &&
1445 mult = xhci_get_endpoint_mult(udev, ep);
1446 max_packet = usb_endpoint_maxp(&ep->desc);
1447 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1448 avg_trb_len = max_esit_payload;
1450 /* FIXME dig Mult and streams info out of ep companion desc */
1452 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1453 if (!usb_endpoint_xfer_isoc(&ep->desc))
1455 /* Some devices get this wrong */
1456 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1458 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1459 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1461 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1462 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465 /* Set up the endpoint ring */
1466 virt_dev->eps[ep_index].new_ring =
1467 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1468 if (!virt_dev->eps[ep_index].new_ring)
1471 virt_dev->eps[ep_index].skip = false;
1472 ep_ring = virt_dev->eps[ep_index].new_ring;
1474 /* Fill the endpoint context */
1475 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1476 EP_INTERVAL(interval) |
1478 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1479 MAX_PACKET(max_packet) |
1480 MAX_BURST(max_burst) |
1481 ERROR_COUNT(err_count));
1482 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1483 ep_ring->cycle_state);
1485 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1486 EP_AVG_TRB_LENGTH(avg_trb_len));
1491 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1492 struct xhci_virt_device *virt_dev,
1493 struct usb_host_endpoint *ep)
1495 unsigned int ep_index;
1496 struct xhci_ep_ctx *ep_ctx;
1498 ep_index = xhci_get_endpoint_index(&ep->desc);
1499 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1501 ep_ctx->ep_info = 0;
1502 ep_ctx->ep_info2 = 0;
1504 ep_ctx->tx_info = 0;
1505 /* Don't free the endpoint ring until the set interface or configuration
1510 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1512 bw_info->ep_interval = 0;
1514 bw_info->num_packets = 0;
1515 bw_info->max_packet_size = 0;
1517 bw_info->max_esit_payload = 0;
1520 void xhci_update_bw_info(struct xhci_hcd *xhci,
1521 struct xhci_container_ctx *in_ctx,
1522 struct xhci_input_control_ctx *ctrl_ctx,
1523 struct xhci_virt_device *virt_dev)
1525 struct xhci_bw_info *bw_info;
1526 struct xhci_ep_ctx *ep_ctx;
1527 unsigned int ep_type;
1530 for (i = 1; i < 31; i++) {
1531 bw_info = &virt_dev->eps[i].bw_info;
1533 /* We can't tell what endpoint type is being dropped, but
1534 * unconditionally clearing the bandwidth info for non-periodic
1535 * endpoints should be harmless because the info will never be
1536 * set in the first place.
1538 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1539 /* Dropped endpoint */
1540 xhci_clear_endpoint_bw_info(bw_info);
1544 if (EP_IS_ADDED(ctrl_ctx, i)) {
1545 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1546 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1548 /* Ignore non-periodic endpoints */
1549 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1550 ep_type != ISOC_IN_EP &&
1551 ep_type != INT_IN_EP)
1554 /* Added or changed endpoint */
1555 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1556 le32_to_cpu(ep_ctx->ep_info));
1557 /* Number of packets and mult are zero-based in the
1558 * input context, but we want one-based for the
1561 bw_info->mult = CTX_TO_EP_MULT(
1562 le32_to_cpu(ep_ctx->ep_info)) + 1;
1563 bw_info->num_packets = CTX_TO_MAX_BURST(
1564 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1565 bw_info->max_packet_size = MAX_PACKET_DECODED(
1566 le32_to_cpu(ep_ctx->ep_info2));
1567 bw_info->type = ep_type;
1568 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1569 le32_to_cpu(ep_ctx->tx_info));
1574 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1575 * Useful when you want to change one particular aspect of the endpoint and then
1576 * issue a configure endpoint command.
1578 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1579 struct xhci_container_ctx *in_ctx,
1580 struct xhci_container_ctx *out_ctx,
1581 unsigned int ep_index)
1583 struct xhci_ep_ctx *out_ep_ctx;
1584 struct xhci_ep_ctx *in_ep_ctx;
1586 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1589 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1590 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1591 in_ep_ctx->deq = out_ep_ctx->deq;
1592 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1596 * Useful when you want to change one particular aspect of the endpoint and then
1597 * issue a configure endpoint command. Only the context entries field matters,
1598 * but we'll copy the whole thing anyway.
1600 void xhci_slot_copy(struct xhci_hcd *xhci,
1601 struct xhci_container_ctx *in_ctx,
1602 struct xhci_container_ctx *out_ctx)
1604 struct xhci_slot_ctx *in_slot_ctx;
1605 struct xhci_slot_ctx *out_slot_ctx;
1607 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1608 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1610 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1611 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1612 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1613 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1616 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1617 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1620 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1621 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1624 "Allocating %d scratchpad buffers", num_sp);
1629 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1630 if (!xhci->scratchpad)
1633 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1634 num_sp * sizeof(u64),
1635 &xhci->scratchpad->sp_dma, flags);
1636 if (!xhci->scratchpad->sp_array)
1639 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1640 if (!xhci->scratchpad->sp_buffers)
1643 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1644 for (i = 0; i < num_sp; i++) {
1646 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1651 xhci->scratchpad->sp_array[i] = dma;
1652 xhci->scratchpad->sp_buffers[i] = buf;
1658 for (i = i - 1; i >= 0; i--) {
1659 dma_free_coherent(dev, xhci->page_size,
1660 xhci->scratchpad->sp_buffers[i],
1661 xhci->scratchpad->sp_array[i]);
1664 kfree(xhci->scratchpad->sp_buffers);
1667 dma_free_coherent(dev, num_sp * sizeof(u64),
1668 xhci->scratchpad->sp_array,
1669 xhci->scratchpad->sp_dma);
1672 kfree(xhci->scratchpad);
1673 xhci->scratchpad = NULL;
1679 static void scratchpad_free(struct xhci_hcd *xhci)
1683 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1685 if (!xhci->scratchpad)
1688 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1690 for (i = 0; i < num_sp; i++) {
1691 dma_free_coherent(dev, xhci->page_size,
1692 xhci->scratchpad->sp_buffers[i],
1693 xhci->scratchpad->sp_array[i]);
1695 kfree(xhci->scratchpad->sp_buffers);
1696 dma_free_coherent(dev, num_sp * sizeof(u64),
1697 xhci->scratchpad->sp_array,
1698 xhci->scratchpad->sp_dma);
1699 kfree(xhci->scratchpad);
1700 xhci->scratchpad = NULL;
1703 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1704 bool allocate_in_ctx, bool allocate_completion,
1707 struct xhci_command *command;
1709 command = kzalloc(sizeof(*command), mem_flags);
1713 if (allocate_in_ctx) {
1715 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1717 if (!command->in_ctx) {
1723 if (allocate_completion) {
1724 command->completion =
1725 kzalloc(sizeof(struct completion), mem_flags);
1726 if (!command->completion) {
1727 xhci_free_container_ctx(xhci, command->in_ctx);
1731 init_completion(command->completion);
1734 command->status = 0;
1735 INIT_LIST_HEAD(&command->cmd_list);
1739 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1744 void xhci_free_command(struct xhci_hcd *xhci,
1745 struct xhci_command *command)
1747 xhci_free_container_ctx(xhci,
1749 kfree(command->completion);
1753 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1755 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1757 int i, j, num_ports;
1759 cancel_delayed_work_sync(&xhci->cmd_timer);
1761 /* Free the Event Ring Segment Table and the actual Event Ring */
1762 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1763 if (xhci->erst.entries)
1764 dma_free_coherent(dev, size,
1765 xhci->erst.entries, xhci->erst.erst_dma_addr);
1766 xhci->erst.entries = NULL;
1767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1768 if (xhci->event_ring)
1769 xhci_ring_free(xhci, xhci->event_ring);
1770 xhci->event_ring = NULL;
1771 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1773 if (xhci->lpm_command)
1774 xhci_free_command(xhci, xhci->lpm_command);
1775 xhci->lpm_command = NULL;
1777 xhci_ring_free(xhci, xhci->cmd_ring);
1778 xhci->cmd_ring = NULL;
1779 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1780 xhci_cleanup_command_queue(xhci);
1782 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1783 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1784 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1785 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1786 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1787 while (!list_empty(ep))
1788 list_del_init(ep->next);
1792 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1793 xhci_free_virt_devices_depth_first(xhci, i);
1795 dma_pool_destroy(xhci->segment_pool);
1796 xhci->segment_pool = NULL;
1797 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1799 dma_pool_destroy(xhci->device_pool);
1800 xhci->device_pool = NULL;
1801 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1803 dma_pool_destroy(xhci->small_streams_pool);
1804 xhci->small_streams_pool = NULL;
1805 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1806 "Freed small stream array pool");
1808 dma_pool_destroy(xhci->medium_streams_pool);
1809 xhci->medium_streams_pool = NULL;
1810 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1811 "Freed medium stream array pool");
1814 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1815 xhci->dcbaa, xhci->dcbaa->dma);
1818 scratchpad_free(xhci);
1823 for (i = 0; i < num_ports; i++) {
1824 struct xhci_tt_bw_info *tt, *n;
1825 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1826 list_del(&tt->tt_list);
1832 xhci->cmd_ring_reserved_trbs = 0;
1833 xhci->num_usb2_ports = 0;
1834 xhci->num_usb3_ports = 0;
1835 xhci->num_active_eps = 0;
1836 kfree(xhci->usb2_ports);
1837 kfree(xhci->usb3_ports);
1838 kfree(xhci->port_array);
1840 kfree(xhci->ext_caps);
1842 xhci->usb2_ports = NULL;
1843 xhci->usb3_ports = NULL;
1844 xhci->port_array = NULL;
1846 xhci->ext_caps = NULL;
1848 xhci->page_size = 0;
1849 xhci->page_shift = 0;
1850 xhci->bus_state[0].bus_suspended = 0;
1851 xhci->bus_state[1].bus_suspended = 0;
1854 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1855 struct xhci_segment *input_seg,
1856 union xhci_trb *start_trb,
1857 union xhci_trb *end_trb,
1858 dma_addr_t input_dma,
1859 struct xhci_segment *result_seg,
1860 char *test_name, int test_number)
1862 unsigned long long start_dma;
1863 unsigned long long end_dma;
1864 struct xhci_segment *seg;
1866 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1867 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1869 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1870 if (seg != result_seg) {
1871 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1872 test_name, test_number);
1873 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1874 "input DMA 0x%llx\n",
1876 (unsigned long long) input_dma);
1877 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1878 "ending TRB %p (0x%llx DMA)\n",
1879 start_trb, start_dma,
1881 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1883 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1890 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1891 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1894 dma_addr_t input_dma;
1895 struct xhci_segment *result_seg;
1896 } simple_test_vector [] = {
1897 /* A zeroed DMA field should fail */
1899 /* One TRB before the ring start should fail */
1900 { xhci->event_ring->first_seg->dma - 16, NULL },
1901 /* One byte before the ring start should fail */
1902 { xhci->event_ring->first_seg->dma - 1, NULL },
1903 /* Starting TRB should succeed */
1904 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1905 /* Ending TRB should succeed */
1906 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1907 xhci->event_ring->first_seg },
1908 /* One byte after the ring end should fail */
1909 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1910 /* One TRB after the ring end should fail */
1911 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1912 /* An address of all ones should fail */
1913 { (dma_addr_t) (~0), NULL },
1916 struct xhci_segment *input_seg;
1917 union xhci_trb *start_trb;
1918 union xhci_trb *end_trb;
1919 dma_addr_t input_dma;
1920 struct xhci_segment *result_seg;
1921 } complex_test_vector [] = {
1922 /* Test feeding a valid DMA address from a different ring */
1923 { .input_seg = xhci->event_ring->first_seg,
1924 .start_trb = xhci->event_ring->first_seg->trbs,
1925 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1926 .input_dma = xhci->cmd_ring->first_seg->dma,
1929 /* Test feeding a valid end TRB from a different ring */
1930 { .input_seg = xhci->event_ring->first_seg,
1931 .start_trb = xhci->event_ring->first_seg->trbs,
1932 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1933 .input_dma = xhci->cmd_ring->first_seg->dma,
1936 /* Test feeding a valid start and end TRB from a different ring */
1937 { .input_seg = xhci->event_ring->first_seg,
1938 .start_trb = xhci->cmd_ring->first_seg->trbs,
1939 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1940 .input_dma = xhci->cmd_ring->first_seg->dma,
1943 /* TRB in this ring, but after this TD */
1944 { .input_seg = xhci->event_ring->first_seg,
1945 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1946 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1947 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1950 /* TRB in this ring, but before this TD */
1951 { .input_seg = xhci->event_ring->first_seg,
1952 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1953 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1954 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1957 /* TRB in this ring, but after this wrapped TD */
1958 { .input_seg = xhci->event_ring->first_seg,
1959 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1960 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1961 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1964 /* TRB in this ring, but before this wrapped TD */
1965 { .input_seg = xhci->event_ring->first_seg,
1966 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1967 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1968 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1971 /* TRB not in this ring, and we have a wrapped TD */
1972 { .input_seg = xhci->event_ring->first_seg,
1973 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1974 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1975 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1980 unsigned int num_tests;
1983 num_tests = ARRAY_SIZE(simple_test_vector);
1984 for (i = 0; i < num_tests; i++) {
1985 ret = xhci_test_trb_in_td(xhci,
1986 xhci->event_ring->first_seg,
1987 xhci->event_ring->first_seg->trbs,
1988 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1989 simple_test_vector[i].input_dma,
1990 simple_test_vector[i].result_seg,
1996 num_tests = ARRAY_SIZE(complex_test_vector);
1997 for (i = 0; i < num_tests; i++) {
1998 ret = xhci_test_trb_in_td(xhci,
1999 complex_test_vector[i].input_seg,
2000 complex_test_vector[i].start_trb,
2001 complex_test_vector[i].end_trb,
2002 complex_test_vector[i].input_dma,
2003 complex_test_vector[i].result_seg,
2008 xhci_dbg(xhci, "TRB math tests passed.\n");
2012 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2017 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2018 xhci->event_ring->dequeue);
2019 if (deq == 0 && !in_interrupt())
2020 xhci_warn(xhci, "WARN something wrong with SW event ring "
2022 /* Update HC event ring dequeue pointer */
2023 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2024 temp &= ERST_PTR_MASK;
2025 /* Don't clear the EHB bit (which is RW1C) because
2026 * there might be more events to service.
2029 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2030 "// Write event ring dequeue pointer, "
2031 "preserving EHB bit");
2032 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2033 &xhci->ir_set->erst_dequeue);
2036 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2037 __le32 __iomem *addr, int max_caps)
2039 u32 temp, port_offset, port_count;
2041 u8 major_revision, minor_revision;
2042 struct xhci_hub *rhub;
2045 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2046 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2048 if (major_revision == 0x03) {
2049 rhub = &xhci->usb3_rhub;
2050 } else if (major_revision <= 0x02) {
2051 rhub = &xhci->usb2_rhub;
2053 xhci_warn(xhci, "Ignoring unknown port speed, "
2054 "Ext Cap %p, revision = 0x%x\n",
2055 addr, major_revision);
2056 /* Ignoring port protocol we can't understand. FIXME */
2059 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2061 if (rhub->min_rev < minor_revision)
2062 rhub->min_rev = minor_revision;
2064 /* Port offset and count in the third dword, see section 7.2 */
2065 temp = readl(addr + 2);
2066 port_offset = XHCI_EXT_PORT_OFF(temp);
2067 port_count = XHCI_EXT_PORT_COUNT(temp);
2068 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2069 "Ext Cap %p, port offset = %u, "
2070 "count = %u, revision = 0x%x",
2071 addr, port_offset, port_count, major_revision);
2072 /* Port count includes the current port offset */
2073 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2074 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2077 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2078 if (rhub->psi_count) {
2079 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2082 rhub->psi_count = 0;
2084 rhub->psi_uid_count++;
2085 for (i = 0; i < rhub->psi_count; i++) {
2086 rhub->psi[i] = readl(addr + 4 + i);
2088 /* count unique ID values, two consecutive entries can
2089 * have the same ID if link is assymetric
2091 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2092 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2093 rhub->psi_uid_count++;
2095 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2096 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2097 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2098 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2099 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2100 XHCI_EXT_PORT_LP(rhub->psi[i]),
2101 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2104 /* cache usb2 port capabilities */
2105 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2108 /* Check the host's USB2 LPM capability */
2109 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2110 (temp & XHCI_L1C)) {
2111 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2112 "xHCI 0.96: support USB2 software lpm");
2113 xhci->sw_lpm_support = 1;
2116 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2117 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2118 "xHCI 1.0: support USB2 software lpm");
2119 xhci->sw_lpm_support = 1;
2120 if (temp & XHCI_HLC) {
2121 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2122 "xHCI 1.0: support USB2 hardware lpm");
2123 xhci->hw_lpm_support = 1;
2128 for (i = port_offset; i < (port_offset + port_count); i++) {
2129 /* Duplicate entry. Ignore the port if the revisions differ. */
2130 if (xhci->port_array[i] != 0) {
2131 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2132 " port %u\n", addr, i);
2133 xhci_warn(xhci, "Port was marked as USB %u, "
2134 "duplicated as USB %u\n",
2135 xhci->port_array[i], major_revision);
2136 /* Only adjust the roothub port counts if we haven't
2137 * found a similar duplicate.
2139 if (xhci->port_array[i] != major_revision &&
2140 xhci->port_array[i] != DUPLICATE_ENTRY) {
2141 if (xhci->port_array[i] == 0x03)
2142 xhci->num_usb3_ports--;
2144 xhci->num_usb2_ports--;
2145 xhci->port_array[i] = DUPLICATE_ENTRY;
2147 /* FIXME: Should we disable the port? */
2150 xhci->port_array[i] = major_revision;
2151 if (major_revision == 0x03)
2152 xhci->num_usb3_ports++;
2154 xhci->num_usb2_ports++;
2156 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2160 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2161 * specify what speeds each port is supposed to be. We can't count on the port
2162 * speed bits in the PORTSC register being correct until a device is connected,
2163 * but we need to set up the two fake roothubs with the correct number of USB
2164 * 3.0 and USB 2.0 ports at host controller initialization time.
2166 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2170 unsigned int num_ports;
2171 int i, j, port_index;
2175 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2176 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2177 if (!xhci->port_array)
2180 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2183 for (i = 0; i < num_ports; i++) {
2184 struct xhci_interval_bw_table *bw_table;
2186 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2187 bw_table = &xhci->rh_bw[i].bw_table;
2188 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2189 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2191 base = &xhci->cap_regs->hc_capbase;
2193 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2195 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2200 /* count extended protocol capability entries for later caching */
2203 offset = xhci_find_next_ext_cap(base, offset,
2204 XHCI_EXT_CAPS_PROTOCOL);
2207 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2208 if (!xhci->ext_caps)
2214 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2215 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2217 offset = xhci_find_next_ext_cap(base, offset,
2218 XHCI_EXT_CAPS_PROTOCOL);
2221 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2222 xhci_warn(xhci, "No ports on the roothubs?\n");
2225 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2226 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2227 xhci->num_usb2_ports, xhci->num_usb3_ports);
2229 /* Place limits on the number of roothub ports so that the hub
2230 * descriptors aren't longer than the USB core will allocate.
2232 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2233 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2234 "Limiting USB 3.0 roothub ports to %u.",
2236 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2238 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2239 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2240 "Limiting USB 2.0 roothub ports to %u.",
2242 xhci->num_usb2_ports = USB_MAXCHILDREN;
2246 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2247 * Not sure how the USB core will handle a hub with no ports...
2249 if (xhci->num_usb2_ports) {
2250 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2251 xhci->num_usb2_ports, flags);
2252 if (!xhci->usb2_ports)
2256 for (i = 0; i < num_ports; i++) {
2257 if (xhci->port_array[i] == 0x03 ||
2258 xhci->port_array[i] == 0 ||
2259 xhci->port_array[i] == DUPLICATE_ENTRY)
2262 xhci->usb2_ports[port_index] =
2263 &xhci->op_regs->port_status_base +
2265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2266 "USB 2.0 port at index %u, "
2268 xhci->usb2_ports[port_index]);
2270 if (port_index == xhci->num_usb2_ports)
2274 if (xhci->num_usb3_ports) {
2275 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2276 xhci->num_usb3_ports, flags);
2277 if (!xhci->usb3_ports)
2281 for (i = 0; i < num_ports; i++)
2282 if (xhci->port_array[i] == 0x03) {
2283 xhci->usb3_ports[port_index] =
2284 &xhci->op_regs->port_status_base +
2286 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2287 "USB 3.0 port at index %u, "
2289 xhci->usb3_ports[port_index]);
2291 if (port_index == xhci->num_usb3_ports)
2298 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2301 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2302 unsigned int val, val2;
2304 struct xhci_segment *seg;
2305 u32 page_size, temp;
2308 INIT_LIST_HEAD(&xhci->cmd_list);
2310 /* init command timeout work */
2311 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2312 init_completion(&xhci->cmd_ring_stop_completion);
2314 page_size = readl(&xhci->op_regs->page_size);
2315 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2316 "Supported page size register = 0x%x", page_size);
2317 for (i = 0; i < 16; i++) {
2318 if ((0x1 & page_size) != 0)
2320 page_size = page_size >> 1;
2323 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2324 "Supported page size of %iK", (1 << (i+12)) / 1024);
2326 xhci_warn(xhci, "WARN: no supported page size\n");
2327 /* Use 4K pages, since that's common and the minimum the HC supports */
2328 xhci->page_shift = 12;
2329 xhci->page_size = 1 << xhci->page_shift;
2330 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331 "HCD page size set to %iK", xhci->page_size / 1024);
2334 * Program the Number of Device Slots Enabled field in the CONFIG
2335 * register with the max value of slots the HC can handle.
2337 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2338 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2339 "// xHC can handle at most %d device slots.", val);
2340 val2 = readl(&xhci->op_regs->config_reg);
2341 val |= (val2 & ~HCS_SLOTS_MASK);
2342 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343 "// Setting Max device slots reg = 0x%x.", val);
2344 writel(val, &xhci->op_regs->config_reg);
2347 * xHCI section 5.4.6 - doorbell array must be
2348 * "physically contiguous and 64-byte (cache line) aligned".
2350 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2354 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2355 xhci->dcbaa->dma = dma;
2356 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2358 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2359 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2362 * Initialize the ring segment pool. The ring must be a contiguous
2363 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2364 * however, the command ring segment needs 64-byte aligned segments
2365 * and our use of dma addresses in the trb_address_map radix tree needs
2366 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2368 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2369 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2371 /* See Table 46 and Note on Figure 55 */
2372 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2373 2112, 64, xhci->page_size);
2374 if (!xhci->segment_pool || !xhci->device_pool)
2377 /* Linear stream context arrays don't have any boundary restrictions,
2378 * and only need to be 16-byte aligned.
2380 xhci->small_streams_pool =
2381 dma_pool_create("xHCI 256 byte stream ctx arrays",
2382 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2383 xhci->medium_streams_pool =
2384 dma_pool_create("xHCI 1KB stream ctx arrays",
2385 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2386 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2387 * will be allocated with dma_alloc_coherent()
2390 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2393 /* Set up the command ring to have one segments for now. */
2394 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2395 if (!xhci->cmd_ring)
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "Allocated command ring at %p", xhci->cmd_ring);
2399 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2400 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2402 /* Set the address in the Command Ring Control register */
2403 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2404 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2405 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2406 xhci->cmd_ring->cycle_state;
2407 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2408 "// Setting command ring address to 0x%016llx", val_64);
2409 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2410 xhci_dbg_cmd_ptrs(xhci);
2412 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2413 if (!xhci->lpm_command)
2416 /* Reserve one command ring TRB for disabling LPM.
2417 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2418 * disabling LPM, we only need to reserve one TRB for all devices.
2420 xhci->cmd_ring_reserved_trbs++;
2422 val = readl(&xhci->cap_regs->db_off);
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "// Doorbell array is located at offset 0x%x"
2426 " from cap regs base addr", val);
2427 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2428 xhci_dbg_regs(xhci);
2429 xhci_print_run_regs(xhci);
2430 /* Set ir_set to interrupt register set 0 */
2431 xhci->ir_set = &xhci->run_regs->ir_set[0];
2434 * Event ring setup: Allocate a normal ring, but also setup
2435 * the event ring segment table (ERST). Section 4.9.3.
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2438 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2440 if (!xhci->event_ring)
2442 if (xhci_check_trb_in_td_math(xhci) < 0)
2445 xhci->erst.entries = dma_alloc_coherent(dev,
2446 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2448 if (!xhci->erst.entries)
2450 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2451 "// Allocated event ring segment table at 0x%llx",
2452 (unsigned long long)dma);
2454 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2455 xhci->erst.num_entries = ERST_NUM_SEGS;
2456 xhci->erst.erst_dma_addr = dma;
2457 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2458 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2459 xhci->erst.num_entries,
2461 (unsigned long long)xhci->erst.erst_dma_addr);
2463 /* set ring base address and size for each segment table entry */
2464 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2465 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2466 entry->seg_addr = cpu_to_le64(seg->dma);
2467 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2472 /* set ERST count with the number of entries in the segment table */
2473 val = readl(&xhci->ir_set->erst_size);
2474 val &= ERST_SIZE_MASK;
2475 val |= ERST_NUM_SEGS;
2476 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2479 writel(val, &xhci->ir_set->erst_size);
2481 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 "// Set ERST entries to point to event ring.");
2483 /* set the segment table base address */
2484 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485 "// Set ERST base address for ir_set 0 = 0x%llx",
2486 (unsigned long long)xhci->erst.erst_dma_addr);
2487 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2488 val_64 &= ERST_PTR_MASK;
2489 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2490 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2492 /* Set the event ring dequeue address */
2493 xhci_set_hc_event_deq(xhci);
2494 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495 "Wrote ERST address to ir_set 0.");
2496 xhci_print_ir_set(xhci, 0);
2499 * XXX: Might need to set the Interrupter Moderation Register to
2500 * something other than the default (~1ms minimum between interrupts).
2501 * See section 5.5.1.2.
2503 for (i = 0; i < MAX_HC_SLOTS; i++)
2504 xhci->devs[i] = NULL;
2505 for (i = 0; i < USB_MAXCHILDREN; i++) {
2506 xhci->bus_state[0].resume_done[i] = 0;
2507 xhci->bus_state[1].resume_done[i] = 0;
2508 /* Only the USB 2.0 completions will ever be used. */
2509 init_completion(&xhci->bus_state[1].rexit_done[i]);
2512 if (scratchpad_alloc(xhci, flags))
2514 if (xhci_setup_port_arrays(xhci, flags))
2517 /* Enable USB 3.0 device notifications for function remote wake, which
2518 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2519 * U3 (device suspend).
2521 temp = readl(&xhci->op_regs->dev_notification);
2522 temp &= ~DEV_NOTE_MASK;
2523 temp |= DEV_NOTE_FWAKE;
2524 writel(temp, &xhci->op_regs->dev_notification);
2531 xhci_mem_cleanup(xhci);